
Revocation with type-3 pairings

Dmitry Khovratovich

5 May 2017, version 0.3

1 Setup

This section describes how the Prover obtains a non-revocation claim from the Issuer.

1.1 Common parameters for all Issuers

Issuer and Prover mutually trust each other in submitting values of the right format during credential’s issuance.
This trust can be eliminated at the cost of some extra steps.

Common parameters:

• Groups G1,G2,GT of prime order q;

• Type-3 pairing operation e : G1 ×G2 → GT .

• Generators: g for G1, g′ for G2.

Typically the triplet (G1,G2,GT ) is selected together with a pairing function as only a few combinations
admit a suitable pairing. Existing implementations provide just a few possible pairing functions and thus
triplets, thus making the group details in fact oblivious to the user. For the sake of curiosity we note that
G1,G2 are different groups of elliptic curve points, whereas GT is not a curve point group.

1.2 Issuer revocation setup

Issuer makes the following steps:

1. Generate random h, h0, h1, h2, h̃ ∈ G1;

2. Generate random u, ĥ ∈ G2;

3. Generate random sk, x (mod q).

4. Compute

pk ← gsk; y ← ĥx.

.

5. The issuer revocation public key is pkR = (h, h0, h1, h2, h̃, ĥ, u, pk, y) and the secret key is (x, sk).

The Issuer fixes the number L of credentials per accumulator. For each accumulator:

1. Generate random γ (mod q).

2. Compute g1, g2, . . . , gL, gL+2, . . . , g2L where gi = gγ
i

.

3. Compute g′1, g
′
2, . . . , g

′
L, g
′
L+2, . . . , g

′
2L where g′i = g′γ

i

.

4. Compute z = (e(g, g′))γ
L+1

.

5. Set V ← ∅, acc← 1.

The accumulator public key is (z) and secret key is (γ).

1



2 Issuance of non-revocation claim

Prover starts:

1. Loads Issuer’s revocation key pkR and generates random s′ mod q.

2. Computes U ← hs
′

2 taking h2 from pkR.

3. Sends U to the Issuer.

We assume that the attribute m2 is used to enumerate provers by Issuer (details are irrelevant for revocation).
Then Issuer proceeds:

1. Generates random numbers s′′, c mod q.

2. Takes m2 from the primary claim he is preparing for the Prover.

3. Selects the accumulator index Ai and the user index i for the Prover so that i has not been assigned yet
for Ai.

4. Computes

σ ←
(
h0h

m2
1 · U · gi · hs

′′

2

) 1
x+c

; w ←
∏
j∈V

g′L+1−j+i; (1)

σi ← g′1/(sk+γ
i); ui ← uγ

i

; (2)

acc← acc · g′L+1−i; V ← V ∪ {i}; (3)

witi ← {σi, ui, gi, w, V }. (4)

5. Sends (Ai, σ, c, s
′′,witi, gi, g

′
i, i).

6. Publishes updated V, acc.

Prover finishes:

1. Computes s← s′ + s′′.

2. Stores non-revocation claim CNR ← (Ai, σ, c, s,witi, gi, g
′
i, i).

TEST Tests

e(gi, accV )

e(g, w)

?
= z; (5)

e(pk · gi, σi)
?
= e(g, g′); (6)

e(σ, y · ĥc) ?
= e(h0 · hm2

1 hs2gi, ĥ). (7)

3 Revocation

Issuer revokes user with m2 value that corresponds to accumulator acc, index i, and valid index set V :

1. Sets V ← V \ {i};

2. Computes acc← acc/g′L+1−i.

3. Publishes V, acc.

4 Presentation of non-revocation proof

This phase is a part of the entire presentation protocol, which instructs the prover to maintain sets C and T ,
which are filled by all primary claims and their non-revocation complements used in the presentation.

2



4.1 Preparation

Verifier starts:

1. Loads Issuer’s public revocation key p = (h, h1, h2, h̃, ĥ, u, pk, y).

Prover continues:

1. Loads Issuer’s public revocation key p = (h, h1, h2, h̃, ĥ, u, pk, y).

2. Loads the non-revocation claim CNR ← (Ai, σ, c, s,witi, gi, g
′
i, i);

3. Obtains recent V, acc (from Verifier, Sovrin link, or elsewhere).

4. Updates CNR:

w ← w ·
∏
j∈V \Vold

g′L+1−j+i∏
j∈Vold\V g

′
L+1−j+i

;

Vold ← V.

Here Vold is taken from witi and updated there.

5. Selects random ρ, ρ′, r, r′, r′′, r′′′, o, o′ mod q;

6. Computes

E ← hρh̃o D ← grh̃o
′
; (8)

A← σh̃ρ G ← gih̃
r; (9)

W ← wĥr
′

S ← σiĥ
r′′ (10)

U ← uiĥ
r′′′ (11)

and adds these values to C.

7. Computes

m← ρ · c; t← o · c; (12)

m′ ← r · r′′; t′ ← o′ · r′′; (13)

8. Generates random ρ̃, õ, õ′, c̃, m̃, m̃′, t̃, t̃′, m̃2, s̃, r̃, r̃′, r̃′′, r̃′′′,modq.

9. Computes

T1 ← hρ̃h̃õ T2 ← E c̃h−m̃h̃−t̃ (14)

T3 ← e(A, ĥ)c̃ · e(h̃, ĥ)r̃ · e(h̃, y)−ρ̃ · e(h̃, ĥ)−m̃ · e(h1, ĥ)−m̃2 · e(h2, ĥ)−s̃ (15)

T4 ← e(h̃, acc)r̃ · e(1/g, ĥ)r̃
′

T5 ← gr̃h̃õ
′

(16)

T6 ← Dr̃′′g−m̃
′
h̃−t̃

′
T7 ← e(pk · G, ĥ)r̃

′′ · e(h̃, ĥ)−m̃
′ · e(h̃,S)r̃ (17)

T8 ← e(h̃, u)r̃ · e(1/g, ĥ)r̃
′′′

(18)

and add these values to T .

TEST Tests that for

ρ̃ = ρ õ = o õ′ = o′ c̃ = c

m̃ = m m̃′ = m′ t̃ = t t̃′ = t′

m̃2 = m2 s̃ = s r̃ = r r̃′ = r′

r̃′′ = r′′ r̃′′′ = r′′′

the following holds:

E
?
= hρ̃h̃õ 1

?
= E c̃h−m̃h̃−t̃ (19)

3



e(h0G, ĥ)

e(A, y)

?
= e(A, ĥ)c̃ · e(h̃, ĥ)r̃ · e(h̃, y)−ρ̃ · e(h̃, ĥ)−m̃ · e(h1, ĥ)−m̃2 · e(h2, ĥ)−s̃ (20)

e(G, acc)

e(g,W)z

?
= e(h̃, acc)r̃ · e(1/g, ĥ)r̃

′
D

?
= gr̃h̃õ

′
(21)

1
?
= Dr̃′′g−m̃

′
h̃−t̃

′ e(pk · G,S)

e(g, g′)

?
= e(pk · G, ĥ)r̃

′′ · e(h̃, ĥ)−m̃
′ · e(h̃,S)r̃ (22)

e(G, u)

e(g,U)

?
= e(h̃, u)r̃ · e(1/g, ĥ)r̃

′′′
(23)

After all claims are processed, Prover generates cH :

cH ← H(T , C, n1).

4.2 Last preparation steps

Prover finalizes:

1. Computes

ρ̂← ρ̃− cHρ mod q ô← õ− cH · o mod q

ĉ← c̃− cH · c mod q ô′ ← õ′ − cH · o′ mod q

m̂← m̃− cHm mod q m̂′ ← m̃′ − cHm′ mod q

t̂← t̃− cHt mod q t̂′ ← t̃′ − cHt′ mod q

m̂2 ← m̃2 − cHm2 mod q ŝ← s̃− cHs mod q

r̂ ← r̃ − cHr mod q r̂′ ← r̃′ − cHr′ mod q

r̂′′ ← r̃′′ − cHr′′ mod q r̂′′′ ← r̃′′′ − cHr′′′ mod q.

and add them to X .

After all claims are processed this way, Prover sends (cH ,X , {PrC}, {Prp}, C) to the Verifier.

4.3 Verification of non-revocation proof

Verifier computes

T̂1 ← EcH · hρ̂ · h̃ô T̂2 ← E ĉ · h−m̂ · h̃−t̂ (24)

T̂3 ←

(
e(h0G, ĥ)

e(A, y)

)cH
· e(A, ĥ)ĉ · e(h̃, ĥ)r̂ · e(h̃, y)−ρ̂ · e(h̃, ĥ)−m̂ · e(h1, ĥ)−m̂2 · e(h2, ĥ)−ŝ (25)

T̂4 ←
(
e(G, acc)

e(g,W)z

)cH
· e(h̃, acc)r̂ · e(1/g, ĥ)r̂

′
T̂5 ← DcH · gr̂h̃ô′ (26)

T̂6 ← Dr̂′′ · g−m̂′
h̃−t̂

′
T̂7 ←

(
e(pk · G,S)

e(g, g′)

)cH
· e(pk · G, ĥ)r̂

′′ · e(h̃, ĥ)−m̂
′ · e(h̃,S)r̂

(27)

T̂8 ←
(
e(G, u)

e(g,U)

)cH
· e(h̃, u)r̂ · e(1/g, ĥ)r̂

′′′
(28)

and adds these values to T̂ .

4.4 Final hashing

After all claims are processed this way:

1. Verifier computes
ĉH ← H(T̂ , C, n1).

2. If cH = ĉH output VERIFIED else FAIL.

4



5 Differences from the original

This section lists the changes to the type-1 pairing-based revocation scheme:

1. A new group G2 is introduced with generator g′.

2. A new variable ĥ is introduced.

3. Variable u now belongs to G2.

4. Variable y is now computed from ĥ.

5. New variables g′1, . . . , g2L are introduced in G2.

6. vR is replaced by s.

7. w, acc, σi are computed using g′, not g.

8. W,S,U are computed using ĥ.

9. The second argument of the pairing function is never h or h̃, both cases are now using ĥ.

5


