import clarabel import numpy as np from scipy import sparse # Define problem data P = sparse.csc_matrix([[6., 0.], [0., 4.]]) P = sparse.triu(P).tocsc() q = np.array([-1., -4.]) A = sparse.csc_matrix( [[1., -2.], # <-- LHS of equality constraint (lower bound) [1., 0.], # <-- LHS of inequality constraint (upper bound) [0., 1.], # <-- LHS of inequality constraint (upper bound) [-1., 0.], # <-- LHS of inequality constraint (lower bound) [0., -1.]]) # <-- LHS of inequality constraint (lower bound) b = np.array([0., 1., 1., 1., 1.]) cones = [clarabel.ZeroConeT(1), clarabel.NonnegativeConeT(4)] settings = clarabel.DefaultSettings() solver = clarabel.DefaultSolver(P, q, A, b, cones, settings) solution = solver.solve() print( f"Solver terminated with solution" f"{dict(s=solution.s, x=solution.x, z=solution.z)}" )