// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) #include "ceres/linear_solver.h" #include #include "ceres/cgnr_solver.h" #include "ceres/dense_normal_cholesky_solver.h" #include "ceres/dense_qr_solver.h" #include "ceres/dynamic_sparse_normal_cholesky_solver.h" #include "ceres/internal/config.h" #include "ceres/iterative_schur_complement_solver.h" #include "ceres/schur_complement_solver.h" #include "ceres/sparse_normal_cholesky_solver.h" #include "ceres/types.h" #include "glog/logging.h" namespace ceres::internal { LinearSolver::~LinearSolver() = default; LinearSolverType LinearSolver::LinearSolverForZeroEBlocks( LinearSolverType linear_solver_type) { if (!IsSchurType(linear_solver_type)) { return linear_solver_type; } if (linear_solver_type == SPARSE_SCHUR) { return SPARSE_NORMAL_CHOLESKY; } if (linear_solver_type == DENSE_SCHUR) { // TODO(sameeragarwal): This is probably not a great choice. // Ideally, we should have a DENSE_NORMAL_CHOLESKY, that can take // a BlockSparseMatrix as input. return DENSE_QR; } if (linear_solver_type == ITERATIVE_SCHUR) { return CGNR; } return linear_solver_type; } std::unique_ptr LinearSolver::Create( const LinearSolver::Options& options) { CHECK(options.context != nullptr); switch (options.type) { case CGNR: { #ifndef CERES_NO_CUDA if (options.sparse_linear_algebra_library_type == CUDA_SPARSE) { std::string error; return CudaCgnrSolver::Create(options, &error); } #endif return std::make_unique(options); } break; case SPARSE_NORMAL_CHOLESKY: #if defined(CERES_NO_SPARSE) return nullptr; #else if (options.dynamic_sparsity) { return std::make_unique(options); } return std::make_unique(options); #endif case SPARSE_SCHUR: #if defined(CERES_NO_SPARSE) return nullptr; #else return std::make_unique(options); #endif case DENSE_SCHUR: return std::make_unique(options); case ITERATIVE_SCHUR: if (options.use_explicit_schur_complement) { return std::make_unique(options); } else { return std::make_unique(options); } case DENSE_QR: return std::make_unique(options); case DENSE_NORMAL_CHOLESKY: return std::make_unique(options); default: LOG(FATAL) << "Unknown linear solver type :" << options.type; return nullptr; // MSVC doesn't understand that LOG(FATAL) never returns. } } } // namespace ceres::internal