// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: sameeragarwal@google.com (Sameer Agarwal) // // Interface definition for sparse matrices. #ifndef CERES_INTERNAL_SPARSE_MATRIX_H_ #define CERES_INTERNAL_SPARSE_MATRIX_H_ #include #include "ceres/internal/eigen.h" #include "ceres/internal/export.h" #include "ceres/linear_operator.h" #include "ceres/types.h" namespace ceres::internal { class ContextImpl; // This class defines the interface for storing and manipulating // sparse matrices. The key property that differentiates different // sparse matrices is how they are organized in memory and how the // information about the sparsity structure of the matrix is // stored. This has significant implications for linear solvers // operating on these matrices. // // To deal with the different kinds of layouts, we will assume that a // sparse matrix will have a two part representation. A values array // that will be used to store the entries of the sparse matrix and // some sort of a layout object that tells the user the sparsity // structure and layout of the values array. For example in case of // the TripletSparseMatrix, this information is carried in the rows // and cols arrays and for the BlockSparseMatrix, this information is // carried in the CompressedRowBlockStructure object. // // This interface deliberately does not contain any information about // the structure of the sparse matrix as that seems to be highly // matrix type dependent and we are at this stage unable to come up // with an efficient high level interface that spans multiple sparse // matrix types. class CERES_NO_EXPORT SparseMatrix : public LinearOperator { public: ~SparseMatrix() override; // y += Ax; using LinearOperator::RightMultiplyAndAccumulate; void RightMultiplyAndAccumulate(const double* x, double* y) const override = 0; // y += A'x; void LeftMultiplyAndAccumulate(const double* x, double* y) const override = 0; // In MATLAB notation sum(A.*A, 1) virtual void SquaredColumnNorm(double* x) const = 0; virtual void SquaredColumnNorm(double* x, ContextImpl* context, int num_threads) const; // A = A * diag(scale) virtual void ScaleColumns(const double* scale) = 0; virtual void ScaleColumns(const double* scale, ContextImpl* context, int num_threads); // A = 0. A->num_nonzeros() == 0 is true after this call. The // sparsity pattern is preserved. virtual void SetZero() = 0; virtual void SetZero(ContextImpl* /*context*/, int /*num_threads*/) { SetZero(); } // Resize and populate dense_matrix with a dense version of the // sparse matrix. virtual void ToDenseMatrix(Matrix* dense_matrix) const = 0; // Write out the matrix as a sequence of (i,j,s) triplets. This // format is useful for loading the matrix into MATLAB/octave as a // sparse matrix. virtual void ToTextFile(FILE* file) const = 0; // Accessors for the values array that stores the entries of the // sparse matrix. The exact interpretation of the values of this // array depends on the particular kind of SparseMatrix being // accessed. virtual double* mutable_values() = 0; virtual const double* values() const = 0; int num_rows() const override = 0; int num_cols() const override = 0; virtual int num_nonzeros() const = 0; }; } // namespace ceres::internal #endif // CERES_INTERNAL_SPARSE_MATRIX_H_