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1 Summary

The paper attempts to provide a mathematical model and a tool for the fo-
cused investing strategy as advocated by Buffett [1], Munger [2], and others
from this investment community. The approach presented here assumes that
the investor’s role is to think about probabilities of different outcomes for a
set of businesses. Based on these assumptions, the tool calculates the optimal
allocation of capital for each of the investment candidates. The model has the
option to provide constraints that ensure: no shorting, no use of leverage, pro-
viding a maximum limit to the risk of permanent loss of capital, and maximum
individual allocation. The software is made available for public use.

This paper consist of two parts, one without the mathematics and one with
the mathematics. For a non–mathematical reader, it is best to skip the two
sections related to mathematics and numerics, namely section 4 and section 5.
The reader who is interested in mathematics should still read the preceding
sections since they provide context within which the mathematics is built on.
Moreover, for mathematically skilled reader, the problem formulated and solved
here represents a non–linear constrained optimization problem.

2 Motivation

Before going on to explain the motivation about this work, a bit of context might
come useful. In silico is an employee–owned engineering consultancy company
that invests its excess cash into publicly traded stocks. The excess cash comes
sporadically, and In silico has been a net buyer over the last four years. This is
a trend that will likely continue. When the excess cash comes in, the following
question arises: How much money to put in which stocks? That question had
been answered by looking at our fundamental analysis for each company, and
performing some vague hand calculations. That of course works well because of
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all the other uncertainties in the investment process, but we were still motivated
to:

1. Improve the odds of us behaving rationally (i.e. minimize psychological
misjudgments such as anchoring bias [3], consistency and commitment
tendency [4], and others with their combined effects [2]),

2. Save time (i.e. avoid doing hand calculations).

Since mathematics is usually good at keeping people rational, and software is
great for saving time, a decision has been made to write a software that answers
the following question: For a set of candidate companies and their current
market capitalization, each having a set of scenarios defined by a probability
and intrinsic value estimate, how much of our capital to invest in each?

3 Introduction

The answer to this question has been given by Kelly with his widely known Kelly
formula (sometimes called Kelly criterion) [5]. The Kelly’s approach starts by
maximizing long–term growth of capital when one is presented with an infinite
amount of opportunities to bet on. This work extends that idea by considering:

1. Multiple companies (stocks) in parallel,

2. An arbitrary number of scenarios for each company,

3. Multiple constraints for modelling our preference towards no shorting, no
use of leverage, and providing a maximum value for the risk of permanent
loss of capital,

4. A fundamentals–based analysis with a very long time horizon. After all, a
stock is an ownership share of business [6], in which time–scales are signif-
icantly larger than the time–scales of day–to–day stock price fluctuations.

The generalization leads to a non–linear system of equations that when
solved, yields a fraction of capital to invest in each of the candidate compa-
nies. The mathematical derivation is presented in section 4, while in the next
two subsections (subsection 3.1 and subsection 3.2), a discussion on assumptions
in a non–mathematical way, and the margin of safety, are presented.

3.1 Disclaimers and Assumptions

The underlying philosophy is that one should spend the majority of their time
analyzing investments and thinking about intrinsic values under different scenar-
ios that might play out, independently of outside thoughts and events. However,
calculating intrinsic value of a company is more of an art than a science, espe-
cially for a high-quality, growing businesses within one’s circle of competence.
And according to Charlie Munger, Warren Buffett, Mohnish Pabrai and the
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like-minded others from whom the authors got the inspiration for this work,
one should focus precisely on getting such great businesses for a fair price. That
means that one shouldn’t take what this approach says at face value, and one
should probably use its guidance infrequently.

During the mathematical derivation presented in section 4, an assumption
is made that the number of bets is very high (tends to infinity). This work does
not try to justify this assumption in a strong mathematical form 1. Here’s a
soft, non-mathematical reasoning on why the authors think this is fine: The
assumption is made in order to write the equations in terms of probabilities
instead of the number of outcomes divided by the number of bets. Therefore,
as long as the input probabilities are conservatively estimated, the framework
should still be valid. This essentially represents the most important margin of
safety [6].

3.2 Margin of Safety

In addition to the most important margin of safety mentioned above, there are
however a couple of more margins of safety embedded in the current framework.
These are:

• No shorting allowed. From a purely mathematical point of view, shorting
would be allowed. Without detailed math, it is easy to see how a company
with a negative expected return would result in a short position. However,
due to the asymmetry of the potential losses compared to gains, coupled
with the usual time–frame limit that comes with shorting, we provided a
constraint for being long–only.

• No use of leverage allowed. Again, from a purely mathematical point of
view, use of leverage would sometimes be useful. The thinking in avoid-
ing to use leverage is that no–one should be in a hurry to get rich, and
should avoid risking good night’s sleep based on short–term market fluc-
tuations, which are fairly hard to predict consistently (unless you work at
Renaissance Technologies, in which case you can scratch this).

• No company without at least one downside scenario is allowed. By dis-
allowing inputs without downside, the framework forces you to focus and
think about what can go wrong, as opposed to dreaming about what can
go right. This is in–line with thoughts by Pasad [7] about the importance
of avoiding the errors of investing in a bad company. However, if one is
absolutely (100%) sure that a company does not have a downside, the
solution is to put all the money in that one company. It is our feeling that
the best way to handle such cases is outside of this framework. Alterna-
tively, one can always model an unknown downside scenario with a small
probability (say 5–20%) and intrinsic value of zero.

1It is on the author’s TODO list to try and prove this.
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These assumptions and margins of safety are embedded into the framework
as constraints in order to try and tie the rational mathematics with the real
world.

4 Mathematics

The following derivation mostly follows the first part of the work by Byrnes and
Barnett [8]. The problem statement is repeated here for convenience: Given
a set of candidate companies, each having a set of scenarios described by the
probability p and estimate of the intrinsic value V, calculate the optimal al-
location fraction f for each candidate company by maximizing the long–term
growth rate of assets. After a single outcome (realization), the change in value
of assets can be written as follows:

Aafter = Abefore

1 +

Nc∑
j

fjkj

 (1)

where A is the value of assets (capital), Nc is the number of candidate companies
to consider, fj is the allocated fraction to jth company, and kj is a return for
a company j defined as the relative difference between the estimated intrinsic
value under a given scenario (V) and the market capitalization at the time of
investing (M):

kj =
Vj −Mj

Mj
(2)

If a significant number of (re)allocations (Na) is performed in succession, the
equation (1) can be written as follows:

ANa = A0

∏
i1,i2,...,iNo

1 +

Nc∑
j

fjkij

ni

(3)

where ni ∈ ni1, ni2, . . . , nNo is the number of times the ith outcome has oc-
curred. Note that kij represents the return of the jth company for the ith
outcome. Following original Kelly’s approach, a logarithmic growth function G
is introduced:

G = lim
Na→∞

1

Na
ln

ANa

A0
(4)

and the goal is to find its maximum with respect to allocation fractions fj :

∂G
∂fj

= 0 (5)

Substituting equation (1) into equation (5) results in the following equation,
after some calculus and algebra:

lim
Na→∞

1

Na

No∑
i

nikij

1 +
∑Nc

j fjkij
= 0 (6)
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If one assumes an infinite number of (re)allocations Na
2, the following relation

holds:
lim

Na→∞

ni

N
= pi (7)

Where pi is the probability of the ith outcome. For example, if there are two
companies, each with two 50–50 scenarios, there will be four outcomes in to-
tal with the probability of each outcome equal to 25%. Finally, substituting
equation (7) into (6) results in a system of equations written in terms of proba-
bilities pi, expected returns for each company in each of the outcomes kij , and
allocation fractions for each company fj :

No∑
i

pikij

1 +
∑Nc

j fjkij
= 0 (8)

The equation (8) represents a non–linear system of equations in the unknown
fractions fj , which when solved, should yield optimal allocation strategy for
maximizing long–term growth of capital.

4.1 Constraints

Equation (8) has no constraints, meaning that after solving the system of equa-
tions, the resulting fractions fj might be negative and greater than one. This
would imply short positions and use of leverage, respectively. A general inequal-
ity constraint may be written in the following form:

I(fj) ≤ 0 (9)

where, for example, I(fj) ≡ −f ≤ 0 models a long-only constraint that would
make sure that the fractions are positive. In order to transform the inequality
constraint into an equality constraint, we introduce a slack variable s that must
be positive:

I(fj) + s = 0 ≡ C(fj , s) = 0 (10)

where the second part of the equation introduces a useful substitution for de-
riving the constrained system later on.

In this work, we define four constraints that serve as additional margins of
safety in a focused investment approach:

1. Long–only constraint ensures that a fraction cannot be negative and is
added to all candidate companies. Adding this constraint means: ”I do
not allow short positions.”:

f ≥ 0 → −f + s = 0 (11)

2The assumption regarding the infinite number of allocations is something that the authors
are slightly uncomfortable with, but feels it is fine because of the margins of safety embedded
into the thinking that goes into assessing each investment opportunity.
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2. Maximum leverage constraint ensures that the leverage is limited up to
L. Note that L = 0 implies no leverage. Adding this constraint means: ”I
want to limit the use of leverage (to a minimal amount).”:

Nc∑
j

fj ≤ 1 + L →
Nc∑
j

fj − 1− L+ s = 0 (12)

3. Maximum individual allocation constraint ensures that a fraction does
not exceed the specified amount. Adding this constraint means: ”I feel
uncomfortable putting more thanM of my capital into a single company.”:

f ≤ M → f −M + s = 0 (13)

4. Maximum allowable permanent capital loss constraint ensures that the
worst–case outcome does not exceed losing a specified amount of capital
with a specified probability. Adding this constraint means: ”Under a
worst–case scenario, I am comfortable permanently losing K (e.g. 25%)
of my capital with probability P (e.g. 0.1%).”:

Nc∑
j

fj min(pijkij) ≥ P ·K → −
Nc∑
j

(fj min(pijkij)) + P ·K + s = 0 (14)

where min(pijkij) is the worst–case outcome across all scenarios for the j-
th candidate company. Here, the minimum returns kij and the maximum
worst–case return K are both negative by convention, indicating a loss,
hence the ≥ sign.

Note that the maximum allowable permanent capital loss constraint given
by equation (14) only works with the long–only constraint because the
fraction fj is assumed positive. It is also important to note that here
we do not talk about temporary loss of capital due to short-term stock
market fluctuations, but rather permanent loss of capital due to the fun-
damental business environment of candidate companies. In addition, it is
of course possible for one to lose more than the specified maximum allow-
able amount of capital because of the assumptions made with respect to
the inputs: After all, coming up with intrinsic values and probabilities for
each scenario is more of an art than a science.

4.2 Constrained System: Putting It All Together

The growth function (4) can be constrained with an arbitrary amount of con-
straints (10) by introducing a Lagrangian:

L(fj , λl) = G(fj)−
Nl∑
l

λlCl(fj , sl) (15)
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where Nl is the number of constraints and l denotes the l-th constraint defined
either by l-th Lagrange multiplier λl or the l-th slack variable sl. There are two
necessary conditions for finding a constrained maximum of the growth function:

αi(fj , λl, sl) =
∂L(fj , λl)

∂fj
=

∂G(fj)
∂fj

−
Nl∑
l

λl
∂Cl(fj , sl)

∂fj
= 0 (16)

βi(fj , sl) =
∂L(fj , λl)

∂λl
= −Cl(fj , sl) = 0 (17)

where αi and βi have been introduced as a shorthand notation that distin-
guishes between two vector equations: There are Nc of α equations and Nl of
β equations. Therefore, there are Nc +Nl equations, but Nc + 2Nl unknowns,
because of Nc unknown fractions, Nl unknown Lagrange multipliers λl and Nl

unknown slack variables sl. However, an inequality constraint cannot be ac-
tive and inactive at the same time. An active constraint is characterized by
λl ̸= 0 and sl = 0, whereas an inactive constraint is characterized by λl = 0
and sl > 0 ̸= 0. This means that we have to solve 2Nl nonlinear systems to
cover all combinations of constraints and pick the best solution. As an exam-
ple, adding all constraints mentioned in subsection 4.1 for a portfolio with five
candidate companies would result in having to solve 212 = 4096 systems, while
having ten candidate companies would imply solving 222 = 4194304 systems,
demonstrating the exponential complexity of the problem.

5 Numerics

The equations (16) and (17) can be written succinctly as:

Fi(xi) = 0 (18)

where xi is a vector of unknown fractions and unknown Lagrange multipliers or
slack variables:

xi = {f1, f2, . . . , fNc
, λ1|s1, λ2|s2, . . . , λNl

|sNl
} (19)

Because Fi is a non–linear equation in fj , the Newton–Raphson method
is used to find a numerical solution. The method is iterative and starts by
linearizing the equation around the previous solution from the previous iteration:

Fo
i +

Nc+Nl∑
i

J o
ij(x

n
j − xo

j) = 0 (20)

where Jij is the Jacobian of Fi, and superscripts n and o denote the new value
and the old value, respectively.
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5.1 Jacobian for an Active Constraint

If a constraint is active (λl ̸= 0, sl = 0), the corresponding unknown is the
Lagrange multiplier and the Jacobian has the following form:

Jij =

(
∂αi

∂fj
∂αi

∂λj
∂βi

∂fj

∂βi

∂λj

)
=

(
∂2G

∂fi∂fj
−
∑Nl

j

(
λj

∂2Ci

∂f2
j

)
−∂Ci

∂fj

−∂Ci

∂fj
0

)
(21)

5.2 Jacobian for an Inactive Constraint

If a constraint is inactive (λl = 0, sl > 0 ̸= 0), the corresponding unknown is
the slack variable and the Jacobian has the following form:

Jij =

(
∂αi

∂fj
∂αi

∂sj
∂βi

∂fj

∂βi

∂sj

)
=

(
∂2G

∂fi∂fj
0

−∂Ci

∂fj
−1

)
(22)

Partial derivatives of the constraint function can be readily obtained because
all constraints presented in this work are simple analytical functions (see sub-
section 4.1). For completeness, the Hessian of the growth function that appears
in the upper–right corner is:

∂2G
∂fi∂fj

= −
No∑
o

pokoikoj(
1 +

∑Nc

j fjkij

)2 (23)

where subscript for outcome i has been changed to o in order to be able to write
the Hessian in the standard ij notation.

Note that the equations (21) and (22) are presented in a way that all con-
straints are either active or inactive. Since we have to solve 2Nl systems char-
acterized by active/inactive status of each constraint, that simply means that
we need to add respective active/inactive contributions to the Jacobian Jij and
the right–hand–side Fo

i in equation (20) for a particular constraint j.

5.3 Notes on the Numerical Procedure

The numerical procedure starts by assuming the uniform allocation across all
companies, i.e. fj = f = 1

Nc
. Based on the fo

j in the current iteration, the linear
system in equation (10) is solved to find the new solution fn

j . The process is
repeated until sufficient level of accuracy is reached.

After solving all 2Nl solutions, we end up with less than 2Nl viable solutions.
A solution is considered viable if the Newton–Raphson procedure managed to
find a numerical solution and if all slack variables for all inactive constraints
are positive. Finding the best solution out of all viable solutions would require
evaluating the growth function for all solutions, which is particularly challenging
due to the product series in equation (3). In this work, we take a pragmatic
approach and simply choose the solution that maximizes the expected value of
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the portfolio out of a set of most diversified solutions, i.e. the solutions with
the highest number of non–zero allocations.

6 Basic Validation Tests

In order to validate the numerical model, a basic example of five candidate
companies is considered, where each candidate has the same set of scenarios
(probabilities and intrinsic values) and the same market cap. The inputs that
present a 50% loss and 100% gain with 50–50 probabilities are presented in Ta-
ble 1.

Table 1: Company for a validation test with a market cap of 1.

Scenario Intrinsic value Probability
50% down with 50% probability 0.5 50%
100% up with 50% probability 2 50%

Solving the system without any constraints yields a uniform allocation of
35% of capital in each company. Note that because we considered 5 companies,
that implies 75% leverage (5 · 35% = 175%). Even without the constraint for
maximum allocation of capital, just maximizing the long–term growth–rate of
assets prefers a diversified solution, which is expected.

Adding a constraint for no leverage (given by equation (12) and setting
L = 0), results in a uniform allocation of 20%, as expected. It is straightforward
to show that the worst–case outcome in such a portfolio implies permanently
losing 50% of the capital with probability of 3.125%.

The final test is done by setting the maximum allowable permanent capital
loss constraint as given by equation (14). Setting P = 5% and K = 50%,
indicating that we are comfortable risking to lose 50% of the capital with 5%
probability, results in a uniform allocation of 2%. Because only 10% of capital is
invested in that case, there is a possibility of losing 5% of capital with probability
of 3.125%. In the worst–case scenario, the probability–weighted return is −0.5 ·
0.02 · 0.5 · 5 = −2.5%, which is equal to P ·K.

7 Example

With the basic validation of the numerical model performed, the attention is
moved to a realistic example. Consider five candidate companies, each with up
to three scenarios. Each scenario is represented by an intrinsic value and the
probability of the scenario happening (or intrinsic value being reached at some
point in the future). Note that how these numbers are obtained is outside of
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the scope of this work, although it is important to stress that the validity and
conservative assumptions behind these numbers are probably the most impor-
tant part of an investor’s job. The example inputs are presented in Table 2
to Table 6.

Table 2: Company A with current market cap of 225B USD.

Scenario Intrinsic value Probability
Total loss 0 USD 5%
Base thesis 270B USD 60%
Bull thesis 420B USD 35%

Table 3: Company B with current market cap of 450M USD.

Scenario Intrinsic value Probability
Total loss 0 USD 5%
Bear thesis 350M USD 50%
Base thesis 900M USD 45%

Table 4: Company C with current market cap of 39M GBP.

Scenario Intrinsic value Probability
Total loss 0 GBP 10%
Bear thesis 34M GBP 40%
Base thesis 135M GBP 50%

Table 5: Company D with current market cap of 751M SGD.

Scenario Intrinsic value Probability
Bear thesis 330M SGD 30%
Base thesis 1B SGD 70%

Table 6: Company E with current market cap of 126B HKD.

Scenario Intrinsic value Probability
Total loss 0 HKD 5%
Bear thesis 50B HKD 10%
Base thesis 300B HKD 85%

Based on these inputs, with the long–only strategy, without leverage, and with
maximum individual allocation of 30%, the portfolio allocation that maximizes
the long–term growth–rate of capital is presented in Table 7.
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Table 7: Portfolio that maximizes long–term growth–rate of capital.

Company A B C D E
Allocation fractions 30% 8% 30% 2% 30%

With the obtained fractions, it is easy to obtain some useful statistics on the
portfolio, namely:

• Expected gain of 32 cents for every dollar invested,

• Cumulative probability of loss of capital of 16%,

• Permanent loss of 60% of capital with probability of 0.008%.

The last item is particularly interesting to the authors. According to Actuarial
Life Tables in [9], the probability of the (currently 34 year–old, the oldest)
author dying within the next year is approximately 0.26%3. That is two orders
of magnitude higher than the probability of the permanent loss of capital for this
portfolio. Considering that the portfolio has five stocks, that is a very strong
argument against excessive diversification, especially if:

• One thinks of stocks as ownership shares of businesses, which implies long–
term thinking and not being bothered by market fluctuations,

• One embeds a margin of safety in different scenarios for different compa-
nies by e.g. recognizing that both unknown and known bad things may
happen.

The observation about excessive diversification is inline with the thoughts from
the Poor Charlie’s Almanack [2] and one of the lectures from Li Lu that the
authors frequently watch [10].

8 Problems, Discussion, and Future Work

There are a couple of technical problems that the authors observed:

1. It is possible that a given non–linear system for a particular combina-
tion of constraint statuses (active/inactive) does not converge. This may
happen if the resulting matrix is singular, or if the Newton–Raphson algo-
rithm does not find the solution within a prescribed number of iterations.
These errors are ignored, which means that it is possible that the real best
solution is not found due to numerical issues.

2. The exponential complexity of the model makes it challenging to use for
more than several candidate companies without using significant com-
pute resources. For example, having a 20 candidate companies with all

3This is the only thing that’s probably worth measuring in the basis points.
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constraints would result in around 4 trillion non–linear systems to solve.
Therefore, the model is not suitable for cases with excessive diversifica-
tion, although there is a possibility to filter some of these upfront without
attempting to solve them, which may be one of the topics for future work.

To conclude, the authors believe that the most challenging aspect of an
investor’s work that might use this software is to think hard about the inputs.
The authors see the usefulness of this software mainly in:

• Forcing the investors to think consistently in terms of probabilities and
long–term business outcomes across the range of candidate companies,

• Calculating the optimal allocation in a short amount of time, based on
the investor’s inputs.

9 Access to the Software
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