! r1 = v1, CLOBBERS ! r2 = v2, CLOBBERS ! r3 = OUT, CLOBBERS ! r4 = TMP 1, preserved ! r5 = TMP 2, preserved ! r0 = CL0, CLOBBERS ! FR0 = 0 ! FR1 = 0 ! FR2 = A.1 ! FR3 = B.1 ! FR4 = 0 ! FR5 = 0 ! FR6 = A.2 ! FR7 = B.2 ! FR8 = 0 ! FR9 = 0 ! FR10 = invT ! FR11 = t #define TM1 r0 // CLOBBERED, temp register 1 #define TM2 r4 // PRESERVED, temp register 2 #define CLO r5 // PRESERVED, output colour #define IN1 r1 // CLOBBERED, input vertex 1 #define IN2 r2 // CLOBBERED, input vertex 2 #define OUT r3 // CLOBBERED, output vertex #define CL1 r1 // CLOBBERED, input colour 1 #define CL2 r2 // CLOBBERED, input colour 2 ! Calculates the near plane intersection point between two points: ! float t = fabsf(v1->z) / fabsf(v2->z - v1->z) ! float invt = 1.0f - t; ! ! out->x = invt * v1->x + t * v2->x; ! out->y = invt * v1->y + t * v2->y; ! out->z = 0.0f; // clipped against near plane anyways (I.e Z/W = 0 --> Z = 0) ! ! out->u = invt * v1->u + t * v2->u; ! out->v = invt * v1->v + t * v2->v; ! out->w = invt * v1->w + t * v2->w; ! ! out->b = invt * v1->b + t * v2->b; ! out->g = invt * v1->g + t * v2->g; ! out->r = invt * v1->r + t * v2->r; ! out->a = invt * v1->a + t * v2->a; ! To optimise these calculations, FIPR is used: ! FIPR = FVm.x*FVn.x + FVm.y*FVn.x + FVm.z*FVn.z + FVm.w*FVn.w --> FVn.w ! FIPR can be used to accomplish "vout->Q = invt * v1->Q + t * v2->Q" by: ! - assigning x/y components to 0 for both vectors ! - assigning t and invT to z/w of FVm vector ! - assigning v1 and v2 to z/w of FVn vector ! FIPR = 0*0 + 0*0 + t*v1->Q + invT*v2->Q --> FVn.w ! FIPR = t*v1->Q + invT*v2->Q --> FVn.w .global _ClipLine .align 4 _ClipLine: mov.l r4,@-r15 ! LS, push(r4) mov.l r5,@-r15 ! LS, push(r5) mov IN1, TM1 ! MT, tmp = &v1 fldi0 fr4 ! LS, fr4 = 0 add #12, TM1 ! EX, tmp = &v1->z fmov.s @TM1, fr2 ! LS, fr2 = v1->z mov IN2, TM1 ! MT, tmp = &v2 fldi0 fr5 ! LS, fr5 = 0 add #12, TM1 ! EX, tmp = &v2->z fmov.s @TM1,fr11 ! LS, fr11 = v2->z fsub fr2,fr11 ! FE, fr11 = v2->z - v1->z fldi0 fr8 ! LS, fr8 = 0 fmul fr11,fr11 ! FE, fr11 = (v2->z - v1->z) * (v2->z * v1->z) fldi0 fr9 ! LS, fr9 = 0 fldi0 fr0 ! LS, fr0 = 0 fldi0 fr1 ! LS, fr1 = 0 fsrra fr11 ! FE, fr11 = 1 / abs(v2->z - v1->z) fabs fr2 ! LS, fr2 = abs(v1->z) fmul fr2,fr11 ! FE, fr11 = abs(v1->Z) / abs(v2->z - v1->z) --> t add #4, IN1 ! EX, v1 += 4 fldi1 fr10 ! LS, fr10 = 1 add #4, IN2 ! EX, v2 += 4 add #4, OUT ! EX, OUT += 4 fsub fr11,fr10 ! FE, fr10 = 1.0 - t --> invT fmov.s @IN1+, fr2 ! LS, A1 = v1->x, v1 += 4 fmov.s @IN2+, fr3 ! LS, B1 = v2->x, v2 += 4 fipr fv8, fv0 ! FE, LERP(A1, B1) fmov.s @IN1+, fr6 ! LS, A2 = v1->y, v1 += 4 fmov.s @IN2+, fr7 ! LS, B2 = v2->y, v2 += 4 fmov.s fr3,@OUT ! LS, OUT->x = LERP add #4, OUT ! EX, OUT += 4 fipr fv8, fv4 ! FE, LERP(A2, B2) add #4, IN1 ! EX, v1 += 4 add #4, IN2 ! EX, v2 += 4 fmov.s fr7,@OUT ! LS, OUT->y = LERP add #4, OUT ! EX, OUT += 4 fmov.s fr1,@OUT ! LS, OUT->z = 0 add #4, OUT ! EX, OUT += 4 fmov.s @IN1+, fr2 ! LS, A1 = v1->u, v1 += 4 fmov.s @IN2+, fr3 ! LS, B1 = v2->u, v2 += 4 fipr fv8, fv0 ! FE, LERP(A1, B1) fmov.s @IN1+, fr6 ! LS, A2 = v1->v, v1 += 4 fmov.s @IN2+, fr7 ! LS, B2 = v2->v, v2 += 4 fmov.s fr3,@OUT ! LS, OUT->u = LERP add #4, OUT ! EX, OUT += 4 fipr fv8, fv4 ! FE, LERP(A2, B2) add #4, IN1 ! EX, v1 += 4 add #4, IN2 ! EX, v2 += 4 fmov.s @IN1,fr2 ! LS, A1 = v1->w fmov.s @IN2,fr3 ! LS, B1 = v2->w fmov.s fr7,@OUT ! LS, OUT->v = LERP add #8, OUT ! EX, OUT += 8 fipr fv8, fv0 ! FE, LERP(A1, B1) add #-4, IN1 ! EX, v1 -= 4 add #-4, IN2 ! EX, v2 -= 4 fmov.s fr3,@OUT ! LS, OUT->w = lerp add #-4, OUT ! EX, OUT -= 4 mov.l @IN1,CL1 ! LS, ACOLOR = v1->bgra mov.l @IN2,CL2 ! LS, BCOLOR = v2->bgra ! Bypass interpolation if unnecessary cmp/eq CL1,CL2 ! MT, T = ACOLOR == BCOLOR bt.s 1f ! BR, if (T) goto 1; mov CL1,CLO ! MT, OUTCOLOR = ACOLOR (branch delay instruction) ! Interpolate B extu.b CL1,TM1 ! EX, val = ACOLOR.b lds TM1,fpul ! CO, FPUL = val float fpul,fr2 ! EX, fr2 = float(FPUL) extu.b CL2,TM1 ! EX, val = BCOLOR.b lds TM1,fpul ! CO, FPUL = val float fpul,fr3 ! EX, fr3 = float(FPUL) fipr fv8, fv0 ! FE, LERP(A1, B1) shlr8 CL1 ! EX, ACOLOR >>= 8 ftrc fr3,fpul ! FE, FPUL = int(lerp) shlr8 CL2 ! EX, BCOLOR >>= 8 sts fpul,TM2 ! CO, tmp = FPUL ! Interpolate G extu.b CL1,TM1 ! EX, val = ACOLOR.g lds TM1,fpul ! CO, FPUL = val float fpul,fr2 ! EX, fr2 = float(FPUL) extu.b CL2,TM1 ! EX, val = BCOLOR.g lds TM1,fpul ! CO, FPUL = val float fpul,fr3 ! EX, fr3 = float(FPUL) fipr fv8, fv0 ! FE, LERP(A1, B1) shlr8 CL1 ! EX, ACOLOR >>= 8 ftrc fr3,fpul ! FE, FPUL = int(lerp) extu.b TM2,TM2 ! EX, tmp = (uint8)tmp mov TM2,CLO ! MT, OUTCOLOR.b = tmp shlr8 CL2 ! EX, BCOLOR >>= 8 sts fpul,TM2 ! CO, tmp = FPUL ! Interpolate R extu.b CL1,TM1 ! EX, val = ACOLOR.r lds TM1,fpul ! CO, FPUL = val float fpul,fr2 ! EX, fr2 = float(FPUL) extu.b CL2,TM1 ! EX, val = BCOLOR.r lds TM1,fpul ! CO, FPUL = val float fpul,fr3 ! EX, fr3 = float(FPUL) fipr fv8, fv0 ! FE, LERP(A1, B1) shlr8 CL1 ! EX, ACOLOR >>= 8 ftrc fr3,fpul ! FE, FPUL = int(lerp) extu.b TM2,TM2 ! EX, tmp = (uint8)tmp shll8 TM2 ! EX, tmp <<= 8 or TM2,CLO ! EX, OUTCOLOR.g |= tmp shlr8 CL2 ! EX, BCOLOR >>= 8 sts fpul,TM2 ! CO, tmp = FPUL ! Interpolate A extu.b CL1,TM1 ! EX, val = ACOLOR.a lds TM1,fpul ! CO, FPUL = val float fpul,fr2 ! EX, fr2 = float(FPUL) extu.b CL2,TM1 ! EX, val = BCOLOR.a lds TM1,fpul ! CO, FPUL = val float fpul,fr3 ! EX, fr3 = float(FPUL) fipr fv8, fv0 ! FE, LERP(A1, B1) ftrc fr3,fpul ! FE, FPUL = int(lerp) extu.b TM2,TM2 ! EX, tmp = (uint8)tmp shll16 TM2 ! EX, tmp <<= 16 or TM2,CLO ! EX, OUTCOLOR.r |= tmp sts fpul,TM2 ! CO, tmp = FPUL extu.b TM2,TM2 ! EX, tmp = (uint8)tmp shll16 TM2 ! EX, tmp <<= 16 shll8 TM2 ! EX, tmp <<= 8 or TM2,CLO ! EX, OUTCOLOR.a |= tmp 1: mov.l CLO,@OUT ! LS, OUT->color = OUTCOLOR mov.l @r15+,r5 ! LS, pop(r5) rts ! CO, return after executing instruction in delay slot mov.l @r15+,r4 ! LS, pop(r4) .size _ClipLine, .-_ClipLine .type _ClipLine,%function