// Ceres Solver - A fast non-linear least squares minimizer // Copyright 2023 Google Inc. All rights reserved. // http://ceres-solver.org/ // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are met: // // * Redistributions of source code must retain the above copyright notice, // this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above copyright notice, // this list of conditions and the following disclaimer in the documentation // and/or other materials provided with the distribution. // * Neither the name of Google Inc. nor the names of its contributors may be // used to endorse or promote products derived from this software without // specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" // AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE // IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE // ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE // LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR // CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF // SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS // INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN // CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) // ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE // POSSIBILITY OF SUCH DAMAGE. // // Author: mierle@gmail.com (Keir Mierle) #include "ceres/tiny_solver_autodiff_function.h" #include #include #include #include "ceres/tiny_solver.h" #include "ceres/tiny_solver_test_util.h" #include "gtest/gtest.h" namespace ceres { struct AutoDiffTestFunctor { template bool operator()(const T* const parameters, T* residuals) const { // Shift the parameters so the solution is not at the origin, to prevent // accidentally showing "PASS". const T& a = parameters[0] - T(1.0); const T& b = parameters[1] - T(2.0); const T& c = parameters[2] - T(3.0); residuals[0] = 2. * a + 0. * b + 1. * c; residuals[1] = 0. * a + 4. * b + 6. * c; return true; } }; // Leave a factor of 10 slop since these tests tend to mysteriously break on // other compilers or architectures if the tolerance is too tight. static double const kTolerance = std::numeric_limits::epsilon() * 10; TEST(TinySolverAutoDiffFunction, SimpleFunction) { using AutoDiffTestFunction = TinySolverAutoDiffFunction; AutoDiffTestFunctor autodiff_test_functor; AutoDiffTestFunction f(autodiff_test_functor); Eigen::Vector3d x(2.0, 1.0, 4.0); Eigen::Vector2d residuals; // Check the case with cost-only evaluation. residuals.setConstant(555); // Arbitrary. EXPECT_TRUE(f(&x(0), &residuals(0), nullptr)); EXPECT_NEAR(3.0, residuals(0), kTolerance); EXPECT_NEAR(2.0, residuals(1), kTolerance); // Check the case with cost and Jacobian evaluation. Eigen::Matrix jacobian; residuals.setConstant(555); // Arbitrary. jacobian.setConstant(555); EXPECT_TRUE(f(&x(0), &residuals(0), &jacobian(0, 0))); // Verify cost. EXPECT_NEAR(3.0, residuals(0), kTolerance); EXPECT_NEAR(2.0, residuals(1), kTolerance); // Verify Jacobian Row 1. EXPECT_NEAR(2.0, jacobian(0, 0), kTolerance); EXPECT_NEAR(0.0, jacobian(0, 1), kTolerance); EXPECT_NEAR(1.0, jacobian(0, 2), kTolerance); // Verify Jacobian row 2. EXPECT_NEAR(0.0, jacobian(1, 0), kTolerance); EXPECT_NEAR(4.0, jacobian(1, 1), kTolerance); EXPECT_NEAR(6.0, jacobian(1, 2), kTolerance); } class DynamicResidualsFunctor { public: using Scalar = double; enum { NUM_RESIDUALS = Eigen::Dynamic, NUM_PARAMETERS = 3, }; int NumResiduals() const { return 2; } template bool operator()(const T* parameters, T* residuals) const { // Jacobian is not evaluated by cost function, but by autodiff. T* jacobian = nullptr; return EvaluateResidualsAndJacobians(parameters, residuals, jacobian); } }; template void TestHelper(const Function& f, const Vector& x0) { Vector x = x0; Eigen::Vector2d residuals; f(x.data(), residuals.data(), nullptr); EXPECT_GT(residuals.squaredNorm() / 2.0, 1e-10); TinySolver solver; solver.Solve(f, &x); EXPECT_NEAR(0.0, solver.summary.final_cost, 1e-10); } // A test case for when the number of residuals is // dynamically sized and we use autodiff TEST(TinySolverAutoDiffFunction, ResidualsDynamicAutoDiff) { Eigen::Vector3d x0(0.76026643, -30.01799744, 0.55192142); DynamicResidualsFunctor f; using AutoDiffCostFunctor = ceres:: TinySolverAutoDiffFunction; AutoDiffCostFunctor f_autodiff(f); Eigen::Vector2d residuals; f_autodiff(x0.data(), residuals.data(), nullptr); EXPECT_GT(residuals.squaredNorm() / 2.0, 1e-10); TinySolver solver; solver.Solve(f_autodiff, &x0); EXPECT_NEAR(0.0, solver.summary.final_cost, 1e-10); } } // namespace ceres