#include "benchmark/benchmark.h" #include "clipper2/clipper.h" #include "clipper2/clipper.core.h" #include "CommonUtils.h" #include "ClipFileLoad.h" #include #include #include using namespace Clipper2Lib; enum TextColor { reset = 0, //normal text colors ... red = 31, green = 32, yellow = 33, blue = 34, magenta = 35, cyan = 36, white = 37, //bold text colors ... red_bold = 91, green_bold = 92, yellow_bold = 93, blue_bold = 94, magenta_bold = 95, cyan_bold = 96, white_bold = 97 }; ////////////////////////////////////////////////////////////////////////////////////// // SetConsoleTextColor: a simple class to adjust Console Text Colors (Windows & Linux) ////////////////////////////////////////////////////////////////////////////////////// struct SetConsoleTextColor { private: TextColor _color; public: SetConsoleTextColor(TextColor color) : _color(color) {}; friend std::ostream& operator<< (std::ostream& out, SetConsoleTextColor const& scc) { return out << "\x1B[" << scc._color << "m"; } }; ////////////////////////////////////////////////////////////////////////////////////// // Int128 - class that very minimally supports 128bit integer math ////////////////////////////////////////////////////////////////////////////////////// class Int128 { public: uint64_t lo; int64_t hi; Int128(int64_t _lo = 0) { lo = (uint64_t)_lo; if (_lo < 0) hi = -1; else hi = 0; } Int128(const Int128& val) : lo(val.lo), hi(val.hi) {} Int128(const int64_t& _hi, const uint64_t& _lo) : lo(_lo), hi(_hi) {} Int128& operator = (const int64_t& val) { lo = (uint64_t)val; if (val < 0) hi = -1; else hi = 0; return *this; } bool operator == (const Int128& val) const { return (hi == val.hi && lo == val.lo); } bool operator != (const Int128& val) const { return !(*this == val); } bool operator > (const Int128& val) const { return (hi != val.hi) ? hi > val.hi: lo > val.lo; } bool operator < (const Int128& val) const { return (hi != val.hi) ? hi < val.hi : lo < val.lo; } bool operator >= (const Int128& val) const { return !(*this < val); } bool operator <= (const Int128& val) const { return !(*this > val); } bool is_zero() const { return (hi == 0 && lo == 0); } bool is_negative() const { return (hi < 0); } Int128& operator += (const Int128& rhs) { hi += rhs.hi; lo += rhs.lo; if (lo < rhs.lo) hi++; return *this; } Int128 operator + (const Int128& rhs) const { Int128 result(*this); result += rhs; return result; } Int128& operator -= (const Int128& rhs) { *this += -rhs; return *this; } Int128 operator - (const Int128& rhs) const { Int128 result(*this); result -= rhs; return result; } Int128 operator-() const //unary negation { return (lo == 0) ? Int128(-hi, 0) : Int128(~hi, ~lo + 1); } void negate() { if (lo == 0) hi = -hi; else { hi = ~hi; lo = ~lo + 1; } } operator double() const { const double shift64 = 18446744073709551616.0; //2^64 if (hi < 0) { if (lo == 0) return (double)hi * shift64; else return -(double)(~lo + ~hi * shift64); } else return (double)(lo + hi * shift64); } }; static inline Int128 multiply(int64_t lhs, int64_t rhs) { bool negate = (lhs < 0) != (rhs < 0); if (lhs < 0) lhs = -lhs; uint64_t int1Hi = uint64_t(lhs) >> 32; uint64_t int1Lo = uint64_t(lhs & 0xFFFFFFFF); if (rhs < 0) rhs = -rhs; uint64_t int2Hi = uint64_t(rhs) >> 32; uint64_t int2Lo = uint64_t(rhs & 0xFFFFFFFF); uint64_t a = int1Hi * int2Hi; uint64_t b = int1Lo * int2Lo; uint64_t c = int1Hi * int2Lo + int1Lo * int2Hi; Int128 result; result.hi = a + (c >> 32); result.lo = c << 32; result.lo += b; if (result.lo < b) result.hi++; return negate ? -result : result; }; static int64_t divide(Int128 dividend, Int128 divisor) { // this function assumes that the parameter values will // generate a result that fits into a 64bit integer. bool negate = (divisor.hi < 0) != (dividend.hi < 0); if (dividend.hi < 0) dividend = -dividend; if (divisor.hi < 0) divisor = -divisor; if (divisor.lo == 0 && divisor.hi == 0) throw "Int128: divide by zero error"; if (dividend == divisor) return negate ? -1 : 1; if (divisor > dividend) return 0; Int128 cntr = Int128(1); while (divisor.hi >= 0 && divisor <= dividend) { divisor.hi <<= 1; if ((int64_t)divisor.lo < 0) divisor.hi++; divisor.lo <<= 1; cntr.hi <<= 1; if ((int64_t)cntr.lo < 0) cntr.hi++; cntr.lo <<= 1; } divisor.lo >>= 1; if (divisor.hi & 1) divisor.lo |= 0x8000000000000000LL; divisor.hi >>= 1; cntr.lo >>= 1; if (cntr.hi & 1) cntr.lo |= 0x8000000000000000LL; cntr.hi >>= 1; Int128 result = Int128(0); while (cntr.hi != 0 || cntr.lo != 0) { if (dividend >= divisor) { dividend -= divisor; result.hi |= cntr.hi; result.lo |= cntr.lo; } divisor.lo >>= 1; if (divisor.hi & 1) divisor.lo |= 0x8000000000000000LL; divisor.hi >>= 1; cntr.lo >>= 1; if (cntr.hi & 1) cntr.lo |= 0x8000000000000000LL; cntr.hi >>= 1; } if (result.hi || (int64_t)result.lo < 0) return negate ? INT64_MIN : INT64_MAX; else return negate ? -(int64_t)result.lo : result.lo; } static inline int64_t muldiv(Int128 lhs, int64_t rhs, Int128 divisor) { // this function assumes that the parameter values will // generate a result that fits into a 64bit integer. int64_t sign = (lhs.is_negative() != divisor.is_negative()) != (rhs < 0) ? -2 : 2; if (lhs.is_negative()) lhs.negate(); if (divisor.is_negative()) divisor.negate(); if (rhs < 0) rhs = -rhs; // if 'lhs' is very large, then 'divisor' will be very large too while (lhs.hi && divisor.hi) { // divide dividend and divisor by 2 ... lhs.lo >>= 1; if (lhs.hi & 1) lhs.lo |= 0x8000000000000000LL; lhs.hi >>= 1; divisor.lo >>= 1; if (divisor.hi & 1) divisor.lo |= 0x8000000000000000LL; divisor.hi >>= 1; } lhs.lo >>= 1; // divide by 2 to avoid casting a 'sign' bit Int128 result = multiply((int64_t)lhs.lo, rhs); result.hi += lhs.hi * rhs; return divide(result, divisor) * sign; // and multiplies by 2 }; ///////////////////////////////////////////////////////// // Several GetIntersectPoint functions for testing ///////////////////////////////////////////////////////// const int number_of_test_functions = 4; typedef std::function GipFunction; // GIP_Current: This is Clipper2's current GetIntersectPoint. // It's definitely the fastest function, but its accuracy declines // a little when using very large 64bit integers (eg +/-10e17). static bool GIP_Current(const Point64& ln1a, const Point64& ln1b, const Point64& ln2a, const Point64& ln2b, Point64& ip) { double dx1 = static_cast(ln1b.x - ln1a.x); double dy1 = static_cast(ln1b.y - ln1a.y); double dx2 = static_cast(ln2b.x - ln2a.x); double dy2 = static_cast(ln2b.y - ln2a.y); double det = dy1 * dx2 - dy2 * dx1; if (det == 0.0) return false; double t = ((double)(ln1a.x - ln2a.x) * dy2 - (double)(ln1a.y - ln2a.y) * dx2) / det; if (t <= 0.0) ip = ln1a; else if (t >= 1.0) ip = ln1b; else { ip.x = static_cast(ln1a.x + t * dx1); ip.y = static_cast(ln1a.y + t * dy1); } return true; } // GIP_Func_F: This is mathVertexLineLineIntersection_F // https://github.com/AngusJohnson/Clipper2/issues/317#issuecomment-1314023253 #define CC_MIN(x,y) ((x)>(y)?(y):(x)) #define CC_MAX(x,y) ((x)<(y)?(y):(x)) static bool GIP_Func_F(const Point64& ln1a, const Point64& ln1b, const Point64& ln2a, const Point64& ln2b, Point64& ip) { double ln1dy = (double)(ln1b.y - ln1a.y); double ln1dx = (double)(ln1a.x - ln1b.x); double ln2dy = (double)(ln2b.y - ln2a.y); double ln2dx = (double)(ln2a.x - ln2b.x); double det = (ln2dy * ln1dx) - (ln1dy * ln2dx); if (det == 0.0) return false; int64_t bb0minx = CC_MIN(ln1a.x, ln1b.x); int64_t bb0miny = CC_MIN(ln1a.y, ln1b.y); int64_t bb0maxx = CC_MAX(ln1a.x, ln1b.x); int64_t bb0maxy = CC_MAX(ln1a.y, ln1b.y); int64_t bb1minx = CC_MIN(ln2a.x, ln2b.x); int64_t bb1miny = CC_MIN(ln2a.y, ln2b.y); int64_t bb1maxx = CC_MAX(ln2a.x, ln2b.x); int64_t bb1maxy = CC_MAX(ln2a.y, ln2b.y); int64_t originx = (CC_MIN(bb0maxx, bb1maxx) + CC_MAX(bb0minx, bb1minx)) >> 1; int64_t originy = (CC_MIN(bb0maxy, bb1maxy) + CC_MAX(bb0miny, bb1miny)) >> 1; double ln0c = (ln1dy * (double)(ln1a.x - originx)) + (ln1dx * (double)(ln1a.y - originy)); double ln1c = (ln2dy * (double)(ln2a.x - originx)) + (ln2dx * (double)(ln2a.y - originy)); double hitx = ((ln1dx * ln1c) - (ln2dx * ln0c)) / det; double hity = ((ln2dy * ln0c) - (ln1dy * ln1c)) / det; ip.x = originx + (int64_t)nearbyint(hitx); ip.y = originy + (int64_t)nearbyint(hity); return true; } // GIP_F_Mod: GIP_Func_F except replaces nearbyint with static casts. // Surprisingly, while this function is faster that GIP_Func_F here, // it's much slower than both GIP_Func_F and GIP_Current when using it // as a replacement for GetIntersectPoint() in clipper.core.h. static bool GIP_F_Mod(const Point64& ln1a, const Point64& ln1b, const Point64& ln2a, const Point64& ln2b, Point64& ip) { double ln1dy = (double)(ln1b.y - ln1a.y); double ln1dx = (double)(ln1a.x - ln1b.x); double ln2dy = (double)(ln2b.y - ln2a.y); double ln2dx = (double)(ln2a.x - ln2b.x); double det = (ln2dy * ln1dx) - (ln1dy * ln2dx); if (det == 0.0) return false; int64_t bb0minx = CC_MIN(ln1a.x, ln1b.x); int64_t bb0miny = CC_MIN(ln1a.y, ln1b.y); int64_t bb0maxx = CC_MAX(ln1a.x, ln1b.x); int64_t bb0maxy = CC_MAX(ln1a.y, ln1b.y); int64_t bb1minx = CC_MIN(ln2a.x, ln2b.x); int64_t bb1miny = CC_MIN(ln2a.y, ln2b.y); int64_t bb1maxx = CC_MAX(ln2a.x, ln2b.x); int64_t bb1maxy = CC_MAX(ln2a.y, ln2b.y); int64_t originx = (CC_MIN(bb0maxx, bb1maxx) + CC_MAX(bb0minx, bb1minx)) >> 1; int64_t originy = (CC_MIN(bb0maxy, bb1maxy) + CC_MAX(bb0miny, bb1miny)) >> 1; double ln0c = (ln1dy * (double)(ln1a.x - originx)) + (ln1dx * (double)(ln1a.y - originy)); double ln1c = (ln2dy * (double)(ln2a.x - originx)) + (ln2dx * (double)(ln2a.y - originy)); double hitx = ((ln1dx * ln1c) - (ln2dx * ln0c)) / det; double hity = ((ln2dy * ln0c) - (ln1dy * ln1c)) / det; ip.x = originx + static_cast(hitx); ip.y = originy + static_cast(hity); return true; } // GIP_128: GetIntersectPoint using 128bit integer precision // This function is the most precise, but it's also very slow. static bool GIP_128(const Point64& ln1a, const Point64& ln1b, const Point64& ln2a, const Point64& ln2b, Point64& ip) { int64_t dx1 = ln1b.x - ln1a.x; int64_t dy1 = ln1b.y - ln1a.y; int64_t dx2 = ln2b.x - ln2a.x; int64_t dy2 = ln2b.y - ln2a.y; Int128 det = multiply(dy1, dx2) - multiply(dy2, dx1); if (det.is_zero()) return false; Int128 t_num = multiply(ln1a.x - ln2a.x, dy2) - multiply(ln1a.y - ln2a.y, dx2); bool is_negative = t_num.is_negative() != det.is_negative(); if (t_num.is_zero() || is_negative) ip = ln1a; else if (t_num.is_negative() == -t_num > -det) ip = ln1b; else { ip.x = ln1a.x + muldiv(t_num, dx1, det); ip.y = ln1a.y + muldiv(t_num, dy1, det); } return true; } static inline GipFunction GetGipFunc(int64_t index) { switch (index) { case 0: return GIP_Current; case 1: return GIP_Func_F; case 2: return GIP_F_Mod; case 3: return GIP_128; default: throw "Invalid function!"; } } static inline std::string GetGipFuncName(int64_t index) { switch (index) { case 0: return "GIP_Current"; case 1: return "GIP_Func_F "; case 2: return "GIP_F_Mod "; case 3: return "GIP_128 "; default: throw "Invalid function!"; } } ///////////////////////////////////////////////////////// // Other miscellaneous functions ///////////////////////////////////////////////////////// double GetSineFrom3Points(const Point64& a, const Point64& b, const Point64& c) { double dpB = DotProduct(a, b, c); double SqrCosB = dpB * dpB / (DistanceSqr(a, b) * DistanceSqr(b, c)); double cos2B = SqrCosB * 2 - 1; // trig. itentity return std::sqrt(1 - cos2B); // sin(B) = Sqrt(1-cos(2B)) } static inline Point64 MakeRandomPoint(int64_t min_val, int64_t max_val) { std::random_device rd; std::mt19937 gen(rd()); std::uniform_int_distribution x(min_val, max_val); std::uniform_int_distribution y(min_val, max_val); return Point64(x(gen), y(gen)); } ///////////////////////////////////////////////////////// // global data storage ///////////////////////////////////////////////////////// struct TestRecord { public: Point64 actual, pt1, pt2, pt3, pt4; std::vector results; TestRecord(const Point64& intersect_pt, const Point64& p1, const Point64& p2, const Point64& p3, const Point64& p4) : actual(intersect_pt), pt1(p1), pt2(p2), pt3(p3), pt4(p4) { results.resize(number_of_test_functions); }; }; std::vector tests; typedef std::vector::iterator test_iter; ///////////////////////////////////////////////////////// // Benchmark callback functions ///////////////////////////////////////////////////////// static void BM_GIP(benchmark::State& state) { int64_t idx = state.range(0); state.SetLabel(GetGipFuncName(idx)); GipFunction func = GetGipFunc(idx); for (auto _ : state) { for (test_iter test = tests.begin(); test != tests.end(); ++test) { Point64 ip; func(test->pt1, test->pt2, test->pt3, test->pt4, ip); test->results[idx] = ip; } } } static void CustomArguments(benchmark::internal::Benchmark* b) { for (int i = 0; i < number_of_test_functions; ++i) b->Args({ i }); } ///////////////////////////////////////////////////////// // Main Entry ///////////////////////////////////////////////////////// int main(int argc, char** argv) { //setup benchmarking ... benchmark::Initialize(0, nullptr); BENCHMARK(BM_GIP)->Apply(CustomArguments); // the closer test segments are to collinear, the less accurate // calculations will be in determining their intersection points. const double min_angle_degrees = 0.5; const double sine_min_angle = std::sin(min_angle_degrees *PI / 180.0); bool first_pass = true; for (int current_pow10 = 12; current_pow10 <= 18; ++current_pow10) { // using random coordinates that are restricted to the specified // power of 10 range, create multiple TestRecords containing // segment pairs that intersect at their midpoints int64_t max_coord = static_cast(pow(10, current_pow10)); for (int64_t i = 0; i < 100000; ++i) { Point64 ip1 = MakeRandomPoint(-max_coord, max_coord); Point64 ip2 = MakeRandomPoint(-max_coord, max_coord); Point64 actual = MidPoint(ip1, ip2); Point64 ip3 = MakeRandomPoint(-max_coord, max_coord); Point64 ip4 = ReflectPoint(ip3, actual); // Exclude segments that are **almost** collinear. if (std::abs(GetSineFrom3Points(ip1, actual, ip3)) < sine_min_angle) continue; // Alternatively, just exclude segments that are collinear //if (!CrossProduct(ip1, actual, ip3)) continue; tests.push_back(TestRecord(actual, ip1, ip2, ip3, ip4)); } if (first_pass) { // only benchmark the GetIntersectPoint functions once because changing // the maximum range of coordinates won't affect function performance. first_pass = false; std::cout << std::endl << SetConsoleTextColor(green_bold) << "Benchmark GetIntersectPoint performance ... " << SetConsoleTextColor(reset) << std::endl << std::endl; benchmark::RunSpecifiedBenchmarks(); std::cout << std::endl << std::endl << SetConsoleTextColor(green_bold) << "Compare function accuracy ..." << SetConsoleTextColor(reset) << std::endl << "and show how it deteriorates when using very large coordinate ranges." << std::endl << "Distance error is the distance between the calculated and actual intersection points." << std::endl << "(The largest errors will occur whenever the segments are close to collinear.)" << std::endl; } else { for (int i = 0; i < number_of_test_functions; ++i) { // although we're not benchmarking, we still need to collect the calculated // intersect points of each TestRecord for each participating function. // (In first_pass above, benchmark::RunSpecifiedBenchmarks() does this internally.) Point64 ip; GipFunction gip_func = GetGipFunc(i); for (test_iter test = tests.begin(); test != tests.end(); ++test) { gip_func(test->pt1, test->pt2, test->pt3, test->pt4, ip); test->results[i] = ip; } } } double avg_dists[number_of_test_functions] = { 0 }; double worst_dists[number_of_test_functions] = { 0 }; for (test_iter test = tests.begin(); test != tests.end(); ++test) for (int i = 0; i < number_of_test_functions; ++i) { double dist = Distance(test->actual, test->results[i]); avg_dists[i] += dist; if (dist > worst_dists[i]) worst_dists[i] = dist; } std::cout << std::endl << SetConsoleTextColor(cyan_bold) << "Coordinate ranges between +/-10^" << current_pow10 << SetConsoleTextColor(reset) << std::endl; for (int i = 0; i < number_of_test_functions; ++i) { avg_dists[i] /= tests.size(); std::cout << std::fixed << GetGipFuncName(i) << ": average distance error = " << std::setprecision(2) << avg_dists[i] << "; largest dist. = " << std::setprecision(0) << worst_dists[i] << std::endl; } tests.clear(); } return 0; }