#undef NDEBUG #include #include #include #include #include #include "benchmark/benchmark.h" #include "output_test.h" namespace { #define ADD_COMPLEXITY_CASES(...) \ int CONCAT(dummy, __LINE__) = AddComplexityTest(__VA_ARGS__) int AddComplexityTest(std::string test_name, std::string big_o_test_name, std::string rms_test_name, std::string big_o) { SetSubstitutions({{"%name", test_name}, {"%bigo_name", big_o_test_name}, {"%rms_name", rms_test_name}, {"%bigo_str", "[ ]* %float " + big_o}, {"%bigo", big_o}, {"%rms", "[ ]*[0-9]+ %"}}); AddCases( TC_ConsoleOut, {{"^%bigo_name %bigo_str %bigo_str[ ]*$"}, {"^%bigo_name", MR_Not}, // Assert we we didn't only matched a name. {"^%rms_name %rms %rms[ ]*$", MR_Next}}); AddCases(TC_JSONOut, {{"\"name\": \"%bigo_name\",$"}, {"\"run_name\": \"%name\",$", MR_Next}, {"\"run_type\": \"aggregate\",$", MR_Next}, {"\"repetitions\": %int,$", MR_Next}, {"\"threads\": 1,$", MR_Next}, {"\"aggregate_name\": \"BigO\",$", MR_Next}, {"\"cpu_coefficient\": %float,$", MR_Next}, {"\"real_coefficient\": %float,$", MR_Next}, {"\"big_o\": \"%bigo\",$", MR_Next}, {"\"time_unit\": \"ns\"$", MR_Next}, {"}", MR_Next}, {"\"name\": \"%rms_name\",$"}, {"\"run_name\": \"%name\",$", MR_Next}, {"\"run_type\": \"aggregate\",$", MR_Next}, {"\"repetitions\": %int,$", MR_Next}, {"\"threads\": 1,$", MR_Next}, {"\"aggregate_name\": \"RMS\",$", MR_Next}, {"\"rms\": %float$", MR_Next}, {"}", MR_Next}}); AddCases(TC_CSVOut, {{"^\"%bigo_name\",,%float,%float,%bigo,,,,,$"}, {"^\"%bigo_name\"", MR_Not}, {"^\"%rms_name\",,%float,%float,,,,,,$", MR_Next}}); return 0; } } // end namespace // ========================================================================= // // --------------------------- Testing BigO O(1) --------------------------- // // ========================================================================= // void BM_Complexity_O1(benchmark::State& state) { for (auto _ : state) { for (int i = 0; i < 1024; ++i) { benchmark::DoNotOptimize(&i); } } state.SetComplexityN(state.range(0)); } BENCHMARK(BM_Complexity_O1)->Range(1, 1 << 18)->Complexity(benchmark::o1); BENCHMARK(BM_Complexity_O1)->Range(1, 1 << 18)->Complexity(); BENCHMARK(BM_Complexity_O1) ->Range(1, 1 << 18) ->Complexity([](benchmark::IterationCount) { return 1.0; }); const char *one_test_name = "BM_Complexity_O1"; const char *big_o_1_test_name = "BM_Complexity_O1_BigO"; const char *rms_o_1_test_name = "BM_Complexity_O1_RMS"; const char *enum_big_o_1 = "\\([0-9]+\\)"; // FIXME: Tolerate both '(1)' and 'lgN' as output when the complexity is auto // deduced. // See https://github.com/google/benchmark/issues/272 const char *auto_big_o_1 = "(\\([0-9]+\\))|(lgN)"; const char *lambda_big_o_1 = "f\\(N\\)"; // Add enum tests ADD_COMPLEXITY_CASES(one_test_name, big_o_1_test_name, rms_o_1_test_name, enum_big_o_1); // Add auto enum tests ADD_COMPLEXITY_CASES(one_test_name, big_o_1_test_name, rms_o_1_test_name, auto_big_o_1); // Add lambda tests ADD_COMPLEXITY_CASES(one_test_name, big_o_1_test_name, rms_o_1_test_name, lambda_big_o_1); // ========================================================================= // // --------------------------- Testing BigO O(N) --------------------------- // // ========================================================================= // std::vector ConstructRandomVector(int64_t size) { std::vector v; v.reserve(static_cast(size)); for (int i = 0; i < size; ++i) { v.push_back(static_cast(std::rand() % size)); } return v; } void BM_Complexity_O_N(benchmark::State& state) { auto v = ConstructRandomVector(state.range(0)); // Test worst case scenario (item not in vector) const int64_t item_not_in_vector = state.range(0) * 2; for (auto _ : state) { benchmark::DoNotOptimize(std::find(v.begin(), v.end(), item_not_in_vector)); } state.SetComplexityN(state.range(0)); } BENCHMARK(BM_Complexity_O_N) ->RangeMultiplier(2) ->Range(1 << 10, 1 << 16) ->Complexity(benchmark::oN); BENCHMARK(BM_Complexity_O_N) ->RangeMultiplier(2) ->Range(1 << 10, 1 << 16) ->Complexity([](benchmark::IterationCount n) -> double { return static_cast(n); }); BENCHMARK(BM_Complexity_O_N) ->RangeMultiplier(2) ->Range(1 << 10, 1 << 16) ->Complexity(); const char *n_test_name = "BM_Complexity_O_N"; const char *big_o_n_test_name = "BM_Complexity_O_N_BigO"; const char *rms_o_n_test_name = "BM_Complexity_O_N_RMS"; const char *enum_auto_big_o_n = "N"; const char *lambda_big_o_n = "f\\(N\\)"; // Add enum tests ADD_COMPLEXITY_CASES(n_test_name, big_o_n_test_name, rms_o_n_test_name, enum_auto_big_o_n); // Add lambda tests ADD_COMPLEXITY_CASES(n_test_name, big_o_n_test_name, rms_o_n_test_name, lambda_big_o_n); // ========================================================================= // // ------------------------- Testing BigO O(N*lgN) ------------------------- // // ========================================================================= // static void BM_Complexity_O_N_log_N(benchmark::State& state) { auto v = ConstructRandomVector(state.range(0)); for (auto _ : state) { std::sort(v.begin(), v.end()); } state.SetComplexityN(state.range(0)); } static const double kLog2E = 1.44269504088896340736; BENCHMARK(BM_Complexity_O_N_log_N) ->RangeMultiplier(2) ->Range(1 << 10, 1 << 16) ->Complexity(benchmark::oNLogN); BENCHMARK(BM_Complexity_O_N_log_N) ->RangeMultiplier(2) ->Range(1 << 10, 1 << 16) ->Complexity([](benchmark::IterationCount n) { return kLog2E * n * log(static_cast(n)); }); BENCHMARK(BM_Complexity_O_N_log_N) ->RangeMultiplier(2) ->Range(1 << 10, 1 << 16) ->Complexity(); const char *n_lg_n_test_name = "BM_Complexity_O_N_log_N"; const char *big_o_n_lg_n_test_name = "BM_Complexity_O_N_log_N_BigO"; const char *rms_o_n_lg_n_test_name = "BM_Complexity_O_N_log_N_RMS"; const char *enum_auto_big_o_n_lg_n = "NlgN"; const char *lambda_big_o_n_lg_n = "f\\(N\\)"; // Add enum tests ADD_COMPLEXITY_CASES(n_lg_n_test_name, big_o_n_lg_n_test_name, rms_o_n_lg_n_test_name, enum_auto_big_o_n_lg_n); // Add lambda tests ADD_COMPLEXITY_CASES(n_lg_n_test_name, big_o_n_lg_n_test_name, rms_o_n_lg_n_test_name, lambda_big_o_n_lg_n); // ========================================================================= // // -------- Testing formatting of Complexity with captured args ------------ // // ========================================================================= // void BM_ComplexityCaptureArgs(benchmark::State& state, int n) { for (auto _ : state) { // This test requires a non-zero CPU time to avoid divide-by-zero benchmark::DoNotOptimize(state.iterations()); } state.SetComplexityN(n); } BENCHMARK_CAPTURE(BM_ComplexityCaptureArgs, capture_test, 100) ->Complexity(benchmark::oN) ->Ranges({{1, 2}, {3, 4}}); const std::string complexity_capture_name = "BM_ComplexityCaptureArgs/capture_test"; ADD_COMPLEXITY_CASES(complexity_capture_name, complexity_capture_name + "_BigO", complexity_capture_name + "_RMS", "N"); // ========================================================================= // // --------------------------- TEST CASES END ------------------------------ // // ========================================================================= // int main(int argc, char *argv[]) { RunOutputTests(argc, argv); }