1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
//! Epoch-based memory management
//!
//! This module provides fast, easy to use memory management for lock free data
//! structures. It's inspired by [Keir Fraser's *epoch-based
//! reclamation*](https://www.cl.cam.ac.uk/techreports/UCAM-CL-TR-579.pdf).
//!
//! The basic problem this is solving is the fact that when one thread has
//! removed a node from a data structure, other threads may still have pointers
//! to that node (in the form of snapshots that will be validated through things
//! like compare-and-swap), so the memory cannot be immediately freed. Put differently:
//!
//! 1. There are two sources of reachability at play -- the data structure, and
//! the snapshots in threads accessing it. Before we delete a node, we need to know
//! that it cannot be reached in either of these ways.
//!
//! 2. Once a node has been unliked from the data structure, no *new* snapshots
//! reaching it will be created.
//!
//! Using the epoch scheme is fairly straightforward, and does not require
//! understanding any of the implementation details:
//!
//! - When operating on a shared data structure, a thread must "pin the current
//! epoch", which is done by calling `pin()`. This function returns a `Guard`
//! which unpins the epoch when destroyed.
//!
//! - When the thread subsequently reads from a lock-free data structure, the
//! pointers it extracts act like references with lifetime tied to the
//! `Guard`. This allows threads to safely read from snapshotted data, being
//! guaranteed that the data will remain allocated until they exit the epoch.
//!
//! To put the `Guard` to use, Crossbeam provides a set of three pointer types meant to work together:
//!
//! - `Owned<T>`, akin to `Box<T>`, which points to uniquely-owned data that has
//!   not yet been published in a concurrent data structure.
//!
//! - `Shared<'a, T>`, akin to `&'a T`, which points to shared data that may or may
//!   not be reachable from a data structure, but it guaranteed not to be freed
//!   during lifetime `'a`.
//!
//! - `Atomic<T>`, akin to `std::sync::atomic::AtomicPtr`, which provides atomic
//!   updates to a pointer using the `Owned` and `Shared` types, and connects them
//!   to a `Guard`.
//!
//! Each of these types provides further documentation on usage.
//!
//! # Example
//!
//! ```
//! use std::sync::atomic::Ordering::{Acquire, Release, Relaxed};
//! use std::ptr;
//!
//! use crossbeam::mem::epoch::{self, Atomic, Owned};
//!
//! struct TreiberStack<T> {
//!     head: Atomic<Node<T>>,
//! }
//!
//! struct Node<T> {
//!     data: T,
//!     next: Atomic<Node<T>>,
//! }
//!
//! impl<T> TreiberStack<T> {
//!     fn new() -> TreiberStack<T> {
//!         TreiberStack {
//!             head: Atomic::null()
//!         }
//!     }
//!
//!     fn push(&self, t: T) {
//!         // allocate the node via Owned
//!         let mut n = Owned::new(Node {
//!             data: t,
//!             next: Atomic::null(),
//!         });
//!
//!         // become active
//!         let guard = epoch::pin();
//!
//!         loop {
//!             // snapshot current head
//!             let head = self.head.load(Relaxed, &guard);
//!
//!             // update `next` pointer with snapshot
//!             n.next.store_shared(head, Relaxed);
//!
//!             // if snapshot is still good, link in the new node
//!             match self.head.cas_and_ref(head, n, Release, &guard) {
//!                 Ok(_) => return,
//!                 Err(owned) => n = owned,
//!             }
//!         }
//!     }
//!
//!     fn pop(&self) -> Option<T> {
//!         // become active
//!         let guard = epoch::pin();
//!
//!         loop {
//!             // take a snapshot
//!             match self.head.load(Acquire, &guard) {
//!                 // the stack is non-empty
//!                 Some(head) => {
//!                     // read through the snapshot, *safely*!
//!                     let next = head.next.load(Relaxed, &guard);
//!
//!                     // if snapshot is still good, update from `head` to `next`
//!                     if self.head.cas_shared(Some(head), next, Release) {
//!                         unsafe {
//!                             // mark the node as unlinked
//!                             guard.unlinked(head);
//!
//!                             // extract out the data from the now-unlinked node
//!                             return Some(ptr::read(&(*head).data))
//!                         }
//!                     }
//!                 }
//!
//!                 // we observed the stack empty
//!                 None => return None
//!             }
//!         }
//!     }
//! }
//! ```

// FIXME: document implementation details

mod atomic;
mod garbage;
mod global;
mod guard;
mod local;
mod participant;
mod participants;

pub use self::atomic::Atomic;
pub use self::guard::{pin, Guard};

use std::ops::{Deref, DerefMut};
use std::ptr;
use std::mem;

/// Like `Box<T>`: an owned, heap-allocated data value of type `T`.
#[derive(Debug)]
pub struct Owned<T> {
    data: Box<T>,
}

impl<T> Owned<T> {
    /// Move `t` to a new heap allocation.
    pub fn new(t: T) -> Owned<T> {
        Owned { data: Box::new(t) }
    }

    fn as_raw(&self) -> *mut T {
        self.deref() as *const _ as *mut _
    }

    /// Move data out of the owned box, deallocating the box.
    pub fn into_inner(self) -> T {
        *self.data
    }
}

impl<T> Deref for Owned<T> {
    type Target = T;
    fn deref(&self) -> &T {
        &self.data
    }
}

impl<T> DerefMut for Owned<T> {
    fn deref_mut(&mut self) -> &mut T {
        &mut self.data
    }
}

#[derive(PartialEq, Eq)]
/// Like `&'a T`: a shared reference valid for lifetime `'a`.
#[derive(Debug)]
pub struct Shared<'a, T: 'a> {
    data: &'a T,
}

impl<'a, T> Copy for Shared<'a, T> {}
impl<'a, T> Clone for Shared<'a, T> {
    fn clone(&self) -> Shared<'a, T> {
        Shared { data: self.data }
    }
}

impl<'a, T> Deref for Shared<'a, T> {
    type Target = &'a T;
    fn deref(&self) -> &&'a T {
        &self.data
    }
}

impl<'a, T> Shared<'a, T> {
    unsafe fn from_raw(raw: *mut T) -> Option<Shared<'a, T>> {
        if raw == ptr::null_mut() { None }
        else {
            Some(Shared {
                data: mem::transmute::<*mut T, &T>(raw)
            })
        }
    }

    unsafe fn from_ref(r: &T) -> Shared<'a, T> {
        Shared { data: mem::transmute(r) }
    }

    unsafe fn from_owned(owned: Owned<T>) -> Shared<'a, T> {
        let ret = Shared::from_ref(owned.deref());
        mem::forget(owned);
        ret
    }

    pub fn as_raw(&self) -> *mut T {
        self.data as *const _ as *mut _
    }
}


#[cfg(test)]
mod test {
    use std::sync::atomic::Ordering;
    use super::*;
    use mem::epoch;

    #[test]
    fn test_no_drop() {
        static mut DROPS: i32 = 0;
        struct Test;
        impl Drop for Test {
            fn drop(&mut self) {
                unsafe {
                    DROPS += 1;
                }
            }
        }
        let g = pin();

        let x = Atomic::null();
        x.store(Some(Owned::new(Test)), Ordering::Relaxed);
        x.store_and_ref(Owned::new(Test), Ordering::Relaxed, &g);
        let y = x.load(Ordering::Relaxed, &g);
        let z = x.cas_and_ref(y, Owned::new(Test), Ordering::Relaxed, &g).ok();
        let _ = x.cas(z, Some(Owned::new(Test)), Ordering::Relaxed);
        x.swap(Some(Owned::new(Test)), Ordering::Relaxed, &g);

        unsafe {
            assert_eq!(DROPS, 0);
        }
    }

    #[test]
    fn test_new() {
        let guard = epoch::pin();
        let my_atomic = Atomic::new(42);

        assert_eq!(**my_atomic.load(Ordering::Relaxed, &guard).unwrap(), 42);
    }
}