// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: keir@google.com (Keir Mierle) // // This is the implementation of the public Problem API. The pointer to // implementation (PIMPL) idiom makes it possible for Ceres internal code to // refer to the private data members without needing to exposing it to the // world. An alternative to PIMPL is to have a factory which returns instances // of a virtual base class; while that approach would work, it requires clients // to always put a Problem object into a scoped pointer; this needlessly muddies // client code for little benefit. Therefore, the PIMPL comprise was chosen. #ifndef CERES_PUBLIC_PROBLEM_IMPL_H_ #define CERES_PUBLIC_PROBLEM_IMPL_H_ #include #include #include #include #include #include #include "ceres/context_impl.h" #include "ceres/internal/disable_warnings.h" #include "ceres/internal/export.h" #include "ceres/internal/port.h" #include "ceres/manifold.h" #include "ceres/problem.h" #include "ceres/types.h" namespace ceres { class CostFunction; class EvaluationCallback; class LossFunction; struct CRSMatrix; namespace internal { class Program; class ResidualBlock; class CERES_NO_EXPORT ProblemImpl { public: using ParameterMap = std::map; using ResidualBlockSet = std::unordered_set; using CostFunctionRefCount = std::map; using LossFunctionRefCount = std::map; ProblemImpl(); explicit ProblemImpl(const Problem::Options& options); ProblemImpl(const ProblemImpl&) = delete; void operator=(const ProblemImpl&) = delete; ~ProblemImpl(); // See the public problem.h file for description of these methods. ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* const* const parameter_blocks, int num_parameter_blocks); template ResidualBlockId AddResidualBlock(CostFunction* cost_function, LossFunction* loss_function, double* x0, Ts*... xs) { const std::array parameter_blocks{{x0, xs...}}; return AddResidualBlock(cost_function, loss_function, parameter_blocks.data(), static_cast(parameter_blocks.size())); } void AddParameterBlock(double* values, int size); void AddParameterBlock(double* values, int size, Manifold* manifold); void RemoveResidualBlock(ResidualBlock* residual_block); void RemoveParameterBlock(const double* values); void SetParameterBlockConstant(const double* values); void SetParameterBlockVariable(double* values); bool IsParameterBlockConstant(const double* values) const; void SetManifold(double* values, Manifold* manifold); const Manifold* GetManifold(const double* values) const; bool HasManifold(const double* values) const; void SetParameterLowerBound(double* values, int index, double lower_bound); void SetParameterUpperBound(double* values, int index, double upper_bound); double GetParameterLowerBound(const double* values, int index) const; double GetParameterUpperBound(const double* values, int index) const; bool Evaluate(const Problem::EvaluateOptions& options, double* cost, std::vector* residuals, std::vector* gradient, CRSMatrix* jacobian); bool EvaluateResidualBlock(ResidualBlock* residual_block, bool apply_loss_function, bool new_point, double* cost, double* residuals, double** jacobians) const; int NumParameterBlocks() const; int NumParameters() const; int NumResidualBlocks() const; int NumResiduals() const; int ParameterBlockSize(const double* values) const; int ParameterBlockTangentSize(const double* values) const; bool HasParameterBlock(const double* values) const; void GetParameterBlocks(std::vector* parameter_blocks) const; void GetResidualBlocks(std::vector* residual_blocks) const; void GetParameterBlocksForResidualBlock( const ResidualBlockId residual_block, std::vector* parameter_blocks) const; const CostFunction* GetCostFunctionForResidualBlock( const ResidualBlockId residual_block) const; const LossFunction* GetLossFunctionForResidualBlock( const ResidualBlockId residual_block) const; void GetResidualBlocksForParameterBlock( const double* values, std::vector* residual_blocks) const; const Program& program() const { return *program_; } Program* mutable_program() { return program_.get(); } const ParameterMap& parameter_map() const { return parameter_block_map_; } const ResidualBlockSet& residual_block_set() const { CHECK(options_.enable_fast_removal) << "Fast removal not enabled, residual_block_set is not maintained."; return residual_block_set_; } const Problem::Options& options() const { return options_; } ContextImpl* context() { return context_impl_; } private: ParameterBlock* InternalAddParameterBlock(double* values, int size); void InternalSetManifold(double* values, ParameterBlock* parameter_block, Manifold* manifold); void InternalRemoveResidualBlock(ResidualBlock* residual_block); // Delete the arguments in question. These differ from the Remove* functions // in that they do not clean up references to the block to delete; they // merely delete them. template void DeleteBlockInVector(std::vector* mutable_blocks, Block* block_to_remove); void DeleteBlock(ResidualBlock* residual_block); void DeleteBlock(ParameterBlock* parameter_block); const Problem::Options options_; bool context_impl_owned_; ContextImpl* context_impl_; // The mapping from user pointers to parameter blocks. ParameterMap parameter_block_map_; // Iff enable_fast_removal is enabled, contains the current residual blocks. ResidualBlockSet residual_block_set_; // The actual parameter and residual blocks. std::unique_ptr program_; // TODO(sameeragarwal): Unify the shared object handling across object types. // Right now we are using vectors for Manifold objects and reference counting // for CostFunctions and LossFunctions. Ideally this should be done uniformly. // When removing parameter blocks, manifolds have ambiguous // ownership. Instead of scanning the entire problem to see if the // manifold is shared with other parameter blocks, buffer // them until destruction. std::vector manifolds_to_delete_; // For each cost function and loss function in the problem, a count // of the number of residual blocks that refer to them. When the // count goes to zero and the problem owns these objects, they are // destroyed. CostFunctionRefCount cost_function_ref_count_; LossFunctionRefCount loss_function_ref_count_; }; } // namespace internal } // namespace ceres #include "ceres/internal/reenable_warnings.h" #endif // CERES_PUBLIC_PROBLEM_IMPL_H_