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Novel design methodologies are often evaluated through studies involving human

designers, but such studies can incur a high personnel cost. It can also be difficult

to isolate the effects of specific team or individual characteristics. This work

introduces the Cognitively-Inspired Simulated Annealing Teams (CISAT)

modeling framework, a platform for efficiently simulating and analyzing human

design teams. The framework models a number of empirically demonstrated

cognitive phenomena, thus balancing simplicity and direct applicability. This

paper discusses the model’s composition, and demonstrates its utility through

simulating human design teams in a cognitive study. Simulation results are

compared directly to the results from human designers. The CISAT model is

also used to identify the most beneficial characteristics in the cognitive study.
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M
uch cognitive research in engineering design has focused on indi-

viduals, despite the fact that most engineering design is actually

performed by teams (Paulus, Dzindolet, & Kohn, 2011). This

work focuses on developing a better understanding of team-based design

through computationally simulating the team design process. Empirical

studies are a common means for exploring design cognition and for testing

new design methodologies. However, these studies can incur a high personnel

cost while only returning a limited amount of data. It can also be difficult to

isolate the effects of specific characteristics. This work introduces a computa-

tional framework that simulates team-based engineering design through

creating software agents that directly solve engineering problems. In addition

to offering a resource efficient test bed for evaluating design strategies, this

framework can be used to test the conclusions from cognitive studies. It

can be used to peel apart aspects of human design, and provides a succinct

representation of designer behavior. The purpose of the framework is not
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to replace cognitive studies, but rather to augment traditional methods of

investigation, accelerating the discovery of improved design methodologies.

A significant amount of work has attempted to simulate the performance of

both teams and individuals (Fan & Yen, 2004). For instance, both the Virtual

Design Team model, and another model applied to teams at NASA’s Jet Pro-

pulsion Laboratory, incorporated detailed descriptions of design team organi-

zation and interaction (Jin & Levit, 1996; Olson, Cagan, & Kotovsky, 2009).

Both models were used to simulate complex design tasks, but were also

burdened by high model complexity. For instance, the model by Olson et al.

(2009) used approximately 1000 distinct variables, and required nearly

100 000 lines of code for implementation. Still other work has utilized

agent-based models to explore the formation of mental models during team

problem-solving with respect to both interaction structure (Dionne, Sayama,

Hao, & James, 2010) and agent memory (Sayama, Farrell, & Dionne, 2011).

Mental models were created by either adding noise to the true problem func-

tion, or interpolating between known function values. That work obtained re-

sults that agreed qualitatively with the literature, but only explored one- and

two-dimensional continuous problem domains, and was not compared to

the results of any human studies. A recent agent-based design team model

also explored the effect of team structure and task complexity on the formation

of transactive memory (Singh, Dong, & Gero, 2012, 2013). That work also ob-

tained results that agreed qualitatively with the literature, but modeled the

design problem as an abstract task network instead of directly solving a con-

crete design problem. Other work simulated with great detail the tasks

involved in an integrated product development team, but did not apply the

model to a real design task, or offer empirical validation (Crowder,

Robinson, Hughes, & Sim, 2012).

Regarding the simulation of individuals, simulated annealing (Kirkpatrick,

Gelatt, & Vecchi, 1983), a stochastic optimization algorithm, has been used

as an effective model for the efforts of individual human problem-solvers

(Cagan & Kotovsky, 1997). More recent work has demonstrated the potential

benefit of using computational agents to rapidly test and refine rule-based

search strategies that can then be provided to human designers (Egan,

Cagan, Schunn, & Leduc, 2014). The rule-based search strategies included

both stochastic and univariate approaches. In that work, both computational

agents and human participants solved a continuous domain problem with a

small number of variables, but the work was not extended to more complex

problems.

When humans solve a problem, they tend to learn strategies that can be ex-

pressed in terms of the move operators that apply to the problem (Langley,

1985; Newell & Simon, 1972). Solution strategies can also be expressed in
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terms of search breadth. Expert designers employ a mixture of different

breadth- and depth-first search strategies during solving (Ball & Ormerod,

1995). The selection of appropriate search strategies is further impacted by

the presence of known goals or targets. It is known that individuals tend to sat-

isfice, meaning that they only search the solution space until a solution that

satisfies relevant targets is found (Simon, 1956). It is not uncommon for de-

signers to have direct knowledge of goals during the design process. For

instance, the widely used target costing method determines goals before design

begins, and these goals are used to guide the search for solutions throughout

the design process (Cooper & Slagmulder, 1997; Feil, Yook, & Kim, 2004).

Teams are composed of individuals who strive towards a common goal

(Kurtzberg & Amabile, 2001). When members of a team interact while work-

ing towards the goal, they perform better than individuals working alone (Sio,

Kotovsky, & Cagan, 2014; Wood, Chen, Fu, Cagan, & Kotovsky, 2012).

Interaction is usually observed to occur organically, taking place at irregular

intervals (Stempfle & Badke-schaub, 2002). The performance boost from inter-

action is caused by the ability of a team to initially diverge to explore a variety

of options, but then converge at the right time, focusing the attention of the

team members on a diminishing set of alternatives (Dong, Hill, & Agogino,

2004; Fu, Cagan, & Kotovsky, 2010). However, premature convergence on

a single solution can be detrimental to solution quality (Jansson & Smith,

1991). For that reason, designers are typically taught to explore multiple solu-

tion concepts (Dieter & Schmidt, 2009; Osborn, 1957). Even members of high-

performing teams tend to pursue slightly different solution concepts when

solving well-defined problems (McComb, Cagan, & Kotovsky, 2015), indi-

cating that members of a team don’t always greedily pursue the solutions

with highest apparent quality. Therefore, though team members may factor

design quality into decisions, they freely pursue designs that may currently

display lower quality. Interaction between members of a team is further

tempered by preference for one’s own designs. In particular, designers are

known to largely favor their own designs, often preferring to apply numerous

patches to early design concepts than explore alternatives (Ball, Evans, &

Dennis, 1994; Ullman, Dietterich, & Stauffer, 1988). Designers have also

been shown to preferentially evaluate their own solution concepts

(Nikander, Liikkanen, & Laakso, 2014).

This work introduces the Cognitively-Inspired Simulated Annealing Teams

(CISAT) modeling framework. The CISAT framework makes use of simu-

lated annealing constructs to model several characteristics of individuals in

small design teams. It differs from other simulation models because it strikes

a balance between model simplicity and direct applicability, offering a succinct

modeling framework that can be used to directly solve engineering design

problems. Further the framework enables an analysis of which attributes of

a solution strategy most impact the solution outcome. This paper first provides
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a description of the characteristics that are modeled within CISAT. Next, the

CISAT framework is used to simulated the results of a cognitive study

(McComb et al., 2015). These results are directly compared to results derived

from human designers performing an identical task. Following this validation,

the CISAT model is used to evaluate which characteristics were most and least

helpful to teams during the cognitive study.

1 The modeling framework
The CISAT modeling framework is an agent-based platform that is intended

to simulate the process and performance of human design teams. A conceptual

flowchart for the CISAT modeling framework is provided in Figure 1.

Although only three agents are depicted in the flowchart, the framework is

general and can model larger teams.

The CISAT framework models 8 characteristics that contribute to a descrip-

tion of how individuals solve problems, both independently and as part of a

team. These characteristics are listed briefly below, and explained in greater

detail in subsequent sections:

1. Multi-agency: A team is a collection of individuals with a common goal

(Kurtzberg & Amabile, 2001).

2. Organic interaction timing: Interaction within teams occurs at irregular in-

tervals (Stempfle & Badke-schaub, 2002).

3. Quality-informed solution sharing: Members of a team tend to focus on

the most promising alternatives, but don’t do so greedily (McComb

et al., 2015).

4. Quality bias reduction: Individuals in a team develop multiple solution

concepts to avoid premature convergence (Dieter & Schmidt, 2009;

Jansson & Smith, 1991; Osborn, 1957).

5. Self-bias: Designers tend to be biased in favor of their own designs (Ball

et al., 1994; Nikander et al., 2014; Ullman et al., 1988).

6. Operational learning: Individuals learn strategies over the course of solv-

ing (Langley, 1985).

7. Locally Sensitive Search: Designers select from a range of breadth- and

depth-first search strategies as they explore the design space (Ball &

Ormerod, 1995).

8. Satisficing: Individuals only search the solution space until a solution is

found that satisfies relevant targets (Simon, 1956).

Randomized selection is employed in several of the following sections. If the

selection is made from a discrete set of alternatives, a multinomial distribution

is used (which can be thought of as a roll of a weighted die). If the selection

involves choosing a value from within some range, a uniform distribution is

employed (equal probability for all values within the range).
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1.1 Multi-agency
The modeling framework is based upon collaboration between multiple soft-

ware agents. A software agent, referred to simply as an agent in this work,

is a computational routine that senses an environment and independently re-

sponds to that environment (Franklin & Graesser, 1997). For CISAT agents,

the environment is the problem space, and they sense it by evaluating potential

solutions. Agents then respond by creating, sharing, and refining solution con-

cepts. Within CISAT, every human designer is modeled by exactly one agent.

These agents share a common goal (the minimization of an objective function)

making them a suitable proxy for members of a team (Kurtzberg & Amabile,

2001).

1.2 Organic interaction timing
The amount of inter-member communication varies between teams, and oc-

curs at irregular intervals (Stempfle & Badke-schaub, 2002). Similarly, interac-

tion between agents in CISAT occurs probabilistically. Agents independently

and probabilistically choose whether or not to interact at the beginning of

every iteration. If an agent chooses not to interact, then it continues to itera-

tively modify its own design. If an agent chooses to interact, it selects a design

to explore from amongst the design alternatives currently being pursued by the

team (it may select its own design through this process). The selection proba-

bility is imperfectly informed by the relative quality of design alternatives, and

adjusted to account for self-bias.

1.3 Quality-informed solution sharing
Although a team is composed of individual problem-solvers, there is often

additional benefit that is derived from interaction between the individuals

(Wood et al., 2012). This arises from the ability of individuals in a team to

explore a variety of options, but also to collaboratively focus their attention

Agent 1 Agent 2 Agent 3 

Converged? FALSE TRUE 

Share current solutions

Instantiate agents

Select starting solution

Generate solution candidate

Update temperature

Probabilistically accept candidate

Exit 

Select starting solution

Generate solution candidate

Update temperature

Probabilistically accept candidate

Select starting solution

Generate solution candidate

Update temperature

Probabilistically accept candidate

… 

Figure 1 Conceptual flowchart for the CISAT framework
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on a shrinking set of the most promising alternatives (Dong et al., 2004; Fu

et al., 2010). Even members of high-performing teams tend to pursue slightly

different solution concepts while solving well-defined problems (McComb

et al., 2015), indicating that members of a team don’t always greedily pursue

the solutions with highest quality. Therefore, though team members may fac-

tor design quality into decisions, they freely pursue designs that may currently

display lower quality.

The CISAT selection process attempts to model the above description of inter-

action by allowing agents to probabilistically choose to adopt the current

design of any other agent in the team. The selection probability of a design

is proportional to its weight, W, which is defined as:

W ¼ "FþmaxðFÞ: ð1Þ

The vector F contains the objective function value for each design in the set of

designs currently being pursued by the agents of the team. This equation

makes the selection probability of each design proportional to its quality (rela-

tive to other available designs). Once the weighting vector, W, has been

computed, the agent selects a design alternative by choosing a design with

probability proportional to its weight. This selection process can be visualized

as the spin of a roulette wheel, or the roll of a loaded die. Once an agent has

selected a design alternative to pursue using this probabilistic process, it pro-

ceeds to modify that design independently using an internal process structured

similarly to simulated annealing.

1.4 Quality bias reduction
Note that in the weighting vectorW, the weight placed on the worst design is 0.

This means that agents are incapable of selecting the worst design when inter-

acting, and abandon it automatically. This detail could lead to premature

convergence within the team, which can be harmful to design (Jansson &

Smith, 1991). Although novice designers are often taught to explore multiple

solution concepts (Dieter & Schmidt, 2009; Osborn, 1957), expert designers do

not generally exhibit this behavior (Cross, 2004). This implies the existence of a

range of strategies that are employed along the spectrum from novice to

expert. To imbue CISAT with the ability to accommodate this range, a small

additional weight is added to W:

W)Wþ kQBR$1 ð2Þ

The variable kQBR (chosen from the range [0, 1]) controls the strength of qual-

ity bias reduction, and 1 is the ones vector. This reduces the effect of the agents’
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bias towards designs of high quality. This also places non-zero weight on the

worst design alternative, meaning that agents may select any solution concept.

1.5 Self-bias
Designers tend to be biased in favor of designs that they have generated or

spent substantial time working on (Ball et al., 1994; Nikander et al., 2014;

Ullman et al., 1988). Therefore, CISAT agents are also made to favor their

own designs. This is implemented during interaction between agents. Before

an agent selects a design to pursue using Equation 2, the agent adds additional

weight to the element in W that corresponds to its own design:

Wi)Wi þ kSB ð3Þ

The variable kSB (chosen from the range [0, 30]) controls the strength of self-

bias, and the subscript i denotes the index for the current design of the agent

making the selection. This results in a higher likelihood that the agent will elect

to continue working on its own design, mimicking the bias of human

designers.

1.6 Operational learning
The actions that can be used to modify a solution are typically referred to as

move operators and are inherently problem specific (Newell & Simon, 1972).

Human problem-solvers tend to learn strategies in terms of these move oper-

ators (Langley, 1985). CISAT agents are also provided with a mechanism that

allows them to individually learn which move operators are most helpful to

design.

Within the CISAT framework all move operators initially have an equal prob-

ability of being selected and applied to the current solution (unless a prior dis-

tribution over move operators can be inferred for the specific problem). Agents

learn by first selecting a move operator and using it to modify the current so-

lution. The new solution is then evaluated using the objective function. If the

application of the move operator improved the objective function, the proba-

bility of applying that move operator in the future is increased. However, if the

application of the move operator yields a solution with a worse objective func-

tion value, the probability of applying the move operator is decreased.

1.7 Locally sensitive search
It is known that expert designers tend to use a mixture of depth- and breadth-

first solution strategies (Ball & Ormerod, 1995), indicating the value of

tailoring search strategies to local characteristics of the design space. CISAT

is based on a simulated annealing methodology, so the annealing schedule con-

trols the progressive transition from initial explorative search to final deter-

ministic search. To mimic the locally sensitive search strategies of human
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designers, every CISAT agent is given an independently-controlled Triki adap-

tive annealing schedule (Triki, Collette, & Siarry, 2005). This annealing

schedule uses the variance of the quality of past solutions to update the tem-

perature, helping agents respond appropriately to the local design space.

1.8 Satisficing
Decision makers tend to satisfice, meaning that they only search the solution

space broadly until a solution that satisfies relevant targets is found (Simon,

1956). Further, engineers and designers tend to have access to such goals

(Cooper & Slagmulder, 1997; Feil et al., 2004). Therefore, satisficing may

play a crucial role in the design process. The effect of satisficing is implemented

in the CISAT framework by increasing an agent’s temperature if their designs

are far from satisfying relevant targets. The effect of this increase is that the

temperature decreases rapidly once a satisficing solution is found, making

search more deterministic. However, the temperature remains high until

such a solution is found, promoting broad search for a fruitful region of the

design space.

2 Applying CISAT to truss design
As a means of validation, the CISAT modeling framework will be used to

model the results of a cognitive study on design teams previously conducted

by McComb et al. (2015). A summary of the original cognitive study will be

provided, followed by a description of how CISAT was configured to model

the study. The original results of the cognitive study will also be directly

compared to the results from the CISAT simulations.

2.1 Summary of the truss design study
The cognitive study tasked 16 teams of 3 engineering students with the design

of a truss structure. Over the course of the study the design problem was

changed twice via the introduction of modified problem statements. Partici-

pants were given access to a graphical truss design program that allowed

them to create, evaluate, and share truss designs within their teams.

Teams designed over the course of six 4-min design sessions. The first problem

statement (PS1) provided to teams required them to design a truss structure

with a factor of safety of 1.25, and a mass as low as possible. Figure 2 depicts

the two loading points and three supports that were required for every design.

After working on PS1 for three of the 4-min design sessions, the participants

were given the first of two modified problem statements. PS2 required partic-

ipants to consider the removal of any one of the bridge supports (leaving only

two supports intact at a time). This problem statement required a factor of

safety of 1.0, and mass as low as possible.
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After working on PS2 for one 4-min design session, the participants were given

the second modified problem statement (PS3). This modification required par-

ticipants to design their truss around the obstacle shown in Figure 3. PS3

required a factor of safety of 1.25, and mass as low as possible. Teams worked

on PS3 for the last two 4-min design sessions.

Participants were also given a mass target for each of the problem statements,

thus invoking satisficing tendencies. This mass target will be incorporated into

CISAT’s satisficing temperature component. Each problem statement also had

a constraint on the factor of safety, which will be addressed in the CISAT

objective function as a penalty.

2.2 Analysis
Analysis of results from the both the cognitive study and the CISAT simula-

tion will be performed using three metrics. The first metric, strength-to-weight

ratio (SWR) of best design, tracks the best design produced by a team over

time. This allows the quality of the team’s best design to be visualized over

time. The SWR for a given design is calculated as

Figure 2 Diagram of problem statements 1 and 2

Figure 3 Diagram of problem statement 3
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SWRðxÞ ¼
!

FOSx

FOSREQ

"!
mx

mTARGET

""1

: ð4Þ

The variables FOSx and mx are the factor of safety and mass of truss design x,

respectively. Similarly, FOSREQ is the required factor of safety, and mTARGET

is the required mass (per the relevant problem statement). The factor of safety

of a truss is determined using standard structural analysis techniques

(Hibbeler, 2008). The SWR is used only to communicate results, and is not

used directly for tracking the best design. A full description of the method

used to track the best design can be found in (McComb et al., 2015).

The second metric, average pairwise distance, is a means of quantifying diver-

gence (or disagreement) within a team. It is computed as the distance between

the designs being explored by any two members in a team at a given instant,

averaged across all combinations of two team members. The distance between

truss designs is measured in the number of move operators that must be

applied to change one design into another (McComb et al., 2015). This is

similar to the concept of average pairwise similarity used in other work (Fu

et al., 2010; Wood et al., 2012).

The third metric, frequency of topology operations, provides a way to measure

how teams change their solution strategies over time. Specifically, it tracks the

proportion of topology operations in each 4-min design session. A topology

operation is any operation that modifies the connectivity of the truss (adding

or removing joints or members). All other operations are shape operations

(changing the size of members or moving joints).

The analysis further involves comparing high- and low-performing teams.

Teams are assigned to these two groups based on their cumulative perfor-

mance across problem statements. The method used to rank teams is identical

to that employed in (McComb et al., 2015). The top 31.25% of teams are

designated as high-performing teams, while the lowest 31.25% are designated

as low-performing teams. The 31.25% cut-off was chosen to match up directly

with the cut-off used in the original analysis of the study.

2.3 CISAT configuration
Configuring CISAT to simulate team performance on a problem involves

defining appropriate objective functions, implementing a method for instanti-

ating a design, creating move operators to modify designs, and selecting values

for other miscellaneous parameters required by CISAT.

Simulating this cognitive study requires three objective functions, correspond-

ing to the three problem statements. Every objective function is in the form of
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the mass of the design plus a penalty to resolve constraints on the solution. The

first objective function only places a constraint on the factor of safety:

fPS1ðxÞ ¼ mx þ gFOSðxÞ: ð5Þ

In Equation 4, mx is the mass of design x, and the function gFOSðxÞ computes

an appropriate penalty if the factor of safety is too low. This penalty is

computed as

gFOSðxÞ ¼ 104$max
#
0; FOSREQ " FOSx

$2
: ð6Þ

The variable FOSREQ is the factor of safety required for the current problem

statement (1.00 for PS2, and 1.25 otherwise), and FOSx is the factor of safety

of truss design x.

The second objective function, fPS2, applies the maximum FOS penalty across

a variety of support cases, per PS2:

fPS2ðxÞ ¼ mx þ max

0

BB@

gFOSðxÞ
gFOS

#
x"S1

$

gFOS

#
x"S2

$

gFOS

#
x"S2

$

1

CCA: ð7Þ

The notation x"Si represents the design x with the ith support removed. There-

fore, the function fPS2ðxÞ applies the highest penalty, considering the same set

of support conditions required in PS2.

The third and final objective function is very similar to the initial objective

function, but incorporates a second penalty function, gOBS, which penalizes

the solution for violating the obstacle shown in Figure 3:

fPS3ðxÞ ¼ mx þ gFOSðxÞ þ gOBSðxÞ: ð8Þ

The second penalty function, gOBS, imposes a penalty based on Jx, the number

of truss joints within the obstacle, and Lx, the cumulative member length

within the obstacle:

gOBSðxÞ ¼ 104$
#
Jx þL2

x

$
: ð9Þ
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Agents instantiate their truss designs by first determining how many joints the

truss design will have by drawing a random integer. For this work the number

of joints is restricted to fall between 8 and 30, inclusive. The location of each

joint is chosen so that every joint is approximately equidistant from its nearest

neighbors. Delaunay triangulation is then used to determine a stable pattern

for connecting the joints using structural members. Only one joint or one

member is added per iteration until the initial layout is completed. If an agent’s

design becomes statically indeterminate over the course of the simulation, it is

permitted to instantiate a new truss design.

Move operators must be defined to allow agents to act upon and modify their

solutions. The operators defined for this work are listed and described below:

MO1. Add a member: The two nearest unconnected joints are connected with

a member.

MO2. Change the size of a member: A member is selected with probability

proportional to
%%FOS" FOSREQ

%%. If at least one member is failing, only

failing members are selected from. Once a member is selected, its size is

increased if FOS < FOSREQ, and decreased otherwise.

MO3. Change the size of all members: If the majority of members have factors

of safety greater than FOSREQ, the size of every members is increased. Other-

wise, the size of all members is decreased.

MO4. Delete a member: A member is probabilistically selected with probabil-

ity proportional to its factor of safety. The selected member is then deleted.

MO5. Move a joint: A joint is selected at random. A greedy and deterministic

search algorithm is then used to improve the location of the joint.

MO6. Delete a joint: A joint is probabilistically selected with probability pro-

portional to the sum of the factors of safety of all members connecting to the

joint. The selected joint is then deleted.

MO7. Brace a member: A member is selected for bracing from the set of mem-

bers that are both in compression, and have a factor of safety less than

FOSREQ. A joint is inserted in the middle of the selected member. The new

joint is then connected to the nearest joint that it is not already connected

to. This move operator is completed over the course of 2 iterations.

MO8. Add a joint and attach: A joint location is selected using a procedure

identical to that used in MO1. A joint is created at that location, and mem-

bers are connected between this joint and the three nearest joints. This move

operator is completed over the span of 4 iterations.

This set of move operators is designed to reflect the operations available to hu-

man participants in the cognitive study (MO1-6), and also to allow simple heu-

ristic operations (MO7-8).

Participants in the cognitive study had to begin designing their truss by laying

out a network of joints and members. Therefore, study participants must have
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begun with a higher probability of applying move operators that would enable

this layout process. To model this aspect in CISAT, the probability of MO1

(adding a member) is increased according to the number of members in the

initial layout. Similarly, the probability of MO8 (add and attach a joint) is

increased according to the number of joints in the initial layout.

In order to ensure further parity between CISAT simulations and the original

cognitive study, agents in CISAT were made to apply move operators at the

same average rate as human study participants. An analysis of the data re-

corded in the original cognitive study indicated that the average individual

applied one operation every three seconds. Therefore, over the course of six

4-min design sessions (1440 s), the average individual applied 480 moves.

Every CISAT agent was also allowed this number of moves.

2.4 Comparison of results
Of the 16 teams that took part in the original cognitive study, 5 were desig-

nated as high-performing, and 5 as low-performing, based on an evaluation

of their final design solutions. In order to establish a better statistical represen-

tation, 64 teams (4 times the number of teams in the cognitive study) are simu-

lated using CISAT. Of these teams, 20 are designated as high-performing and

20 as low-performing. A comparison between the results of the original cogni-

tive study and those simulated using CISAT is provided in Figure 4. The ver-

tical, black lines indicate the introduction of a new problem statement.

The CISAT framework reproduces several of the main trends that are

apparent in the original results from the cognitive study. For instance, the

high-performing human teams showed an early divergent period, followed

by a pattern of fairly constant average pairwise distance (see Figure 4(c)).

This is echoed in the CISAT simulation (see Figure 4(d)). The low-

performing human teams show higher average pairwise distance, and a period

of divergence near the end of the study. This behavior is also evidenced in the

CISAT simulation. CISAT also predicts the correct mean trend for frequency

of topology operations (see Figure 4(e) and (f)). Both human teams and

CISAT teams show an initial decrease in frequency of topology operations,

followed by an increase after the introduction of the new problem statements.

The Pearson correlation coefficient is used to quantify the degree to which the

CISAT framework reproduces the mean trends of the cognitive study. The

Pearson correlation coefficient measures the linear correlation between two

variables, and returns a value between "1.0 (indicating a perfect negative cor-

relation) and þ1.0 (indicating a perfect positive correlation). A summary of

Pearson correlation coefficients for the three metrics used for comparison be-

tween human and CISAT results is provided in Table 1.
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Figure 4 Comparison between cognitive study results and CISAT simulation results (all error bars show & 1 S.E.). (a) SWR of best design

(cognitive study results), (b) SWR of best design (CISAT simulation results), (c) Average pairwise distance (cognitive study results), (d)

Average pairwise distance (CISAT simulation results), (e) Frequency of topology operations (cognitive study results), (f) Frequency of to-

pology operations (CISAT simulation results)
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The coefficients provided in Table 1 are always above 0.65, and the majority of

them are above 0.85. This quantitatively reiterates a fact that is already qual-

itatively evident in Figure 4. Although CISAT does not perfectly reproduce the

results of the cognitive study, there is a strong positive correlation between the

trends displayed in the two sets of results.

The starkest difference between the CISAT simulation and the original cogni-

tive data is found in the SWR of the best design (Figure 4(a) and (b)). It is

possible that this resulted from the inability of CISAT agents to consider

chains of moves. The ability of human problem-solvers to think in terms of

multiple sequential moves is indicative of expert problem-solving (Pretz,

Naples, & Sternberg, 2003), but has also been observed in individuals with lit-

tle experience (Kotovsky, Hayes, & Simon, 1985). Therefore, although CISAT

agents were applying move operators in proportions similar to those of the hu-

man truss designers, the na€ıve sequencing of the move operators may have had

a handicapping effect. This insight indicates that implementing better models

of learning and heuristic development in CISAT could lead to higher perfor-

mance, and better agreement with human solvers.

3 Investigating team strengths with CISAT
In traditional human studies, it is difficult to cull which aspects of problem

solving are most influential and beneficial without running multiple studies.

Even if multiple studies are possible, it is usually not feasible to isolate features

entirely. However, in CISAT such assessment is straightforward and informa-

tive. This section focuses on determining the characteristics that were most

helpful or harmful in performing the truss design task. By assessing the final

SWR of simulated teams composed of agents with and without a given char-

acteristic, it is possible to evaluate the effect of that characteristic on overall

performance. For instance, if the removal of a characteristic decreases the final

SWR, it can be inferred that the presence of that characteristic is beneficial to

team performance. The results of this CISAT analysis then indicate the char-

acteristics that are most important to effective human design teams for, in this

case, the truss design problem.

The above procedure is applied to quality bias reduction, operational learning,

satisficing, locally sensitive search, self-bias, and organic interaction. The effect

of each characteristic is evaluated with 100 simulated teams. In the interest of

simplicity, these simulated teams are only used to solve PS1. Multi-agency and

Table 1 Summary of human versus model Pearson correlation coefficients

Metric High-performing teams Low-performing teams All teams

SWR of best design 0.879 (r < 10"5) 0.786 (r < 10"5) 0.876 (r < 10"5)
Average pairwise distance 0.676 (r < 10"5) 0.741 (r < 10"5) 0.787 (r < 10"5)
Frequency of topology operations 0.951 (r < 0.005) 0.890 (r < 0.05) 0.936 (r < 0.01)
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solution sharing are not evaluated, since those characteristics enable basic

team-like performance within CISAT. Figure 5 shows the estimated effect

on the final SWR from each of the characteristics, relative to the median final

SWR of the unmodified CISAT model. The median of the data is used to

communicate these results because it is more representative of central tendency

than the mean.

Figure 5 communicates the magnitude of median differences, but to further

understand the impact of these differences it is necessary to report an effect

size. Fritz, Morris, and Richler (2012) provide a more detailed description

of the need for and use of effect size metrics. Although Cohen’s d is commonly

used for this purpose, Cliff’s d will be used here because of non-normality in

the data (Hess & Kromrey, 2004; Leech & Onwuegbuzie, 2002). Cliff’s d is a

Figure 5 Estimated effect on final SWR (error bars show & 1 S.E.)

Figure 6 Cliff’s d effect size (error bars show 90% confidence intervals)
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non-parametric dominance statistic that indicates the degree to which values in

one set of data lie above values in a second set (Cliff, 1996). A value of "1 or

þ1 indicates no overlap between sets (complete dominance), while a value of

0 indicates complete overlap (no dominance). The effect sizes for this work are

provided in Figure 6.

As discussed in previous sections of this paper, each of the characteristics

analyzed in this section has been observed in humans. Figures 5 and 6 show

that self-bias and organic interaction display the largest and most significant

effects. Both of these characteristics specifically play a role in moderating inter-

action between team members or agents. These two characteristics decrease

the frequency and effect of interaction when present. The absence of organic

interaction increases the frequency of interaction, and the absence of self-

bias increases the likelihood that an agent will abandon its current solution

in favor of a solution being pursued by a teammate.

Examining the performance attributes of teams without these beneficial char-

acteristics could offer further insight as to the cause of their poor performance.

Figures 7 and 8 show the median values of the SWR of the best design and

average pairwise distance during solving.

Figure 8 indicates that typical teams (teams simulated with all characteristics

turned on) achieve high performance through a period of slow convergence. In

contrast, the poorly performing teams converge quickly, resulting in lower

final design solution quality. This indicates that both frequent interaction

and low self-bias may lead to premature convergence within teams, precipi-

tating final design solutions with lower quality. This may also imply that

exploring design methods that encourage divergence may improve final design

solution quality by further protecting teams from premature convergence.

Figure 7 SWR of best design (error bars show & 1 S.E.)
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Additional statistical values describing the final SWR are shown in Table 2.

These include the 25th percentile (or first quartile point), the 50th percentile

(or median) and the 75th percentile (or third quartile point). The inter-

quartile range (difference between the 75th percentile and 25th percentile) is

shown to indicate the spread of the data within a group of teams, and the

inter-group range is shown to indicate the range of values displayed across

groups of teams. Examining these statistics can indicate the way in which

the teams’ final SWRs are distributed about the median. The 75th percentile

is simply the median of the upper half of the data, so it is indicative of the per-

formance of the best teams. Similarly, the 25th percentile is indicative of the

performance of the worst teams. In Table 2, the value of the 25th percentile

displays little difference between groups (an inter-group range of approxi-

mately 0.054). However, there is much greater variability between the upper

quartiles of the groups (demonstrated by an inter-group range of 0.144). In

addition, the inter-quartile range is much higher for the group of teams in

which all characteristics are turned on. This indicates that removing character-

istics from the CISAT simulation framework does not substantially impact the

low-performing teams, but does handicap the performance of the high-

performing teams. This consequentially compresses the distribution, as evi-

denced by the decrease in inter-quartile range.

Figure 8 Average pairwise distance (error bars show & 1 S.E.)

Table 2 Descriptive statistics for final SWR

Statistic All characteristics On Self-bias Off Organic interaction Off Inter-group range

25th percentile 0.400 0.398 0.346 0.054
Median 0.672 0.543 0.462 0.210
75th percentile 0.854 0.779 0.710 0.144
Inter-quartile Range 0.454 0.381 0.364
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Because self-bias and organic interaction play a role in moderating communi-

cation between agents, these results emphasize the crucial role of interaction in

human teams (Sio et al., 2014; Stempfle & Badke-schaub, 2002; Wood et al.,

2012). Self-bias encourages individuals to continue work on their current solu-

tion concept, adding significant detail and critical refinement. Organic interac-

tion decreases the frequency of communication, therefore increasing the extent

to which individuals refine their current solutions between interactions.

The benefit derived from the presence of organic interaction and self-bias can

be understood by appealing to concepts used in the analysis of social networks.

A social network is composed of individuals and the relationships, or ties, be-

tween them. These ties can be characterized in terms of strength (Granovetter,

1973). Strong ties exhibit frequent interaction, reciprocity, and high emotional

intensity, while weak ties have infrequent interaction, little reciprocity and

lower intensity (Granovetter, 1973). There is evidence that weak ties may

play a crucial role by transmitting information between individuals with

diverse perspectives and diverse approaches to problems (Granovetter,

1983). In the context of the truss study, the presence of organic interaction

and self-bias decrease the frequency and intensity of interactions, thus forming

weak ties. In turn, these weak ties likely allow team members to explore

different regions of the design space, leading to higher divergence and final

design solutions with higher quality.

Conversely, the absence of either organic interaction or self-bias can increase

the strength or frequency of interactions, leading to the formation of strong

ties. It has been demonstrated that strong ties promote group cohesion, but

may do so at the expensive of the group’s goals (Flache & Macy, 1996;

Flache, 2002). Within the context of the truss design problem, this could

lead to a state in which the formation of consensus (or low divergence) be-

tween team members becomes more of a driving factor in the design process

than the search for high quality solutions. Such a state is similar in many

ways to groupthink, a psychological phenomena characterized by the search

for consensus with little regard for critical evaluation of concepts (Janis,

1971). It has been theorized that groupthink may detrimentally affect

decision-making teams (Jones & Roelofsma, 2000).

Up to this point in the paper, analyses have made comparisons between several

groups of teams, where all agents within a group of teams had the same active

characteristics (either all characteristics on, self-bias turned off, or organic

interaction turned off). Now, trends within groups of teams will be examined

by computing the correlation coefficient between final average pairwise dis-

tance and final SWR (both of which are team characteristics). For teams simu-

lated with all agent characteristics turned on, the Pearson correlation

coefficient between these two variables is "0.446. For teams in which agents

lacked self-bias, the correlation coefficient is "0.481, and for teams in which
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agents lacked organic interaction it is"0.301. Similar negative correlations are

observed with the removal of other characteristics, and all correlations are

highly significant (r< 0.005). This indicates that low final average pairwise dis-

tance tends to occur in teams that also have a high final SWR. Therefore, rela-

tive to other teams in which agents have the same active characteristics, a team

that shows low final divergence is likely to produce a high quality solution.

A similar trend has been demonstrated in a variety of design problems. For

instance, team mental model sharedness was correlated with coordinated

team performance in teams playing the open-ended Kantjil Design Game

(Dong, Kleinsmann, & Deken, 2013). The correlation was also identified

when the truss design problem modeled in this work was solved by human de-

signers (McComb et al., 2015). There, the relationship was attributed to

expert-like characteristics of high-performing teams. Expert designers have

been shown to quickly commit to a single solution concept (Cross, 2004).

The fact that expert solutions also tend to be of high quality is indicative of

the fact that expert designers are capable of selecting a good initial represen-

tation of the problem, and do not need to search divergently. Although the

agents created in this work are not intended to be experts, they are still created

with a variety of initial representations with varying levels of quality. A team

with a lower quality representation may need to search divergently in an

attempt to improve that representation. However, a team with a high quality

representation has no need to refine their representation through broad search.

Thus, the same mechanism (selection of initial representations with varying

levels of quality) may have given rise to a similar trend (negative correlation

between divergence and quality) in both human- and agent-based studies.

4 Conclusions
This work introduces the Cognitively-Inspired Simulated Annealing Teams

(CISAT) modeling framework, an agent-based platform for simulating

team-based engineering design. This framework was used to directly simulate

the results of a cognitive study in which teams of engineering students tackled

a structural design problem. A comparison of the CISAT simulated results to

those of the original cognitive study revealed a high degree of linear correla-

tion between the two. This indicates that CISAT is capable of capturing the

trends observed in humans solving a simplified engineering design task.

Next, CISAT was used to explore the particular characteristics that were

most beneficial to teams in solving this task. This analysis indicated that

proper interaction (specifically self-bias and organic interaction timing) was

crucial to enabling team success in the truss design task. Further analysis re-

vealed the importance of flexible design methods that allow for sufficient,

but not excessive, divergent search.

This work only models a set of cognitive phenomena that has been demon-

strated within the domains of design or problem-solving. However, the
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validated CISAT framework can now be used as a platform to simulate the ef-

fects of biases that have not been explicitly demonstrated in those domains.

The results of such simulations could be used to formulate promising studies

to be carried out with human test subjects.

The current validation study has demonstrated that the CISAT modeling

framework is capable of accurately modeling small teams. However, larger

teams may require a hierarchical structure amongst members, particularly if

solving a complex task. Although CISAT is currently only capable of simu-

lating flat teams (i.e. teams without overt structure), it may act as a building

block for simulating larger, hierarchical organizations. For instance, an orga-

nization composed of multiple sub-teams could be modeled as a conglomera-

tion of CISAT teams. Additional development would be necessary to define an

inter-team protocol for communicating solution information, and to define

specific responsibilities and sub-tasks for individual teams. In this context,

biased information passing (Austin-Breneman, Yu, & Yang, 2014) between

teams may emerge as an important inter-team characteristic.

Future work will seek to implement more detailed models for learning and

heuristic development within the CISAT framework, allowing agents to

more intelligently sequence the application of move operators. The CISAT

framework will also be used to model more complex design problems to pro-

vide opportunities for further validation and refinement.

Acknowledgments
This material is based upon work supported by the National Science Founda-

tion Graduate Research Fellowship under Grant No. DGE125252. The au-

thors would also like to thank the AFOSR for funding this research

through grant FA9550-12-1-0374. A previous version of this paper has also

been submitted to the Design Theory and Methodology Conference at

ASME IDETC 2015 (McComb, Cagan, & Kotovsky, 2015).

References
Austin-Breneman, J., Yu, B. Y., & Yang, M. C. (2014). Biased information pass-

ing between subsystems over time in complex system design. In ASME 2014
International Design Engineering Technical Conferences and Computers and In-
formation in Engineering Conference (pp. DETC2014e34433). Buffalo, NY.
http://dx.doi.org/10.1115/DETC2014-34433.

Ball, L. J., Evans, J. S. B., & Dennis, I. (1994). Cognitive processes in engineering
design: a longitudinal study. Ergonomics, 37(11), 1753e1786. http://
dx.doi.org/10.1080/00140139408964950.

Ball, L. J., & Ormerod, T. C. (1995). Structured and opportunistic processing in
design: a critical discussion. International Journal of Human-Computer Studies,
43(1), 131e151. http://dx.doi.org/10.1006/ijhc.1995.1038.

Lifting the Veil: Drawing insights about design teams 139

http://dx.doi.org/10.1115/DETC2014-34433
http://dx.doi.org/10.1080/00140139408964950
http://dx.doi.org/10.1080/00140139408964950
http://dx.doi.org/10.1006/ijhc.1995.1038


Cagan, J., & Kotovsky, K. (1997). Simulated annealing and the generation of the
objective function: a model of learning during problem solving. Computational
Intelligence, 13(4), 534e581. http://dx.doi.org/10.1111/0824-7935.00051.

Cliff, N. (1996). Answering ordinal questions with ordinal data using ordinal sta-
tistics. Multivariate Behavioral Research, 31(3), 331e350. http://dx.doi.org/
10.1207/s15327906mbr3103.

Cooper, R., & Slagmulder, R. (1997). Target costing and value engineering. Port-
land, OR: Productivity Press.

Cross, N. (2004). Expertise in design: an overview. Design Studies, 25(5),
427e441. http://dx.doi.org/10.1016/j.destud.2004.06.002.

Crowder, R. M., Robinson, M. A., Hughes, H. P. N., & Sim, Y.-W. (2012). The
development of an agent-based modeling framework for simulating engineer-
ing team work. IEEE Transactions on Systems, Man, and Cybernetics - Part
A: Systems and Humans, 42(6), 1425e1439. http://dx.doi.org/10.1109/
TSMCA.2012.2199304.

Dieter, G., & Schmidt, L. (2009). Engineering design (4th ed.). McGraw-Hill.
Dionne, S. D., Sayama, H., Hao, C., & James, B. (2010). The role of leadership in

shared mental model convergence and team performance improvement: an
agent-based computational model. The Leadership Quarterly, 21(6),
1035e1049. http://dx.doi.org/10.1016/j.leaqua.2010.10.007.

Dong, A., Hill, A. W., & Agogino, A. M. (2004). A document analysis method for
characterizing design team performance. Journal of Mechanical Design, 126(3),
378e385. http://dx.doi.org/10.1115/1.1711818.

Dong, A., Kleinsmann, M. S., & Deken, F. (2013). Investigating design cognition
in the construction and enactment of team mental models. Design Studies,
34(1), 1e33. http://dx.doi.org/10.1016/j.destud.2012.05.003.

Egan,P.F.,Cagan, J., Schunn,C.,&Leduc,P.R. (2014).Cognitive-basedsearchstra-
tegies for complex bio-nanotechnology design derived through symbiotic human
and agent-based approaches. In ASME 2014 International Design Engineering
Technical Conferences and Computers and Information in Engineering Conference
(pp. DETC2014e34714). http://dx.doi.org/10.1115/DETC2014-34714.

Fan, X., & Yen, J. (2004). Modeling and simulating human teamwork behaviors
using intelligent agents. Physics of Life Reviews, 1(3), 173e201. http://
dx.doi.org/10.1016/j.plrev.2004.10.001.

Feil, P., Yook, K., & Kim, I. (2004). Japanese target costing: a historical perspec-
tive. International Journal of Strategic Cost Management 10e19.

Flache, A. (2002). The rational weakness of strong ties: failure of group solidarity
in a highly cohesive group of rational agents. The Journal of Mathematical So-
ciology, 26(3), 189e216. http://dx.doi.org/10.1080/00222500212988.

Flache, A., & Macy, M. W. (1996). The weakness of strong ties: collective action
failure in a highly cohesive group. The Journal of Mathematical Sociology,
21(1e2), 3e28. http://dx.doi.org/10.1080/0022250X.1996.9990172.

Franklin, S., & Graesser, A. (1997). Is it an agent, or just a program?: a taxonomy
for autonomous agents. In Intelligent agents III: Agent theories, architectures,
and languages (pp. 21e35), DOI: 10.1.1.52.1255.

Fritz, C., Morris, P., & Richler, J. (2012). Effect size estimates: current use, calcu-
lations, and interpretation, 141(1), 2e18. http://dx.doi.org/10.1037/a0024338.

Fu, K., Cagan, J., & Kotovsky, K. (2010). Design team convergence: the influence
of example solution quality. Journal of Mechanical Design, 132(11), 111005.
http://dx.doi.org/10.1115/1.4002202.

Granovetter, M. S. (1973). The strength of weak ties. The American Journal of So-
ciology, 78(6), 1360e1380. http://dx.doi.org/10.1086/225469.

140 Design Studies Vol 40 No. C September 2015

http://dx.doi.org/10.1111/0824-7935.00051
http://dx.doi.org/10.1207/s15327906mbr3103
http://dx.doi.org/10.1207/s15327906mbr3103
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref6
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref6
http://dx.doi.org/10.1016/j.destud.2004.06.002
http://dx.doi.org/10.1109/TSMCA.2012.2199304
http://dx.doi.org/10.1109/TSMCA.2012.2199304
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref9
http://dx.doi.org/10.1016/j.leaqua.2010.10.007
http://dx.doi.org/10.1115/1.1711818
http://dx.doi.org/10.1016/j.destud.2012.05.003
http://dx.doi.org/10.1115/DETC2014-34714
http://dx.doi.org/10.1016/j.plrev.2004.10.001
http://dx.doi.org/10.1016/j.plrev.2004.10.001
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref15
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref15
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref15
http://dx.doi.org/10.1080/00222500212988
http://dx.doi.org/10.1080/0022250X.1996.9990172
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref18
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref18
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref18
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref18
http://dx.doi.org/10.1037/a0024338
http://dx.doi.org/10.1115/1.4002202
http://dx.doi.org/10.1086/225469


Granovetter, M. S. (1983). The strength of weak ties: a network theory revisited.
Sociological Theory, 1(1983), 201e233. http://dx.doi.org/10.2307/202051.

Hess, M., & Kromrey, J. (2004). Robust confidence intervals for effect sizes: a
comparative study of Cohen’s d and Cliff’s delta under non-normality and het-
erogeneous variances. In Annual Meeting of the American Educational Research
Association (pp. 1e30), DOI: 10.1.1.487.8299.

Hibbeler, R. (2008). Structural analysis (7th ed.). Prentice Hall.
Janis, I. (1971). Groupthink. Psychology Today, 5(6), 43e46.
Jansson, D., & Smith, S. (1991). Design fixation. Design Studies, 12(1), 3e11.

http://dx.doi.org/10.1016/0142-694X(91)90003-F.
Jin, Y., & Levit, R. (1996). The virtual design team: a computational model of

project organization. Computational & Mathematical Organization Theory,
2(3), 171e196.

Jones, P. E., & Roelofsma, P. (2000). The potential for social contextual and
group biases in team decision-making: biases, conditions and psychological.
Ergonomics, 43(8), 1129e1152.

Kirkpatrick, S., Gelatt, C. D., & Vecchi, M. P. (1983). Optimization by simulated
annealing. Science, 220(4598), 671e680. http://dx.doi.org/10.2307/1690046.

Kotovsky, K., Hayes, J., & Simon, H. (1985). Why are some problems hard? Ev-
idence from Tower of Hanoi. Cognitive Psychology, 17(2), 248e294. http://
dx.doi.org/10.1016/0010-0285(85)90009-X.

Kurtzberg, T. R., & Amabile, T. M. (2001). From Guilford to creative synergy:
opening the black box of team-level creativity. Creativity Research Journal,
13(3e4), 285e294. http://dx.doi.org/10.1207/S15326934CRJ1334_06.

Langley, P. (1985). Learning to search: from weak methods to domain-specific
heuristics. Cognitive Science, 9(2), 217e260. http://dx.doi.org/10.1207/
s15516709cog0902_2.

Leech, N. L., & Onwuegbuzie, A. J. (2002). A call for greater use of nonpara-
metric statistics. In Annual Meeting of the MidSouth Educational Research As-
sociation (pp. 1e24).

McComb, C., Cagan, J., & Kotovsky, K. (2015). Studying Human Design Teams
via Computational Teams of Simulated Annealing Agents. In ASME 2015 In-
ternational Design Engineering Technical Conferences and Computers and Infor-
mation in Engineering Conference. Boston, MA: ASME. http://dx.doi.org/
10.1115/DETC2015-46545.

McComb, C., Cagan, J., & Kotovsky, K. (2015). Rolling with the punches: an ex-
amination of team performance in a design task subject to drastic changes.
Design Studies, 36(1), 99e121. http://dx.doi.org/10.1016/j.destud.2014.10.001.

Newell, A., & Simon, H. (1972). Human problem solving. Prentice Hall.
Nikander, J. B., Liikkanen, L. A., & Laakso, M. (2014). The preference effect in

design concept evaluation. Design Studies, 35(5), 473e499. http://dx.doi.org/
10.1016/j.destud.2014.02.006.

Olson, J., Cagan, J., & Kotovsky, K. (2009). Unlocking organizational potential:
a computational platform for investigating structural interdependence in
design. Journal of Mechanical Design, 131, 031001-1e031001-13. http://
dx.doi.org/10.1115/1.3066501.

Osborn, A. F. (1957). Applied imagination. New York: Scriber.
Paulus, P. B., Dzindolet, M. T., & Kohn, N. (2011). Collaborative creativity-

group creativity and team innovation. In M. D. Mumford (Ed.), Handbook
of organizational creativity (pp. 327e357). New York: Elsevier.

Pretz, J. E., Naples, A. J., & Sternberg, R. J. (2003). Recognizing, defining, and
representing problems. In J. E. Davidson, & R. J. Sternberg (Eds.), The psy-
chology of problem solving. Cambridge University Press.

Lifting the Veil: Drawing insights about design teams 141

http://dx.doi.org/10.2307/202051
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref23
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref23
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref23
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref23
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref23
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref24
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref25
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref25
http://dx.doi.org/10.1016/0142-694X(91)90003-F
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref27
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref27
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref27
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref27
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref28
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref28
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref28
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref28
http://dx.doi.org/10.2307/1690046
http://dx.doi.org/10.1016/0010-0285(85)90009-X
http://dx.doi.org/10.1016/0010-0285(85)90009-X
http://dx.doi.org/10.1207/S15326934CRJ1334_06
http://dx.doi.org/10.1207/s15516709cog0902_2
http://dx.doi.org/10.1207/s15516709cog0902_2
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref33
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref33
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref33
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref33
http://dx.doi.org/10.1115/DETC2015-46545
http://dx.doi.org/10.1115/DETC2015-46545
http://dx.doi.org/10.1016/j.destud.2014.10.001
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref35
http://dx.doi.org/10.1016/j.destud.2014.02.006
http://dx.doi.org/10.1016/j.destud.2014.02.006
http://dx.doi.org/10.1115/1.3066501
http://dx.doi.org/10.1115/1.3066501
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref38
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref39
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref39
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref39
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref39
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref40
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref40
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref40


Sayama, H., Farrell, D. L., & Dionne, S. D. (2011). The effects of mental model
formation on group decision making: an agent-based simulation. Complexity,
16(3), 49e57. http://dx.doi.org/10.1002/cplx.20329.

Simon, H. A. (1956). Rational choice and the structure of the environment. Psy-
chological Review, 63(2), 129e138.

Singh, V., Dong, A., & Gero, J. S. (2012). Computational studies to understand
the role of social learning in team familiarity and its effects on team perfor-
mance. CoDesign, 8(1), 25e41. http://dx.doi.org/10.1080/15710882.2011.
633088.

Singh, V., Dong, A., & Gero, J. S. (2013). Social learning in design teams: the
importance of direct and indirect communications. Artificial Intelligence in En-
gineering, Design, Analysis and Manufacturing, 27(2), 167e182. http://
dx.doi.org/10.1017/S0890060413000061.

Sio, U. N., Kotovsky, K., & Cagan, J. (2014). Analyzing the effect of team struc-
ture on team performance: an experimental and computational approach. In
P. Bello, M. Guarini, M. McShane, & B. Scassellati (Eds.), 36th Annual Con-
ference of the Cognitive Science Society (pp. 1437e1442). Austin, TX: Cogni-
tive Science Society.

Stempfle, J., & Badke-schaub, P. (2002). Thinking in design teams e an analysis
of team communication. Design Studies, 23(5), 473e496. http://dx.doi.org/
10.1016/S0142-694X(02)00004-2.

Triki, E., Collette, Y., & Siarry, P. (2005). A theoretical study on the behavior of
simulated annealing leading to a new cooling schedule. European Journal of
Operational Research, 166(1), 77e92. http://dx.doi.org/10.1016/
j.ejor.2004.03.035.

Ullman, D. G., Dietterich, T. G., & Stauffer, L. A. (1988). A model of the me-
chanical design process based on empirical data. Artificial Intelligence in Engi-
neering, Design, Analysis and Manufacturing, 2(1), 33e52. http://dx.doi.org/
10.1017/S0890060400000536.

Wood, M., Chen, P., Fu, K., Cagan, J., & Kotovsky, K. (2012). The role of design
team interaction structure on individual and shared mental models. In Design
computing and cognition ’12 (pp. 206e226).

142 Design Studies Vol 40 No. C September 2015

http://dx.doi.org/10.1002/cplx.20329
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref42
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref42
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref42
http://dx.doi.org/10.1080/15710882.2011.633088
http://dx.doi.org/10.1080/15710882.2011.633088
http://dx.doi.org/10.1017/S0890060413000061
http://dx.doi.org/10.1017/S0890060413000061
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref45
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref45
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref45
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref45
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref45
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref45
http://dx.doi.org/10.1016/S0142-694X(02)00004-2
http://dx.doi.org/10.1016/S0142-694X(02)00004-2
http://dx.doi.org/10.1016/j.ejor.2004.03.035
http://dx.doi.org/10.1016/j.ejor.2004.03.035
http://dx.doi.org/10.1017/S0890060400000536
http://dx.doi.org/10.1017/S0890060400000536
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref49
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref49
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref49
http://refhub.elsevier.com/S0142-694X(15)00049-6/sref49

	Lifting the Veil: Drawing insights about design teams from a cognitively-inspired computational model
	1. The modeling framework
	1.1. Multi-agency
	1.2. Organic interaction timing
	1.3. Quality-informed solution sharing
	1.4. Quality bias reduction
	1.5. Self-bias
	1.6. Operational learning
	1.7. Locally sensitive search
	1.8. Satisficing

	2. Applying CISAT to truss design
	2.1. Summary of the truss design study
	2.2. Analysis
	2.3. CISAT configuration
	2.4. Comparison of results

	3. Investigating team strengths with CISAT
	4. Conclusions
	Acknowledgements
	References


