// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Limited memory positive definite approximation to the inverse // Hessian, using the LBFGS algorithm #ifndef CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_ #define CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_ #include #include "ceres/internal/eigen.h" #include "ceres/internal/export.h" #include "ceres/linear_operator.h" namespace ceres::internal { // LowRankInverseHessian is a positive definite approximation to the // Hessian using the limited memory variant of the // Broyden-Fletcher-Goldfarb-Shanno (BFGS)secant formula for // approximating the Hessian. // // Other update rules like the Davidon-Fletcher-Powell (DFP) are // possible, but the BFGS rule is considered the best performing one. // // The limited memory variant was developed by Nocedal and further // enhanced with scaling rule by Byrd, Nocedal and Schanbel. // // Nocedal, J. (1980). "Updating Quasi-Newton Matrices with Limited // Storage". Mathematics of Computation 35 (151): 773-782. // // Byrd, R. H.; Nocedal, J.; Schnabel, R. B. (1994). // "Representations of Quasi-Newton Matrices and their use in // Limited Memory Methods". Mathematical Programming 63 (4): class CERES_NO_EXPORT LowRankInverseHessian final : public LinearOperator { public: // num_parameters is the row/column size of the Hessian. // max_num_corrections is the rank of the Hessian approximation. // use_approximate_eigenvalue_scaling controls whether the initial // inverse Hessian used during Right/LeftMultiplyAndAccumulate() is scaled by // the approximate eigenvalue of the true inverse Hessian at the // current operating point. // The approximation uses: // 2 * max_num_corrections * num_parameters + max_num_corrections // doubles. LowRankInverseHessian(int num_parameters, int max_num_corrections, bool use_approximate_eigenvalue_scaling); // Update the low rank approximation. delta_x is the change in the // domain of Hessian, and delta_gradient is the change in the // gradient. The update copies the delta_x and delta_gradient // vectors, and gets rid of the oldest delta_x and delta_gradient // vectors if the number of corrections is already equal to // max_num_corrections. bool Update(const Vector& delta_x, const Vector& delta_gradient); // LinearOperator interface void RightMultiplyAndAccumulate(const double* x, double* y) const final; void LeftMultiplyAndAccumulate(const double* x, double* y) const final { RightMultiplyAndAccumulate(x, y); } int num_rows() const final { return num_parameters_; } int num_cols() const final { return num_parameters_; } private: const int num_parameters_; const int max_num_corrections_; const bool use_approximate_eigenvalue_scaling_; double approximate_eigenvalue_scale_; ColMajorMatrix delta_x_history_; ColMajorMatrix delta_gradient_history_; Vector delta_x_dot_delta_gradient_; std::list indices_; }; } // namespace ceres::internal #endif // CERES_INTERNAL_LOW_RANK_INVERSE_HESSIAN_H_