// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // tbennun@gmail.com (Tal Ben-Nun) #include "ceres/numeric_diff_test_utils.h" #include #include #include "ceres/cost_function.h" #include "ceres/test_util.h" #include "ceres/types.h" #include "gtest/gtest.h" namespace ceres::internal { bool EasyFunctor::operator()(const double* x1, const double* x2, double* residuals) const { residuals[0] = residuals[1] = residuals[2] = 0; for (int i = 0; i < 5; ++i) { residuals[0] += x1[i] * x2[i]; residuals[2] += x2[i] * x2[i]; } residuals[1] = residuals[0] * residuals[0]; return true; } void EasyFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( const CostFunction& cost_function, NumericDiffMethodType method) const { // The x1[0] is made deliberately small to test the performance near zero. // clang-format off double x1[] = { 1e-64, 2.0, 3.0, 4.0, 5.0 }; double x2[] = { 9.0, 9.0, 5.0, 5.0, 1.0 }; double *parameters[] = { &x1[0], &x2[0] }; // clang-format on double dydx1[15]; // 3 x 5, row major. double dydx2[15]; // 3 x 5, row major. double* jacobians[2] = {&dydx1[0], &dydx2[0]}; double residuals[3] = {-1e-100, -2e-100, -3e-100}; ASSERT_TRUE( cost_function.Evaluate(¶meters[0], &residuals[0], &jacobians[0])); double expected_residuals[3]; EasyFunctor functor; functor(x1, x2, expected_residuals); EXPECT_EQ(expected_residuals[0], residuals[0]); EXPECT_EQ(expected_residuals[1], residuals[1]); EXPECT_EQ(expected_residuals[2], residuals[2]); double tolerance = 0.0; switch (method) { default: case CENTRAL: tolerance = 3e-9; break; case FORWARD: tolerance = 2e-5; break; case RIDDERS: tolerance = 1e-13; break; } for (int i = 0; i < 5; ++i) { // clang-format off ExpectClose(x2[i], dydx1[5 * 0 + i], tolerance); // y1 ExpectClose(x1[i], dydx2[5 * 0 + i], tolerance); ExpectClose(2 * x2[i] * residuals[0], dydx1[5 * 1 + i], tolerance); // y2 ExpectClose(2 * x1[i] * residuals[0], dydx2[5 * 1 + i], tolerance); ExpectClose(0.0, dydx1[5 * 2 + i], tolerance); // y3 ExpectClose(2 * x2[i], dydx2[5 * 2 + i], tolerance); // clang-format on } } bool TranscendentalFunctor::operator()(const double* x1, const double* x2, double* residuals) const { double x1x2 = 0; for (int i = 0; i < 5; ++i) { x1x2 += x1[i] * x2[i]; } residuals[0] = sin(x1x2); residuals[1] = exp(-x1x2 / 10); return true; } void TranscendentalFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( const CostFunction& cost_function, NumericDiffMethodType method) const { struct TestParameterBlocks { double x1[5]; double x2[5]; }; // clang-format off std::vector kTests = { { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // No zeros. { 9.0, 9.0, 5.0, 5.0, 1.0 }, }, { { 0.0, 2.0, 3.0, 0.0, 5.0 }, // Some zeros x1. { 9.0, 9.0, 5.0, 5.0, 1.0 }, }, { { 1.0, 2.0, 3.0, 1.0, 5.0 }, // Some zeros x2. { 0.0, 9.0, 0.0, 5.0, 0.0 }, }, { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros x1. { 9.0, 9.0, 5.0, 5.0, 1.0 }, }, { { 1.0, 2.0, 3.0, 4.0, 5.0 }, // All zeros x2. { 0.0, 0.0, 0.0, 0.0, 0.0 }, }, { { 0.0, 0.0, 0.0, 0.0, 0.0 }, // All zeros. { 0.0, 0.0, 0.0, 0.0, 0.0 }, }, }; // clang-format on for (auto& test : kTests) { double* x1 = &(test.x1[0]); double* x2 = &(test.x2[0]); double* parameters[] = {x1, x2}; double dydx1[10]; double dydx2[10]; double* jacobians[2] = {&dydx1[0], &dydx2[0]}; double residuals[2]; ASSERT_TRUE( cost_function.Evaluate(¶meters[0], &residuals[0], &jacobians[0])); double x1x2 = 0; for (int i = 0; i < 5; ++i) { x1x2 += x1[i] * x2[i]; } double tolerance = 0.0; switch (method) { default: case CENTRAL: tolerance = 2e-7; break; case FORWARD: tolerance = 2e-5; break; case RIDDERS: tolerance = 3e-12; break; } for (int i = 0; i < 5; ++i) { // clang-format off ExpectClose( x2[i] * cos(x1x2), dydx1[5 * 0 + i], tolerance); ExpectClose( x1[i] * cos(x1x2), dydx2[5 * 0 + i], tolerance); ExpectClose(-x2[i] * exp(-x1x2 / 10.) / 10., dydx1[5 * 1 + i], tolerance); ExpectClose(-x1[i] * exp(-x1x2 / 10.) / 10., dydx2[5 * 1 + i], tolerance); // clang-format on } } } bool ExponentialFunctor::operator()(const double* x1, double* residuals) const { residuals[0] = exp(x1[0]); return true; } void ExponentialFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( const CostFunction& cost_function) const { // Evaluating the functor at specific points for testing. std::vector kTests = {1.0, 2.0, 3.0, 4.0, 5.0}; // Minimal tolerance w.r.t. the cost function and the tests. const double kTolerance = 2e-14; for (double& test : kTests) { double* parameters[] = {&test}; double dydx; double* jacobians[1] = {&dydx}; double residual; ASSERT_TRUE( cost_function.Evaluate(¶meters[0], &residual, &jacobians[0])); double expected_result = exp(test); // Expect residual to be close to exp(x). ExpectClose(residual, expected_result, kTolerance); // Check evaluated differences. dydx should also be close to exp(x). ExpectClose(dydx, expected_result, kTolerance); } } bool RandomizedFunctor::operator()(const double* x1, double* residuals) const { double random_value = uniform_distribution_(*prng_); residuals[0] = x1[0] * x1[0] + random_value; return true; } void RandomizedFunctor::ExpectCostFunctionEvaluationIsNearlyCorrect( const CostFunction& cost_function) const { std::vector kTests = {0.0, 1.0, 3.0, 4.0, 50.0}; const double kTolerance = 2e-4; for (double& test : kTests) { double* parameters[] = {&test}; double dydx; double* jacobians[1] = {&dydx}; double residual; ASSERT_TRUE( cost_function.Evaluate(¶meters[0], &residual, &jacobians[0])); // Expect residual to be close to x^2 w.r.t. noise factor. ExpectClose(residual, test * test, noise_factor_); // Check evaluated differences. (dy/dx = ~2x) ExpectClose(dydx, 2 * test, kTolerance); } } } // namespace ceres::internal