/************************************************************************ * WARNING * * This file is an auto-generated amalgamation. Any changes made to this * file will be lost when it is regenerated! ************************************************************************/ #line 1 "code-experiments/src/coco_random.c" /** * @file coco_random.c * @brief Definitions of functions regarding COCO random numbers. * * @note This file contains non-C89-standard types (such as uint32_t and uint64_t), which should * eventually be fixed. */ #include #line 1 "code-experiments/src/coco.h" /** * @file coco.h * @brief All public COCO functions, constants and variables are defined in this file. * * It is the authoritative reference, if any function deviates from the documented behavior it is considered * a bug. See the function definitions for their detailed descriptions. */ #ifndef __COCO_H__ #define __COCO_H__ #include /* Macro to tag function declarations: * * COCO_NORETURN: * Function never returns. Mainly useful for linters and static analysis * tools. * * COCO_UNUSED: * Function is not used. Useful to suppress false warnings. * * The next two macros are useful to give hints to the optimizer. This can * lead to much bette code generation and ultimately faster runtimes. * * COCO_LIKELY(e): * Mark expression `e` as likely true. Usually used in if() or while() * statements to give the compiler a hint. * * COCO_UNLIKELY(e): * Mark expression `e` as likely false. * */ #ifdef __GNUC__ #define COCO_NORETURN __attribute__((noreturn)) #define COCO_UNUSED __attribute__((unused)) #define COCO_LIKELY(x) __builtin_expect((x),1) #define COCO_UNLIKELY(x) __builtin_expect((x),0) #elif __clang__ #define COCO_NORETURN __attribute__((noreturn)) #define COCO_UNUSED __attribute__((unused)) #define COCO_LIKELY(x) __builtin_expect((x),1) #define COCO_UNLIKELY(x) __builtin_expect((x),0) #elif _MSC_VER #define COCO_NORETURN __declspec(noreturn) #define COCO_UNUSED #define COCO_LIKELY(x) (x) #define COCO_UNLIKELY(x) (x) #else #define COCO_NORETURN #define COCO_UNUSED #define COCO_LIKELY(x) (x) #define COCO_UNLIKELY(x) (x) #endif /* Definitions of some 32 and 64-bit types (used by the random number generator) */ #ifdef _MSC_VER typedef __int32 int32_t; typedef unsigned __int32 uint32_t; typedef __int64 int64_t; typedef unsigned __int64 uint64_t; #else #include #endif /* Include definition for NAN among other things */ #include #include #ifndef NAN /** @brief Definition of NAN to be used only if undefined by the included headers */ #define NAN 8.8888e88 #endif #ifndef isnan /** @brief Definition of isnan to be used only if undefined by the included headers */ #define isnan(x) (0) #endif #ifndef INFINITY /** @brief Definition of INFINITY to be used only if undefined by the included headers */ #define INFINITY 1e22 /* why not using 1e99? */ #endif #ifndef isinf /** @brief Definition of isinf to be used only if undefined by the included headers */ #define isinf(x) (0) #endif #ifdef __cplusplus extern "C" { #endif /** * @brief COCO's version. * * Automatically updated by do.py. */ /**@{*/ static const char coco_version[32] = "2.5.366"; /**@}*/ /***********************************************************************************************************/ /** * @brief COCO's own pi constant. Simplifies the case, when the value of pi changes. */ /**@{*/ static const double coco_pi = 3.14159265358979323846; static const double coco_two_pi = 2.0 * 3.14159265358979323846; /**@}*/ /***********************************************************************************************************/ /** @brief Logging level type. */ typedef enum { COCO_ERROR, /**< @brief only error messages are output */ COCO_WARNING, /**< @brief error and warning messages are output */ COCO_INFO, /**< @brief error, warning and info messages are output */ COCO_DEBUG /**< @brief error, warning, info and debug messages are output */ } coco_log_level_type_e; /***********************************************************************************************************/ /** @brief Structure containing a COCO problem. */ struct coco_problem_s; /** * @brief The COCO problem type. * * See coco_problem_s for more information on its fields. */ typedef struct coco_problem_s coco_problem_t; /** @brief Structure containing a COCO suite. */ struct coco_suite_s; /** * @brief The COCO suite type. * * See coco_suite_s for more information on its fields. */ typedef struct coco_suite_s coco_suite_t; /** @brief Structure containing a COCO observer. */ struct coco_observer_s; /** * @brief The COCO observer type. * * See coco_observer_s for more information on its fields. */ typedef struct coco_observer_s coco_observer_t; /** @brief Structure containing a COCO archive. */ struct coco_archive_s; /** * @brief The COCO archive type. * * See coco_archive_s for more information on its fields. */ typedef struct coco_archive_s coco_archive_t; /** @brief Structure containing a COCO random state. */ struct coco_random_state_s; /** * @brief The COCO random state type. * * See coco_random_state_s for more information on its fields. */ typedef struct coco_random_state_s coco_random_state_t; /***********************************************************************************************************/ /** * @name Methods regarding COCO suite */ /**@{*/ /** * @brief Constructs a COCO suite. */ coco_suite_t *coco_suite(const char *suite_name, const char *suite_instance, const char *suite_options); /** * @brief Frees the given suite. */ void coco_suite_free(coco_suite_t *suite); /** * @brief Returns the next (observed) problem of the suite or NULL if there is no next problem left. */ coco_problem_t *coco_suite_get_next_problem(coco_suite_t *suite, coco_observer_t *observer); /** * @brief Returns the problem of the suite defined by problem_index. */ coco_problem_t *coco_suite_get_problem(coco_suite_t *suite, const size_t problem_index); /** * @brief Returns the first problem of the suite defined by function, dimension and instance numbers. */ coco_problem_t *coco_suite_get_problem_by_function_dimension_instance(coco_suite_t *suite, const size_t function, const size_t dimension, const size_t instance); /** * @brief Returns the number of problems in the given suite. */ size_t coco_suite_get_number_of_problems(const coco_suite_t *suite); /** * @brief Returns the function number in the suite in position function_idx (counting from 0). */ size_t coco_suite_get_function_from_function_index(const coco_suite_t *suite, const size_t function_idx); /** * @brief Returns the dimension number in the suite in position dimension_idx (counting from 0). */ size_t coco_suite_get_dimension_from_dimension_index(const coco_suite_t *suite, const size_t dimension_idx); /** * @brief Returns the instance number in the suite in position instance_idx (counting from 0). */ size_t coco_suite_get_instance_from_instance_index(const coco_suite_t *suite, const size_t instance_idx); /**@}*/ /** * @name Encoding/decoding problem index * * General schema for encoding/decoding a problem index. Note that the index depends on the number of * instances a suite is defined with (it should be called a suite-instance-depending index...). * Also, while functions, instances and dimensions start from 1, function_idx, instance_idx and dimension_idx * as well as suite_dep_index start from 0! * * Showing an example with 2 dimensions (2, 3), 5 instances (6, 7, 8, 9, 10) and 2 functions (1, 2): * \verbatim index | instance | function | dimension ------+----------+----------+----------- 0 | 6 | 1 | 2 1 | 7 | 1 | 2 2 | 8 | 1 | 2 3 | 9 | 1 | 2 4 | 10 | 1 | 2 5 | 6 | 2 | 2 6 | 7 | 2 | 2 7 | 8 | 2 | 2 8 | 9 | 2 | 2 9 | 10 | 2 | 2 10 | 6 | 1 | 3 11 | 7 | 1 | 3 12 | 8 | 1 | 3 13 | 9 | 1 | 3 14 | 10 | 1 | 3 15 | 6 | 2 | 2 16 | 7 | 2 | 3 17 | 8 | 2 | 3 18 | 9 | 2 | 3 19 | 10 | 2 | 3 index | instance_idx | function_idx | dimension_idx ------+--------------+--------------+--------------- 0 | 0 | 0 | 0 1 | 1 | 0 | 0 2 | 2 | 0 | 0 3 | 3 | 0 | 0 4 | 4 | 0 | 0 5 | 0 | 1 | 0 6 | 1 | 1 | 0 7 | 2 | 1 | 0 8 | 3 | 1 | 0 9 | 4 | 1 | 0 10 | 0 | 0 | 1 11 | 1 | 0 | 1 12 | 2 | 0 | 1 13 | 3 | 0 | 1 14 | 4 | 0 | 1 15 | 0 | 1 | 1 16 | 1 | 1 | 1 17 | 2 | 1 | 1 18 | 3 | 1 | 1 19 | 4 | 1 | 1 \endverbatim */ /**@{*/ /** * @brief Computes the index of the problem in the suite that corresponds to the given function, dimension * and instance indices. */ size_t coco_suite_encode_problem_index(const coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx); /** * @brief Computes the function, dimension and instance indexes of the problem with problem_index in the * given suite. */ void coco_suite_decode_problem_index(const coco_suite_t *suite, const size_t problem_index, size_t *function_idx, size_t *dimension_idx, size_t *instance_idx); /**@}*/ /***********************************************************************************************************/ /** * @name Methods regarding COCO observer */ /**@{*/ /** * @brief Constructs a COCO observer. */ coco_observer_t *coco_observer(const char *observer_name, const char *options); /** * @brief Frees the given observer. */ void coco_observer_free(coco_observer_t *observer); /** * @brief Adds an observer to the given problem. */ coco_problem_t *coco_problem_add_observer(coco_problem_t *problem, coco_observer_t *observer); /** * @brief Removes an observer from the given problem. */ coco_problem_t *coco_problem_remove_observer(coco_problem_t *problem, coco_observer_t *observer); /** * @brief Returns result folder name, where logger output is written. */ const char *coco_observer_get_result_folder(const coco_observer_t *observer); /**@}*/ /***********************************************************************************************************/ /** * @name Methods regarding COCO problem */ /**@{*/ /** * @brief Evaluates the problem function in point x and save the result in y. */ void coco_evaluate_function(coco_problem_t *problem, const double *x, double *y); /** * @brief Evaluates the problem constraints in point x and save the result in y. */ void coco_evaluate_constraint(coco_problem_t *problem, const double *x, double *y); /** * @brief Recommends a solution as the current best guesses to the problem. Not implemented yet. */ void coco_recommend_solution(coco_problem_t *problem, const double *x); /** * @brief Frees the given problem. */ void coco_problem_free(coco_problem_t *problem); /** * @brief Returns the name of the problem. */ const char *coco_problem_get_name(const coco_problem_t *problem); /** * @brief Returns the ID of the problem. */ const char *coco_problem_get_id(const coco_problem_t *problem); /** * @brief Returns the type of the problem. */ const char *coco_problem_get_type(const coco_problem_t *problem); /** * @brief Returns the number of variables i.e. the dimension of the problem. */ size_t coco_problem_get_dimension(const coco_problem_t *problem); /** * @brief Returns the number of objectives of the problem. */ size_t coco_problem_get_number_of_objectives(const coco_problem_t *problem); /** * @brief Returns the number of constraints of the problem. */ size_t coco_problem_get_number_of_constraints(const coco_problem_t *problem); /** * @brief Returns the number of objective function evaluations done on the problem. */ size_t coco_problem_get_evaluations(const coco_problem_t *problem); /** * @brief Returns the number of constraint function evaluations done on the problem. */ size_t coco_problem_get_evaluations_constraints(const coco_problem_t *problem); /** * @brief Returns 1 if the final target was hit, 0 otherwise. */ int coco_problem_final_target_hit(const coco_problem_t *problem); /** * @brief Returns the best observed value for the first objective. */ double coco_problem_get_best_observed_fvalue1(const coco_problem_t *problem); /** * @brief Returns the target value for the first objective. */ double depreciated_coco_problem_get_final_target_fvalue1(const coco_problem_t *problem); /** * @brief Returns a vector of size 'dimension' with lower bounds of the region of interest in * the decision space. */ const double *coco_problem_get_smallest_values_of_interest(const coco_problem_t *problem); /** * @brief Returns a vector of size 'dimension' with upper bounds of the region of interest in * the decision space. */ const double *coco_problem_get_largest_values_of_interest(const coco_problem_t *problem); /** * @brief Returns the number of integer variables. If > 0, all integer variables come before any * continuous ones. */ size_t coco_problem_get_number_of_integer_variables(const coco_problem_t *problem); /** * @brief For multi-objective problems, returns a vector of largest values of interest in each objective. * Currently, this equals the nadir point. For single-objective problems it raises an error. */ const double *coco_problem_get_largest_fvalues_of_interest(const coco_problem_t *problem); /** * @brief Returns the problem_index of the problem in its current suite. */ size_t coco_problem_get_suite_dep_index(const coco_problem_t *problem); /** * @brief Returns an initial solution, i.e. a feasible variable setting, to the problem. */ void coco_problem_get_initial_solution(const coco_problem_t *problem, double *initial_solution); /**@}*/ /***********************************************************************************************************/ /** * @name Methods regarding random numbers */ /**@{*/ /** * @brief Creates and returns a new random number state using the given seed. */ coco_random_state_t *coco_random_new(uint32_t seed); /** * @brief Frees all memory associated with the random state. */ void coco_random_free(coco_random_state_t *state); /** * @brief Returns one uniform [0, 1) random value from the random number generator associated with the given * state. */ double coco_random_uniform(coco_random_state_t *state); /** * @brief Generates an approximately normal random number. */ double coco_random_normal(coco_random_state_t *state); /**@}*/ /***********************************************************************************************************/ /** * @name Methods managing memory */ /**@{*/ /** * @brief Safe memory allocation that either succeeds or triggers a coco_error. */ void *coco_allocate_memory(const size_t size); /** * @brief Safe memory allocation for a vector of doubles that either succeeds or triggers a coco_error. */ double *coco_allocate_vector(const size_t size); /** * @brief Frees the allocated memory. */ void coco_free_memory(void *data); /**@}*/ /***********************************************************************************************************/ /** * @name Methods regarding COCO messages */ /**@{*/ /** * @brief Signals a fatal error. */ void COCO_NORETURN coco_error(const char *message, ...); /** * @brief Warns about error conditions. */ void coco_warning(const char *message, ...); /** * @brief Outputs some information. */ void coco_info(const char *message, ...); /** * @brief Prints only the given message without any prefix and new line. * * A function similar to coco_info but producing no additional text than * the given message. * * The output is only produced if coco_log_level >= COCO_INFO. */ void coco_info_partial(const char *message, ...); /** * @brief Outputs detailed information usually used for debugging. */ void coco_debug(const char *message, ...); /** * @brief Sets the COCO log level to the given value and returns the previous value of the log level. */ const char *coco_set_log_level(const char *level); /**@}*/ /***********************************************************************************************************/ /** * @name Methods regarding COCO archives and log files (used when pre-processing MO data) */ /**@{*/ /** * @brief Constructs a COCO archive. */ coco_archive_t *coco_archive(const char *suite_name, const size_t function, const size_t dimension, const size_t instance); /** * @brief Adds a solution with objectives (y1, y2) to the archive if none of the existing solutions in the * archive dominates it. In this case, returns 1, otherwise the archive is not updated and the method * returns 0. */ int coco_archive_add_solution(coco_archive_t *archive, const double y1, const double y2, const char *text); /** * @brief Returns the number of (non-dominated) solutions in the archive (computed first, if needed). */ size_t coco_archive_get_number_of_solutions(coco_archive_t *archive); /** * @brief Returns the hypervolume of the archive (computed first, if needed). */ double coco_archive_get_hypervolume(coco_archive_t *archive); /** * @brief Returns the text of the next (non-dominated) solution in the archive and "" when there are no * solutions left. The first two solutions are always the extreme ones. */ const char *coco_archive_get_next_solution_text(coco_archive_t *archive); /** * @brief Frees the archive. */ void coco_archive_free(coco_archive_t *archive); /** * @brief Feeds the solution to the bi-objective logger for logger output reconstruction purposes. */ int coco_logger_biobj_feed_solution(coco_problem_t *problem, const size_t evaluation, const double *y); /**@}*/ /***********************************************************************************************************/ /** * @name Other useful methods */ /**@{*/ /** * @brief Removes the given directory and all its contents. */ int coco_remove_directory(const char *path); /** * @brief Formatted string duplication. */ char *coco_strdupf(const char *str, ...); /**@}*/ /***********************************************************************************************************/ void bbob_problem_best_parameter_print(const coco_problem_t *problem); void bbob_biobj_problem_best_parameter_print(const coco_problem_t *problem); #ifdef __cplusplus } #endif #endif #line 12 "code-experiments/src/coco_random.c" #include #define COCO_NORMAL_POLAR /* Use polar transformation method */ #define COCO_SHORT_LAG 273 #define COCO_LONG_LAG 607 /** * @brief A structure containing the state of the COCO random generator. */ struct coco_random_state_s { double x[COCO_LONG_LAG]; size_t index; }; /** * @brief A lagged Fibonacci random number generator. * * This generator is nice because it is reasonably small and directly generates double values. The chosen * lags (607 and 273) lead to a generator with a period in excess of 2^607-1. */ static void coco_random_generate(coco_random_state_t *state) { size_t i; for (i = 0; i < COCO_SHORT_LAG; ++i) { double t = state->x[i] + state->x[i + (COCO_LONG_LAG - COCO_SHORT_LAG)]; if (t >= 1.0) t -= 1.0; state->x[i] = t; } for (i = COCO_SHORT_LAG; i < COCO_LONG_LAG; ++i) { double t = state->x[i] + state->x[i - COCO_SHORT_LAG]; if (t >= 1.0) t -= 1.0; state->x[i] = t; } state->index = 0; } coco_random_state_t *coco_random_new(uint32_t seed) { coco_random_state_t *state = (coco_random_state_t *) coco_allocate_memory(sizeof(*state)); size_t i; /* printf("coco_random_new(): %u\n", seed); */ /* Expand seed to fill initial state array. */ for (i = 0; i < COCO_LONG_LAG; ++i) { /* Uses uint64_t to silence the compiler ("shift count negative or too big, undefined behavior" warning) */ state->x[i] = ((double) seed) / (double) (((uint64_t) 1UL << 32) - 1); /* Advance seed based on simple RNG from TAOCP */ seed = (uint32_t) 1812433253UL * (seed ^ (seed >> 30)) + ((uint32_t) i + 1); } state->index = 12; /* coco_random_generate(state); */ return state; } void coco_random_free(coco_random_state_t *state) { coco_free_memory(state); } double coco_random_uniform(coco_random_state_t *state) { /* If we have consumed all random numbers in our archive, it is time to run the actual generator for one * iteration to refill the state with 'LONG_LAG' new values. */ if (state->index >= COCO_LONG_LAG) coco_random_generate(state); return state->x[state->index++]; } /** * Instead of using the (expensive) polar method, we may cheat and abuse the central limit theorem. The sum * of 12 uniform random values has mean 6, variance 1 and is approximately normal. Subtract 6 and you get * an approximately N(0, 1) random number. */ double coco_random_normal(coco_random_state_t *state) { double normal; #ifdef COCO_NORMAL_POLAR const double u1 = coco_random_uniform(state); const double u2 = coco_random_uniform(state); normal = sqrt(-2 * log(u1)) * cos(2 * coco_pi * u2); #else int i; normal = 0.0; for (i = 0; i < 12; ++i) { normal += coco_random_uniform(state); } normal -= 6.0; #endif return normal; } /* Be hygienic (for amalgamation) and undef lags. */ #undef COCO_SHORT_LAG #undef COCO_LONG_LAG #line 1 "code-experiments/src/coco_suite.c" /** * @file coco_suite.c * @brief Definitions of functions regarding COCO suites. * * When a new suite is added, the functions coco_suite_intialize, coco_suite_get_instances_by_year and * coco_suite_get_problem_from_indices need to be updated. * * @see Instructions on how to write new test functions and combine them into test * suites. */ #include #line 15 "code-experiments/src/coco_suite.c" #line 1 "code-experiments/src/coco_internal.h" /** * @file coco_internal.h * @brief Definitions of internal COCO structures and typedefs. * * These are used throughout the COCO code base but should not be used by any external code. */ #ifndef __COCO_INTERNAL__ #define __COCO_INTERNAL__ #ifdef __cplusplus extern "C" { #endif /***********************************************************************************************************/ /** * @brief The data free function type. * * This is a template for functions that free the contents of data (used to free the contents of data * fields in coco_problem, coco_suite and coco_observer). */ typedef void (*coco_data_free_function_t)(void *data); /** * @brief The problem free function type. * * This is a template for functions that free the problem structure. */ typedef void (*coco_problem_free_function_t)(coco_problem_t *problem); /** * @brief The evaluate function type. * * This is a template for functions that perform an evaluation of the problem (to evaluate the problem * function, the problems constraints etc.). */ typedef void (*coco_evaluate_function_t)(coco_problem_t *problem, const double *x, double *y); /** * @brief The recommend solutions function type. * * This is a template for functions that log a recommended solution. */ typedef void (*coco_recommend_function_t)(coco_problem_t *problem, const double *x); /** * @brief The allocate logger function type. * * This is a template for functions that allocate a logger (wrap a logger around the given problem and return * the wrapped problem). */ typedef coco_problem_t *(*coco_logger_allocate_function_t)(coco_observer_t *observer, coco_problem_t *problem); /** * @brief The free logger function type. * * This is a template for functions that free a logger. */ typedef void (*coco_logger_free_function_t)(void *logger); /** * @brief The get problem function type. * * This is a template for functions that return a problem based on function, dimension and instance. */ typedef coco_problem_t *(*coco_get_problem_function_t)(const size_t function, const size_t dimension, const size_t instance); /** * @brief The transformed COCO problem data type. * * This is a type of a generic structure for a transformed ("outer") coco_problem. It makes possible the * wrapping of problems as layers of an onion. Initialized in the coco_problem_transformed_allocate function, * it makes the current ("outer") transformed problem a "derived problem class", which inherits from the * "inner" problem, the "base class". * * From the perspective of the inner problem: * - data holds the meta-information to administer the inheritance * - data->data holds the additional fields of the derived class (the outer problem) * - data->inner_problem points to the inner problem (now we have a linked list) */ typedef struct { coco_problem_t *inner_problem; /**< @brief Pointer to the inner problem */ void *data; /**< @brief Pointer to data, which enables further wrapping of the problem */ coco_data_free_function_t data_free_function; /**< @brief Function to free the contents of data */ } coco_problem_transformed_data_t; /** * @brief The stacked COCO problem data type. * * This is a type of a structure used when stacking two problems (especially useful for constructing * multi-objective problems). */ typedef struct { coco_problem_t *problem1; /**< @brief Pointer to the first problem (objective) */ coco_problem_t *problem2; /**< @brief Pointer to the second problem (objective) */ } coco_problem_stacked_data_t; /** * @brief The option keys data type. * * This is a type of a structure used to contain a set of known option keys (used by suites and observers). */ typedef struct { size_t count; /**< @brief Number of option keys */ char **keys; /**< @brief Pointer to option keys */ } coco_option_keys_t; /***********************************************************************************************************/ /** * @brief The COCO problem structure. * * This is one of the main structures in COCO. It contains information about a problem to be optimized. The * problems can be wrapped around each other (similar to the onion layers) by means of the data field and * the coco_problem_transformed_data_t structure creating some kind of "object inheritance". Even the logger * is considered as just another coco_problem instance wrapped around the original problem. */ struct coco_problem_s { coco_evaluate_function_t evaluate_function; /**< @brief The function for evaluating the problem. */ coco_evaluate_function_t evaluate_constraint; /**< @brief The function for evaluating the constraints. */ coco_evaluate_function_t evaluate_gradient; /**< @brief The function for evaluating the constraints. */ coco_recommend_function_t recommend_solution; /**< @brief The function for recommending a solution. */ coco_problem_free_function_t problem_free_function; /**< @brief The function for freeing this problem. */ size_t number_of_variables; /**< @brief Number of variables expected by the function, i.e. problem dimension */ size_t number_of_objectives; /**< @brief Number of objectives. */ size_t number_of_constraints; /**< @brief Number of constraints. */ double *smallest_values_of_interest; /**< @brief The lower bounds of the ROI in the decision space. */ double *largest_values_of_interest; /**< @brief The upper bounds of the ROI in the decision space. */ size_t number_of_integer_variables; /**< @brief Number of integer variables (if > 0, all integer variables come before any continuous ones). */ double *initial_solution; /**< @brief Initial feasible solution. */ double *best_value; /**< @brief Optimal (smallest) function value */ double *nadir_value; /**< @brief The nadir point (defined when number_of_objectives > 1) */ double *best_parameter; /**< @brief Optimal decision vector (defined only when unique) */ char *problem_name; /**< @brief Problem name. */ char *problem_id; /**< @brief Problem ID (unique in the containing suite) */ char *problem_type; /**< @brief Problem type */ size_t evaluations; /**< @brief Number of objective function evaluations performed on the problem. */ size_t evaluations_constraints; /**< @brief Number of constraint function evaluations performed on the problem. */ /* Convenience fields for output generation */ /* If at some point in time these arrays are changed to pointers, checks need to be added in the code to make sure * they are not NULL.*/ double final_target_delta[1]; /**< @brief Final target delta. */ double best_observed_fvalue[1]; /**< @brief The best observed value so far. */ size_t best_observed_evaluation[1]; /**< @brief The evaluation when the best value so far was achieved. */ /* Fields depending on the containing benchmark suite */ coco_suite_t *suite; /**< @brief Pointer to the containing suite (NULL if not given) */ size_t suite_dep_index; /**< @brief Suite-depending problem index (starting from 0) */ size_t suite_dep_function; /**< @brief Suite-depending function */ size_t suite_dep_instance; /**< @brief Suite-depending instance */ void *data; /**< @brief Pointer to a data instance @see coco_problem_transformed_data_t */ void *versatile_data; /* Wassim: *< @brief pointer to eventual additional data that need to be accessed all along the transforamtions*/ }; /** * @brief The COCO observer structure. * * An observer observes the whole benchmark process. It is independent of suites and problems. Each time a * new problem of the suite is being observed, the observer initializes a new logger (wraps the observed * problem with the corresponding logger). */ struct coco_observer_s { int is_active; /**< @brief Whether the observer is active (the logger will log some output). */ char *observer_name; /**< @brief Name of the observer for identification purposes. */ char *result_folder; /**< @brief Name of the result folder. */ char *algorithm_name; /**< @brief Name of the algorithm to be used in logger output. */ char *algorithm_info; /**< @brief Additional information on the algorithm to be used in logger output. */ size_t number_target_triggers; /**< @brief The number of targets between each 10**i and 10**(i+1). */ double target_precision; /**< @brief The minimal precision used for targets. */ size_t number_evaluation_triggers; /**< @brief The number of triggers between each 10**i and 10**(i+1) evaluation number. */ char *base_evaluation_triggers; /**< @brief The "base evaluations" used to evaluations that trigger logging. */ int precision_x; /**< @brief Output precision for decision variables. */ int precision_f; /**< @brief Output precision for function values. */ int precision_g; /**< @brief Output precision for constraint values. */ int log_discrete_as_int; /**< @brief Whether to output discrete variables in int or double format. */ void *data; /**< @brief Void pointer that can be used to point to data specific to an observer. */ coco_data_free_function_t data_free_function; /**< @brief The function for freeing this observer. */ coco_logger_allocate_function_t logger_allocate_function; /**< @brief The function for allocating the logger. */ coco_logger_free_function_t logger_free_function; /**< @brief The function for freeing the logger. */ }; /** * @brief The COCO suite structure. * * A suite is a collection of problems constructed by a Cartesian product of the suite's optimization * functions, dimensions and instances. The functions and dimensions are fixed for a suite with some name, * while the instances are defined dynamically. The suite can be filtered - only the chosen functions, * dimensions and instances will be taken into account when iterating through the suite. */ struct coco_suite_s { char *suite_name; /**< @brief Name of the suite. */ size_t number_of_dimensions; /**< @brief Number of dimensions contained in the suite. */ size_t *dimensions; /**< @brief The dimensions contained in the suite. */ size_t number_of_functions; /**< @brief Number of functions contained in the suite. */ size_t *functions; /**< @brief The functions contained in the suite. */ size_t number_of_instances; /**< @brief Number of instances contained in the suite. */ char *default_instances; /**< @brief The instances contained in the suite by default. */ size_t *instances; /**< @brief The instances contained in the suite. */ coco_problem_t *current_problem; /**< @brief Pointer to the currently tackled problem. */ long current_dimension_idx; /**< @brief The dimension index of the currently tackled problem. */ long current_function_idx; /**< @brief The function index of the currently tackled problem. */ long current_instance_idx; /**< @brief The instance index of the currently tackled problem. */ void *data; /**< @brief Void pointer that can be used to point to data specific to a suite. */ coco_data_free_function_t data_free_function; /**< @brief The function for freeing this suite. */ }; static void bbob_evaluate_gradient(coco_problem_t *problem, const double *x, double *y); #ifdef __cplusplus } #endif #endif #line 16 "code-experiments/src/coco_suite.c" #line 1 "code-experiments/src/coco_utilities.c" /** * @file coco_utilities.c * @brief Definitions of miscellaneous functions used throughout the COCO framework. */ #line 1 "code-experiments/src/coco_platform.h" /** * @file coco_platform.h * @brief Automatic platform-dependent configuration of the COCO framework. * * Some platforms and standard conforming compilers require extra defines or includes to provide some * functionality. * * Because most feature defines need to be set before the first system header is included and we do not * know when a system header is included for the first time in the amalgamation, all internal files * that need these definitions should include this file before any system headers. */ #ifndef __COCO_PLATFORM__ #define __COCO_PLATFORM__ #include /* Definitions of COCO_PATH_MAX, coco_path_separator, HAVE_GFA and HAVE_STAT heavily used by functions in * coco_utilities.c */ #if defined(_WIN32) || defined(_WIN64) || defined(__MINGW64__) || defined(__CYGWIN__) #include static const char *coco_path_separator = "\\"; #define COCO_PATH_MAX MAX_PATH #define HAVE_GFA 1 #elif defined(__gnu_linux__) #include #include #include static const char *coco_path_separator = "/"; #define HAVE_STAT 1 #define COCO_PATH_MAX PATH_MAX #elif defined(__APPLE__) #include #include #include static const char *coco_path_separator = "/"; #define HAVE_STAT 1 #define COCO_PATH_MAX PATH_MAX #elif defined(__FreeBSD__) #include #include #include static const char *coco_path_separator = "/"; #define HAVE_STAT 1 #define COCO_PATH_MAX PATH_MAX #elif (defined(__sun) || defined(sun)) && (defined(__SVR4) || defined(__svr4__)) /* Solaris */ #include #include #include static const char *coco_path_separator = "/"; #define HAVE_STAT 1 #define COCO_PATH_MAX PATH_MAX #else #error Unknown platform #endif #if !defined(COCO_PATH_MAX) #error COCO_PATH_MAX undefined #endif /* Definitions needed for creating and removing directories */ /* Separately handle the special case of Microsoft Visual Studio 2008 with x86_64-w64-mingw32-gcc */ #if _MSC_VER #include #elif defined(__MINGW32__) || defined(__MINGW64__) #include #else #include #ifdef __cplusplus extern "C" { #endif /* To silence the compiler (implicit-function-declaration warning). */ /** @cond */ int rmdir(const char *pathname); int unlink(const char *file_name); int mkdir(const char *pathname, mode_t mode); /** @endcond */ #endif /* Definition of the S_IRWXU constant needed to set file permissions */ #if defined(HAVE_GFA) #define S_IRWXU 0700 #endif /* To silence the Visual Studio compiler (C4996 warnings in the python build). */ #ifdef _MSC_VER #pragma warning(disable:4996) #endif #ifdef __cplusplus } #endif #endif #line 7 "code-experiments/src/coco_utilities.c" #include #include #include #include #include #include #include #include #line 18 "code-experiments/src/coco_utilities.c" #line 19 "code-experiments/src/coco_utilities.c" #line 1 "code-experiments/src/coco_string.c" /** * @file coco_string.c * @brief Definitions of functions that manipulate strings. */ #include #include #include #include #line 12 "code-experiments/src/coco_string.c" static size_t *coco_allocate_vector_size_t(const size_t number_of_elements); static char *coco_allocate_string(const size_t number_of_elements); /** * @brief Creates a duplicate copy of string and returns a pointer to it. * * The caller is responsible for freeing the allocated memory using coco_free_memory(). */ static char *coco_strdup(const char *string) { size_t len; char *duplicate; if (string == NULL) return NULL; len = strlen(string); duplicate = (char *) coco_allocate_memory(len + 1); memcpy(duplicate, string, len + 1); return duplicate; } /** * @brief The length of the buffer used in the coco_vstrdupf function. * * @note This should be handled differently! */ #define COCO_VSTRDUPF_BUFLEN 444 /** * @brief Formatted string duplication, with va_list arguments. */ static char *coco_vstrdupf(const char *str, va_list args) { static char buf[COCO_VSTRDUPF_BUFLEN]; long written; /* apparently args can only be used once, therefore * len = vsnprintf(NULL, 0, str, args) to find out the * length does not work. Therefore we use a buffer * which limits the max length. Longer strings should * never appear anyway, so this is rather a non-issue. */ #if 0 written = vsnprintf(buf, COCO_VSTRDUPF_BUFLEN - 2, str, args); if (written < 0) coco_error("coco_vstrdupf(): vsnprintf failed on '%s'", str); #else /* less safe alternative, if vsnprintf is not available */ assert(strlen(str) < COCO_VSTRDUPF_BUFLEN / 2 - 2); if (strlen(str) >= COCO_VSTRDUPF_BUFLEN / 2 - 2) coco_error("coco_vstrdupf(): string is too long"); written = vsprintf(buf, str, args); if (written < 0) coco_error("coco_vstrdupf(): vsprintf failed on '%s'", str); #endif if (written > COCO_VSTRDUPF_BUFLEN - 3) coco_error("coco_vstrdupf(): A suspiciously long string is tried to being duplicated '%s'", buf); return coco_strdup(buf); } #undef COCO_VSTRDUPF_BUFLEN /** * Optional arguments are used like in sprintf. */ char *coco_strdupf(const char *str, ...) { va_list args; char *s; va_start(args, str); s = coco_vstrdupf(str, args); va_end(args); return s; } /** * @brief Returns a concatenate copy of string1 + string2. * * The caller is responsible for freeing the allocated memory using coco_free_memory(). */ static char *coco_strconcat(const char *s1, const char *s2) { size_t len1 = strlen(s1); size_t len2 = strlen(s2); char *s = (char *) coco_allocate_memory(len1 + len2 + 1); memcpy(s, s1, len1); memcpy(&s[len1], s2, len2 + 1); return s; } /** * @brief Returns the first index where seq occurs in base and -1 if it doesn't. * * @note If there is an equivalent standard C function, this can/should be removed. */ static long coco_strfind(const char *base, const char *seq) { const size_t strlen_seq = strlen(seq); const size_t last_first_idx = strlen(base) - strlen(seq); size_t i, j; if (strlen(base) < strlen(seq)) return -1; for (i = 0; i <= last_first_idx; ++i) { if (base[i] == seq[0]) { for (j = 0; j < strlen_seq; ++j) { if (base[i + j] != seq[j]) break; } if (j == strlen_seq) { if (i > 1000000000UL) coco_error("coco_strfind(): strange values observed i=%lu, j=%lu, strlen(base)=%lu", (unsigned long) i, (unsigned long) j, (unsigned long) strlen(base)); return (long) i; } } } return -1; } /** * @brief Splits a string based on the given delimiter. * * Returns a pointer to the resulting substrings with NULL as the last one. * The caller is responsible for freeing the allocated memory using: * * for (i = 0; *(result + i); i++) * coco_free_memory(*(result + i)); * coco_free_memory(*(result + i)); <- This is needed! * coco_free_memory(result); * */ static char **coco_string_split(const char *string, const char delimiter) { char **result; char *str_copy, *ptr, *token; char str_delimiter[2]; size_t i; size_t count = 1; str_copy = coco_strdup(string); /* Counts the parts between delimiters */ ptr = str_copy; while (*ptr != '\0') { if (*ptr == delimiter) { count++; } ptr++; } /* Makes room for an empty string that will be appended at the end */ count++; result = (char **) coco_allocate_memory(count * sizeof(char *)); /* Iterates through tokens * NOTE: strtok() ignores multiple delimiters, therefore the final number of detected substrings might be * lower than the count. This is OK. */ i = 0; /* A char* delimiter needs to be used, otherwise strtok() can surprise */ str_delimiter[0] = delimiter; str_delimiter[1] = '\0'; token = strtok(str_copy, str_delimiter); while (token) { assert(i < count); *(result + i++) = coco_strdup(token); token = strtok(NULL, str_delimiter); } *(result + i) = NULL; coco_free_memory(str_copy); return result; } /** * @brief Creates and returns a string with removed characters between from and to. * * If you wish to remove characters from the beginning of the string, set from to "". * If you wish to remove characters until the end of the string, set to to "". * * The caller is responsible for freeing the allocated memory using coco_free_memory(). */ static char *coco_remove_from_string(const char *string, const char *from, const char *to) { char *result, *start, *stop; result = coco_strdup(string); if (strcmp(from, "") == 0) { /* Remove from the start */ start = result; } else start = strstr(result, from); if (strcmp(to, "") == 0) { /* Remove until the end */ stop = result + strlen(result); } else stop = strstr(result, to); if ((start == NULL) || (stop == NULL) || (stop < start)) { coco_error("coco_remove_from_string(): failed to remove characters between %s and %s from string %s", from, to, string); return NULL; /* Never reached */ } memmove(start, stop, strlen(stop) + 1); return result; } /** * @brief Returns the numbers defined by the ranges. * * Reads ranges from a string of positive ranges separated by commas. For example: "-3,5-6,8-". Returns the * numbers that are defined by the ranges if min and max are used as their extremes. If the ranges with open * beginning/end are not allowed, use 0 as min/max. The returned string has an appended 0 to mark its end. * A maximum of max_count values is returned. If there is a problem with one of the ranges, the parsing stops * and the current result is returned. The memory of the returned object needs to be freed by the caller. */ static size_t *coco_string_parse_ranges(const char *string, const size_t min, const size_t max, const char *name, const size_t max_count) { char *ptr, *dash = NULL; char **ranges, **numbers; size_t i, j, count; size_t num[2]; size_t *result; size_t i_result = 0; char *str = coco_strdup(string); /* Check for empty string */ if ((str == NULL) || (strlen(str) == 0)) { coco_warning("coco_string_parse_ranges(): cannot parse empty ranges"); coco_free_memory(str); return NULL; } ptr = str; /* Check for disallowed characters */ while (*ptr != '\0') { if ((*ptr != '-') && (*ptr != ',') && !isdigit((unsigned char )*ptr)) { coco_warning("coco_string_parse_ranges(): problem parsing '%s' - cannot parse ranges with '%c'", str, *ptr); coco_free_memory(str); return NULL; } else ptr++; } /* Check for incorrect boundaries */ if ((max > 0) && (min > max)) { coco_warning("coco_string_parse_ranges(): incorrect boundaries"); coco_free_memory(str); return NULL; } result = coco_allocate_vector_size_t(max_count + 1); /* Split string to ranges w.r.t commas */ ranges = coco_string_split(str, ','); coco_free_memory(str); if (ranges) { /* Go over the current range */ for (i = 0; *(ranges + i); i++) { ptr = *(ranges + i); /* Count the number of '-' */ count = 0; while (*ptr != '\0') { if (*ptr == '-') { if (count == 0) /* Remember the position of the first '-' */ dash = ptr; count++; } ptr++; } /* Point again to the start of the range */ ptr = *(ranges + i); /* Check for incorrect number of '-' */ if (count > 1) { coco_warning("coco_string_parse_ranges(): problem parsing '%s' - too many '-'s", string); /* Cleanup */ for (j = i; *(ranges + j); j++) coco_free_memory(*(ranges + j)); coco_free_memory(ranges); if (i_result == 0) { coco_free_memory(result); return NULL; } result[i_result] = 0; return result; } else if (count == 0) { /* Range is in the format: n (no range) */ num[0] = (size_t) strtol(ptr, NULL, 10); num[1] = num[0]; } else { /* Range is in one of the following formats: n-m / -n / n- / - */ /* Split current range to numbers w.r.t '-' */ numbers = coco_string_split(ptr, '-'); j = 0; if (numbers) { /* Read the numbers */ for (j = 0; *(numbers + j); j++) { assert(j < 2); num[j] = (size_t) strtol(*(numbers + j), NULL, 10); coco_free_memory(*(numbers + j)); } } coco_free_memory(numbers); if (j == 0) { /* Range is in the format - (open ends) */ if ((min == 0) || (max == 0)) { coco_warning("coco_string_parse_ranges(): '%s' ranges cannot have an open ends; some ranges ignored", name); /* Cleanup */ for (j = i; *(ranges + j); j++) coco_free_memory(*(ranges + j)); coco_free_memory(ranges); if (i_result == 0) { coco_free_memory(result); return NULL; } result[i_result] = 0; return result; } num[0] = min; num[1] = max; } else if (j == 1) { if (dash - *(ranges + i) == 0) { /* Range is in the format -n */ if (min == 0) { coco_warning("coco_string_parse_ranges(): '%s' ranges cannot have an open beginning; some ranges ignored", name); /* Cleanup */ for (j = i; *(ranges + j); j++) coco_free_memory(*(ranges + j)); coco_free_memory(ranges); if (i_result == 0) { coco_free_memory(result); return NULL; } result[i_result] = 0; return result; } num[1] = num[0]; num[0] = min; } else { /* Range is in the format n- */ if (max == 0) { coco_warning("coco_string_parse_ranges(): '%s' ranges cannot have an open end; some ranges ignored", name); /* Cleanup */ for (j = i; *(ranges + j); j++) coco_free_memory(*(ranges + j)); coco_free_memory(ranges); if (i_result == 0) { coco_free_memory(result); return NULL; } result[i_result] = 0; return result; } num[1] = max; } } /* if (j == 2), range is in the format n-m and there is nothing to do */ } /* Make sure the boundaries are taken into account */ if ((min > 0) && (num[0] < min)) { num[0] = min; coco_warning("coco_string_parse_ranges(): '%s' ranges adjusted to be >= %lu", name, (unsigned long) min); } if ((max > 0) && (num[1] > max)) { num[1] = max; coco_warning("coco_string_parse_ranges(): '%s' ranges adjusted to be <= %lu", name, (unsigned long) max); } if (num[0] > num[1]) { coco_warning("coco_string_parse_ranges(): '%s' ranges not within boundaries; some ranges ignored", name); /* Cleanup */ for (j = i; *(ranges + j); j++) coco_free_memory(*(ranges + j)); coco_free_memory(ranges); if (i_result == 0) { coco_free_memory(result); return NULL; } result[i_result] = 0; return result; } /* Write in result */ for (j = num[0]; j <= num[1]; j++) { if (i_result > max_count - 1) break; result[i_result++] = j; } coco_free_memory(*(ranges + i)); *(ranges + i) = NULL; } } coco_free_memory(ranges); if (i_result == 0) { coco_free_memory(result); return NULL; } result[i_result] = 0; return result; } /** * @brief Trims the given string (removes any leading and trailing spaces). * * If the string contains any leading spaces, the contents are shifted so that if it was dynamically * allocated, it can be still freed on the returned pointer. */ static char *coco_string_trim(char *string) { size_t i, len = 0; int all_whitespaces = 1; char *frontp = string; char *endp = NULL; if (string == NULL) { return NULL; } if (string[0] == '\0') { return string; } len = strlen(string); endp = string + len; for (i = 0; ((i < len) && all_whitespaces); i++) all_whitespaces = all_whitespaces && isspace(string[i]); if (all_whitespaces) { string[0] = '\0'; return string; } /* Move the front and back pointers to address the first non-whitespace characters from each end. */ while (isspace((unsigned char) *frontp)) { ++frontp; } if (endp != frontp) { while (isspace((unsigned char) *(--endp)) && endp != frontp) { } } if (string + len - 1 != endp) *(endp + 1) = '\0'; else if (frontp != string && endp == frontp) *string = '\0'; /* Shift the string. Note the reuse of endp to mean the front of the string buffer now. */ endp = string; if (frontp != string) { while (*frontp) { *endp++ = *frontp++; } *endp = '\0'; } return string; } #line 20 "code-experiments/src/coco_utilities.c" /***********************************************************************************************************/ /** * @brief Sets the constant chosen_precision to 1e-9. */ static const double chosen_precision = 1e-9; /***********************************************************************************************************/ /** * @brief Initializes the logging level to COCO_INFO. */ static coco_log_level_type_e coco_log_level = COCO_INFO; /** * @param log_level Denotes the level of information given to the user through the standard output and * error streams. Can take on the values: * - "error" (only error messages are output), * - "warning" (only error and warning messages are output), * - "info" (only error, warning and info messages are output) and * - "debug" (all messages are output). * - "" does not set a new value * The default value is info. * * @return The previous coco_log_level value as an immutable string. */ const char *coco_set_log_level(const char *log_level) { coco_log_level_type_e previous_log_level = coco_log_level; if (strcmp(log_level, "error") == 0) coco_log_level = COCO_ERROR; else if (strcmp(log_level, "warning") == 0) coco_log_level = COCO_WARNING; else if (strcmp(log_level, "info") == 0) coco_log_level = COCO_INFO; else if (strcmp(log_level, "debug") == 0) coco_log_level = COCO_DEBUG; else if (strcmp(log_level, "") == 0) { /* Do nothing */ } else { coco_warning("coco_set_log_level(): unknown level %s", log_level); } if (previous_log_level == COCO_ERROR) return "error"; else if (previous_log_level == COCO_WARNING) return "warning"; else if (previous_log_level == COCO_INFO) return "info"; else if (previous_log_level == COCO_DEBUG) return "debug"; else { coco_error("coco_set_log_level(): unknown previous log level"); return ""; } } /***********************************************************************************************************/ /** * @name Methods regarding file, directory and path manipulations */ /**@{*/ /** * @brief Creates a platform-dependent path from the given strings. * * @note The last argument must be NULL. * @note The first parameter must be able to accommodate path_max_length characters and the length * of the joined path must not exceed path_max_length characters. * @note Should work cross-platform. * * Usage examples: * - coco_join_path(base_path, 100, folder1, folder2, folder3, NULL) creates base_path/folder1/folder2/folder3 * - coco_join_path(base_path, 100, folder1, file_name, NULL) creates base_path/folder1/file_name * @param path The base path; it's also where the joined path is stored to. * @param path_max_length The maximum length of the path. * @param ... Additional strings, must end with NULL */ static void coco_join_path(char *path, const size_t path_max_length, ...) { const size_t path_separator_length = strlen(coco_path_separator); va_list args; char *path_component; size_t path_length = strlen(path); va_start(args, path_max_length); while (NULL != (path_component = va_arg(args, char *))) { size_t component_length = strlen(path_component); if (path_length + path_separator_length + component_length >= path_max_length) { coco_error("coco_join_path() failed because the ${path} is too short."); return; /* never reached */ } /* Both should be safe because of the above check. */ if (strlen(path) > 0) strncat(path, coco_path_separator, path_max_length - strlen(path) - 1); strncat(path, path_component, path_max_length - strlen(path) - 1); } va_end(args); } /** * @brief Checks if the given directory exists. * * @note Should work cross-platform. * * @param path The given path. * * @return 1 if the path exists and corresponds to a directory and 0 otherwise. */ static int coco_directory_exists(const char *path) { int res; #if defined(HAVE_GFA) DWORD dwAttrib = GetFileAttributesA(path); res = (dwAttrib != INVALID_FILE_ATTRIBUTES && (dwAttrib & FILE_ATTRIBUTE_DIRECTORY)); #elif defined(HAVE_STAT) struct stat buf; res = (!stat(path, &buf) && S_ISDIR(buf.st_mode)); #else #error Ooops #endif return res; } /** * @brief Checks if the given file exists. * * @note Should work cross-platform. * * @param path The given path. * * @return 1 if the path exists and corresponds to a file and 0 otherwise. */ static int coco_file_exists(const char *path) { int res; #if defined(HAVE_GFA) DWORD dwAttrib = GetFileAttributesA(path); res = (dwAttrib != INVALID_FILE_ATTRIBUTES) && !(dwAttrib & FILE_ATTRIBUTE_DIRECTORY); #elif defined(HAVE_STAT) struct stat buf; res = (!stat(path, &buf) && !S_ISDIR(buf.st_mode)); #else #error Ooops #endif return res; } /** * @brief Calls the right mkdir() method (depending on the platform) with full privileges for the user. * If the created directory has not existed before, returns 0, otherwise returns 1. If the directory has * not been created, a coco_error is raised. * * @param path The directory path. * * @return 0 if the created directory has not existed before and 1 otherwise. */ static int coco_mkdir(const char *path) { int result = 0; #if _MSC_VER result = _mkdir(path); #elif defined(__MINGW32__) || defined(__MINGW64__) result = mkdir(path); #else result = mkdir(path, S_IRWXU); #endif if (result == 0) return 0; else if (errno == EEXIST) return 1; else { coco_error("coco_mkdir(): unable to create %s, mkdir error: %s", path, strerror(errno)); return 1; /* Never reached */ } } /** * @brief Creates a directory (possibly having to create nested directories). If the last created directory * has not existed before, returns 0, otherwise returns 1. * * @param path The directory path. * * @return 0 if the created directory has not existed before and 1 otherwise. */ static int coco_create_directory(const char *path) { char *path_copy = NULL; char *tmp, *p; char path_sep = coco_path_separator[0]; size_t len = strlen(path); int result = 0; path_copy = coco_strdup(path); tmp = path_copy; /* Remove possible leading and trailing (back)slash */ if (tmp[len - 1] == path_sep) tmp[len - 1] = 0; if (tmp[0] == path_sep) tmp++; /* Iterate through nested directories (does nothing if directories are not nested) */ for (p = tmp; *p; p++) { if (*p == path_sep) { *p = 0; coco_mkdir(tmp); *p = path_sep; } } /* Create the last nested or only directory */ result = coco_mkdir(tmp); coco_free_memory(path_copy); return result; } /* Commented to silence the compiler (unused function warning) */ #if 0 /** * @brief Creates a unique file name from the given file_name. * * If the file_name does not yet exit, it is left as is, otherwise it is changed(!) by prepending a number * to it. If filename.ext already exists, 01-filename.ext will be tried. If this one exists as well, * 02-filename.ext will be tried, and so on. If 99-filename.ext exists as well, the function throws * an error. */ static void coco_create_unique_filename(char **file_name) { int counter = 1; char *new_file_name; /* Do not change the file_name if it does not yet exist */ if (!coco_file_exists(*file_name)) { return; } while (counter < 99) { new_file_name = coco_strdupf("%02d-%s", counter, *file_name); if (!coco_file_exists(new_file_name)) { coco_free_memory(*file_name); *file_name = new_file_name; return; } else { counter++; coco_free_memory(new_file_name); } } coco_free_memory(new_file_name); coco_error("coco_create_unique_filename(): could not create a unique file name"); return; /* Never reached */ } #endif /** * @brief Creates a directory that has not existed before. * * If the given path does not yet exit, it is left as is, otherwise it is changed(!) by appending a number * to it. If path already exists, path-001 will be tried. If this one exists as well, path-002 will be tried, * and so on. If path-999 exists as well, an error is raised. */ static void coco_create_unique_directory(char **path) { int counter = 1; char *new_path; if (coco_create_directory(*path) == 0) { /* Directory created */ return; } while (counter < 999) { new_path = coco_strdupf("%s-%03d", *path, counter); if (coco_create_directory(new_path) == 0) { /* Directory created */ coco_free_memory(*path); *path = new_path; return; } else { counter++; coco_free_memory(new_path); } } coco_error("coco_create_unique_directory(): unable to create unique directory %s", *path); return; /* Never reached */ } /** * The method should work across different platforms/compilers. * * @path The path to the directory * * @return 0 on successful completion, and -1 on error. */ int coco_remove_directory(const char *path) { #if _MSC_VER WIN32_FIND_DATA find_data_file; HANDLE find_handle = NULL; char *buf; int r = -1; int r2 = -1; buf = coco_strdupf("%s\\*.*", path); /* Nothing to do if the folder does not exist */ if ((find_handle = FindFirstFile(buf, &find_data_file)) == INVALID_HANDLE_VALUE) { coco_free_memory(buf); return 0; } coco_free_memory(buf); do { r = 0; /* Skip the names "." and ".." as we don't want to recurse on them */ if (strcmp(find_data_file.cFileName, ".") != 0 && strcmp(find_data_file.cFileName, "..") != 0) { /* Build the new path using the argument path the file/folder name we just found */ buf = coco_strdupf("%s\\%s", path, find_data_file.cFileName); if (find_data_file.dwFileAttributes & FILE_ATTRIBUTE_DIRECTORY) { /* Buf is a directory, recurse on it */ r2 = coco_remove_directory(buf); } else { /* Buf is a file, delete it */ /* Careful, DeleteFile returns 0 if it fails and nonzero otherwise! */ r2 = -(DeleteFile(buf) == 0); } coco_free_memory(buf); } r = r2; }while (FindNextFile(find_handle, &find_data_file)); /* Find the next file */ FindClose(find_handle); if (!r) { /* Path is an empty directory, delete it */ /* Careful, RemoveDirectory returns 0 if it fails and nonzero otherwise! */ r = -(RemoveDirectory(path) == 0); } return r; #else DIR *d = opendir(path); int r = -1; int r2 = -1; char *buf; /* Nothing to do if the folder does not exist */ if (!coco_directory_exists(path)) return 0; if (d) { struct dirent *p; r = 0; while (!r && (p = readdir(d))) { /* Skip the names "." and ".." as we don't want to recurse on them */ if (!strcmp(p->d_name, ".") || !strcmp(p->d_name, "..")) { continue; } buf = coco_strdupf("%s/%s", path, p->d_name); if (buf) { if (coco_directory_exists(buf)) { /* Buf is a directory, recurse on it */ r2 = coco_remove_directory(buf); } else { /* Buf is a file, delete it */ r2 = unlink(buf); } } coco_free_memory(buf); r = r2; } closedir(d); } if (!r) { /* Path is an empty directory, delete it */ r = rmdir(path); } return r; #endif } /** * The method should work across different platforms/compilers. * * @file_name The path to the file * * @return 0 on successful completion, and -1 on error. */ int coco_remove_file(const char *file_name) { #if _MSC_VER int r = -1; /* Try to delete the file */ /* Careful, DeleteFile returns 0 if it fails and nonzero otherwise! */ r = -(DeleteFile(file_name) == 0); return r; #else int r = -1; /* Try to delete the file */ r = unlink(file_name); return r; #endif } /**@}*/ /***********************************************************************************************************/ /** * @name Methods regarding memory allocations */ /**@{*/ double *coco_allocate_vector(const size_t number_of_elements) { const size_t block_size = number_of_elements * sizeof(double); return (double *) coco_allocate_memory(block_size); } /** * @brief Allocates memory for a vector and sets all its elements to value. */ static double *coco_allocate_vector_with_value(const size_t number_of_elements, double value) { const size_t block_size = number_of_elements * sizeof(double); double *vector = (double *) coco_allocate_memory(block_size); size_t i; for (i = 0; i < number_of_elements; i++) vector[i] = value; return vector; } /** * @brief Safe memory allocation for a vector with size_t elements that either succeeds or triggers a * coco_error. */ static size_t *coco_allocate_vector_size_t(const size_t number_of_elements) { const size_t block_size = number_of_elements * sizeof(size_t); return (size_t *) coco_allocate_memory(block_size); } static char *coco_allocate_string(const size_t number_of_elements) { const size_t block_size = number_of_elements * sizeof(char); return (char *) coco_allocate_memory(block_size); } static double *coco_duplicate_vector(const double *src, const size_t number_of_elements) { size_t i; double *dst; assert(src != NULL); assert(number_of_elements > 0); dst = coco_allocate_vector(number_of_elements); for (i = 0; i < number_of_elements; ++i) { dst[i] = src[i]; } return dst; } /**@}*/ /***********************************************************************************************************/ /** * @name Methods regarding string options */ /**@{*/ /** * @brief Allocates an option keys structure holding the given number of option keys. */ static coco_option_keys_t *coco_option_keys_allocate(const size_t count, const char **keys) { size_t i; coco_option_keys_t *option_keys; if ((count == 0) || (keys == NULL)) return NULL; option_keys = (coco_option_keys_t *) coco_allocate_memory(sizeof(*option_keys)); option_keys->keys = (char **) coco_allocate_memory(count * sizeof(char *)); for (i = 0; i < count; i++) { assert(keys[i]); option_keys->keys[i] = coco_strdup(keys[i]); } option_keys->count = count; return option_keys; } /** * @brief Frees the given option keys structure. */ static void coco_option_keys_free(coco_option_keys_t *option_keys) { size_t i; if (option_keys) { for (i = 0; i < option_keys->count; i++) { coco_free_memory(option_keys->keys[i]); } coco_free_memory(option_keys->keys); coco_free_memory(option_keys); } } /** * @brief Returns redundant option keys (the ones present in given_option_keys but not in known_option_keys). */ static coco_option_keys_t *coco_option_keys_get_redundant(const coco_option_keys_t *known_option_keys, const coco_option_keys_t *given_option_keys) { size_t i, j, count = 0; int found; char **redundant_keys; coco_option_keys_t *redundant_option_keys; assert(known_option_keys != NULL); assert(given_option_keys != NULL); /* Find the redundant keys */ redundant_keys = (char **) coco_allocate_memory(given_option_keys->count * sizeof(char *)); for (i = 0; i < given_option_keys->count; i++) { found = 0; for (j = 0; j < known_option_keys->count; j++) { if (strcmp(given_option_keys->keys[i], known_option_keys->keys[j]) == 0) { found = 1; break; } } if (!found) { redundant_keys[count++] = coco_strdup(given_option_keys->keys[i]); } } redundant_option_keys = coco_option_keys_allocate(count, (const char**) redundant_keys); /* Free memory */ for (i = 0; i < count; i++) { coco_free_memory(redundant_keys[i]); } coco_free_memory(redundant_keys); return redundant_option_keys; } /** * @brief Adds additional option keys to the given basic option keys (changes the basic keys). */ static void coco_option_keys_add(coco_option_keys_t **basic_option_keys, const coco_option_keys_t *additional_option_keys) { size_t i, j; size_t new_count; char **new_keys; coco_option_keys_t *new_option_keys; assert(*basic_option_keys != NULL); if (additional_option_keys == NULL) return; /* Construct the union of both keys */ new_count = (*basic_option_keys)->count + additional_option_keys->count; new_keys = (char **) coco_allocate_memory(new_count * sizeof(char *)); for (i = 0; i < (*basic_option_keys)->count; i++) { new_keys[i] = coco_strdup((*basic_option_keys)->keys[i]); } for (j = 0; j < additional_option_keys->count; j++) { new_keys[(*basic_option_keys)->count + j] = coco_strdup(additional_option_keys->keys[j]); } new_option_keys = coco_option_keys_allocate(new_count, (const char**) new_keys); /* Free the old basic keys */ coco_option_keys_free(*basic_option_keys); *basic_option_keys = new_option_keys; for (i = 0; i < new_count; i++) { coco_free_memory(new_keys[i]); } coco_free_memory(new_keys); } /** * @brief Creates an instance of option keys from the given string of options containing keys and values * separated by colons. * * @note Relies heavily on the "key: value" format and might fail if the number of colons doesn't match the * number of keys. */ static coco_option_keys_t *coco_option_keys(const char *option_string) { size_t i; char **keys; coco_option_keys_t *option_keys = NULL; char *string_to_parse, *key; /* Check for empty string */ if ((option_string == NULL) || (strlen(option_string) == 0)) { return NULL; } /* Split the options w.r.t ':' */ keys = coco_string_split(option_string, ':'); if (keys) { /* Keys now contain something like this: "values_of_previous_key this_key" except for the first, which * contains only the key and the last, which contains only the previous values */ for (i = 0; *(keys + i); i++) { string_to_parse = coco_strdup(*(keys + i)); /* Remove any leading and trailing spaces */ string_to_parse = coco_string_trim(string_to_parse); /* Stop if this is the last substring (contains a value and no key) */ if ((i > 0) && (*(keys + i + 1) == NULL)) { coco_free_memory(string_to_parse); break; } /* Disregard everything before the last space */ key = strrchr(string_to_parse, ' '); if ((key == NULL) || (i == 0)) { /* No spaces left (or this is the first key), everything is the key */ key = string_to_parse; } else { /* Move to the start of the key (one char after the space) */ key++; } /* Put the key in keys */ coco_free_memory(*(keys + i)); *(keys + i) = coco_strdup(key); coco_free_memory(string_to_parse); } option_keys = coco_option_keys_allocate(i, (const char**) keys); /* Free the keys */ for (i = 0; *(keys + i); i++) { coco_free_memory(*(keys + i)); } coco_free_memory(keys); } return option_keys; } /** * @brief Creates and returns a string containing the info_string and all keys from option_keys. * * Can be used to output information about the given option_keys. */ static char *coco_option_keys_get_output_string(const coco_option_keys_t *option_keys, const char *info_string) { size_t i; char *string = NULL, *new_string; if ((option_keys != NULL) && (option_keys->count > 0)) { string = coco_strdup(info_string); for (i = 0; i < option_keys->count; i++) { new_string = coco_strdupf("%s %s\n", string, option_keys->keys[i]); coco_free_memory(string); string = new_string; } } return string; } /** * @brief Parses options in the form "name1: value1 name2: value2". * * Formatting requirements: * - name and value need to be separated by a colon (spaces are optional) * - value needs to be a single string (no spaces allowed) * * @return The number of successful assignments. */ static int coco_options_read(const char *options, const char *name, const char *format, void *pointer) { long i1, i2; if ((!options) || (strlen(options) == 0)) return 0; i1 = coco_strfind(options, name); if (i1 < 0) return 0; i2 = i1 + coco_strfind(&options[i1], ":") + 1; /* Remove trailing whitespaces */ while (isspace((unsigned char) options[i2])) i2++; if (i2 <= i1){ return 0; } return sscanf(&options[i2], format, pointer); } /** * @brief Reads an integer from options using the form "name1: value1 name2: value2". * * Formatting requirements: * - name and value need to be separated by a colon (spaces are optional) * - the value corresponding to the given name needs to be an integer * * @return The number of successful assignments. */ static int coco_options_read_int(const char *options, const char *name, int *pointer) { return coco_options_read(options, name, " %i", pointer); } /** * @brief Reads a size_t from options using the form "name1: value1 name2: value2". * * Formatting requirements: * - name and value need to be separated by a colon (spaces are optional) * - the value corresponding to the given name needs to be a size_t * * @return The number of successful assignments. */ static int coco_options_read_size_t(const char *options, const char *name, size_t *pointer) { return coco_options_read(options, name, "%lu", pointer); } /** * @brief Reads a double value from options using the form "name1: value1 name2: value2". * * Formatting requirements: * - name and value need to be separated by a colon (spaces are optional) * - the value corresponding to the given name needs to be a double * * @return The number of successful assignments. */ static int coco_options_read_double(const char *options, const char *name, double *pointer) { return coco_options_read(options, name, "%lf", pointer); } /** * @brief Reads a string from options using the form "name1: value1 name2: value2". * * Formatting requirements: * - name and value need to be separated by a colon (spaces are optional) * - the value corresponding to the given name needs to be a string - either a single word or multiple words * in double quotes * * @return The number of successful assignments. */ static int coco_options_read_string(const char *options, const char *name, char *pointer) { long i1, i2; if ((!options) || (strlen(options) == 0)) return 0; i1 = coco_strfind(options, name); if (i1 < 0) return 0; i2 = i1 + coco_strfind(&options[i1], ":") + 1; /* Remove trailing white spaces */ while (isspace((unsigned char) options[i2])) i2++; if (i2 <= i1){ return 0; } if (options[i2] == '\"') { /* The value starts with a quote: read everything between two quotes into a string */ return sscanf(&options[i2], "\"%[^\"]\"", pointer); } else return sscanf(&options[i2], "%s", pointer); } /** * @brief Reads (possibly delimited) values from options using the form "name1: value1,value2,value3 name2: value4", * i.e. reads all characters from the corresponding name up to the next alphabetic character or end of string, * ignoring white-space characters. * * Formatting requirements: * - names have to start with alphabetic characters * - values cannot include alphabetic characters * - name and value need to be separated by a colon (spaces are optional) * * @return The number of successful assignments. */ static int coco_options_read_values(const char *options, const char *name, char *pointer) { long i1, i2; int i; if ((!options) || (strlen(options) == 0)) return 0; i1 = coco_strfind(options, name); if (i1 < 0) return 0; i2 = i1 + coco_strfind(&options[i1], ":") + 1; if (i2 <= i1) { return 0; } i = 0; while (!isalpha((unsigned char) options[i2 + i]) && (options[i2 + i] != '\0')) { if(isspace((unsigned char) options[i2 + i])) { i2++; } else { pointer[i] = options[i2 + i]; i++; } } pointer[i] = '\0'; return i; } /**@}*/ /***********************************************************************************************************/ /** * @name Methods implementing functions on double values not contained in C89 standard */ /**@{*/ /** * @brief Rounds the given double to the nearest integer. */ static double coco_double_round(const double number) { return floor(number + 0.5); } /** * @brief Returns the maximum of a and b. */ static double coco_double_max(const double a, const double b) { if (a >= b) { return a; } else { return b; } } /** * @brief Returns the minimum of a and b. */ static double coco_double_min(const double a, const double b) { if (a <= b) { return a; } else { return b; } } /** * @brief Performs a "safer" double to size_t conversion. * * TODO: This method could (should?) check for overflow when casting (similarly as is done in * coco_double_to_int()). */ static size_t coco_double_to_size_t(const double number) { return (size_t) coco_double_round(number); } /** * @brief Rounds the given double to the nearest integer (returns the number in int type) */ static int coco_double_to_int(const double number) { if (number > (double)INT_MAX) { coco_error("coco_double_to_int(): Cannot cast %f to the nearest integer, max %d allowed", number, INT_MAX); return -1; /* Never reached */ } else if (number < (double)INT_MIN) { coco_error("coco_double_to_int(): Cannot cast %f to the nearest integer, min %d allowed", number, INT_MIN); return -1; /* Never reached */ } else { return (int)(number + 0.5); } } /** * @brief Returns 1 if |a - b| < precision and 0 otherwise. */ static int coco_double_almost_equal(const double a, const double b, const double precision) { return (fabs(a - b) < precision); } /**@}*/ /***********************************************************************************************************/ /** * @name Methods handling NAN and INFINITY */ /**@{*/ /** * @brief Returns 1 if x is NAN and 0 otherwise. */ static int coco_is_nan(const double x) { return (isnan(x) || (x != x) || !(x == x) || ((x >= NAN / (1 + chosen_precision)) && (x <= NAN * (1 + chosen_precision)))); } /** * @brief Returns 1 if the input vector of dimension dim contains any NAN values and 0 otherwise. */ static int coco_vector_contains_nan(const double *x, const size_t dim) { size_t i; for (i = 0; i < dim; i++) { if (COCO_UNLIKELY(coco_is_nan(x[i]))) return 1; } return 0; } /** * @brief Sets all dim values of y to NAN. */ static void coco_vector_set_to_nan(double *y, const size_t dim) { size_t i; for (i = 0; i < dim; i++) { y[i] = NAN; } } /** * @brief Returns 1 if x is INFINITY and 0 otherwise. */ static int coco_is_inf(const double x) { if (coco_is_nan(x)) return 0; return (isinf(x) || (x <= -INFINITY) || (x >= INFINITY)); } /** * @brief Returns 1 if the input vector of dimension dim contains no NaN of inf values, and 0 otherwise. */ static int coco_vector_isfinite(const double *x, const size_t dim) { size_t i; for (i = 0; i < dim; i++) { if (COCO_UNLIKELY(coco_is_nan(x[i])) || COCO_UNLIKELY(coco_is_inf(x[i]))) return 0; } return 1; } /** * @brief Returns 1 if the point x is feasible, and 0 otherwise. * * Allows constraint_values == NULL, otherwise constraint_values * must be a valid double* pointer and contains the g-values of x * on "return". * * Any point x containing NaN or inf values is considered infeasible. * * This function is (and should be) used internally only, and does not * increase the counter of constraint function evaluations. * * @param problem The given COCO problem. * @param x Decision vector. * @param constraint_values Vector of contraints values resulting from evaluation. */ static int coco_is_feasible(coco_problem_t *problem, const double *x, double *constraint_values) { size_t i; double *cons_values = constraint_values; int ret_val = 1; /* Return 0 if the decision vector contains any INFINITY or NaN values */ if (!coco_vector_isfinite(x, coco_problem_get_dimension(problem))) return 0; if (coco_problem_get_number_of_constraints(problem) <= 0) return 1; assert(problem != NULL); assert(problem->evaluate_constraint != NULL); if (constraint_values == NULL) cons_values = coco_allocate_vector(problem->number_of_constraints); problem->evaluate_constraint(problem, x, cons_values); /* coco_evaluate_constraint(problem, x, cons_values) increments problem->evaluations_constraints counter */ for(i = 0; i < coco_problem_get_number_of_constraints(problem); ++i) { if (cons_values[i] > 0.0) { ret_val = 0; break; } } if (constraint_values == NULL) coco_free_memory(cons_values); return ret_val; } /**@}*/ /***********************************************************************************************************/ /** * @name Miscellaneous methods */ /**@{*/ /** * @brief Returns the current time as a string. * * The caller is responsible for freeing the allocated memory using coco_free_memory(). */ static char *coco_current_time_get_string(void) { time_t timer; char *time_string = coco_allocate_string(30); struct tm* tm_info; time(&timer); tm_info = localtime(&timer); assert(tm_info != NULL); strftime(time_string, 30, "%d.%m.%y %H:%M:%S", tm_info); return time_string; } /** * @brief Returns the number of positive numbers pointed to by numbers (the count stops when the first * 0 is encountered of max_count numbers have been read). * * If there are more than max_count numbers, a coco_error is raised. The name argument is used * only to provide more informative output in case of any problems. */ static size_t coco_count_numbers(const size_t *numbers, const size_t max_count, const char *name) { size_t count = 0; while ((count < max_count) && (numbers[count] != 0)) { count++; } if (count == max_count) { coco_error("coco_count_numbers(): over %lu numbers in %s", (unsigned long) max_count, name); return 0; /* Never reached*/ } return count; } /** * @brief multiply each componenent by nom/denom or by nom if denom == 0. * * return used scaling factor, usually nom/denom. * * Example: coco_vector_scale(x, dimension, 1, coco_vector_norm(x, dimension)); */ static double coco_vector_scale(double *x, size_t dimension, double nom, double denom) { size_t i; assert(x); if (denom != 0) nom /= denom; for (i = 0; i < dimension; ++i) x[i] *= nom; return nom; } /** * @brief return norm of vector x. * */ static double coco_vector_norm(const double *x, size_t dimension) { size_t i; double ssum = 0.0; assert(x); for (i = 0; i < dimension; ++i) ssum += x[i] * x[i]; return sqrt(ssum); } /** * @brief return scalar product between vectors x and y. * */ static double coco_vector_scalar_product(const double *x, const double *y, size_t dimension) { size_t i; double ssum = 0.0; assert(x); assert(y); for (i = 0; i < dimension; ++i) ssum += x[i] * y[i]; return ssum; } /** * @brief Checks if a given matrix M is orthogonal by (partially) computing M * M^T. * If M is a square matrix and M * M^T is close enough to the identity matrix * (up to a chosen precision), the function returns 1. Otherwise, it returns 0. * The matrix M must be represented as an array of doubles. */ static int coco_is_orthogonal(const double *M, const size_t nb_rows, const size_t nb_columns) { size_t i, j, z; double sum; if (nb_rows != nb_columns) return 0; for (i = 0; i < nb_rows; ++i) { for (j = 0; j < nb_rows; ++j) { /* Compute the dot product of the ith row of M * and the jth column of M^T (i.e. jth row of M) */ sum = 0.0; for (z = 0; z < nb_rows; ++z) { sum += M[i * nb_rows + z] * M[j * nb_rows + z]; } /* Check if the dot product is 1 (resp. 0) when the row and the column * indices are the same (resp. different) */ if (((i == j) && !coco_double_almost_equal(sum, 1, chosen_precision)) || ((i != j) && !coco_double_almost_equal(sum, 0, chosen_precision))) return 0; } } return 1; } /** * @brief Returns 1 if the input vector x is (close to) zero and 0 otherwise. */ static int coco_vector_is_zero(const double *x, const size_t dim) { size_t i = 0; int is_zero = 1; if (coco_vector_contains_nan(x, dim)) return 0; while (i < dim && is_zero) { is_zero = coco_double_almost_equal(x[i], 0, chosen_precision); i++; } return is_zero; } /**@}*/ /***********************************************************************************************************/ #line 17 "code-experiments/src/coco_suite.c" #line 1 "code-experiments/src/suite_bbob.c" /** * @file suite_bbob.c * @brief Implementation of the bbob suite containing 24 noiseless single-objective functions in 6 * dimensions. */ #line 8 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_attractive_sector.c" /** * @file f_attractive_sector.c * @brief Implementation of the attractive sector function and problem. */ #include #include #line 10 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/coco_problem.c" /** * @file coco_problem.c * @brief Definitions of functions regarding COCO problems. */ #include #line 8 "code-experiments/src/coco_problem.c" #line 9 "code-experiments/src/coco_problem.c" #line 11 "code-experiments/src/coco_problem.c" /***********************************************************************************************************/ /** * @name Methods regarding the basic COCO problem */ /**@{*/ /** * Evaluates the problem function, increases the number of evaluations and updates the best observed value * and the best observed evaluation number. * * @note Both x and y must point to correctly sized allocated memory regions. * * @param problem The given COCO problem. * @param x The decision vector. * @param y The objective vector that is the result of the evaluation (in single-objective problems only the * first vector item is being set). */ void coco_evaluate_function(coco_problem_t *problem, const double *x, double *y) { /* implements a safer version of problem->evaluate(problem, x, y) */ size_t i, j; int is_feasible; double *z; assert(problem != NULL); assert(problem->evaluate_function != NULL); /* Set objective vector to INFINITY if the decision vector contains any INFINITY values */ for (i = 0; i < coco_problem_get_dimension(problem); i++) { if (coco_is_inf(x[i])) { for (j = 0; j < coco_problem_get_number_of_objectives(problem); j++) { y[j] = fabs(x[i]); } return; } } /* Set objective vector to NAN if the decision vector contains any NAN values */ if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } problem->evaluate_function(problem, x, y); problem->evaluations++; /* each derived class has its own counter, only the most outer will be visible */ /* A little bit of bookkeeping */ if (y[0] < problem->best_observed_fvalue[0]) { is_feasible = 1; if (coco_problem_get_number_of_constraints(problem) > 0) { z = coco_allocate_vector(coco_problem_get_number_of_constraints(problem)); is_feasible = coco_is_feasible(problem, x, z); coco_free_memory(z); } if (is_feasible) { problem->best_observed_fvalue[0] = y[0]; problem->best_observed_evaluation[0] = problem->evaluations; } } } /** * Evaluates the problem constraint. * * @note Both x and y must point to correctly sized allocated memory regions. * * @param problem The given COCO problem. * @param x The decision vector. * @param y The vector of constraints that is the result of the evaluation. */ void coco_evaluate_constraint(coco_problem_t *problem, const double *x, double *y) { /* implements a safer version of problem->evaluate(problem, x, y) */ size_t i, j; assert(problem != NULL); if (problem->evaluate_constraint == NULL) { coco_error("coco_evaluate_constraint(): No constraint function implemented for problem %s", problem->problem_id); } /* Set constraints vector to INFINITY if the decision vector contains any INFINITY values */ for (i = 0; i < coco_problem_get_dimension(problem); i++) { if (coco_is_inf(x[i])) { for (j = 0; j < coco_problem_get_number_of_constraints(problem); j++) { y[j] = fabs(x[i]); } return; } } /* Set constraints vector to NAN if the decision vector contains any NAN values */ if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_constraints(problem)); return; } problem->evaluate_constraint(problem, x, y); problem->evaluations_constraints++; } /** * @note Both x and y must point to correctly sized allocated memory regions. * * @param problem The given COCO problem. * @param x The decision vector. * @param y The gradient of the function evaluated at the point x. */ static void bbob_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { /* implements a safer version of problem->evaluate_gradient(problem, x, y) */ assert(problem != NULL); if (problem->evaluate_gradient == NULL) { coco_error("bbob_evaluate_gradient(): No gradient function implemented for problem %s", problem->problem_id); } problem->evaluate_gradient(problem, x, y); } /** * Evaluates and logs the given solution (as the coco_evaluate_function), but does not return the evaluated * value. * * @note None of the observers implements this function yet! * @note x must point to a correctly sized allocated memory region. * @param problem The given COCO problem. * @param x The decision vector. */ void coco_recommend_solution(coco_problem_t *problem, const double *x) { assert(problem != NULL); if (problem->recommend_solution == NULL) { coco_error("coco_recommend_solutions(): No recommend solution function implemented for problem %s", problem->problem_id); } problem->recommend_solution(problem, x); } /***********************************************************************************************************/ /** * @brief Allocates a new coco_problem_t for the given number of variables, number of objectives and * number of constraints. */ static coco_problem_t *coco_problem_allocate(const size_t number_of_variables, const size_t number_of_objectives, const size_t number_of_constraints) { coco_problem_t *problem; problem = (coco_problem_t *) coco_allocate_memory(sizeof(*problem)); /* Initialize fields to sane/safe defaults */ problem->initial_solution = NULL; problem->evaluate_function = NULL; problem->evaluate_constraint = NULL; problem->evaluate_gradient = NULL; problem->recommend_solution = NULL; problem->problem_free_function = NULL; problem->number_of_variables = number_of_variables; problem->number_of_objectives = number_of_objectives; problem->number_of_constraints = number_of_constraints; problem->smallest_values_of_interest = coco_allocate_vector(number_of_variables); problem->largest_values_of_interest = coco_allocate_vector(number_of_variables); problem->number_of_integer_variables = 0; /* No integer variables by default */ if (number_of_objectives > 1) { problem->best_parameter = NULL; problem->best_value = coco_allocate_vector(number_of_objectives); problem->nadir_value = coco_allocate_vector(number_of_objectives); } else { problem->best_parameter = coco_allocate_vector(number_of_variables); problem->best_value = coco_allocate_vector(1); problem->nadir_value = NULL; } problem->problem_name = NULL; problem->problem_id = NULL; problem->problem_type = NULL; problem->evaluations = 0; problem->evaluations_constraints = 0; problem->final_target_delta[0] = 1e-8; /* in case to be modified by the benchmark */ problem->best_observed_fvalue[0] = DBL_MAX; problem->best_observed_evaluation[0] = 0; problem->suite = NULL; /* To be initialized in the coco_suite_get_problem_from_indices() function */ problem->suite_dep_index = 0; problem->suite_dep_function = 0; problem->suite_dep_instance = 0; problem->data = NULL; problem->versatile_data = NULL; /* Wassim: added to be able to pass data from one transformation to another*/ return problem; } /** * @brief Creates a duplicate of the 'other' problem for all fields except for data, which points to NULL. */ static coco_problem_t *coco_problem_duplicate(const coco_problem_t *other) { size_t i; coco_problem_t *problem; problem = coco_problem_allocate(other->number_of_variables, other->number_of_objectives, other->number_of_constraints); problem->evaluate_function = other->evaluate_function; problem->evaluate_constraint = other->evaluate_constraint; problem->recommend_solution = other->recommend_solution; problem->problem_free_function = other->problem_free_function; problem->versatile_data = other->versatile_data; /* Wassim: make the pointers the same*/ for (i = 0; i < problem->number_of_variables; ++i) { problem->smallest_values_of_interest[i] = other->smallest_values_of_interest[i]; problem->largest_values_of_interest[i] = other->largest_values_of_interest[i]; if (other->best_parameter) problem->best_parameter[i] = other->best_parameter[i]; } problem->number_of_integer_variables = other->number_of_integer_variables; if (other->initial_solution) problem->initial_solution = coco_duplicate_vector(other->initial_solution, other->number_of_variables); if (other->best_value) for (i = 0; i < problem->number_of_objectives; ++i) { problem->best_value[i] = other->best_value[i]; } if (other->nadir_value) for (i = 0; i < problem->number_of_objectives; ++i) { problem->nadir_value[i] = other->nadir_value[i]; } problem->problem_name = coco_strdup(other->problem_name); problem->problem_id = coco_strdup(other->problem_id); problem->problem_type = coco_strdup(other->problem_type); problem->evaluations = other->evaluations; problem->evaluations_constraints = other->evaluations_constraints; problem->final_target_delta[0] = other->final_target_delta[0]; problem->best_observed_fvalue[0] = other->best_observed_fvalue[0]; problem->best_observed_evaluation[0] = other->best_observed_evaluation[0]; problem->suite = other->suite; problem->suite_dep_index = other->suite_dep_index; problem->suite_dep_function = other->suite_dep_function; problem->suite_dep_instance = other->suite_dep_instance; problem->data = NULL; return problem; } /** * @brief Allocates a problem using scalar values for smallest_value_of_interest, largest_value_of_interest * and best_parameter. Assumes all variables are continuous. */ static coco_problem_t *coco_problem_allocate_from_scalars(const char *problem_name, coco_evaluate_function_t evaluate_function, coco_problem_free_function_t problem_free_function, const size_t number_of_variables, const double smallest_value_of_interest, const double largest_value_of_interest, const double best_parameter) { size_t i; coco_problem_t *problem = coco_problem_allocate(number_of_variables, 1, 0); problem->problem_name = coco_strdup(problem_name); problem->number_of_variables = number_of_variables; problem->number_of_objectives = 1; problem->number_of_constraints = 0; problem->evaluate_function = evaluate_function; problem->problem_free_function = problem_free_function; for (i = 0; i < number_of_variables; ++i) { problem->smallest_values_of_interest[i] = smallest_value_of_interest; problem->largest_values_of_interest[i] = largest_value_of_interest; problem->best_parameter[i] = best_parameter; } problem->number_of_integer_variables = 0; return problem; } void coco_problem_free(coco_problem_t *problem) { assert(problem != NULL); if (problem->problem_free_function != NULL) { problem->problem_free_function(problem); } else { /* Best guess at freeing all relevant structures */ if (problem->smallest_values_of_interest != NULL) coco_free_memory(problem->smallest_values_of_interest); if (problem->largest_values_of_interest != NULL) coco_free_memory(problem->largest_values_of_interest); if (problem->best_parameter != NULL) coco_free_memory(problem->best_parameter); if (problem->best_value != NULL) coco_free_memory(problem->best_value); if (problem->nadir_value != NULL) coco_free_memory(problem->nadir_value); if (problem->problem_name != NULL) coco_free_memory(problem->problem_name); if (problem->problem_id != NULL) coco_free_memory(problem->problem_id); if (problem->problem_type != NULL) coco_free_memory(problem->problem_type); if (problem->data != NULL) coco_free_memory(problem->data); if (problem->initial_solution != NULL) coco_free_memory(problem->initial_solution); problem->smallest_values_of_interest = NULL; problem->largest_values_of_interest = NULL; problem->best_parameter = NULL; problem->best_value = NULL; problem->nadir_value = NULL; problem->suite = NULL; problem->data = NULL; problem->initial_solution = NULL; coco_free_memory(problem); } } /***********************************************************************************************************/ /** * @brief Checks whether the given string is in the right format to be a problem_id. * * No non-alphanumeric characters besides '-', '_' and '.' are allowed. */ static int coco_problem_id_is_fine(const char *id, ...) { va_list args; const int reject = 0; const int accept = 1; const char *cp; char *s; int result = accept; va_start(args, id); s = coco_vstrdupf(id, args); va_end(args); for (cp = s; *cp != '\0'; ++cp) { if (('A' <= *cp) && (*cp <= 'Z')) continue; if (('a' <= *cp) && (*cp <= 'z')) continue; if ((*cp == '_') || (*cp == '-')) continue; if (('0' <= *cp) && (*cp <= '9')) continue; result = reject; } coco_free_memory(s); return result; } /** * @brief Sets the problem_id using formatted printing (as in printf). * * Takes care of memory (de-)allocation and verifies that the problem_id is in the correct format. */ static void coco_problem_set_id(coco_problem_t *problem, const char *id, ...) { va_list args; va_start(args, id); if (problem->problem_id != NULL) coco_free_memory(problem->problem_id); problem->problem_id = coco_vstrdupf(id, args); va_end(args); if (!coco_problem_id_is_fine(problem->problem_id)) { coco_error("Problem id should only contain standard chars, not like '%s'", problem->problem_id); } } /** * @brief Sets the problem_name using formatted printing (as in printf). * * Takes care of memory (de-)allocation. */ static void coco_problem_set_name(coco_problem_t *problem, const char *name, ...) { va_list args; va_start(args, name); if (problem->problem_name != NULL) coco_free_memory(problem->problem_name); problem->problem_name = coco_vstrdupf(name, args); va_end(args); } /** * @brief Sets the problem_type using formatted printing (as in printf). * * Takes care of memory (de-)allocation. */ static void coco_problem_set_type(coco_problem_t *problem, const char *type, ...) { va_list args; va_start(args, type); if (problem->problem_type != NULL) coco_free_memory(problem->problem_type); problem->problem_type = coco_vstrdupf(type, args); va_end(args); } size_t coco_problem_get_evaluations(const coco_problem_t *problem) { assert(problem != NULL); return problem->evaluations; } size_t coco_problem_get_evaluations_constraints(const coco_problem_t *problem) { assert(problem != NULL); return problem->evaluations_constraints; } /** * @brief Returns 1 if the best parameter is not (close to) zero and 0 otherwise. */ static int coco_problem_best_parameter_not_zero(const coco_problem_t *problem) { size_t i = 0; int best_is_zero = 1; if (coco_vector_contains_nan(problem->best_parameter, problem->number_of_variables)) return 1; while (i < problem->number_of_variables && best_is_zero) { best_is_zero = coco_double_almost_equal(problem->best_parameter[i], 0, 1e-9); i++; } return !best_is_zero; } /** * @note Can be used to prevent unnecessary burning of CPU time. */ int coco_problem_final_target_hit(const coco_problem_t *problem) { assert(problem != NULL); if (coco_problem_get_number_of_objectives(problem) != 1 || coco_problem_get_evaluations(problem) < 1) return 0; if (problem->best_value == NULL) return 0; return problem->best_observed_fvalue[0] <= problem->best_value[0] + problem->final_target_delta[0] ? 1 : 0; } /** * @note Tentative... */ double coco_problem_get_best_observed_fvalue1(const coco_problem_t *problem) { assert(problem != NULL); return problem->best_observed_fvalue[0]; } /** * @brief Returns the optimal function value of the problem */ double coco_problem_get_best_value(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->best_value != NULL); return problem->best_value[0]; } /** * @note This function breaks the black-box property: the returned value is not * meant to be used by the optimization algorithm. */ double coco_problem_get_final_target_fvalue1(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->best_value != NULL); assert(problem->final_target_delta != NULL); return problem->best_value[0] + problem->final_target_delta[0]; } /** * @note Do not modify the returned string! If you free the problem, the returned pointer becomes invalid. * When in doubt, use coco_strdup() on the returned value. */ const char *coco_problem_get_name(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->problem_name != NULL); return problem->problem_name; } /** * The ID is guaranteed to contain only characters in the set [a-z0-9_-]. It should therefore be safe to use * it to construct filenames or other identifiers. * * Each problem ID should be unique within each benchmark suite. * * @note Do not modify the returned string! If you free the problem, the returned pointer becomes invalid. * When in doubt, use coco_strdup() on the returned value. */ const char *coco_problem_get_id(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->problem_id != NULL); return problem->problem_id; } const char *coco_problem_get_type(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->problem_type != NULL); return problem->problem_type; } size_t coco_problem_get_dimension(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->number_of_variables > 0); return problem->number_of_variables; } size_t coco_problem_get_number_of_objectives(const coco_problem_t *problem) { assert(problem != NULL); return problem->number_of_objectives; } size_t coco_problem_get_number_of_constraints(const coco_problem_t *problem) { assert(problem != NULL); return problem->number_of_constraints; } const double *coco_problem_get_smallest_values_of_interest(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->smallest_values_of_interest != NULL); return problem->smallest_values_of_interest; } const double *coco_problem_get_largest_values_of_interest(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->largest_values_of_interest != NULL); return problem->largest_values_of_interest; } size_t coco_problem_get_number_of_integer_variables(const coco_problem_t *problem) { assert(problem != NULL); return problem->number_of_integer_variables; } const double *coco_problem_get_largest_fvalues_of_interest(const coco_problem_t *problem) { assert(problem != NULL); if (problem->number_of_objectives == 1) coco_error("coco_problem_get_largest_fvalues_of_interest(): f-values of interest undefined for single-objective problems"); if (problem->nadir_value == NULL) coco_error("coco_problem_get_largest_fvalues_of_interest(): f-values of interest undefined"); return problem->nadir_value; } /** * Copies problem->initial_solution into initial_solution if not null, * otherwise the center of the problem's region of interest is the * initial solution. Takes care of rounding the solution in case of integer variables. * * @param problem The given COCO problem. * @param initial_solution The pointer to the initial solution being set by this method. */ void coco_problem_get_initial_solution(const coco_problem_t *problem, double *initial_solution) { size_t i; assert(problem != NULL); if (problem->initial_solution != NULL) { for (i = 0; i < problem->number_of_variables; ++i) initial_solution[i] = problem->initial_solution[i]; } else { assert(problem->smallest_values_of_interest != NULL); assert(problem->largest_values_of_interest != NULL); for (i = 0; i < problem->number_of_variables; ++i) initial_solution[i] = problem->smallest_values_of_interest[i] + 0.5 * (problem->largest_values_of_interest[i] - problem->smallest_values_of_interest[i]); if (problem->number_of_integer_variables > 0) { for (i = 0; i < problem->number_of_integer_variables; ++i) { initial_solution[i] = coco_double_round(initial_solution[i]); } } } } static coco_suite_t *coco_problem_get_suite(const coco_problem_t *problem) { assert(problem != NULL); return problem->suite; } static void coco_problem_set_suite(coco_problem_t *problem, coco_suite_t *suite) { assert(problem != NULL); problem->suite = suite; } size_t coco_problem_get_suite_dep_index(const coco_problem_t *problem) { assert(problem != NULL); return problem->suite_dep_index; } static size_t coco_problem_get_suite_dep_function(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->suite_dep_function > 0); return problem->suite_dep_function; } static size_t coco_problem_get_suite_dep_instance(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->suite_dep_instance > 0); return problem->suite_dep_instance; } /**@}*/ void bbob_problem_best_parameter_print(const coco_problem_t *problem) { size_t i; FILE *file; assert(problem != NULL); assert(problem->best_parameter != NULL); file = fopen("._bbob_problem_best_parameter.txt", "w"); if (file != NULL) { for (i = 0; i < problem->number_of_variables; ++i) fprintf(file, " %.16f ", problem->best_parameter[i]); fclose(file); } } void bbob_biobj_problem_best_parameter_print(const coco_problem_t *problem) { size_t i; FILE *file; coco_problem_t *problem1, *problem2; assert(problem != NULL); assert(problem->data != NULL); problem1 = ((coco_problem_stacked_data_t *) problem->data)->problem1; problem2 = ((coco_problem_stacked_data_t *) problem->data)->problem2; assert(problem1 != NULL); assert(problem2 != NULL); assert(problem1->best_parameter != NULL); assert(problem2->best_parameter != NULL); file = fopen("._bbob_biobj_problem_best_parameter.txt", "w"); if (file != NULL) { for (i = 0; i < problem->number_of_variables; ++i) fprintf(file, " %.16f ", problem1->best_parameter[i]); fprintf(file, "\n"); for (i = 0; i < problem->number_of_variables; ++i) fprintf(file, " %.16f ", problem2->best_parameter[i]); fclose(file); } } /***********************************************************************************************************/ /** * @name Methods regarding the transformed COCO problem */ /**@{*/ /** * @brief Returns the data of the transformed problem. */ static void *coco_problem_transformed_get_data(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->data != NULL); assert(((coco_problem_transformed_data_t *) problem->data)->data != NULL); return ((coco_problem_transformed_data_t *) problem->data)->data; } /** * @brief Returns the inner problem of the transformed problem. */ static coco_problem_t *coco_problem_transformed_get_inner_problem(const coco_problem_t *problem) { assert(problem != NULL); assert(problem->data != NULL); assert(((coco_problem_transformed_data_t *) problem->data)->inner_problem != NULL); return ((coco_problem_transformed_data_t *) problem->data)->inner_problem; } /** * @brief Calls the coco_evaluate_function function on the inner problem. */ static void coco_problem_transformed_evaluate_function(coco_problem_t *problem, const double *x, double *y) { coco_problem_transformed_data_t *data; assert(problem != NULL); assert(problem->data != NULL); data = (coco_problem_transformed_data_t *) problem->data; assert(data->inner_problem != NULL); coco_evaluate_function(data->inner_problem, x, y); } /** * @brief Calls the coco_evaluate_constraint function on the inner problem. */ static void coco_problem_transformed_evaluate_constraint(coco_problem_t *problem, const double *x, double *y) { coco_problem_transformed_data_t *data; assert(problem != NULL); assert(problem->data != NULL); data = (coco_problem_transformed_data_t *) problem->data; assert(data->inner_problem != NULL); coco_evaluate_constraint(data->inner_problem, x, y); } static void bbob_problem_transformed_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { coco_problem_transformed_data_t *data; assert(problem != NULL); assert(problem->data != NULL); data = (coco_problem_transformed_data_t *) problem->data; assert(data->inner_problem != NULL); bbob_evaluate_gradient(data->inner_problem, x, y); } /** * @brief Calls the coco_recommend_solution function on the inner problem. */ static void coco_problem_transformed_recommend_solution(coco_problem_t *problem, const double *x) { coco_problem_transformed_data_t *data; assert(problem != NULL); assert(problem->data != NULL); data = (coco_problem_transformed_data_t *) problem->data; assert(data->inner_problem != NULL); coco_recommend_solution(data->inner_problem, x); } /** * @brief Frees only the data of the transformed problem leaving the inner problem intact. * * @note If there is no other pointer to the inner problem, access to it will be lost. */ static void coco_problem_transformed_free_data(coco_problem_t *problem) { coco_problem_transformed_data_t *data; assert(problem != NULL); assert(problem->data != NULL); data = (coco_problem_transformed_data_t *) problem->data; if (data->data != NULL) { if (data->data_free_function != NULL) { data->data_free_function(data->data); data->data_free_function = NULL; } coco_free_memory(data->data); data->data = NULL; } /* Let the generic free problem code deal with the rest of the fields. For this we clear the free_problem * function pointer and recall the generic function. */ problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Frees the transformed problem. */ static void coco_problem_transformed_free(coco_problem_t *problem) { coco_problem_transformed_data_t *data; assert(problem != NULL); assert(problem->data != NULL); data = (coco_problem_transformed_data_t *) problem->data; assert(data->inner_problem != NULL); if (data->inner_problem != NULL) { coco_problem_free(data->inner_problem); data->inner_problem = NULL; } coco_problem_transformed_free_data(problem); } /** * @brief Allocates a transformed problem that wraps the inner_problem. * * By default all methods will dispatch to the inner_problem. A prefix is prepended to the problem name * in order to reflect the transformation somewhere. */ static coco_problem_t *coco_problem_transformed_allocate(coco_problem_t *inner_problem, void *user_data, coco_data_free_function_t data_free_function, const char *name_prefix) { coco_problem_transformed_data_t *problem; coco_problem_t *inner_copy; char *old_name = coco_strdup(inner_problem->problem_name); problem = (coco_problem_transformed_data_t *) coco_allocate_memory(sizeof(*problem)); problem->inner_problem = inner_problem; problem->data = user_data; problem->data_free_function = data_free_function; inner_copy = coco_problem_duplicate(inner_problem); inner_copy->evaluate_function = coco_problem_transformed_evaluate_function; inner_copy->evaluate_constraint = coco_problem_transformed_evaluate_constraint; inner_copy->evaluate_gradient = bbob_problem_transformed_evaluate_gradient; inner_copy->recommend_solution = coco_problem_transformed_recommend_solution; inner_copy->problem_free_function = coco_problem_transformed_free; inner_copy->data = problem; coco_problem_set_name(inner_copy, "%s(%s)", name_prefix, old_name); coco_free_memory(old_name); return inner_copy; } /**@}*/ /***********************************************************************************************************/ /** * @name Methods regarding the stacked COCO problem */ /**@{*/ /** * @brief Calls the coco_evaluate_function function on the underlying problems. */ static void coco_problem_stacked_evaluate_function(coco_problem_t *problem, const double *x, double *y) { coco_problem_stacked_data_t* data = (coco_problem_stacked_data_t *) problem->data; const size_t number_of_objectives_problem1 = coco_problem_get_number_of_objectives(data->problem1); const size_t number_of_objectives_problem2 = coco_problem_get_number_of_objectives(data->problem2); double *cons_values = NULL; int is_feasible; assert(coco_problem_get_number_of_objectives(problem) == number_of_objectives_problem1 + number_of_objectives_problem2); if (number_of_objectives_problem1 > 0) coco_evaluate_function(data->problem1, x, &y[0]); if (number_of_objectives_problem2 > 0) coco_evaluate_function(data->problem2, x, &y[number_of_objectives_problem1]); /* Make sure that no feasible point has a function value lower * than the minimum's. */ if (problem->number_of_constraints > 0) { cons_values = coco_allocate_vector(problem->number_of_constraints); is_feasible = coco_is_feasible(problem, x, cons_values); coco_free_memory(cons_values); if (is_feasible) assert(y[0] + 1e-13 >= problem->best_value[0]); } } /** * @brief Calls the coco_evaluate_constraint function on the underlying problems. */ static void coco_problem_stacked_evaluate_constraint(coco_problem_t *problem, const double *x, double *y) { coco_problem_stacked_data_t* data = (coco_problem_stacked_data_t*) problem->data; const size_t number_of_constraints_problem1 = coco_problem_get_number_of_constraints(data->problem1); const size_t number_of_constraints_problem2 = coco_problem_get_number_of_constraints(data->problem2); assert(coco_problem_get_number_of_constraints(problem) == number_of_constraints_problem1 + number_of_constraints_problem2); if (number_of_constraints_problem1 > 0) coco_evaluate_constraint(data->problem1, x, y); if (number_of_constraints_problem2 > 0) coco_evaluate_constraint(data->problem2, x, &y[number_of_constraints_problem1]); } /* TODO: Missing coco_problem_stacked_recommend_solution function! */ /** * @brief Frees the stacked problem. */ static void coco_problem_stacked_free(coco_problem_t *problem) { coco_problem_stacked_data_t *data; assert(problem != NULL); assert(problem->data != NULL); data = (coco_problem_stacked_data_t*) problem->data; if (data->problem1 != NULL) { coco_problem_free(data->problem1); data->problem1 = NULL; } if (data->problem2 != NULL) { coco_problem_free(data->problem2); data->problem2 = NULL; } /* Let the generic free problem code deal with the rest of the fields. For this we clear the free_problem * function pointer and recall the generic function. */ problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Allocates a problem constructed by stacking two COCO problems. * * This is particularly useful for generating multi-objective problems, e.g. a bi-objective problem from two * single-objective problems. The stacked problem must behave like a normal COCO problem accepting the same * input. * * @note Regions of interest in the decision space must either agree or at least one of them must be NULL. * @note Best parameter becomes somewhat meaningless, but the nadir value make sense now. */ static coco_problem_t *coco_problem_stacked_allocate(coco_problem_t *problem1, coco_problem_t *problem2, const double *smallest_values_of_interest, const double *largest_values_of_interest) { size_t number_of_variables, number_of_objectives, number_of_constraints; size_t i; char *s; coco_problem_stacked_data_t *data; coco_problem_t *problem; /* the new coco problem */ assert(problem1); assert(problem2); assert(coco_problem_get_dimension(problem1) == coco_problem_get_dimension(problem2)); number_of_variables = coco_problem_get_dimension(problem1); number_of_objectives = coco_problem_get_number_of_objectives(problem1) + coco_problem_get_number_of_objectives(problem2); number_of_constraints = coco_problem_get_number_of_constraints(problem1) + coco_problem_get_number_of_constraints(problem2); problem = coco_problem_allocate(number_of_variables, number_of_objectives, number_of_constraints); s = coco_strconcat(coco_problem_get_id(problem1), "__"); problem->problem_id = coco_strconcat(s, coco_problem_get_id(problem2)); coco_free_memory(s); s = coco_strconcat(coco_problem_get_name(problem1), " + "); problem->problem_name = coco_strconcat(s, coco_problem_get_name(problem2)); coco_free_memory(s); problem->evaluate_function = coco_problem_stacked_evaluate_function; if (number_of_constraints > 0) problem->evaluate_constraint = coco_problem_stacked_evaluate_constraint; assert(smallest_values_of_interest); assert(largest_values_of_interest); for (i = 0; i < number_of_variables; ++i) { problem->smallest_values_of_interest[i] = smallest_values_of_interest[i]; problem->largest_values_of_interest[i] = largest_values_of_interest[i]; } assert(problem1->number_of_integer_variables == problem2->number_of_integer_variables); problem->number_of_integer_variables = problem1->number_of_integer_variables; assert(problem->best_value); if (number_of_constraints > 0) { /* The best_value must be set up afterwards in suite_cons_bbob_problems.c */ problem->best_value[0] = -FLT_MAX; /* Define problem->initial_solution as problem2->initial_solution */ if (coco_problem_get_number_of_constraints(problem2) > 0 && problem2->initial_solution) problem->initial_solution = coco_duplicate_vector(problem2->initial_solution, number_of_variables); } else { /* Compute the ideal and nadir values */ assert(problem->nadir_value); problem->best_value[0] = problem1->best_value[0]; problem->best_value[1] = problem2->best_value[0]; coco_evaluate_function(problem1, problem2->best_parameter, &problem->nadir_value[0]); coco_evaluate_function(problem2, problem1->best_parameter, &problem->nadir_value[1]); } /* setup data holder */ data = (coco_problem_stacked_data_t *) coco_allocate_memory(sizeof(*data)); data->problem1 = problem1; data->problem2 = problem2; problem->data = data; problem->problem_free_function = coco_problem_stacked_free; return problem; } /**@}*/ /***********************************************************************************************************/ #line 11 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/suite_bbob_legacy_code.c" /** * @file suite_bbob_legacy_code.c * @brief Legacy code from BBOB2009 required to replicate the 2009 functions. * * All of this code should only be used by the suite_bbob2009 functions to provide compatibility to the * legacy code. New test beds should strive to use the new COCO facilities for random number generation etc. */ #include #include #include #line 13 "code-experiments/src/suite_bbob_legacy_code.c" /** @brief Maximal dimension used in BBOB2009. */ #define SUITE_BBOB2009_MAX_DIM 40 /** @brief Computes the minimum of the two values. */ static double bbob2009_fmin(double a, double b) { return (a < b) ? a : b; } /** @brief Computes the maximum of the two values. */ static double bbob2009_fmax(double a, double b) { return (a > b) ? a : b; } /** @brief Rounds the given value. */ static double bbob2009_round(double x) { return floor(x + 0.5); } /** * @brief Allocates a n by m matrix structured as an array of pointers to double arrays. */ static double **bbob2009_allocate_matrix(const size_t n, const size_t m) { double **matrix = NULL; size_t i; matrix = (double **) coco_allocate_memory(sizeof(double *) * n); for (i = 0; i < n; ++i) { matrix[i] = coco_allocate_vector(m); } return matrix; } /** * @brief Frees the matrix structured as an array of pointers to double arrays. */ static void bbob2009_free_matrix(double **matrix, const size_t n) { size_t i; for (i = 0; i < n; ++i) { if (matrix[i] != NULL) { coco_free_memory(matrix[i]); matrix[i] = NULL; } } coco_free_memory(matrix); } /** * @brief Generates N uniform random numbers using inseed as the seed and stores them in r. */ static void bbob2009_unif(double *r, size_t N, long inseed) { /* generates N uniform numbers with starting seed */ long aktseed; long tmp; long rgrand[32]; long aktrand; long i; if (inseed < 0) inseed = -inseed; if (inseed < 1) inseed = 1; aktseed = inseed; for (i = 39; i >= 0; i--) { tmp = (int) floor((double) aktseed / (double) 127773); aktseed = 16807 * (aktseed - tmp * 127773) - 2836 * tmp; if (aktseed < 0) aktseed = aktseed + 2147483647; if (i < 32) rgrand[i] = aktseed; } aktrand = rgrand[0]; for (i = 0; i < (long) N; i++) { tmp = (int) floor((double) aktseed / (double) 127773); aktseed = 16807 * (aktseed - tmp * 127773) - 2836 * tmp; if (aktseed < 0) aktseed = aktseed + 2147483647; tmp = (int) floor((double) aktrand / (double) 67108865); aktrand = rgrand[tmp]; rgrand[tmp] = aktseed; r[i] = (double) aktrand / 2.147483647e9; if (r[i] == 0.) { r[i] = 1e-99; } } return; } /** * @brief Converts from packed matrix storage to an array of array of double representation. */ static double **bbob2009_reshape(double **B, double *vector, const size_t m, const size_t n) { size_t i, j; for (i = 0; i < m; i++) { for (j = 0; j < n; j++) { B[i][j] = vector[j * m + i]; } } return B; } /** * @brief Generates N Gaussian random numbers using the given seed and stores them in g. */ static void bbob2009_gauss(double *g, const size_t N, const long seed) { size_t i; double uniftmp[6000]; assert(2 * N < 6000); bbob2009_unif(uniftmp, 2 * N, seed); for (i = 0; i < N; i++) { g[i] = sqrt(-2 * log(uniftmp[i])) * cos(2 * coco_pi * uniftmp[N + i]); if (g[i] == 0.) g[i] = 1e-99; } return; } /** * @brief Computes a DIM by DIM rotation matrix based on seed and stores it in B. */ static void bbob2009_compute_rotation(double **B, const long seed, const size_t DIM) { /* To ensure temporary data fits into gvec */ double prod; double gvect[2000]; size_t i, j, k; /* Loop over pairs of column vectors. */ assert(DIM * DIM < 2000); bbob2009_gauss(gvect, DIM * DIM, seed); bbob2009_reshape(B, gvect, DIM, DIM); /*1st coordinate is row, 2nd is column.*/ for (i = 0; i < DIM; i++) { for (j = 0; j < i; j++) { prod = 0; for (k = 0; k < DIM; k++) prod += B[k][i] * B[k][j]; for (k = 0; k < DIM; k++) B[k][i] -= prod * B[k][j]; } prod = 0; for (k = 0; k < DIM; k++) prod += B[k][i] * B[k][i]; for (k = 0; k < DIM; k++) B[k][i] /= sqrt(prod); } } static void bbob2009_copy_rotation_matrix(double **rot, double *M, double *b, const size_t DIM) { size_t row, column; double *current_row; for (row = 0; row < DIM; ++row) { current_row = M + row * DIM; for (column = 0; column < DIM; ++column) { current_row[column] = rot[row][column]; } b[row] = 0.0; } } /** * @brief Randomly computes the location of the global optimum. */ static void bbob2009_compute_xopt(double *xopt, const long seed, const size_t DIM) { size_t i; bbob2009_unif(xopt, DIM, seed); for (i = 0; i < DIM; i++) { xopt[i] = 8 * floor(1e4 * xopt[i]) / 1e4 - 4; if (xopt[i] == 0.0) xopt[i] = -1e-5; } } /** * @brief Randomly chooses the objective offset for the given function and instance. */ static double bbob2009_compute_fopt(const size_t function, const size_t instance) { long rseed, rrseed; double gval, gval2; if (function == 4) rseed = 3; else if (function == 18) rseed = 17; else if (function == 101 || function == 102 || function == 103 || function == 107 || function == 108 || function == 109) rseed = 1; else if (function == 104 || function == 105 || function == 106 || function == 110 || function == 111 || function == 112) rseed = 8; else if (function == 113 || function == 114 || function == 115) rseed = 7; else if (function == 116 || function == 117 || function == 118) rseed = 10; else if (function == 119 || function == 120 || function == 121) rseed = 14; else if (function == 122 || function == 123 || function == 124) rseed = 17; else if (function == 125 || function == 126 || function == 127) rseed = 19; else if (function == 128 || function == 129 || function == 130) rseed = 21; else rseed = (long) function; rrseed = rseed + (long) (10000 * instance); bbob2009_gauss(&gval, 1, rrseed); bbob2009_gauss(&gval2, 1, rrseed + 1); return bbob2009_fmin(1000., bbob2009_fmax(-1000., bbob2009_round(100. * 100. * gval / gval2) / 100.)); } #line 12 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/transform_obj_oscillate.c" /** * @file transform_obj_oscillate.c * @brief Implementation of oscillating the objective value. */ #include #include #line 10 "code-experiments/src/transform_obj_oscillate.c" #line 11 "code-experiments/src/transform_obj_oscillate.c" /** * @brief Evaluates the transformation. */ static void transform_obj_oscillate_evaluate(coco_problem_t *problem, const double *x, double *y) { static const double factor = 0.1; size_t i; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } coco_evaluate_function(coco_problem_transformed_get_inner_problem(problem), x, y); for (i = 0; i < problem->number_of_objectives; i++) { if (y[i] != 0) { double log_y; log_y = log(fabs(y[i])) / factor; if (y[i] > 0) { y[i] = pow(exp(log_y + 0.49 * (sin(log_y) + sin(0.79 * log_y))), factor); } else { y[i] = -pow(exp(log_y + 0.49 * (sin(0.55 * log_y) + sin(0.31 * log_y))), factor); } } } assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_obj_oscillate(coco_problem_t *inner_problem) { coco_problem_t *problem; problem = coco_problem_transformed_allocate(inner_problem, NULL, NULL, "transform_obj_oscillate"); problem->evaluate_function = transform_obj_oscillate_evaluate; /* Compute best value */ /* Maybe not the most efficient solution */ transform_obj_oscillate_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } #line 13 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/transform_obj_power.c" /** * @file transform_obj_power.c * @brief Implementation of raising the objective value to the power of a given exponent. */ #include #include #line 10 "code-experiments/src/transform_obj_power.c" #line 11 "code-experiments/src/transform_obj_power.c" /** * @brief Data type for transform_obj_power. */ typedef struct { double exponent; } transform_obj_power_data_t; /** * @brief Evaluates the transformation. */ static void transform_obj_power_evaluate(coco_problem_t *problem, const double *x, double *y) { transform_obj_power_data_t *data; size_t i; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_obj_power_data_t *) coco_problem_transformed_get_data(problem); coco_evaluate_function(coco_problem_transformed_get_inner_problem(problem), x, y); for (i = 0; i < problem->number_of_objectives; i++) { y[i] = pow(y[i], data->exponent); } assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_obj_power(coco_problem_t *inner_problem, const double exponent) { transform_obj_power_data_t *data; coco_problem_t *problem; data = (transform_obj_power_data_t *) coco_allocate_memory(sizeof(*data)); data->exponent = exponent; problem = coco_problem_transformed_allocate(inner_problem, data, NULL, "transform_obj_power"); problem->evaluate_function = transform_obj_power_evaluate; /* Compute best value */ transform_obj_power_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } #line 14 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/transform_obj_shift.c" /** * @file transform_obj_shift.c * @brief Implementation of shifting the objective value by the given offset. */ #include #line 9 "code-experiments/src/transform_obj_shift.c" #line 10 "code-experiments/src/transform_obj_shift.c" /** * @brief Data type for transform_obj_shift. */ typedef struct { double offset; } transform_obj_shift_data_t; /** * @brief Evaluates the transformed function. */ static void transform_obj_shift_evaluate_function(coco_problem_t *problem, const double *x, double *y) { transform_obj_shift_data_t *data; double *cons_values; int is_feasible; size_t i; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_obj_shift_data_t *) coco_problem_transformed_get_data(problem); coco_evaluate_function(coco_problem_transformed_get_inner_problem(problem), x, y); for (i = 0; i < problem->number_of_objectives; i++) y[i] += data->offset; if (problem->number_of_constraints > 0) { cons_values = coco_allocate_vector(problem->number_of_constraints); is_feasible = coco_is_feasible(problem, x, cons_values); coco_free_memory(cons_values); if (is_feasible) assert(y[0] + 1e-13 >= problem->best_value[0]); } else assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the gradient of the transformed function at x */ static void transform_obj_shift_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } bbob_evaluate_gradient(coco_problem_transformed_get_inner_problem(problem), x, y); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_obj_shift(coco_problem_t *inner_problem, const double offset) { coco_problem_t *problem; transform_obj_shift_data_t *data; size_t i; data = (transform_obj_shift_data_t *) coco_allocate_memory(sizeof(*data)); data->offset = offset; problem = coco_problem_transformed_allocate(inner_problem, data, NULL, "transform_obj_shift"); if (inner_problem->number_of_objectives > 0) problem->evaluate_function = transform_obj_shift_evaluate_function; problem->evaluate_gradient = transform_obj_shift_evaluate_gradient; /* TODO (NH): why do we need a new function pointer here? */ for (i = 0; i < problem->number_of_objectives; i++) problem->best_value[i] += offset; return problem; } #line 15 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/transform_vars_affine.c" /** * @file transform_vars_affine.c * @brief Implementation of performing an affine transformation on decision values. * * x |-> Mx + b
* The matrix M is stored in row-major format. * * Currently, the best parameter is transformed correctly only in the simple * cases where M is orthogonal which is always the case for the `bbob` * functions. How to code this for general transformations of the above form, * see https://github.com/numbbo/coco/issues/814#issuecomment-303724400 */ #include #line 17 "code-experiments/src/transform_vars_affine.c" #line 18 "code-experiments/src/transform_vars_affine.c" /** * @brief Data type for transform_vars_affine. */ typedef struct { double *M, *b, *x; } transform_vars_affine_data_t; /** * @brief Evaluates the transformed objective function. */ static void transform_vars_affine_evaluate_function(coco_problem_t *problem, const double *x, double *y) { size_t i, j; double *cons_values; int is_feasible; transform_vars_affine_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_affine_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < inner_problem->number_of_variables; ++i) { /* data->M has problem->number_of_variables columns and inner_problem->number_of_variables rows. */ const double *current_row = data->M + i * problem->number_of_variables; data->x[i] = data->b[i]; for (j = 0; j < problem->number_of_variables; ++j) { data->x[i] += x[j] * current_row[j]; } } coco_evaluate_function(inner_problem, data->x, y); if (problem->number_of_constraints > 0) { cons_values = coco_allocate_vector(problem->number_of_constraints); is_feasible = coco_is_feasible(problem, x, cons_values); coco_free_memory(cons_values); if (is_feasible) assert(y[0] + 1e-13 >= problem->best_value[0]); } else assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the transformed constraint. */ static void transform_vars_affine_evaluate_constraint(coco_problem_t *problem, const double *x, double *y) { size_t i, j; transform_vars_affine_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_constraints(problem)); return; } data = (transform_vars_affine_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < inner_problem->number_of_variables; ++i) { /* data->M has problem->number_of_variables columns and inner_problem->number_of_variables rows. */ const double *current_row = data->M + i * problem->number_of_variables; data->x[i] = data->b[i]; for (j = 0; j < problem->number_of_variables; ++j) { data->x[i] += x[j] * current_row[j]; } } coco_evaluate_constraint(inner_problem, data->x, y); } /** * @brief Evaluates the gradient of the transformed function. */ static void transform_vars_affine_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { size_t i, j; transform_vars_affine_data_t *data; coco_problem_t *inner_problem; double *current_row; double *gradient; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_affine_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); gradient = coco_allocate_vector(inner_problem->number_of_variables); for (i = 0; i < inner_problem->number_of_variables; ++i) gradient[i] = 0.0; for (i = 0; i < inner_problem->number_of_variables; ++i) { /* data->M has problem->number_of_variables columns and inner_problem->number_of_variables rows. */ current_row = data->M + i * problem->number_of_variables; data->x[i] = data->b[i]; for (j = 0; j < problem->number_of_variables; ++j) { data->x[i] += x[j] * current_row[j]; } } bbob_evaluate_gradient(inner_problem, data->x, y); /* grad_(f o g )(x), where g(x) = M * x + b, equals to * M^T * grad_f(M *x + b) */ for (j = 0; j < inner_problem->number_of_variables; ++j) { for (i = 0; i < inner_problem->number_of_variables; ++i) { current_row = data->M + i * problem->number_of_variables; gradient[j] += y[i] * current_row[j]; } } for (i = 0; i < inner_problem->number_of_variables; ++i) y[i] = gradient[i]; current_row = NULL; coco_free_memory(gradient); } /** * @brief Frees the data object. */ static void transform_vars_affine_free(void *thing) { transform_vars_affine_data_t *data = (transform_vars_affine_data_t *) thing; coco_free_memory(data->M); coco_free_memory(data->b); coco_free_memory(data->x); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_affine(coco_problem_t *inner_problem, const double *M, const double *b, const size_t number_of_variables) { /* * TODOs: * - Calculate new smallest/largest values of interest? * - Resize bounds vectors if input and output dimensions do not match */ size_t i, j; coco_problem_t *problem; transform_vars_affine_data_t *data; size_t entries_in_M; entries_in_M = inner_problem->number_of_variables * number_of_variables; data = (transform_vars_affine_data_t *) coco_allocate_memory(sizeof(*data)); data->M = coco_duplicate_vector(M, entries_in_M); data->b = coco_duplicate_vector(b, inner_problem->number_of_variables); data->x = coco_allocate_vector(inner_problem->number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_affine_free, "transform_vars_affine"); if (inner_problem->number_of_objectives > 0) problem->evaluate_function = transform_vars_affine_evaluate_function; if (inner_problem->number_of_constraints > 0) problem->evaluate_constraint = transform_vars_affine_evaluate_constraint; problem->evaluate_gradient = transform_vars_affine_evaluate_gradient; /* Update the best parameter by computing problem->best_parameter = M^T * (inner_problem->best_parameter - b). The update takes place only if the best parameter or b are different than zero and the transformation matrix M is orthogonal. */ if (coco_problem_best_parameter_not_zero(inner_problem) || !coco_vector_is_zero(data->b, inner_problem->number_of_variables)) { if (!coco_is_orthogonal(data->M, problem->number_of_variables, inner_problem->number_of_variables)) coco_warning("transform_vars_affine(): rotation matrix is not orthogonal. Best parameter not updated"); else { for (i = 0; i < inner_problem->number_of_variables; ++i) { data->x[i] = inner_problem->best_parameter[i] - data->b[i]; } for (i = 0; i < problem->number_of_variables; ++i) { problem->best_parameter[i] = 0; for (j = 0; j < inner_problem->number_of_variables; ++j) { problem->best_parameter[i] += data->M[j * problem->number_of_variables + i] * data->x[j]; } } } } return problem; } #line 16 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/transform_vars_shift.c" /** * @file transform_vars_shift.c * @brief Implementation of shifting all decision values by an offset. */ #include #line 9 "code-experiments/src/transform_vars_shift.c" #line 10 "code-experiments/src/transform_vars_shift.c" /** * @brief Data type for transform_vars_shift. */ typedef struct { double *offset; double *shifted_x; coco_problem_free_function_t old_free_problem; } transform_vars_shift_data_t; /** * @brief Evaluates the transformed objective function. */ static void transform_vars_shift_evaluate_function(coco_problem_t *problem, const double *x, double *y) { size_t i; double *cons_values; int is_feasible; transform_vars_shift_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_shift_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < problem->number_of_variables; ++i) { data->shifted_x[i] = x[i] - data->offset[i]; } coco_evaluate_function(inner_problem, data->shifted_x, y); if (problem->number_of_constraints > 0) { cons_values = coco_allocate_vector(problem->number_of_constraints); is_feasible = coco_is_feasible(problem, x, cons_values); coco_free_memory(cons_values); if (is_feasible) assert(y[0] + 1e-13 >= problem->best_value[0]); } else assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the transformed constraint function. */ static void transform_vars_shift_evaluate_constraint(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_shift_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_shift_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < problem->number_of_variables; ++i) { data->shifted_x[i] = x[i] - data->offset[i]; } coco_evaluate_constraint(inner_problem, data->shifted_x, y); } /** * @brief Evaluates the gradient of the transformed function at x */ static void transform_vars_shift_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_shift_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_shift_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < problem->number_of_variables; ++i) { data->shifted_x[i] = x[i] - data->offset[i]; } bbob_evaluate_gradient(inner_problem, data->shifted_x, y); } /** * @brief Frees the data object. */ static void transform_vars_shift_free(void *thing) { transform_vars_shift_data_t *data = (transform_vars_shift_data_t *) thing; coco_free_memory(data->shifted_x); coco_free_memory(data->offset); } /** * @brief Creates the transformation. * * CAVEAT: when shifting the constraint only, the best_value of best_parameter * will get in an inconsistent state. */ static coco_problem_t *transform_vars_shift(coco_problem_t *inner_problem, const double *offset, const int shift_constraint_only) { transform_vars_shift_data_t *data; coco_problem_t *problem; size_t i; data = (transform_vars_shift_data_t *) coco_allocate_memory(sizeof(*data)); data->offset = coco_duplicate_vector(offset, inner_problem->number_of_variables); data->shifted_x = coco_allocate_vector(inner_problem->number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_shift_free, "transform_vars_shift"); if (inner_problem->number_of_objectives > 0 && shift_constraint_only == 0) problem->evaluate_function = transform_vars_shift_evaluate_function; if (inner_problem->number_of_constraints > 0) problem->evaluate_constraint = transform_vars_shift_evaluate_constraint; problem->evaluate_gradient = transform_vars_shift_evaluate_gradient; /* Update the best parameter */ for (i = 0; i < problem->number_of_variables; i++) problem->best_parameter[i] += data->offset[i]; /* Update the initial solution if any */ if (problem->initial_solution) for (i = 0; i < problem->number_of_variables; i++) problem->initial_solution[i] += data->offset[i]; return problem; } #line 17 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/transform_vars_permutation.c" /** * @file transform_vars_permutation.c * @brief Implementation of permuting the decision values. */ #include #line 9 "code-experiments/src/transform_vars_permutation.c" #line 10 "code-experiments/src/transform_vars_permutation.c" #line 1 "code-experiments/src/transform_vars_permutation_helpers.c" /** * @file transform_vars_permutation_helpers.c * @brief implements functions needed by transform_vars_permutation.c */ #include #include #line 9 "code-experiments/src/transform_vars_permutation_helpers.c" #line 11 "code-experiments/src/transform_vars_permutation_helpers.c" #line 12 "code-experiments/src/transform_vars_permutation_helpers.c" #include /*tmp*/ /* TODO: Document this file in doxygen style! */ static double *perm_random_data;/* global variable used to generate the random permutations */ /** * @brief Comparison function used for sorting. In our case, it serves as a random permutation generator */ static int f_compare_doubles_for_random_permutation(const void *a, const void *b) { double temp = perm_random_data[*(const size_t *) a] - perm_random_data[*(const size_t *) b]; if (temp > 0) return 1; else if (temp < 0) return -1; else return 0; } /** * @brief generates a random, uniformly sampled, permutation and puts it in P * Wassim: move to coco_utilities? */ static void coco_compute_random_permutation(size_t *P, long seed, size_t n) { size_t i; perm_random_data = coco_allocate_vector(n); bbob2009_gauss(perm_random_data, n, seed); for (i = 0; i < n; i++){ P[i] = i; } qsort(P, n, sizeof(size_t), f_compare_doubles_for_random_permutation); coco_free_memory(perm_random_data); } /** * @brief generates a permutation by sorting a sequence and puts it in P */ static void coco_compute_permutation_from_sequence(size_t *P, double *seq, size_t length) { size_t i; perm_random_data = coco_allocate_vector(length); for (i = 0; i < length; i++){ P[i] = i; perm_random_data[i] = seq[i]; } qsort(P, length, sizeof(size_t), f_compare_doubles_for_random_permutation); coco_free_memory(perm_random_data); } /** * @brief returns a uniformly distributed integer between lower_bound and upper_bound using seed * without using coco_random_new. * Move to coco_utilities? */ static long coco_random_unif_integer(long lower_bound, long upper_bound, long seed){ long range, rand_int; double *tmp_uniform; tmp_uniform = coco_allocate_vector(1); bbob2009_unif(tmp_uniform, 1, seed); range = upper_bound - lower_bound + 1; rand_int = ((long)(tmp_uniform[0] * (double) range)) + lower_bound; coco_free_memory(tmp_uniform); return rand_int; } /** * @brief generates a random permutation resulting from nb_swaps truncated uniform swaps of range swap_range * missing parameters: dynamic_not_static pool, seems empirically irrelevant * for now so dynamic is implemented (simple since no need for tracking indices * if swap_range is 0, a random uniform permutation is generated */ static void coco_compute_truncated_uniform_swap_permutation(size_t *P, long seed, size_t n, size_t nb_swaps, size_t swap_range) { size_t i, idx_swap; size_t lower_bound, upper_bound, first_swap_var, second_swap_var, tmp; size_t *idx_order; if (n <= 40) { /* Do an identity permutation for dimensions <= 40 */ for (i = 0; i < n; i++) P[i] = i; return; } perm_random_data = coco_allocate_vector(n); bbob2009_unif(perm_random_data, n, seed); idx_order = coco_allocate_vector_size_t(n); for (i = 0; i < n; i++) { P[i] = i; idx_order[i] = i; } if (swap_range > 0) { /*sort the random data in perm_random_data and arrange idx_order accordingly*/ /*did not use coco_compute_random_permutation to only use the seed once*/ qsort(idx_order, n, sizeof(size_t), f_compare_doubles_for_random_permutation); for (idx_swap = 0; idx_swap < nb_swaps; idx_swap++) { first_swap_var = idx_order[idx_swap]; if (first_swap_var < swap_range) { lower_bound = 0; } else{ lower_bound = first_swap_var - swap_range; } if (first_swap_var + swap_range > n - 1) { upper_bound = n - 1; } else{ upper_bound = first_swap_var + swap_range; } second_swap_var = (size_t) coco_random_unif_integer((long) lower_bound, (long) upper_bound - 1, seed + (long) (1 + idx_swap) * 1000); if (second_swap_var >= first_swap_var) { second_swap_var += 1; } /* swap*/ tmp = P[first_swap_var]; P[first_swap_var] = P[second_swap_var]; P[second_swap_var] = tmp; } } else { /* generate random permutation instead */ coco_compute_random_permutation(P, seed, n); } coco_free_memory(idx_order); coco_free_memory(perm_random_data); } /** * @brief duplicates a size_t vector */ static size_t *coco_duplicate_size_t_vector(const size_t *src, const size_t number_of_elements) { size_t i; size_t *dst; assert(src != NULL); assert(number_of_elements > 0); dst = coco_allocate_vector_size_t(number_of_elements); for (i = 0; i < number_of_elements; ++i) { dst[i] = src[i]; } return dst; } /** * @brief return the swap_range corresponding to the problem in the given suite */ static size_t coco_get_swap_range(size_t dimension, const char *suite_name){ if (strcmp(suite_name, "bbob-largescale") == 0) { return dimension / 3; } else { coco_error("coco_get_swap_range(): unknown problem suite"); return (size_t) NULL; } } /** * @brief return the number of swaps corresponding to the problem in the given suite */ size_t coco_get_nb_swaps(size_t dimension, const char *suite_name){ if (strcmp(suite_name, "bbob-largescale") == 0) { return dimension; } else { coco_error("coco_get_nb_swaps(): unknown problem suite"); return (size_t) NULL; } } #line 11 "code-experiments/src/transform_vars_permutation.c" /** * @brief Data type for transform_vars_permutation. */ typedef struct { double *x; size_t *P; /**< @brief the permutation matrices*/ } transform_vars_permutation_t; static void transform_vars_permutation_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_permutation_t *data; coco_problem_t *inner_problem; data = (transform_vars_permutation_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < inner_problem->number_of_variables; ++i) { data->x[i] = x[data->P[i]]; } coco_evaluate_function(inner_problem, data->x, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } static void transform_vars_permutation_free(void *thing) { transform_vars_permutation_t *data = (transform_vars_permutation_t *) thing; coco_free_memory(data->x); coco_free_memory(data->P); } static coco_problem_t *transform_vars_permutation(coco_problem_t *inner_problem, const size_t *P, const size_t number_of_variables) { coco_problem_t *problem; transform_vars_permutation_t *data; assert(number_of_variables == inner_problem->number_of_variables);/*tmp*/ data = (transform_vars_permutation_t *) coco_allocate_memory(sizeof(*data)); data->x = coco_allocate_vector(number_of_variables); data->P = coco_duplicate_size_t_vector(P, number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_permutation_free, "transform_vars_permutation"); problem->evaluate_function = transform_vars_permutation_evaluate; return problem; } static void transform_vars_inverse_permutation_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_permutation_t *data; coco_problem_t *inner_problem; data = (transform_vars_permutation_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < inner_problem->number_of_variables; ++i) { data->x[data->P[i]] = x[i]; } coco_evaluate_function(inner_problem, data->x, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } static coco_problem_t *transform_vars_inverse_permutation(coco_problem_t *inner_problem, const size_t *P, const size_t number_of_variables) { coco_problem_t *problem; transform_vars_permutation_t *data; assert(number_of_variables == inner_problem->number_of_variables); data = (transform_vars_permutation_t *) coco_allocate_memory(sizeof(*data)); data->x = coco_allocate_vector(number_of_variables); data->P = coco_duplicate_size_t_vector(P, number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_permutation_free, "transform_vars_inverse_permutation"); problem->evaluate_function = transform_vars_inverse_permutation_evaluate; return problem; } #line 18 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/transform_vars_blockrotation.c" /** * @file transform_vars_blockrotation.c * @brief Implementation of performing a block-rotation transformation on * decision values. * * x |-> Bx * The matrix B is stored in a 2-D array. Only the content of the blocks are * stored */ #include #line 14 "code-experiments/src/transform_vars_blockrotation.c" #line 15 "code-experiments/src/transform_vars_blockrotation.c" #line 1 "code-experiments/src/transform_vars_blockrotation_helpers.c" /** * @file transform_vars_blockrotation_helpers.c * @brief implements functions needed by transform_vars_blockrotation.c */ #include #include #line 9 "code-experiments/src/transform_vars_blockrotation_helpers.c" #line 11 "code-experiments/src/transform_vars_blockrotation_helpers.c" #line 12 "code-experiments/src/transform_vars_blockrotation_helpers.c" #include /*tmp*/ /* TODO: Document this file in doxygen style! */ /** * @brief Returns block size for block rotation matrices. * */ static size_t coco_rotation_matrix_block_size(size_t const dimension) { const double BLOCK_SIZE_RELATIVE = 1; /* for block rotations, relative to dimension */ const size_t MAX_BLOCK_SIZE_ABSOLUTE = 40; /* for block rotations */ return coco_double_to_size_t(coco_double_min( BLOCK_SIZE_RELATIVE * (double)dimension, (double)MAX_BLOCK_SIZE_ABSOLUTE)); } /** * @brief * Allocate a ${n} by ${m} block matrix of nb_blocks block sizes block_sizes structured as an array of pointers * to double arrays. * each row contains only the block_sizes[i] possibly non-zero elements */ static double **coco_allocate_blockmatrix(const size_t n, const size_t* block_sizes, const size_t nb_blocks) { double **matrix = NULL; size_t current_blocksize; size_t next_bs_change; size_t idx_blocksize; size_t i; COCO_UNUSED size_t sum_block_sizes; sum_block_sizes = 0; for (i = 0; i < nb_blocks; i++){ sum_block_sizes += block_sizes[i]; } assert(sum_block_sizes == n); matrix = (double **) coco_allocate_memory(sizeof(double *) * n); idx_blocksize = 0; next_bs_change = block_sizes[idx_blocksize]; for (i = 0; i < n; ++i) { if (i >= next_bs_change) { idx_blocksize++; next_bs_change += block_sizes[idx_blocksize]; } current_blocksize=block_sizes[idx_blocksize]; matrix[i] = coco_allocate_vector(current_blocksize); } return matrix; } /** * @brief frees a block diagonal matrix (same as a matrix but in case of change, easier to update separately from free_matrix) */ static void coco_free_block_matrix(double **matrix, const size_t n) { size_t i; for (i = 0; i < n; ++i) { if (matrix[i] != NULL) { coco_free_memory(matrix[i]); matrix[i] = NULL; } } coco_free_memory(matrix); } /** * @brief Compute a ${DIM}x${DIM} block-diagonal matrix based on ${seed} and block_sizes and stores it in ${B}. * B is a 2D vector with DIM lines and each line has blocksize(line) elements (the zeros are not stored) */ static void coco_compute_blockrotation(double **B, long seed, COCO_UNUSED size_t n, size_t *block_sizes, size_t nb_blocks) { double **current_block; size_t i, j; size_t idx_block, current_blocksize, cumsum_prev_block_sizes; COCO_UNUSED size_t sum_block_sizes; sum_block_sizes = 0; for (i = 0; i < nb_blocks; i++){ sum_block_sizes += block_sizes[i]; } assert(sum_block_sizes == n); cumsum_prev_block_sizes = 0;/* shift in rows to account for the previous blocks */ for (idx_block = 0; idx_block < nb_blocks; idx_block++) { current_blocksize = block_sizes[idx_block]; current_block = bbob2009_allocate_matrix(current_blocksize, current_blocksize); assert(current_blocksize <= 44); bbob2009_compute_rotation(current_block, seed + (long) 1000000 * (long) idx_block, current_blocksize); /* now fill the block matrix*/ for (i = 0 ; i < current_blocksize; i++) { for (j = 0; j < current_blocksize; j++) { B[i + cumsum_prev_block_sizes][j] = current_block[i][j]; } } cumsum_prev_block_sizes+=current_blocksize; /*current_gvect_pos += current_blocksize * current_blocksize;*/ coco_free_block_matrix(current_block, current_blocksize); } } /** * @brief makes a copy of a block_matrix */ static double **coco_copy_block_matrix(const double *const *B, const size_t dimension, const size_t *block_sizes, const size_t nb_blocks) { double **dest; size_t i, j, idx_blocksize, current_blocksize, next_bs_change; dest = coco_allocate_blockmatrix(dimension, block_sizes, nb_blocks); idx_blocksize = 0; next_bs_change = block_sizes[idx_blocksize]; assert(nb_blocks != 0); /*tmp*/ /*to silence warning*/ for (i = 0; i < dimension; i++) { if (i >= next_bs_change) { idx_blocksize++; next_bs_change += block_sizes[idx_blocksize]; } current_blocksize=block_sizes[idx_blocksize]; for (j = 0; j < current_blocksize; j++) { dest[i][j] = B[i][j]; } } return dest; } /** * @brief returns the list of block_sizes and sets nb_blocks to its correct value */ static size_t *coco_get_block_sizes(size_t *nb_blocks, size_t dimension, const char *suite_name){ size_t *block_sizes; size_t block_size; size_t i; if (strcmp(suite_name, "bbob-largescale") == 0) { /*block_size = coco_double_to_size_t(bbob2009_fmin((double)dimension / 4, 100));*/ /*old value*/ /*block_size = coco_double_to_size_t(bbob2009_fmin((double)dimension, 40));*/ block_size = coco_rotation_matrix_block_size(dimension); *nb_blocks = dimension / block_size + ((dimension % block_size) > 0); block_sizes = coco_allocate_vector_size_t(*nb_blocks); for (i = 0; i < *nb_blocks - 1; i++) { block_sizes[i] = block_size; } block_sizes[*nb_blocks - 1] = dimension - (*nb_blocks - 1) * block_size; /*add rest*/ return block_sizes; } else { return NULL; } } #line 16 "code-experiments/src/transform_vars_blockrotation.c" #line 17 "code-experiments/src/transform_vars_blockrotation.c" /** * @brief Data type for transform_vars_blockrotation. */ typedef struct { double **B; /**< @brief the block-diagonal matrices*/ double *Bx; size_t dimension; size_t *block_sizes; /**< @brief the list of block-sizes*/ size_t nb_blocks; /**< @brief the number of blocks in the matrix */ size_t *block_size_map; /**< @brief maps a row to the block-size of the block to which it belong, keep until better way is found */ size_t *first_non_zero_map; /**< @brief maps a row to the index of its first non zero element */ } transform_vars_blockrotation_t; /* * @brief return i-th row of blockrotation problem->data->B in y. */ static void transform_vars_blockrotation_get_row(coco_problem_t *problem, size_t i, double *y) { size_t j, current_blocksize, first_non_zero_ind; /* cp-paste from apply */ transform_vars_blockrotation_t *data; data = (transform_vars_blockrotation_t *)coco_problem_transformed_get_data( problem); current_blocksize = data->block_size_map[i]; first_non_zero_ind = data->first_non_zero_map[i]; for (j = 0; j < data->dimension; ++j) { y[j] = (j < first_non_zero_ind || j >= first_non_zero_ind + current_blocksize) ? 0 : data->B[i][j - first_non_zero_ind]; /*all B lines start at 0*/ } } /* * @brief Computes y = Bx, where all the pertinent information about B is given * in the problem data. */ static void transform_vars_blockrotation_apply(coco_problem_t *problem, const double *x, double *y) { size_t i, j, current_blocksize, first_non_zero_ind; transform_vars_blockrotation_t *data; data = (transform_vars_blockrotation_t *)coco_problem_transformed_get_data( problem); assert(x != data->Bx); for (i = 0; i < data->dimension; ++i) { current_blocksize = data->block_size_map[i]; first_non_zero_ind = data->first_non_zero_map[i]; data->Bx[i] = 0; /*compute y[i] = < B[i,:] , x > */ for (j = first_non_zero_ind; j < first_non_zero_ind + current_blocksize; ++j) { data->Bx[i] += data->B[i][j - first_non_zero_ind] * x[j]; /*all B lines start at 0*/ } } if (y != data->Bx) { for (i = 0; i < data->dimension; ++i) { y[i] = data->Bx[i]; } } } static void transform_vars_blockrotation_evaluate(coco_problem_t *problem, const double *x, double *y) { coco_problem_t *inner_problem = coco_problem_transformed_get_inner_problem(problem); transform_vars_blockrotation_t *data; data = (transform_vars_blockrotation_t *)coco_problem_transformed_get_data( problem); transform_vars_blockrotation_apply(problem, x, data->Bx); coco_evaluate_function(inner_problem, data->Bx, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } static void transform_vars_blockrotation_free(void *stuff) { transform_vars_blockrotation_t *data = (transform_vars_blockrotation_t *)stuff; coco_free_block_matrix(data->B, data->dimension); coco_free_memory(data->block_sizes); coco_free_memory(data->Bx); coco_free_memory(data->block_size_map); coco_free_memory(data->first_non_zero_map); } /* * @brief test blockrotation on its own rows and raise coco_error in case */ static void transform_vars_blockrotation_test(coco_problem_t *problem, double precision) { size_t i, j; size_t number_of_variables = coco_problem_get_dimension(problem); double *y = coco_allocate_vector(number_of_variables); for (i = 0; i < number_of_variables; ++i) { /* for each row */ transform_vars_blockrotation_get_row(problem, i, y); transform_vars_blockrotation_apply(problem, y, y); for (j = 0; j < number_of_variables; ++j) { /* check result */ if (!coco_double_almost_equal(y[j], (i == j) ? 1.0 : 0.0, precision)) { coco_error("transform_vars_blockrotation_test() with precision %e " "failed on row %i", precision, i); } /* printf("%f ", y[j]); */ } /* printf("\n"); */ } coco_free_memory(y); } static coco_problem_t *transform_vars_blockrotation( coco_problem_t *inner_problem, const double *const *B, const size_t number_of_variables, const size_t *block_sizes, const size_t nb_blocks) { coco_problem_t *problem; transform_vars_blockrotation_t *data; size_t idx_blocksize, next_bs_change, current_blocksize; size_t i; assert(number_of_variables > 0); /*tmp*/ data = (transform_vars_blockrotation_t *)coco_allocate_memory(sizeof(*data)); data->dimension = number_of_variables; data->B = coco_copy_block_matrix(B, number_of_variables, block_sizes, nb_blocks); data->Bx = coco_allocate_vector(inner_problem->number_of_variables); data->block_sizes = coco_duplicate_size_t_vector(block_sizes, nb_blocks); data->nb_blocks = nb_blocks; data->block_size_map = coco_allocate_vector_size_t(number_of_variables); data->first_non_zero_map = coco_allocate_vector_size_t(number_of_variables); idx_blocksize = 0; next_bs_change = block_sizes[idx_blocksize]; for (i = 0; i < number_of_variables; i++) { if (i >= next_bs_change) { idx_blocksize++; next_bs_change += block_sizes[idx_blocksize]; } current_blocksize = block_sizes[idx_blocksize]; data->block_size_map[i] = current_blocksize; data->first_non_zero_map[i] = next_bs_change - current_blocksize; /* next_bs_change serves also as a cumsum for blocksizes*/ } if (coco_problem_best_parameter_not_zero(inner_problem)) { coco_debug("transform_vars_blockrotation(): 'best_parameter' not updated, " "set to NAN"); coco_vector_set_to_nan(inner_problem->best_parameter, inner_problem->number_of_variables); } problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_blockrotation_free, "transform_vars_blockrotation"); problem->evaluate_function = transform_vars_blockrotation_evaluate; if (number_of_variables < 100) { /* 1e-11 still passes and 1e-12 fails under macOS */ transform_vars_blockrotation_test(problem, 1e-5); } return problem; } #line 19 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/transform_vars_conditioning.c" /** * @file transform_vars_conditioning.c * @brief Implementation of conditioning decision values. */ #include #include #line 10 "code-experiments/src/transform_vars_conditioning.c" #line 11 "code-experiments/src/transform_vars_conditioning.c" /** * @brief Data type for transform_vars_conditioning. */ typedef struct { double *x; double alpha; } transform_vars_conditioning_data_t; /** * @brief Evaluates the transformation. */ static void transform_vars_conditioning_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_conditioning_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_conditioning_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < problem->number_of_variables; ++i) { /* OME: We could precalculate the scaling coefficients if we * really wanted to. */ data->x[i] = pow(data->alpha, 0.5 * (double) (long) i / ((double) (long) problem->number_of_variables - 1.0)) * x[i]; } coco_evaluate_function(inner_problem, data->x, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the gradient of the transformed function. */ static void transform_vars_conditioning_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_conditioning_data_t *data; coco_problem_t *inner_problem; double *gradient; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_conditioning_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); gradient = coco_allocate_vector(inner_problem->number_of_variables); for (i = 0; i < problem->number_of_variables; ++i) { gradient[i] = pow(data->alpha, 0.5 * (double) (long) i / ((double) (long) problem->number_of_variables - 1.0)); data->x[i] = gradient[i] * x[i]; } bbob_evaluate_gradient(inner_problem, data->x, y); for (i = 0; i < inner_problem->number_of_variables; ++i) gradient[i] *= y[i]; for (i = 0; i < inner_problem->number_of_variables; ++i) y[i] = gradient[i]; coco_free_memory(gradient); } static void transform_vars_conditioning_free(void *thing) { transform_vars_conditioning_data_t *data = (transform_vars_conditioning_data_t *) thing; coco_free_memory(data->x); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_conditioning(coco_problem_t *inner_problem, const double alpha) { transform_vars_conditioning_data_t *data; coco_problem_t *problem; data = (transform_vars_conditioning_data_t *) coco_allocate_memory(sizeof(*data)); data->x = coco_allocate_vector(inner_problem->number_of_variables); data->alpha = alpha; problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_conditioning_free, "transform_vars_conditioning"); problem->evaluate_function = transform_vars_conditioning_evaluate; problem->evaluate_gradient = transform_vars_conditioning_evaluate_gradient; if (coco_problem_best_parameter_not_zero(inner_problem)) { coco_warning("transform_vars_conditioning(): 'best_parameter' not updated, set to NAN"); coco_vector_set_to_nan(inner_problem->best_parameter, inner_problem->number_of_variables); } return problem; } #line 20 "code-experiments/src/f_attractive_sector.c" #line 1 "code-experiments/src/transform_obj_norm_by_dim.c" /** * @file transform_obj_norm_by_dim.c * @brief Implementation of normalizing the raw fitness functions by the dimensions * Mostly used to in the large-scale testsuite */ #include #line 10 "code-experiments/src/transform_obj_norm_by_dim.c" #line 11 "code-experiments/src/transform_obj_norm_by_dim.c" /** * @brief Evaluates the transformation. */ static void transform_obj_norm_by_dim_evaluate(coco_problem_t *problem, const double *x, double *y) { coco_evaluate_function(coco_problem_transformed_get_inner_problem(problem), x, y); y[0] *= bbob2009_fmin(1, 40. / ((double) problem->number_of_variables)); /* Wassim: might want to use a function (with no 40) here that we can put in a helpers file */ assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_obj_norm_by_dim(coco_problem_t *inner_problem) { coco_problem_t *problem; problem = coco_problem_transformed_allocate(inner_problem, NULL, NULL, "transform_obj_norm_by_dim"); problem->evaluate_function = transform_obj_norm_by_dim_evaluate; return problem; } #line 21 "code-experiments/src/f_attractive_sector.c" /** * @brief Data type for the attractive sector problem. */ typedef struct { double *xopt; } f_attractive_sector_data_t; /** * @brief Implements the attractive sector function without connections to any COCO structures. */ static double f_attractive_sector_raw(const double *x, const size_t number_of_variables, f_attractive_sector_data_t *data) { size_t i; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; result = 0.0; for (i = 0; i < number_of_variables; ++i) { if (data->xopt[i] * x[i] > 0.0) { result += 100.0 * 100.0 * x[i] * x[i]; } else { result += x[i] * x[i]; } } return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_attractive_sector_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_attractive_sector_raw(x, problem->number_of_variables, (f_attractive_sector_data_t *) problem->data); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Frees the attractive sector data object. */ static void f_attractive_sector_free(coco_problem_t *problem) { f_attractive_sector_data_t *data; data = (f_attractive_sector_data_t *) problem->data; coco_free_memory(data->xopt); problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Allocates the basic attractive sector problem. */ static coco_problem_t *f_attractive_sector_allocate(const size_t number_of_variables, const double *xopt) { f_attractive_sector_data_t *data; coco_problem_t *problem = coco_problem_allocate_from_scalars("attractive sector function", f_attractive_sector_evaluate, f_attractive_sector_free, number_of_variables, -5.0, 5.0, 0.0); coco_problem_set_id(problem, "%s_d%02lu", "attractive_sector", number_of_variables); data = (f_attractive_sector_data_t *) coco_allocate_memory(sizeof(*data)); data->xopt = coco_duplicate_vector(xopt, number_of_variables); problem->data = data; /* Compute best solution */ f_attractive_sector_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB attractive sector problem. */ static coco_problem_t *f_attractive_sector_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i, j, k; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *current_row, **rot1, **rot2; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); /* Compute affine transformation M from two rotation matrices */ rot1 = bbob2009_allocate_matrix(dimension, dimension); rot2 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(rot2, rseed, dimension); for (i = 0; i < dimension; ++i) { b[i] = 0.0; current_row = M + i * dimension; for (j = 0; j < dimension; ++j) { current_row[j] = 0.0; for (k = 0; k < dimension; ++k) { double exponent = 1.0 * (int) k / ((double) (long) dimension - 1.0); current_row[j] += rot1[i][k] * pow(sqrt(10.0), exponent) * rot2[k][j]; } } } bbob2009_free_matrix(rot1, dimension); bbob2009_free_matrix(rot2, dimension); problem = f_attractive_sector_allocate(dimension, xopt); problem = transform_obj_oscillate(problem); problem = transform_obj_power(problem, 0.9); problem = transform_obj_shift(problem, fopt); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "2-moderate"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } static coco_problem_t *f_attractive_sector_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B1, **B2; const double *const *B1_copy; const double *const *B2_copy; const double condition = 10.0; size_t *P11, *P12, *P21, *P22; size_t *block_sizes1, *block_sizes2;/* each of R and Q might have its own parameter values */ size_t nb_blocks1, nb_blocks2; size_t swap_range1, swap_range2; size_t nb_swaps1, nb_swaps2; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); block_sizes1 = coco_get_block_sizes(&nb_blocks1, dimension, "bbob-largescale"); block_sizes2 = coco_get_block_sizes(&nb_blocks2, dimension, "bbob-largescale"); swap_range1 = coco_get_swap_range(dimension, "bbob-largescale"); swap_range2 = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps1 = coco_get_nb_swaps(dimension, "bbob-largescale"); nb_swaps2 = coco_get_nb_swaps(dimension, "bbob-largescale"); B1 = coco_allocate_blockmatrix(dimension, block_sizes1, nb_blocks1); B2 = coco_allocate_blockmatrix(dimension, block_sizes2, nb_blocks2); B1_copy = (const double *const *)B1; /* Wassim: silences the warning, not sure it prevents the modification of B at all levels*/ B2_copy = (const double *const *)B2; coco_compute_blockrotation(B1, rseed + 1000000, dimension, block_sizes1, nb_blocks1); coco_compute_blockrotation(B2, rseed, dimension, block_sizes2, nb_blocks2); P11 = coco_allocate_vector_size_t(dimension); P12 = coco_allocate_vector_size_t(dimension); P21 = coco_allocate_vector_size_t(dimension); P22 = coco_allocate_vector_size_t(dimension); coco_compute_truncated_uniform_swap_permutation(P11, rseed + 2000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P12, rseed + 3000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P21, rseed + 4000000, dimension, nb_swaps2, swap_range2); coco_compute_truncated_uniform_swap_permutation(P22, rseed + 5000000, dimension, nb_swaps2, swap_range2); problem = f_attractive_sector_allocate(dimension, xopt); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_oscillate(problem); problem = transform_obj_power(problem, 0.9); problem = transform_obj_shift(problem, fopt); problem = transform_vars_permutation(problem, P22, dimension); problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P21, dimension); problem = transform_vars_conditioning(problem, condition); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_blockrotation(problem, B2_copy, dimension, block_sizes2, nb_blocks2); problem = transform_vars_permutation(problem, P11, dimension); problem = transform_vars_shift(problem, xopt, 0); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "2-moderate"); coco_free_block_matrix(B1, dimension); coco_free_block_matrix(B2, dimension); coco_free_memory(P11); coco_free_memory(P12); coco_free_memory(P21); coco_free_memory(P22); coco_free_memory(block_sizes1); coco_free_memory(block_sizes2); coco_free_memory(xopt); return problem; } #line 10 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_bent_cigar.c" /** * @file f_bent_cigar.c * @brief Implementation of the bent cigar function and problem. */ #include #include #line 10 "code-experiments/src/f_bent_cigar.c" #line 11 "code-experiments/src/f_bent_cigar.c" #line 12 "code-experiments/src/f_bent_cigar.c" #line 13 "code-experiments/src/f_bent_cigar.c" #line 14 "code-experiments/src/f_bent_cigar.c" #line 1 "code-experiments/src/transform_vars_asymmetric.c" /** * @file transform_vars_asymmetric.c * @brief Implementation of performing an asymmetric transformation on decision values. * @author ?? * @author Paul Dufosse * @note Edited to fulfill needs from the constrained test bed. */ #include #include #line 13 "code-experiments/src/transform_vars_asymmetric.c" #line 14 "code-experiments/src/transform_vars_asymmetric.c" #line 1 "code-experiments/src/brentq.c" /* This is a modification of the original file: Written by Charles Harris charles.harris@sdl.usu.edu Edited by Paul Dufosse paul.dufosse@inria.fr - make it standalone - removing SciPy-dependent stuff - merging with zeros.h declaration file - wrapping in brentinv(f, y, ...) - automatic range interval computation [xa, xb] - assume f has fixed point in 0 Copyright (c) 2001-2002 Enthought, Inc. 2003-2022, SciPy Developers. All rights reserved. Redistribution and use in source and binary forms, with or without modification, are permitted provided that the following conditions are met: 1. Redistributions of source code must retain the above copyright notice, this list of conditions and the following disclaimer. 2. Redistributions in binary form must reproduce the above copyright notice, this list of conditions and the following disclaimer in the documentation and/or other materials provided with the distribution. 3. Neither the name of the copyright holder nor the names of its contributors may be used to endorse or promote products derived from this software without specific prior written permission. THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. */ #include typedef double (*callback_type)(double, void*); static double brentq(callback_type f, double y, double xa, double xb, double xtol, double rtol, int iter, void *func_data); static double brentinv(callback_type f, double y, void *func_data); #define MIN(a, b) ((a) < (b) ? (a) : (b)) /* Note: signbit is in the C99 math library and we compile with C89 standard. */ #ifndef signbit #define signbit(x)((x) < 0 ? 1 : 0) #endif /* At the top of the loop the situation is the following: 1. the root is bracketed between xa and xb 2. xa is the most recent estimate 3. xp is the previous estimate 4. |fp| < |fb| The order of xa and xp doesn't matter, but assume xp < xb. Then xa lies to the right of xp and the assumption is that xa is increasing towards the root. In this situation we will attempt quadratic extrapolation as long as the condition * |fa| < |fp| < |fb| is satisfied. That is, the function value is decreasing as we go along. Note the 4 above implies that the right inequality already holds. The first check is that xa is still to the left of the root. If not, xb is replaced by xp and the interval reverses, with xb < xa. In this situation we will try linear interpolation. That this has happened is signaled by the equality xb == xp; The second check is that |fa| < |fb|. If this is not the case, we swap xa and xb and resort to bisection. */ double brentq(callback_type f, double y, double xa, double xb, double xtol, double rtol, int iter, void *func_data) { double xpre = xa, xcur = xb; double xblk = 0., fpre, fcur, fblk = 0., spre = 0., scur = 0., sbis; /* the tolerance is 2*delta */ double delta; double stry, dpre, dblk; int i; fpre = (*f)(xpre, func_data) - y; fcur = (*f)(xcur, func_data) - y; if (fpre*fcur > 0) { /* Sign error */ return NAN; } if (fpre == 0) { /* Converged */ return xpre; } if (fcur == 0) { /* Converged*/ return xcur; } for (i = 0; i < iter; i++) { if (fpre != 0 && fcur != 0 && (signbit(fpre) != signbit(fcur))) { xblk = xpre; fblk = fpre; spre = scur = xcur - xpre; } if (fabs(fblk) < fabs(fcur)) { xpre = xcur; xcur = xblk; xblk = xpre; fpre = fcur; fcur = fblk; fblk = fpre; } delta = (xtol + rtol*fabs(xcur))/2; sbis = (xblk - xcur)/2; if (fcur == 0 || fabs(sbis) < delta) { /* Converged*/ return xcur; } if (fabs(spre) > delta && fabs(fcur) < fabs(fpre)) { if (xpre == xblk) { /* interpolate */ stry = -fcur*(xcur - xpre)/(fcur - fpre); } else { /* extrapolate */ dpre = (fpre - fcur)/(xpre - xcur); dblk = (fblk - fcur)/(xblk - xcur); stry = -fcur*(fblk*dblk - fpre*dpre) /(dblk*dpre*(fblk - fpre)); } if (2*fabs(stry) < MIN(fabs(spre), 3*fabs(sbis) - delta)) { /* good short step */ spre = scur; scur = stry; } else { /* bisect */ spre = sbis; scur = sbis; } } else { /* bisect */ spre = sbis; scur = sbis; } xpre = xcur; fpre = fcur; if (fabs(scur) > delta) { xcur += scur; } else { xcur += (sbis > 0 ? delta : -delta); } fcur = (*f)(xcur, func_data) - y; } /* Iterations exceeded*/ return xcur; } /* Inverse of one-dimensional function x such that y = T(x). The transformation T is assumed to have fixed point at 0. The method uses Brent's method (brentq) and the initial interval [a, b], a < b, is computed such that: - either a > 0 or b < 0 - either a=y or b=y proceeding with halving/doubling. */ double brentinv(callback_type f, double y, void *func_data) { double xres, xmin, xmax, fval; fval = (*f)(y, func_data); xmax = y; xmin = y; if (y > 0) { if (fval > y) { while (fval > y) { xmin = xmin / 2; fval = (*f)(xmin, func_data); } } else { while (fval < y) { xmax = xmax * 2; fval = (*f)(xmax, func_data); } } } else { if (fval > y) { while (fval > y) { xmin = xmin * 2; fval = (*f)(xmin, func_data); } } else { while (fval < y) { xmax = xmax / 2; fval = (*f)(xmax, func_data); } } } xres = brentq(f, y, xmin, xmax, 1E-14, 1E-10, 200, func_data); return xres; } #line 15 "code-experiments/src/transform_vars_asymmetric.c" /** * @brief Data type for transform_vars_asymmetric. */ typedef struct { double *x; double beta; } transform_vars_asymmetric_data_t; /** * @brief Data type for univariate function tasy_uv. */ typedef struct { double beta; size_t i; size_t n; } tasy_data; /** * @brief Univariate asymmetric non-linear transformation. */ static double tasy_uv(double xi, tasy_data *d) { double yi; double exponent; if (xi > 0.0) { exponent = 1.0 + ((d->beta * (double) (long) d->i) / ((double) (long) d->n - 1.0)) * sqrt(xi); yi = pow(xi, exponent); } else { yi = xi; } return yi; } /** * @brief Inverse of asymmetric non-linear transformation tasy_uv obtained with brentq. */ static double tasy_uv_inv(double yi, tasy_data *d) { double xi; xi = brentinv((callback_type) &tasy_uv, yi, d); return xi; } /** * @brief Multivariate, coordinate-wise, asymmetric non-linear transformation. */ static void tasy(transform_vars_asymmetric_data_t *data, const double *x, size_t number_of_variables) { size_t i; tasy_data *d; d = coco_allocate_memory(sizeof(*d)); d->beta = data->beta; d->n = number_of_variables; for (i = 0; i < number_of_variables; ++i) { d->i = i; data->x[i] = tasy_uv(x[i], d); } coco_free_memory(d); } /** * @brief Evaluates the transformed function. */ static void transform_vars_asymmetric_evaluate_function(coco_problem_t *problem, const double *x, double *y) { double *cons_values; int is_feasible; transform_vars_asymmetric_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_asymmetric_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); tasy(data, x, problem->number_of_variables); coco_evaluate_function(inner_problem, data->x, y); if (problem->number_of_constraints > 0) { cons_values = coco_allocate_vector(problem->number_of_constraints); is_feasible = coco_is_feasible(problem, x, cons_values); coco_free_memory(cons_values); if (is_feasible) assert(y[0] + 1e-13 >= problem->best_value[0]); } else assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the transformed constraint. */ static void transform_vars_asymmetric_evaluate_constraint(coco_problem_t *problem, const double *x, double *y) { transform_vars_asymmetric_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_constraints(problem)); return; } data = (transform_vars_asymmetric_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); tasy(data, x, problem->number_of_variables); coco_evaluate_constraint(inner_problem, data->x, y); } static void transform_vars_asymmetric_free(void *thing) { transform_vars_asymmetric_data_t *data = (transform_vars_asymmetric_data_t *) thing; coco_free_memory(data->x); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_asymmetric(coco_problem_t *inner_problem, const double beta) { transform_vars_asymmetric_data_t *data; coco_problem_t *problem; data = (transform_vars_asymmetric_data_t *) coco_allocate_memory(sizeof(*data)); data->x = coco_allocate_vector(inner_problem->number_of_variables); data->beta = beta; problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_asymmetric_free, "transform_vars_asymmetric"); if (inner_problem->number_of_objectives > 0) problem->evaluate_function = transform_vars_asymmetric_evaluate_function; if (inner_problem->number_of_constraints > 0) problem->evaluate_constraint = transform_vars_asymmetric_evaluate_constraint; if (inner_problem->number_of_objectives > 0 && coco_problem_best_parameter_not_zero(inner_problem)) { coco_warning("transform_vars_asymmetric(): 'best_parameter' not updated, set to NAN"); coco_vector_set_to_nan(inner_problem->best_parameter, inner_problem->number_of_variables); } return problem; } /** * @brief Applies the inverse of the asymmetric transformation tasy to the initial solution. * * Takes xopt as input to check the solution remains in the bounds * If not, a curve search is performed * xopt is needed because transform_vars_shift is not yet called * in f_{function}_rotated_c_linear_cons_bbob_problem_allocate */ static void transform_inv_initial_asymmetric(coco_problem_t *problem, const double *xopt) { size_t i; size_t j; int is_in_bounds; double di; double xi; double *sol = NULL; double halving_factor = .5; transform_vars_asymmetric_data_t *data; tasy_data *d; sol = coco_allocate_vector(problem->number_of_variables); d = coco_allocate_memory(sizeof(*d)); data = (transform_vars_asymmetric_data_t *) coco_problem_transformed_get_data(problem); d->beta = data->beta; d->n = problem->number_of_variables; j = 0; while (1) { for (i = 0; i < problem->number_of_variables; ++i) { d->i = i; di = tasy_uv_inv(problem->initial_solution[i] * pow(halving_factor, (double) (long) j), d); xi = di + xopt[i]; is_in_bounds = (int) (-5.0 < xi && xi < 5.0); /* Line search for the inverse-transformed feasible initial solution to remain within the bounds */ if (!is_in_bounds) { j = j + 1; break; } sol[i] = di; } if (!is_in_bounds && !coco_is_nan(di)){ continue; } else { break; } } if (!coco_vector_contains_nan(sol, problem->number_of_variables)) { for (i = 0; i < problem->number_of_variables; ++i) { problem->initial_solution[i] = sol[i]; } } coco_free_memory(d); coco_free_memory(sol); } #line 15 "code-experiments/src/f_bent_cigar.c" #line 16 "code-experiments/src/f_bent_cigar.c" /** * @brief Implements the bent cigar function without connections to any COCO structures. */ static double f_bent_cigar_raw(const double *x, const size_t number_of_variables) { static const double condition = 1.0e6; size_t i; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; result = x[0] * x[0]; for (i = 1; i < number_of_variables; ++i) { result += condition * x[i] * x[i]; } return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_bent_cigar_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_bent_cigar_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the gradient of the bent cigar function. */ static void f_bent_cigar_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { static const double condition = 1.0e6; size_t i; y[0] = 2.0 * x[0]; for (i = 1; i < problem->number_of_variables; ++i) y[i] = 2.0 * condition * x[i]; } /** * @brief Allocates the basic bent cigar problem. */ static coco_problem_t *f_bent_cigar_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("bent cigar function", f_bent_cigar_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); problem->evaluate_gradient = f_bent_cigar_evaluate_gradient; coco_problem_set_id(problem, "%s_d%02lu", "bent_cigar", number_of_variables); /* Compute best solution */ f_bent_cigar_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB bent cigar problem. */ static coco_problem_t *f_bent_cigar_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double **rot1; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed + 1000000, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); bbob2009_free_matrix(rot1, dimension); problem = f_bent_cigar_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_asymmetric(problem, 0.5); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } /** * @brief Creates the bent cigar problem for the constrained BBOB suite. */ static coco_problem_t *f_bent_cigar_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double **rot1; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed + 1000000, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); bbob2009_free_matrix(rot1, dimension); problem = f_bent_cigar_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } #line 11 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_bueche_rastrigin.c" /** * @file f_bueche_rastrigin.c * @brief Implementation of the Bueche-Rastrigin function and problem. */ #include #include #line 10 "code-experiments/src/f_bueche_rastrigin.c" #line 11 "code-experiments/src/f_bueche_rastrigin.c" #line 12 "code-experiments/src/f_bueche_rastrigin.c" #line 1 "code-experiments/src/transform_vars_brs.c" /** * @file transform_vars_brs.c * @brief Implementation of the ominous 's_i scaling' of the BBOB Bueche-Rastrigin problem. */ #include #include #line 10 "code-experiments/src/transform_vars_brs.c" #line 11 "code-experiments/src/transform_vars_brs.c" /** * @brief Data type for transform_vars_brs. */ typedef struct { double *x; } transform_vars_brs_data_t; /** * @brief Evaluates the transformation. */ static void transform_vars_brs_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; double factor; transform_vars_brs_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_brs_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < problem->number_of_variables; ++i) { /* Function documentation says we should compute 10^(0.5 * * (i-1)/(D-1)). Instead we compute the equivalent * sqrt(10)^((i-1)/(D-1)) just like the legacy code. */ factor = pow(sqrt(10.0), (double) (long) i / ((double) (long) problem->number_of_variables - 1.0)); /* Documentation specifies odd indices and starts indexing * from 1, we use all even indices since C starts indexing * with 0. */ if (x[i] > 0.0 && i % 2 == 0) { factor *= 10.0; } data->x[i] = factor * x[i]; } coco_evaluate_function(inner_problem, data->x, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Frees the data object. */ static void transform_vars_brs_free(void *thing) { transform_vars_brs_data_t *data = (transform_vars_brs_data_t *) thing; coco_free_memory(data->x); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_brs(coco_problem_t *inner_problem) { transform_vars_brs_data_t *data; coco_problem_t *problem; data = (transform_vars_brs_data_t *) coco_allocate_memory(sizeof(*data)); data->x = coco_allocate_vector(inner_problem->number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_brs_free, "transform_vars_brs"); problem->evaluate_function = transform_vars_brs_evaluate; if (coco_problem_best_parameter_not_zero(inner_problem)) { coco_warning("transform_vars_brs(): 'best_parameter' not updated, set to NAN"); coco_vector_set_to_nan(inner_problem->best_parameter, inner_problem->number_of_variables); } return problem; } #line 13 "code-experiments/src/f_bueche_rastrigin.c" #line 1 "code-experiments/src/transform_vars_oscillate.c" /** * @file transform_vars_oscillate.c * @brief Implementation of oscillating the decision values. * @author ?? * @author Paul Dufosse * @note Edited to fulfill needs from the constrained test bed. */ #include #include #line 13 "code-experiments/src/transform_vars_oscillate.c" #line 14 "code-experiments/src/transform_vars_oscillate.c" #line 15 "code-experiments/src/transform_vars_oscillate.c" /** * @brief Data type for transform_vars_oscillate. */ typedef struct { double alpha; double *oscillated_x; } transform_vars_oscillate_data_t; /** * @brief Data type for univariate function tosz_uv */ typedef struct { double alpha; } tosz_data; /** * @brief Univariate oscillating non-linear transformation. */ static double tosz_uv(double xi, tosz_data *d) { double yi; double tmp, base; if (xi > 0.0) { tmp = log(xi) / d->alpha; base = exp(tmp + 0.49 * (sin(tmp) + sin(0.79 * tmp))); yi = pow(base, d->alpha); } else if (xi < 0.0) { tmp = log(-xi) / d->alpha; base = exp(tmp + 0.49 * (sin(0.55 * tmp) + sin(0.31 * tmp))); yi = -pow(base, d->alpha); } else { yi = 0.0; } return yi; } /** * @brief Inverse of oscillating non-linear transformation tosz_uv obtained with brentq. */ static double tosz_uv_inv(double yi, tosz_data *d) { double xi; xi = brentinv((callback_type) &tosz_uv, yi, d); return xi; } /** * @brief Multivariate, coordinate-wise, oscillating non-linear transformation. */ static void tosz(transform_vars_oscillate_data_t *data, const double *x, size_t number_of_variables) { size_t i; tosz_data *d; d = coco_allocate_memory(sizeof(*d)); d->alpha = data->alpha; for (i = 0; i < number_of_variables; ++i) { data->oscillated_x[i] = tosz_uv(x[i], d); } coco_free_memory(d); } /** * @brief Evaluates the transformed objective functions. */ static void transform_vars_oscillate_evaluate_function(coco_problem_t *problem, const double *x, double *y) { double *cons_values; int is_feasible; transform_vars_oscillate_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_oscillate_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); tosz(data, x, problem->number_of_variables); coco_evaluate_function(inner_problem, data->oscillated_x, y); if (problem->number_of_constraints > 0) { cons_values = coco_allocate_vector(problem->number_of_constraints); is_feasible = coco_is_feasible(problem, x, cons_values); coco_free_memory(cons_values); if (is_feasible) assert(y[0] + 1e-13 >= problem->best_value[0]); } else assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the transformed constraints. */ static void transform_vars_oscillate_evaluate_constraint(coco_problem_t *problem, const double *x, double *y) { transform_vars_oscillate_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_constraints(problem)); return; } data = (transform_vars_oscillate_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); tosz(data, x, problem->number_of_variables); coco_evaluate_constraint(inner_problem, data->oscillated_x, y); } /** * @brief Frees the data object. */ static void transform_vars_oscillate_free(void *thing) { transform_vars_oscillate_data_t *data = (transform_vars_oscillate_data_t *) thing; coco_free_memory(data->oscillated_x); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_oscillate(coco_problem_t *inner_problem) { transform_vars_oscillate_data_t *data; coco_problem_t *problem; data = (transform_vars_oscillate_data_t *) coco_allocate_memory(sizeof(*data)); data->alpha = 0.1; data->oscillated_x = coco_allocate_vector(inner_problem->number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_oscillate_free, "transform_vars_oscillate"); if (inner_problem->number_of_objectives > 0) problem->evaluate_function = transform_vars_oscillate_evaluate_function; if (inner_problem->number_of_constraints > 0) problem->evaluate_constraint = transform_vars_oscillate_evaluate_constraint; return problem; } /** * @brief Applies the inverse of the oscillating transformation tasy(tosz(.)) to the initial solution. * * Takes xopt as input to check the solution remains in the bounds * If not, a curve search is performed * xopt is needed because transform_vars_shift is not yet called * in f_{function}_rotated_c_linear_cons_bbob_problem_allocate */ static void transform_inv_initial_oscillate(coco_problem_t *problem, const double *xopt) { size_t i; size_t j; int is_in_bounds; double di = 0.0; double xi; double *sol = NULL; double halving_factor = .5; transform_vars_oscillate_data_t *data; tosz_data *d; sol = coco_allocate_vector(problem->number_of_variables); d = coco_allocate_memory(sizeof(*d)); data = (transform_vars_oscillate_data_t *) coco_problem_transformed_get_data(problem); d->alpha = data->alpha; j = 0; while (1) { for (i = 0; i < problem->number_of_variables; ++i) { di = tosz_uv_inv(problem->initial_solution[i] * pow(halving_factor, (double) (long) j), d); xi = di + xopt[i]; is_in_bounds = (int) (-5.0 < xi && xi < 5.0); /* Line search for the inverse-transformed feasible initial solution to remain within the bounds */ if (!is_in_bounds) { j = j + 1; break; } sol[i] = di; } if (!is_in_bounds && !coco_is_nan(di)){ continue; } else { break; } } if (!coco_vector_contains_nan(sol, problem->number_of_variables)) { for (i = 0; i < problem->number_of_variables; ++i) { problem->initial_solution[i] = sol[i]; } } coco_free_memory(d); coco_free_memory(sol); } #line 14 "code-experiments/src/f_bueche_rastrigin.c" #line 15 "code-experiments/src/f_bueche_rastrigin.c" #line 16 "code-experiments/src/f_bueche_rastrigin.c" #line 1 "code-experiments/src/transform_obj_penalize.c" /** * @file transform_obj_penalize.c * @brief Implementation of adding a penalty to the objective value for solutions outside of the ROI in the * decision space. */ #include #line 10 "code-experiments/src/transform_obj_penalize.c" #line 11 "code-experiments/src/transform_obj_penalize.c" /** * @brief Data type for transform_obj_penalize. */ typedef struct { double factor; } transform_obj_penalize_data_t; /** * @brief Evaluates the transformation. */ static void transform_obj_penalize_evaluate(coco_problem_t *problem, const double *x, double *y) { transform_obj_penalize_data_t *data = (transform_obj_penalize_data_t *) coco_problem_transformed_get_data(problem); const double *lower_bounds = problem->smallest_values_of_interest; const double *upper_bounds = problem->largest_values_of_interest; double penalty = 0.0; size_t i; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } for (i = 0; i < problem->number_of_variables; ++i) { const double c1 = x[i] - upper_bounds[i]; const double c2 = lower_bounds[i] - x[i]; assert(lower_bounds[i] < upper_bounds[i]); if (c1 > 0.0) { penalty += c1 * c1; } else if (c2 > 0.0) { penalty += c2 * c2; } } assert(coco_problem_transformed_get_inner_problem(problem) != NULL); coco_evaluate_function(coco_problem_transformed_get_inner_problem(problem), x, y); for (i = 0; i < problem->number_of_objectives; ++i) { y[i] += data->factor * penalty; } assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_obj_penalize(coco_problem_t *inner_problem, const double factor) { coco_problem_t *problem; transform_obj_penalize_data_t *data; assert(inner_problem != NULL); data = (transform_obj_penalize_data_t *) coco_allocate_memory(sizeof(*data)); data->factor = factor; problem = coco_problem_transformed_allocate(inner_problem, data, NULL, "transform_obj_penalize"); problem->evaluate_function = transform_obj_penalize_evaluate; /* No need to update the best value as the best parameter is feasible */ return problem; } #line 17 "code-experiments/src/f_bueche_rastrigin.c" #line 18 "code-experiments/src/f_bueche_rastrigin.c" /** * @brief Implements the Bueche-Rastrigin function without connections to any COCO structures. */ static double f_bueche_rastrigin_raw(const double *x, const size_t number_of_variables) { double tmp = 0., tmp2 = 0.; size_t i; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; for (i = 0; i < number_of_variables; ++i) { tmp += cos(2 * coco_pi * x[i]); tmp2 += x[i] * x[i]; } result = 10.0 * ((double) (long) number_of_variables - tmp) + tmp2 + 0; return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_bueche_rastrigin_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_bueche_rastrigin_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic Bueche-Rastrigin problem. */ static coco_problem_t *f_bueche_rastrigin_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Bueche-Rastrigin function", f_bueche_rastrigin_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); coco_problem_set_id(problem, "%s_d%02lu", "bueche-rastrigin", number_of_variables); /* Compute best solution */ f_bueche_rastrigin_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB Bueche-Rastrigin problem. */ static coco_problem_t *f_bueche_rastrigin_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; const double penalty_factor = 100.0; size_t i; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); /* OME: This step is in the legacy C code but _not_ in the function description. */ for (i = 0; i < dimension; i += 2) { xopt[i] = fabs(xopt[i]); } problem = f_bueche_rastrigin_allocate(dimension); problem = transform_vars_brs(problem); problem = transform_vars_oscillate(problem); problem = transform_vars_shift(problem, xopt, 0); /*if large scale test-bed, normalize by dim*/ if (coco_strfind(problem_name_template, "BBOB large-scale suite") >= 0){ problem = transform_obj_norm_by_dim(problem); } problem = transform_obj_shift(problem, fopt); problem = transform_obj_penalize(problem, penalty_factor); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "1-separable"); coco_free_memory(xopt); return problem; } #line 12 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_different_powers.c" /** * @file f_different_powers.c * @brief Implementation of the different powers function and problem. */ #include #include #line 10 "code-experiments/src/f_different_powers.c" #line 11 "code-experiments/src/f_different_powers.c" #line 12 "code-experiments/src/f_different_powers.c" #line 13 "code-experiments/src/f_different_powers.c" #line 14 "code-experiments/src/f_different_powers.c" #line 15 "code-experiments/src/f_different_powers.c" #line 16 "code-experiments/src/f_different_powers.c" #line 17 "code-experiments/src/f_different_powers.c" #line 18 "code-experiments/src/f_different_powers.c" /** * @brief Implements the different powers function without connections to any COCO structures. */ static double f_different_powers_raw(const double *x, const size_t number_of_variables) { size_t i; double sum = 0.0; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; for (i = 0; i < number_of_variables; ++i) { double exponent = 2.0 + (4.0 * (double) (long) i) / ((double) (long) number_of_variables - 1.0); sum += pow(fabs(x[i]), exponent); } result = sqrt(sum); return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_different_powers_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_different_powers_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Implements the sign function. */ double sign(double x) { if (x > 0) return 1; if (x < 0) return -1; return 0; } /** * @brief Evaluates the gradient of the function "different powers". */ static void f_different_powers_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { size_t i; double sum = 0.0; double aux; for (i = 0; i < problem->number_of_variables; ++i) { aux = 2.0 + (4.0 * (double) (long) i) / ((double) (long) problem->number_of_variables - 1.0); sum += pow(fabs(x[i]), aux); } for (i = 0; i < problem->number_of_variables; ++i) { aux = 2.0 + (4.0 * (double) (long) i) / ((double) (long) problem->number_of_variables - 1.0); y[i] = 0.5 * (aux)/(sum); aux -= 1.0; y[i] *= pow(fabs(x[i]), aux) * sign(x[i]); } } /** * @brief Allocates the basic different powers problem. */ static coco_problem_t *f_different_powers_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("different powers function", f_different_powers_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); problem->evaluate_gradient = f_different_powers_evaluate_gradient; coco_problem_set_id(problem, "%s_d%02lu", "different_powers", number_of_variables); /* Compute best solution */ f_different_powers_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB different powers problem. */ static coco_problem_t *f_different_powers_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double **rot1; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); bbob2009_free_matrix(rot1, dimension); problem = f_different_powers_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } /** * @brief Creates the bbob-constrained different powers problem. */ static coco_problem_t *f_different_powers_bbob_constrained_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { /* Different powers function used in bbob-constrained test suite. * In this version, the (unconstrained) optimum, xopt, is set to * a distance of 1e-2 to the origin. By doing so, the optimum of * the constrained problem is at a "reasonable" distance from * the unconstrained one and, hence, the constrained problem is not too easy. */ size_t i; double *xopt, fopt, result; coco_problem_t *problem = NULL; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double **rot1; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); /* Compute Euclidean norm of xopt */ /* CAVEAT: this implementation is not ideal for large dimensions */ result = 0.0; for (i = 0; i < dimension; ++i) { result += xopt[i] * xopt[i]; } result = sqrt(result); /* Scale xopt such that the distance to the origin is 1e-2 */ for (i = 0; i < dimension; ++i) { xopt[i] *= 1e-2 / result; } rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); bbob2009_free_matrix(rot1, dimension); problem = f_different_powers_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } /** * @brief Creates the BBOB generalized permuted block-rotated sum of different powers problem. */ static coco_problem_t *f_different_powers_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B; const double *const *B_copy; size_t *P1 = coco_allocate_vector_size_t(dimension); size_t *P2 = coco_allocate_vector_size_t(dimension); size_t *block_sizes; size_t nb_blocks; size_t swap_range; size_t nb_swaps; block_sizes = coco_get_block_sizes(&nb_blocks, dimension, "bbob-largescale"); swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale"); xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); B = coco_allocate_blockmatrix(dimension, block_sizes, nb_blocks); B_copy = (const double *const *)B; coco_compute_blockrotation(B, rseed + 1000000, dimension, block_sizes, nb_blocks); coco_compute_truncated_uniform_swap_permutation(P1, rseed + 2000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P2, rseed + 3000000, dimension, nb_swaps, swap_range); problem = f_different_powers_allocate(dimension); problem = transform_vars_permutation(problem, P2, dimension); problem = transform_vars_blockrotation(problem, B_copy, dimension, block_sizes, nb_blocks); problem = transform_vars_permutation(problem, P1, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_block_matrix(B, dimension); coco_free_memory(P1); coco_free_memory(P2); coco_free_memory(block_sizes); coco_free_memory(xopt); return problem; } #line 13 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_discus.c" /** * @file f_discus.c * @brief Implementation of the discus function and problem. */ #include #line 9 "code-experiments/src/f_discus.c" #line 10 "code-experiments/src/f_discus.c" #line 11 "code-experiments/src/f_discus.c" #line 12 "code-experiments/src/f_discus.c" #line 13 "code-experiments/src/f_discus.c" #line 14 "code-experiments/src/f_discus.c" #line 15 "code-experiments/src/f_discus.c" /** * @brief Implements the discus function without connections to any COCO structures. */ static double f_discus_raw(const double *x, const size_t number_of_variables) { static const double condition = 1.0e6; size_t i; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; result = condition * x[0] * x[0]; for (i = 1; i < number_of_variables; ++i) { result += x[i] * x[i]; } return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_discus_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_discus_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the gradient of the discus function. */ static void f_discus_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { static const double condition = 1.0e6; size_t i; y[0] = condition * 2.0 * x[0]; for (i = 1; i < problem->number_of_variables; ++i) y[i] = 2.0 * x[i]; } /** * @brief Allocates the basic discus problem. */ static coco_problem_t *f_discus_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("discus function", f_discus_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); problem->evaluate_gradient = f_discus_evaluate_gradient; coco_problem_set_id(problem, "%s_d%02lu", "discus", number_of_variables); /* Compute best solution */ f_discus_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB discus problem. */ static coco_problem_t *f_discus_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double **rot1; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); bbob2009_free_matrix(rot1, dimension); problem = f_discus_allocate(dimension); problem = transform_vars_oscillate(problem); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } /** * @brief Creates the discus problem for the constrained BBOB suite. */ static coco_problem_t *f_discus_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double **rot1; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); bbob2009_free_matrix(rot1, dimension); problem = f_discus_allocate(dimension); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } #line 14 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_ellipsoid.c" /** * @file f_ellipsoid.c * @brief Implementation of the ellipsoid function and problem. */ #include #include #include #line 11 "code-experiments/src/f_ellipsoid.c" #line 12 "code-experiments/src/f_ellipsoid.c" #line 13 "code-experiments/src/f_ellipsoid.c" #line 14 "code-experiments/src/f_ellipsoid.c" #line 15 "code-experiments/src/f_ellipsoid.c" #line 16 "code-experiments/src/f_ellipsoid.c" #line 17 "code-experiments/src/f_ellipsoid.c" #line 18 "code-experiments/src/f_ellipsoid.c" #line 19 "code-experiments/src/f_ellipsoid.c" /** * @brief Implements the ellipsoid function without connections to any COCO structures. */ static double f_ellipsoid_raw(const double *x, const size_t number_of_variables) { static const double condition = 1.0e6; size_t i = 0; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; result = x[i] * x[i]; for (i = 1; i < number_of_variables; ++i) { const double exponent = 1.0 * (double) (long) i / ((double) (long) number_of_variables - 1.0); result += pow(condition, exponent) * x[i] * x[i]; } return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_ellipsoid_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_ellipsoid_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the gradient of the ellipsoid function. */ static void f_ellipsoid_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { static const double condition = 1.0e6; double exponent; size_t i = 0; for (i = 0; i < problem->number_of_variables; ++i) { exponent = 1.0 * (double) (long) i / ((double) (long) problem->number_of_variables - 1.0); y[i] = 2.0*pow(condition, exponent) * x[i]; } } /** * @brief Allocates the basic ellipsoid problem. */ static coco_problem_t *f_ellipsoid_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("ellipsoid function", f_ellipsoid_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); problem->evaluate_gradient = f_ellipsoid_evaluate_gradient; coco_problem_set_id(problem, "%s_d%02lu", "ellipsoid", number_of_variables); /* Compute best solution */ f_ellipsoid_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB ellipsoid problem. */ static coco_problem_t *f_ellipsoid_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); problem = f_ellipsoid_allocate(dimension); problem = transform_vars_oscillate(problem); problem = transform_vars_shift(problem, xopt, 0); /*if large scale test-bed, normalize by dim*/ if (coco_strfind(problem_name_template, "BBOB large-scale suite") >= 0){ problem = transform_obj_norm_by_dim(problem); } problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "1-separable"); coco_free_memory(xopt); return problem; } /** * @brief Creates the BBOB rotated ellipsoid problem. */ static coco_problem_t *f_ellipsoid_rotated_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double **rot1; xopt = coco_allocate_vector(dimension); bbob2009_compute_xopt(xopt, rseed, dimension); fopt = bbob2009_compute_fopt(function, instance); rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); bbob2009_free_matrix(rot1, dimension); problem = f_ellipsoid_allocate(dimension); problem = transform_vars_oscillate(problem); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } /** * @brief Creates the BBOB permuted block-rotated ellipsoid problem. */ static coco_problem_t *f_ellipsoid_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B; const double *const *B_copy; size_t *P1 = coco_allocate_vector_size_t(dimension); size_t *P2 = coco_allocate_vector_size_t(dimension); size_t *block_sizes; size_t nb_blocks; size_t swap_range; size_t nb_swaps; block_sizes = coco_get_block_sizes(&nb_blocks, dimension, "bbob-largescale"); swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale"); /*printf("probDim:%d, scalingFactor: %f, blockSize: %d, swapRange: %d\n", dimension, scaling_factor, block_sizes[0], swap_range);*/ xopt = coco_allocate_vector(dimension); bbob2009_compute_xopt(xopt, rseed, dimension); fopt = bbob2009_compute_fopt(function, instance); B = coco_allocate_blockmatrix(dimension, block_sizes, nb_blocks); coco_compute_blockrotation(B, rseed + 1000000, dimension, block_sizes, nb_blocks); B_copy = (const double *const *)B;/*TODO: silences the warning, not sure if it prevents the modification of B at all levels. Check everywhere*/ coco_compute_truncated_uniform_swap_permutation(P1, rseed + 2000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P2, rseed + 3000000, dimension, nb_swaps, swap_range); problem = f_ellipsoid_allocate(dimension); problem = transform_vars_oscillate(problem); problem = transform_vars_permutation(problem, P2, dimension); problem = transform_vars_blockrotation(problem, B_copy, dimension, block_sizes, nb_blocks); problem = transform_vars_permutation(problem, P1, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_block_matrix(B, dimension); coco_free_memory(P1); coco_free_memory(P2); coco_free_memory(block_sizes); coco_free_memory(xopt); return problem; } /** * @brief Creates the ellipsoid problem for the constrained BBOB suite */ static coco_problem_t *f_ellipsoid_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); problem = f_ellipsoid_allocate(dimension); /* TODO (NH): fopt -= problem->evaluate(all_zeros(dimension)) */ problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "1-separable"); coco_free_memory(xopt); return problem; } /** * @brief Creates the rotated ellipsoid problem for the constrained * BBOB suite */ static coco_problem_t *f_ellipsoid_rotated_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double **rot1; xopt = coco_allocate_vector(dimension); bbob2009_compute_xopt(xopt, rseed, dimension); fopt = bbob2009_compute_fopt(function, instance); rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); bbob2009_free_matrix(rot1, dimension); problem = f_ellipsoid_allocate(dimension); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } #line 15 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_gallagher.c" /** * @file f_gallagher.c * @brief Implementation of the Gallagher function and problem. */ #include #include #line 10 "code-experiments/src/f_gallagher.c" #line 11 "code-experiments/src/f_gallagher.c" #line 12 "code-experiments/src/f_gallagher.c" #line 13 "code-experiments/src/f_gallagher.c" #line 14 "code-experiments/src/f_gallagher.c" #line 15 "code-experiments/src/f_gallagher.c" #line 16 "code-experiments/src/f_gallagher.c" #line 17 "code-experiments/src/f_gallagher.c" #line 1 "code-experiments/src/transform_vars_scale.c" /** * @file transform_vars_scale.c * @brief Implementation of scaling decision values by a given factor. */ #include #line 9 "code-experiments/src/transform_vars_scale.c" #line 10 "code-experiments/src/transform_vars_scale.c" /** * @brief Data type for transform_vars_scale. */ typedef struct { double factor; double *x; } transform_vars_scale_data_t; /** * @brief Evaluates the transformation. */ static void transform_vars_scale_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_scale_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_scale_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); do { const double factor = data->factor; for (i = 0; i < problem->number_of_variables; ++i) { data->x[i] = factor * x[i]; } coco_evaluate_function(inner_problem, data->x, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } while (0); } /** * @brief Frees the data object. */ static void transform_vars_scale_free(void *thing) { transform_vars_scale_data_t *data = (transform_vars_scale_data_t *) thing; coco_free_memory(data->x); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_scale(coco_problem_t *inner_problem, const double factor) { transform_vars_scale_data_t *data; coco_problem_t *problem; size_t i; data = (transform_vars_scale_data_t *) coco_allocate_memory(sizeof(*data)); data->factor = factor; data->x = coco_allocate_vector(inner_problem->number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_scale_free, "transform_vars_scale"); problem->evaluate_function = transform_vars_scale_evaluate; /* Compute best parameter */ if (data->factor != 0.) { for (i = 0; i < problem->number_of_variables; i++) { problem->best_parameter[i] /= data->factor; } } /* else error? */ return problem; } #line 18 "code-experiments/src/f_gallagher.c" #line 19 "code-experiments/src/f_gallagher.c" #line 1 "code-experiments/src/f_sphere.c" /** * @file f_sphere.c * @brief Implementation of the sphere function and problem. */ #include #include #line 10 "code-experiments/src/f_sphere.c" #line 11 "code-experiments/src/f_sphere.c" #line 12 "code-experiments/src/f_sphere.c" #line 13 "code-experiments/src/f_sphere.c" #line 14 "code-experiments/src/f_sphere.c" #line 15 "code-experiments/src/f_sphere.c" /** * @brief Implements the sphere function without connections to any COCO structures. */ static double f_sphere_raw(const double *x, const size_t number_of_variables) { size_t i = 0; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; result = 0.0; for (i = 0; i < number_of_variables; ++i) { result += x[i] * x[i]; } return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_sphere_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_sphere_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the gradient of the sphere function. */ static void f_sphere_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { size_t i; for (i = 0; i < problem->number_of_variables; ++i) { y[i] = 2.0 * x[i]; } } /** * @brief Allocates the basic sphere problem. */ static coco_problem_t *f_sphere_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("sphere function", f_sphere_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); problem->evaluate_gradient = f_sphere_evaluate_gradient; coco_problem_set_id(problem, "%s_d%02lu", "sphere", number_of_variables); /* Compute best solution */ f_sphere_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB sphere problem. */ static coco_problem_t *f_sphere_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; xopt = coco_allocate_vector(dimension); bbob2009_compute_xopt(xopt, rseed, dimension); fopt = bbob2009_compute_fopt(function, instance); problem = f_sphere_allocate(dimension); problem = transform_vars_shift(problem, xopt, 0); /*if large scale test-bed, normalize by dim*/ if (coco_strfind(problem_name_template, "BBOB large-scale suite") >= 0){ problem = transform_obj_norm_by_dim(problem); } problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "1-separable"); coco_free_memory(xopt); return problem; } #line 21 "code-experiments/src/f_gallagher.c" #line 1 "code-experiments/src/transform_vars_gallagher_blockrotation.c" /** * @file transform_vars_gallagher_blockrotation.c * @brief Implementation of performing a block-rotation transformation on decision values for the Gallagher function. * The block-rotation is applied only once per call and the result is stored such that the sub-problems can access it * */ #include #line 11 "code-experiments/src/transform_vars_gallagher_blockrotation.c" #line 12 "code-experiments/src/transform_vars_gallagher_blockrotation.c" #line 13 "code-experiments/src/transform_vars_gallagher_blockrotation.c" /* #include "coco_utilities.c" */ /** * @brief Data type for transform_vars_gallagher_blockrotation. */ typedef struct { double *x; } transform_vars_gallagher_blockrotation_t; /** * @brief Frees the data object. */ static void transform_vars_gallagher_blockrotation_free(void *thing) { transform_vars_gallagher_blockrotation_t *data = (transform_vars_gallagher_blockrotation_t *) thing; coco_free_memory(data->x); } /** * @brief Data type in problem->versatile_data of f_gallagher.c */ typedef struct { double *x; size_t number_of_peaks; coco_problem_t **sub_problems; double *rotated_x; size_t nb_blocks, *block_sizes, *block_size_map, *first_non_zero_map; double **B; } f_gallagher_versatile_data_t; /** * @brief allows to free the gallagher_versatile_data part of the problem. */ static void f_gallagher_versatile_data_free(coco_problem_t *problem) { size_t i; f_gallagher_versatile_data_t *versatile_data = (f_gallagher_versatile_data_t *) problem->versatile_data; if (versatile_data->sub_problems != NULL) { for (i = 0; i < versatile_data->number_of_peaks; i++) { coco_problem_free(versatile_data->sub_problems[i]); } coco_free_memory(versatile_data->sub_problems); } if (versatile_data->rotated_x != NULL) { coco_free_memory(versatile_data->rotated_x); } if (versatile_data->block_sizes != NULL) { coco_free_memory(versatile_data->block_sizes); } if (versatile_data->block_size_map != NULL) { coco_free_memory(versatile_data->block_size_map); } if (versatile_data->first_non_zero_map != NULL) { coco_free_memory(versatile_data->first_non_zero_map); } if (versatile_data->B != NULL) { coco_free_block_matrix(versatile_data->B, problem->number_of_variables); } coco_free_memory(versatile_data); problem->versatile_data = NULL; problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Evaluates the transformation. */ static void transform_vars_gallagher_blockrotation_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i, j; transform_vars_gallagher_blockrotation_t *data; coco_problem_t *inner_problem; f_gallagher_versatile_data_t *versatile_data; data = (transform_vars_gallagher_blockrotation_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); versatile_data = (f_gallagher_versatile_data_t *) problem->versatile_data; for (i = 0; i < inner_problem->number_of_variables; ++i) { versatile_data->rotated_x[i] = 0; for (j = versatile_data->first_non_zero_map[i]; j < versatile_data->first_non_zero_map[i] + versatile_data->block_size_map[i]; ++j) { versatile_data->rotated_x[i] += versatile_data->B[i][j - versatile_data->first_non_zero_map[i]] * x[j]; } /*((f_gallagher_versatile_data_t *) problem->versatile_data)->rotated_x[i] = x[i];*/ data->x[i] = x[i];/* to avoid pointer problems*/ } coco_evaluate_function(inner_problem, data->x, y);/* does not modify the argument of the call since rotated_x will be used later in the sub_problems*/ /* this function serves only to compute rotated_x on the problem level, not for each sub-problem */ assert(y[0] + 1e-13 >= problem->best_value[0]); } static COCO_UNUSED coco_problem_t *transform_vars_gallagher_blockrotation(coco_problem_t *inner_problem); static coco_problem_t *transform_vars_gallagher_blockrotation(coco_problem_t *inner_problem) { coco_problem_t *problem; transform_vars_gallagher_blockrotation_t *data; data = (transform_vars_gallagher_blockrotation_t *) coco_allocate_memory(sizeof(*data)); data->x = coco_allocate_vector(inner_problem->number_of_variables); if (coco_problem_best_parameter_not_zero(inner_problem)) { coco_debug("transform_vars_gallagher_blockrotation(): 'best_parameter' not updated, set to NAN"); coco_vector_set_to_nan(inner_problem->best_parameter, inner_problem->number_of_variables); } problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_gallagher_blockrotation_free, "transform_vars_gallagher_blockrotation"); problem->evaluate_function = transform_vars_gallagher_blockrotation_evaluate; return problem; } #line 22 "code-experiments/src/f_gallagher.c" /** * @brief A random permutation type for the Gallagher problem. * * Needed to create a random permutation that is compatible with the old code. */ typedef struct { double value; size_t index; } f_gallagher_permutation_t; /** * @brief Data type for the Gallagher problem. */ typedef struct { long rseed; double *xopt; double **rotation, **x_local, **arr_scales; size_t number_of_peaks; double *peak_values; coco_problem_free_function_t old_free_problem; } f_gallagher_data_t; /** * Comparison function used for sorting. */ static int f_gallagher_compare_doubles(const void *a, const void *b) { double temp = (*(f_gallagher_permutation_t *) a).value - (*(f_gallagher_permutation_t *) b).value; if (temp > 0) return 1; else if (temp < 0) return -1; else return 0; } /** * @brief Implements the Gallagher function without connections to any COCO structures. */ static double f_gallagher_raw(const double *x, const size_t number_of_variables, f_gallagher_data_t *data) { size_t i, j; /* Loop over dim */ double *tmx; double a = 0.1; double tmp2, f = 0., f_add, tmp, f_pen = 0., f_true = 0.; double fac; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; fac = -0.5 / (double) number_of_variables; /* Boundary handling */ for (i = 0; i < number_of_variables; ++i) { tmp = fabs(x[i]) - 5.; if (tmp > 0.) { f_pen += tmp * tmp; } } f_add = f_pen; /* Transformation in search space */ /* TODO: this should rather be done in f_gallagher */ tmx = coco_allocate_vector(number_of_variables); for (i = 0; i < number_of_variables; i++) { tmx[i] = 0; for (j = 0; j < number_of_variables; ++j) { tmx[i] += data->rotation[i][j] * x[j]; } } /* Computation core*/ for (i = 0; i < data->number_of_peaks; ++i) { tmp2 = 0.; for (j = 0; j < number_of_variables; ++j) { tmp = (tmx[j] - data->x_local[j][i]); tmp2 += data->arr_scales[i][j] * tmp * tmp; } tmp2 = data->peak_values[i] * exp(fac * tmp2); f = coco_double_max(f, tmp2); } f = 10. - f; if (f > 0) { f_true = log(f) / a; f_true = pow(exp(f_true + 0.49 * (sin(f_true) + sin(0.79 * f_true))), a); } else if (f < 0) { f_true = log(-f) / a; f_true = -pow(exp(f_true + 0.49 * (sin(0.55 * f_true) + sin(0.31 * f_true))), a); } else f_true = f; f_true *= f_true; f_true += f_add; result = f_true; coco_free_memory(tmx); return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_gallagher_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_gallagher_raw(x, problem->number_of_variables, (f_gallagher_data_t *) problem->data); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Frees the Gallagher data object. */ static void f_gallagher_free(coco_problem_t *problem) { f_gallagher_data_t *data; data = (f_gallagher_data_t *) problem->data; coco_free_memory(data->xopt); coco_free_memory(data->peak_values); bbob2009_free_matrix(data->rotation, problem->number_of_variables); bbob2009_free_matrix(data->x_local, problem->number_of_variables); bbob2009_free_matrix(data->arr_scales, data->number_of_peaks); problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Creates the BBOB Gallagher problem. * * @note There is no separate basic allocate function. */ static coco_problem_t *f_gallagher_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const size_t number_of_peaks, const char *problem_id_template, const char *problem_name_template) { f_gallagher_data_t *data; /* problem_name and best_parameter will be overwritten below */ coco_problem_t *problem = coco_problem_allocate_from_scalars("Gallagher function", f_gallagher_evaluate, f_gallagher_free, dimension, -5.0, 5.0, 0.0); const size_t peaks_21 = 21; const size_t peaks_101 = 101; double fopt; size_t i, j, k; double maxcondition = 1000.; /* maxcondition1 satisfies the old code and the doc but seems wrong in that it is, with very high * probability, not the largest condition level!!! */ double maxcondition1 = 1000.; double *arrCondition; double fitvalues[2] = { 1.1, 9.1 }; /* Parameters for generating local optima. In the old code, they are different in f21 and f22 */ double b = 0, c = 0; /* Random permutation */ f_gallagher_permutation_t *rperm; double *random_numbers; data = (f_gallagher_data_t *) coco_allocate_memory(sizeof(*data)); /* Allocate temporary storage and space for the rotation matrices */ data->number_of_peaks = number_of_peaks; data->xopt = coco_allocate_vector(dimension); data->rotation = bbob2009_allocate_matrix(dimension, dimension); data->x_local = bbob2009_allocate_matrix(dimension, number_of_peaks); data->arr_scales = bbob2009_allocate_matrix(number_of_peaks, dimension); if (number_of_peaks == peaks_101) { maxcondition1 = sqrt(maxcondition1); b = 10.; c = 5.; } else if (number_of_peaks == peaks_21) { b = 9.8; c = 4.9; } else { coco_error("f_gallagher_bbob_problem_allocate(): '%lu' is a non-supported number of peaks", (unsigned long) number_of_peaks); } data->rseed = rseed; bbob2009_compute_rotation(data->rotation, rseed, dimension); /* Initialize all the data of the inner problem */ random_numbers = coco_allocate_vector(number_of_peaks * dimension); /* This is large enough for all cases below */ bbob2009_unif(random_numbers, number_of_peaks - 1, data->rseed); rperm = (f_gallagher_permutation_t *) coco_allocate_memory(sizeof(*rperm) * (number_of_peaks - 1)); for (i = 0; i < number_of_peaks - 1; ++i) { rperm[i].value = random_numbers[i]; rperm[i].index = i; } qsort(rperm, number_of_peaks - 1, sizeof(*rperm), f_gallagher_compare_doubles); /* Random permutation */ arrCondition = coco_allocate_vector(number_of_peaks); arrCondition[0] = maxcondition1; data->peak_values = coco_allocate_vector(number_of_peaks); data->peak_values[0] = 10; for (i = 1; i < number_of_peaks; ++i) { arrCondition[i] = pow(maxcondition, (double) (rperm[i - 1].index) / ((double) (number_of_peaks - 2))); data->peak_values[i] = (double) (i - 1) / (double) (number_of_peaks - 2) * (fitvalues[1] - fitvalues[0]) + fitvalues[0]; } coco_free_memory(rperm); rperm = (f_gallagher_permutation_t *) coco_allocate_memory(sizeof(*rperm) * dimension); for (i = 0; i < number_of_peaks; ++i) { bbob2009_unif(random_numbers, dimension, data->rseed + (long) (1000 * i)); for (j = 0; j < dimension; ++j) { rperm[j].value = random_numbers[j]; rperm[j].index = j; } qsort(rperm, dimension, sizeof(*rperm), f_gallagher_compare_doubles); for (j = 0; j < dimension; ++j) { data->arr_scales[i][j] = pow(arrCondition[i], /* Lambda^alpha_i from the doc */ ((double) rperm[j].index) / ((double) (dimension - 1)) - 0.5); } } coco_free_memory(rperm); bbob2009_unif(random_numbers, dimension * number_of_peaks, data->rseed); for (i = 0; i < dimension; ++i) { data->xopt[i] = 0.8 * (b * random_numbers[i] - c); problem->best_parameter[i] = 0.8 * (b * random_numbers[i] - c); for (j = 0; j < number_of_peaks; ++j) { data->x_local[i][j] = 0.; for (k = 0; k < dimension; ++k) { data->x_local[i][j] += data->rotation[i][k] * (b * random_numbers[j * dimension + k] - c); } if (j == 0) { data->x_local[i][j] *= 0.8; } } } coco_free_memory(arrCondition); coco_free_memory(random_numbers); problem->data = data; /* Compute best solution */ f_gallagher_evaluate(problem, problem->best_parameter, problem->best_value); fopt = bbob2009_compute_fopt(function, instance); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); return problem; } /* TODO: Functions used in/related to the large scale suite are below. Eventually either merge with above after the standard version is updated with the new approach or put what's below in a separate file */ /** * @brief Uses the core function to evaluate the sub problem. */ static void f_gallagher_sub_evaluate_core(coco_problem_t *problem_i, const double *x, double *y) { assert(problem_i->number_of_objectives == 1); y[0] = f_sphere_raw(x, problem_i->number_of_variables); /*assert(y[0] + 1e-13 >= problem->best_value[0]);*/ } /** * @brief Allocates the basic gallagher sub problem. */ static coco_problem_t *f_gallagher_sub_problem_allocate(const size_t number_of_variables) { coco_problem_t *problem_i = coco_problem_allocate_from_scalars("gallagher_sub function", f_gallagher_sub_evaluate_core, f_gallagher_versatile_data_free, number_of_variables, -5.0, 5.0, 0.0); f_gallagher_versatile_data_t *versatile_data_tmp; problem_i->versatile_data = (f_gallagher_versatile_data_t *) coco_allocate_memory(sizeof(f_gallagher_versatile_data_t)); versatile_data_tmp = ((f_gallagher_versatile_data_t *) problem_i->versatile_data); /* the following are not needed in the sub-problems */ versatile_data_tmp->number_of_peaks = 0; versatile_data_tmp->sub_problems = NULL; versatile_data_tmp->rotated_x = NULL; versatile_data_tmp->block_size_map = NULL; versatile_data_tmp->first_non_zero_map = NULL; versatile_data_tmp->block_sizes = NULL; versatile_data_tmp->B = NULL; coco_problem_set_id(problem_i, "%s_d%04lu", "gallagher_sub", number_of_variables); /* Compute best solution */ /*f_gallagher_sub_evaluate_core(problem, problem->best_parameter, problem->best_value);*/ return problem_i; } /** * @brief Implements the gallagher function without connections to any COCO structures. * Wassim: core to not conflict with raw for now */ static double f_gallagher_core(const double *x, size_t number_of_variables, f_gallagher_versatile_data_t *versatile_data) { coco_problem_t *problem_i; double result = 0; double y, w_i; size_t i,j; double maxf = DBL_MAX; double *x_local; x_local = coco_allocate_vector(number_of_variables); for (i = 0; i < versatile_data->number_of_peaks; i++) { for (j = 0; j < number_of_variables; j++) { x_local[j] = x[j];/*versatile_data->rotated_x[j];*/ } problem_i = versatile_data->sub_problems[i]; problem_i->evaluate_function(problem_i, x_local, &y); if (i == 0) { w_i = 10; } else { w_i = 1.1 + 8.0 * (((double) i + 1) - 2.0) / (((double)versatile_data->number_of_peaks) - 2.0); } y = w_i * exp(- 1.0 / (2.0 * ((double)number_of_variables)) * y);/* Wassim: problem_i->evaluate_function is the sphere on a transformed coordiante system with conditioning */ if ( i == 0 || maxf < y ) { maxf = y; } } result = 10.0 - maxf; coco_free_memory(x_local); return result; } /** * @brief Uses the core function to evaluate the COCO problem. */ static void f_gallagher_evaluate_core(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_gallagher_core(x, problem->number_of_variables, ((f_gallagher_versatile_data_t *) problem->versatile_data)); if (! (y[0] + 1e-13 >= problem->best_value[0])) { coco_warning("x[0]= %f: %f < %f", x[0], y[0] + 1e-13, problem->best_value[0]); } assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic gallagher problem. */ static coco_problem_t *f_gallagher_problem_allocate(const size_t number_of_variables, size_t number_of_peaks) { size_t peak_index; f_gallagher_versatile_data_t *versatile_data; coco_problem_t *problem = coco_problem_allocate_from_scalars("gallagher function", f_gallagher_evaluate_core, f_gallagher_versatile_data_free, number_of_variables, -5.0, 5.0, 0.0); problem->versatile_data = (f_gallagher_versatile_data_t *) coco_allocate_memory(sizeof(f_gallagher_versatile_data_t)); versatile_data = (f_gallagher_versatile_data_t *)problem->versatile_data;/* shortcut */ versatile_data->number_of_peaks = number_of_peaks; versatile_data->sub_problems = (coco_problem_t **) coco_allocate_memory(number_of_peaks * sizeof(coco_problem_t *)); for (peak_index = 0; peak_index < number_of_peaks; peak_index++) { versatile_data->sub_problems[peak_index] = f_gallagher_sub_problem_allocate(number_of_variables); } versatile_data->rotated_x = coco_allocate_vector(number_of_variables); versatile_data->block_size_map = coco_allocate_vector_size_t(number_of_variables); versatile_data->first_non_zero_map = coco_allocate_vector_size_t(number_of_variables); versatile_data->block_sizes = coco_allocate_vector_size_t(number_of_variables); coco_problem_set_id(problem, "%s_d%04lu", "gallagher", number_of_variables); problem->best_value[0] = 0; /* Compute best solution */ /*f_gallagher_evaluate_core(problem, problem->best_parameter, problem->best_value);*/ return problem; } static coco_problem_t *f_gallagher_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, size_t number_of_peaks, const char *problem_id_template, const char *problem_name_template) { size_t i; size_t peak_index; double fopt, *y_i; double penalty_factor = 1.0; coco_problem_t *problem = NULL, **problem_i, *rotation_problem; f_gallagher_versatile_data_t *versatile_data; double **B; const double *const *B_const; /*size_t *P1, *P2;*/ size_t *block_sizes; size_t nb_blocks; size_t idx_blocksize, current_blocksize, next_bs_change; /* needed for the rotated y_i*/ /*size_t swap_range; size_t nb_swaps;*/ double *tmp_uniform, *tmp_uniform2, *best_param_before_rotation, *best_param_after_rotation; const size_t peaks_21 = 21; const size_t peaks_101 = 101; double a = 0.8, b = 0, c = 0; double first_condition = 0; double alpha_i, *alpha_i_vals; size_t *P_alpha_i, *P_Lambda; /* first_condition satisfies the old code and the doc but seems wrong in that it is, with very high * probability, not the largest condition level!!! */ fopt = bbob2009_compute_fopt(function, instance); if (number_of_peaks == peaks_101) { first_condition = 1000; b = 10.0; c = 5.0; } else if (number_of_peaks == peaks_21) { first_condition = 1000 * 1000; b = 9.8; c = 4.9; } else { coco_error("f_gallagher_permblockdiag_bbob_problem_allocate(): '%lu' is a non-supported number of peaks", number_of_peaks); } block_sizes = coco_get_block_sizes(&nb_blocks, dimension, "bbob-largescale"); /*swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale");*/ B = coco_allocate_blockmatrix(dimension, block_sizes, nb_blocks); coco_compute_blockrotation(B, rseed, dimension, block_sizes, nb_blocks); B_const = (const double *const *)B; /* Required because of the type */ /*P1 = coco_allocate_vector_size_t(dimension); P2 = coco_allocate_vector_size_t(dimension); coco_compute_truncated_uniform_swap_permutation(P1, rseed + 2000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P2, rseed + 3000000, dimension, nb_swaps, swap_range);*/ problem = f_gallagher_problem_allocate(dimension, number_of_peaks); versatile_data = (f_gallagher_versatile_data_t *) problem->versatile_data;/* shortcut */ /* set versatile_data fields needed later in transform_vars_gallagher_blockrotation.c */ /* TODO: block-rotation related fields should be set in a separate function, not the definition of the problem*/ idx_blocksize = 0; next_bs_change = block_sizes[idx_blocksize]; for (i = 0; i < dimension; i++) { if (i >= next_bs_change) { idx_blocksize++; next_bs_change += block_sizes[idx_blocksize]; } current_blocksize=block_sizes[idx_blocksize]; versatile_data->block_size_map[i] = current_blocksize; versatile_data->first_non_zero_map[i] = next_bs_change - current_blocksize; } versatile_data->B = coco_copy_block_matrix(B_const, dimension, block_sizes, nb_blocks); rotation_problem = coco_problem_allocate_from_scalars("dummy rotation", NULL, NULL, dimension, -5.0, 5.0, 0.0); rotation_problem = transform_vars_blockrotation(rotation_problem, B_const, dimension, block_sizes, nb_blocks); alpha_i_vals = coco_allocate_vector(number_of_peaks - 1); for (i = 0; i < number_of_peaks - 1; i++) { alpha_i_vals[i] = pow(1000, 2 * (double) (i) / ((double) (number_of_peaks - 2))); } tmp_uniform = coco_allocate_vector(dimension * number_of_peaks); bbob2009_unif(tmp_uniform, number_of_peaks - 1, rseed); P_alpha_i = coco_allocate_vector_size_t(number_of_peaks - 1);/* random permutation of the alpha_i's to allow sampling without replacement*/ coco_compute_permutation_from_sequence(P_alpha_i, tmp_uniform, number_of_peaks - 1); bbob2009_unif(tmp_uniform, dimension * number_of_peaks, rseed); best_param_before_rotation = coco_allocate_vector(dimension); best_param_after_rotation = coco_allocate_vector(dimension); tmp_uniform2 = coco_allocate_vector(dimension); for (peak_index = 0; peak_index < number_of_peaks; peak_index++) { problem_i = &(versatile_data->sub_problems[peak_index]); /* compute transformation parameters: */ /* y_i and block-rotate it once and for all */ y_i = coco_allocate_vector(dimension); for (i = 0; i < dimension; i++) { y_i[i] = b * tmp_uniform[i + peak_index * dimension] - c; if (peak_index == 0) { y_i[i] *= a; problem->best_parameter[i] = 0; best_param_before_rotation[i] = y_i[i]; } } transform_vars_blockrotation_apply(rotation_problem, y_i, y_i); if (peak_index == 0) { for (i = 0; i < dimension; i++) { best_param_after_rotation[i] = y_i[i]; } } if (peak_index == 0) { alpha_i = first_condition; } else { alpha_i = alpha_i_vals[P_alpha_i[peak_index - 1]];/*already square-rooted */ } (*problem_i)->best_value[0] = 0;/* to prevent raising the assert */ /* P_Lambda the permutation */ P_Lambda = coco_allocate_vector_size_t(dimension);/* random permutation of the values in C_i */ bbob2009_unif(tmp_uniform2, dimension, rseed + (long) (1000 * peak_index)); coco_compute_permutation_from_sequence(P_Lambda, tmp_uniform2, dimension); /*coco_compute_random_permutation(P_Lambda, rseed + (long) (1000 * peak_index), dimension);*/ /* apply var transformations to sub problem*/ *problem_i = transform_vars_scale(*problem_i, 1. / sqrt(sqrt(sqrt(alpha_i))));/* sqrt( alpha^1/4) */ *problem_i = transform_vars_conditioning(*problem_i, sqrt(alpha_i)); /**problem_i = transform_vars_blockrotation(*problem_i, B_const, dimension, block_sizes, nb_blocks);*/ *problem_i = transform_vars_inverse_permutation(*problem_i, P_Lambda, dimension); *problem_i = transform_vars_shift(*problem_i, y_i, 0); coco_free_memory(P_Lambda); coco_free_memory(y_i); y_i = NULL; } f_gallagher_evaluate_core(problem, best_param_after_rotation, problem->best_value); problem = transform_vars_blockrotation(problem, B_const, dimension, block_sizes, nb_blocks); for (i = 0; i < dimension; i++) { problem->best_parameter[i] = best_param_before_rotation[i]; } /*transform global objective function*/ problem = transform_obj_oscillate(problem); problem = transform_obj_power(problem, 2.0); problem = transform_obj_penalize(problem, penalty_factor); problem = transform_obj_shift(problem, fopt); /*problem = transform_vars_gallagher_blockrotation(problem);*//* block-matrix in versatile_data*/ coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); coco_free_block_matrix(B, dimension); coco_free_memory(tmp_uniform); coco_free_memory(tmp_uniform2); /*coco_free_memory(P1); coco_free_memory(P2);*/ coco_free_memory(block_sizes); coco_free_memory(alpha_i_vals); coco_free_memory(P_alpha_i); coco_problem_free(rotation_problem); coco_free_memory(best_param_before_rotation); coco_free_memory(best_param_after_rotation); return problem; } #line 16 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_griewank_rosenbrock.c" /** * @file f_griewank_rosenbrock.c * @brief Implementation of the Griewank-Rosenbrock function and problem. */ #include #include #include #line 11 "code-experiments/src/f_griewank_rosenbrock.c" #line 12 "code-experiments/src/f_griewank_rosenbrock.c" #line 13 "code-experiments/src/f_griewank_rosenbrock.c" #line 14 "code-experiments/src/f_griewank_rosenbrock.c" #line 15 "code-experiments/src/f_griewank_rosenbrock.c" #line 16 "code-experiments/src/f_griewank_rosenbrock.c" #line 17 "code-experiments/src/f_griewank_rosenbrock.c" #line 18 "code-experiments/src/f_griewank_rosenbrock.c" #line 19 "code-experiments/src/f_griewank_rosenbrock.c" #line 20 "code-experiments/src/f_griewank_rosenbrock.c" /** * @brief Implements the Griewank-Rosenbrock function without connections to any COCO structures. */ static double f_griewank_rosenbrock_raw(const double *x, const size_t number_of_variables) { size_t i = 0; double tmp = 0; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; /* Computation core */ result = 0.0; for (i = 0; i < number_of_variables - 1; ++i) { const double c1 = x[i] * x[i] - x[i + 1]; const double c2 = 1.0 - x[i]; tmp = 100.0 * c1 * c1 + c2 * c2; result += tmp / 4000. - cos(tmp); } result = 10. + 10. * result / (double) (number_of_variables - 1); return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_griewank_rosenbrock_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_griewank_rosenbrock_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic Griewank-Rosenbrock problem. */ static coco_problem_t *f_griewank_rosenbrock_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Griewank Rosenbrock function", f_griewank_rosenbrock_evaluate, NULL, number_of_variables, -5.0, 5.0, 1); coco_problem_set_id(problem, "%s_d%02lu", "griewank_rosenbrock", number_of_variables); /* Compute best solution */ f_griewank_rosenbrock_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB Griewank-Rosenbrock problem. */ static coco_problem_t *f_griewank_rosenbrock_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double fopt; coco_problem_t *problem = NULL; size_t i, j; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *shift = coco_allocate_vector(dimension); double scales, **rot1; double tmp; /* Wassim: will serve to set the optimal solution "manually"*/ fopt = bbob2009_compute_fopt(function, instance); for (i = 0; i < dimension; ++i) { shift[i] = -0.5; } rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed, dimension); scales = coco_double_max(1., sqrt((double) dimension) / 8.); for (i = 0; i < dimension; ++i) { for (j = 0; j < dimension; ++j) { rot1[i][j] *= scales; } } problem = f_griewank_rosenbrock_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_shift(problem, shift, 0); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); for (i = 0; i < dimension; i++) { problem->best_parameter[i] = 0; /* Wassim: TODO: not a proper way of avoiding to trigger coco_warning("transform_vars_affine(): 'best_parameter' not updated, set to NAN")*/ } problem = transform_vars_affine(problem, M, b, dimension); for (j = 0; j < dimension; ++j) { /* Wassim: manually set xopt = rot1^T ones(dimension)/(2*factor) */ tmp = 0; for (i = 0; i < dimension; ++i) { tmp += rot1[i][j]; } problem->best_parameter[j] = tmp / (2. * scales); } bbob2009_free_matrix(rot1, dimension); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(shift); return problem; } /** * @brief Creates the BBOB permuted block-rotated Griewank-Rosenbrock problem. */ static coco_problem_t *f_griewank_rosenbrock_permblockdiag_bbob_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double fopt; coco_problem_t *problem = NULL; double *shift, scales; size_t i, j, k, next_bs_change; double **B; const double *const *B_copy; size_t *P1 = coco_allocate_vector_size_t(dimension); size_t *P2 = coco_allocate_vector_size_t(dimension); size_t *block_sizes; size_t block_size; size_t nb_blocks; size_t swap_range; size_t nb_swaps; double tmp; /* Manh: will serve to set the optimal solution "manually"*/ double *best_parameter = coco_allocate_vector(dimension); /* Manh: will serve to set the optimal solution "manually"*/ block_sizes = coco_get_block_sizes(&nb_blocks, dimension, "bbob-largescale"); block_size = coco_rotation_matrix_block_size(dimension); swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale"); fopt = bbob2009_compute_fopt(function, instance); scales = coco_double_max(1.0, sqrt((double) block_size) / 8.0); shift = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) { shift[i] = -0.5; } B = coco_allocate_blockmatrix(dimension, block_sizes, nb_blocks); B_copy = (const double *const *)B; coco_compute_blockrotation(B, rseed, dimension, block_sizes, nb_blocks); coco_compute_truncated_uniform_swap_permutation(P1, rseed + 2000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P2, rseed + 3000000, dimension, nb_swaps, swap_range); problem = f_griewank_rosenbrock_allocate(dimension); problem = transform_vars_shift(problem, shift, 0); problem = transform_vars_scale(problem, scales); problem = transform_vars_permutation(problem, P2, dimension); problem = transform_vars_blockrotation(problem, B_copy, dimension, block_sizes, nb_blocks); problem = transform_vars_permutation(problem, P1, dimension); /*problem = transform_obj_norm_by_dim(problem);*/ /* Wassim: there is already a normalization by dimension*/ problem = transform_obj_shift(problem, fopt); /* Manh: manually set xopt = rot1^T ones(dimension)/(2*scales) */ next_bs_change = 0; for (k = 0; k < nb_blocks; ++k){ for (j = 0; j < block_sizes[k]; ++j) { /* Manh: firstly, set xopt_1 = (B^T)*(P_2^T)*ones(dimension)/(2*scales) */ tmp = 0; for (i = 0; i < block_sizes[k]; ++i) { tmp += B[next_bs_change + i][j]; } best_parameter[next_bs_change + j] = tmp / (2. * scales); } next_bs_change += block_sizes[k]; } for (j = 0; j < dimension; ++j) { /* Manh: secondly, set xopt = (P_1^T)* xopt_1 */ problem->best_parameter[P1[j]] = best_parameter[j]; } coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_memory(best_parameter); coco_free_memory(shift); coco_free_block_matrix(B, dimension); coco_free_memory(P1); coco_free_memory(P2); coco_free_memory(block_sizes); return problem; } #line 17 "code-experiments/src/suite_bbob.c" #line 18 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_katsuura.c" /** * @file f_katsuura.c * @brief Implementation of the Katsuura function and problem. */ #include #include #include #line 11 "code-experiments/src/f_katsuura.c" #line 12 "code-experiments/src/f_katsuura.c" #line 13 "code-experiments/src/f_katsuura.c" #line 14 "code-experiments/src/f_katsuura.c" #line 15 "code-experiments/src/f_katsuura.c" #line 16 "code-experiments/src/f_katsuura.c" #line 17 "code-experiments/src/f_katsuura.c" #line 18 "code-experiments/src/f_katsuura.c" #line 19 "code-experiments/src/f_katsuura.c" /** * @brief Implements the Katsuura function without connections to any COCO structures. */ static double f_katsuura_raw(const double *x, const size_t number_of_variables) { size_t i, j; double tmp, tmp2; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; /* Computation core */ result = 1.0; for (i = 0; i < number_of_variables; ++i) { tmp = 0; for (j = 1; j < 33; ++j) { tmp2 = pow(2., (double) j); tmp += fabs(tmp2 * x[i] - coco_double_round(tmp2 * x[i])) / tmp2; } tmp = 1.0 + ((double) (long) i + 1) * tmp; /*result *= tmp;*/ /* Wassim TODO: delete once consistency check passed*/ result *= pow(tmp, 10. / pow((double) number_of_variables, 1.2)); } /*result = 10. / ((double) number_of_variables) / ((double) number_of_variables) * (-1. + pow(result, 10. / pow((double) number_of_variables, 1.2)));*/ result = 10. / ((double) number_of_variables) / ((double) number_of_variables) * (-1. + result); return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_katsuura_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_katsuura_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic Katsuura problem. */ static coco_problem_t *f_katsuura_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Katsuura function", f_katsuura_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); coco_problem_set_id(problem, "%s_d%02lu", "katsuura", number_of_variables); /* Compute best solution */ f_katsuura_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB Katsuura problem. */ static coco_problem_t *f_katsuura_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i, j, k; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *current_row, **rot1, **rot2; const double penalty_factor = 1.0; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); rot2 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(rot2, rseed, dimension); for (i = 0; i < dimension; ++i) { b[i] = 0.0; current_row = M + i * dimension; for (j = 0; j < dimension; ++j) { current_row[j] = 0.0; for (k = 0; k < dimension; ++k) { double exponent = 1.0 * (int) k / ((double) (long) dimension - 1.0); current_row[j] += rot1[i][k] * pow(sqrt(100), exponent) * rot2[k][j]; } } } problem = f_katsuura_allocate(dimension); problem = transform_obj_shift(problem, fopt); /*There is no shift 'fopt' in the definition*/ problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_penalize(problem, penalty_factor); bbob2009_free_matrix(rot1, dimension); bbob2009_free_matrix(rot2, dimension); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } /** * @brief Creates the BBOB permuted block-rotated Katsuura problem. */ static coco_problem_t *f_katsuura_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B1; double **B2; const double *const *B1_copy; const double *const *B2_copy; const double penalty_factor = 1.0; size_t *P11 = coco_allocate_vector_size_t(dimension); size_t *P12 = coco_allocate_vector_size_t(dimension); size_t *P21 = coco_allocate_vector_size_t(dimension); size_t *P22 = coco_allocate_vector_size_t(dimension); size_t *block_sizes1; size_t *block_sizes2; size_t nb_blocks1; size_t nb_blocks2; size_t swap_range1; size_t swap_range2; size_t nb_swaps1; size_t nb_swaps2; block_sizes1 = coco_get_block_sizes(&nb_blocks1, dimension, "bbob-largescale"); block_sizes2 = coco_get_block_sizes(&nb_blocks2, dimension, "bbob-largescale"); swap_range1 = coco_get_swap_range(dimension, "bbob-largescale"); swap_range2 = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps1 = coco_get_nb_swaps(dimension, "bbob-largescale"); nb_swaps2 = coco_get_nb_swaps(dimension, "bbob-largescale"); xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); B1 = coco_allocate_blockmatrix(dimension, block_sizes1, nb_blocks1); B2 = coco_allocate_blockmatrix(dimension, block_sizes2, nb_blocks2); B1_copy = (const double *const *)B1; B2_copy = (const double *const *)B2; coco_compute_blockrotation(B1, rseed + 1000000, dimension, block_sizes1, nb_blocks1); coco_compute_blockrotation(B2, rseed, dimension, block_sizes2, nb_blocks2); coco_compute_truncated_uniform_swap_permutation(P11, rseed + 3000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P12, rseed + 4000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P21, rseed + 5000000, dimension, nb_swaps2, swap_range2); coco_compute_truncated_uniform_swap_permutation(P22, rseed + 6000000, dimension, nb_swaps2, swap_range2); problem = f_katsuura_allocate(dimension); problem = transform_vars_permutation(problem, P22, dimension); problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes2, nb_blocks2); problem = transform_vars_permutation(problem, P21, dimension); problem = transform_vars_conditioning(problem, 100.0); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_blockrotation(problem, B2_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P11, dimension); problem = transform_vars_shift(problem, xopt, 0); /*problem = transform_obj_norm_by_dim(problem);*/ /* Wassim: does not seem to be needed*/ problem = transform_obj_penalize(problem, penalty_factor); problem = transform_obj_shift(problem, fopt); /*TODO: documentation, there is no fopt in the definition of this function*/ coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); coco_free_block_matrix(B1, dimension); coco_free_block_matrix(B2, dimension); coco_free_memory(P11); coco_free_memory(P12); coco_free_memory(P21); coco_free_memory(P22); coco_free_memory(block_sizes1); coco_free_memory(block_sizes2); coco_free_memory(xopt); return problem; } #line 19 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_linear_slope.c" /** * @file f_linear_slope.c * @brief Implementation of the linear slope function and problem. */ #include #include #include #line 11 "code-experiments/src/f_linear_slope.c" #line 12 "code-experiments/src/f_linear_slope.c" #line 13 "code-experiments/src/f_linear_slope.c" #line 14 "code-experiments/src/f_linear_slope.c" #line 15 "code-experiments/src/f_linear_slope.c" /** * @brief Implements the linear slope function without connections to any COCO structures. */ static double f_linear_slope_raw(const double *x, const size_t number_of_variables, const double *best_parameter) { static const double alpha = 100.0; size_t i; double result = 0.0; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; for (i = 0; i < number_of_variables; ++i) { double base, exponent, si; base = sqrt(alpha); exponent = (double) (long) i / ((double) (long) number_of_variables - 1); if (best_parameter[i] > 0.0) { si = pow(base, exponent); } else { si = -pow(base, exponent); } /* boundary handling */ if (x[i] * best_parameter[i] < 25.0) { result += 5.0 * fabs(si) - si * x[i]; } else { result += 5.0 * fabs(si) - si * best_parameter[i]; } } return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_linear_slope_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_linear_slope_raw(x, problem->number_of_variables, problem->best_parameter); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the gradient of the linear slope function. */ static void f_linear_slope_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { static const double alpha = 100.0; double base, exponent, si; size_t i; (void)x; /* silence (C89) compiliers */ for (i = 0; i < problem->number_of_variables; ++i) { base = sqrt(alpha); exponent = (double) (long) i / ((double) (long) problem->number_of_variables - 1); if (problem->best_parameter[i] > 0.0) { si = pow(base, exponent); } else { si = -pow(base, exponent); } y[i] = -si; } } /** * @brief Allocates the basic linear slope problem. */ static coco_problem_t *f_linear_slope_allocate(const size_t number_of_variables, const double *best_parameter) { size_t i; /* best_parameter will be overwritten below */ coco_problem_t *problem = coco_problem_allocate_from_scalars("linear slope function", f_linear_slope_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); problem->evaluate_gradient = f_linear_slope_evaluate_gradient; coco_problem_set_id(problem, "%s_d%02lu", "linear_slope", number_of_variables); /* Compute best solution */ for (i = 0; i < number_of_variables; ++i) { if (best_parameter[i] < 0.0) { problem->best_parameter[i] = problem->smallest_values_of_interest[i]; } else { problem->best_parameter[i] = problem->largest_values_of_interest[i]; } } f_linear_slope_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB linear slope problem. */ static coco_problem_t *f_linear_slope_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; xopt = coco_allocate_vector(dimension); bbob2009_compute_xopt(xopt, rseed, dimension); fopt = bbob2009_compute_fopt(function, instance); problem = f_linear_slope_allocate(dimension, xopt); /*if large scale test-bed, normalize by dim*/ if (coco_strfind(problem_name_template, "BBOB large-scale suite") >= 0){ problem = transform_obj_norm_by_dim(problem); } problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "1-separable"); coco_free_memory(xopt); return problem; } #line 20 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_lunacek_bi_rastrigin.c" /** * @file f_lunacek_bi_rastrigin.c * @brief Implementation of the Lunacek bi-Rastrigin function and problem. */ #include #include #line 10 "code-experiments/src/f_lunacek_bi_rastrigin.c" #line 11 "code-experiments/src/f_lunacek_bi_rastrigin.c" #line 12 "code-experiments/src/f_lunacek_bi_rastrigin.c" #line 13 "code-experiments/src/f_lunacek_bi_rastrigin.c" #line 14 "code-experiments/src/f_lunacek_bi_rastrigin.c" #line 1 "code-experiments/src/transform_vars_x_hat_generic.c" /** * @file transform_vars_x_hat_generic.c * @brief Implementation of multiplying the decision values by the vector 1+-. * Wassim: TODO: should eventually replace the non generic version in its use in Schwefel where xopt would be set elsewhere */ #include #line 10 "code-experiments/src/transform_vars_x_hat_generic.c" #line 11 "code-experiments/src/transform_vars_x_hat_generic.c" #line 12 "code-experiments/src/transform_vars_x_hat_generic.c" /** * @brief Data type for transform_vars_x_hat_generic. */ typedef struct { double *sign_vector; double *x; coco_problem_free_function_t old_free_problem; } transform_vars_x_hat_generic_data_t; /** * @brief Data type for the versatile_data_t */ typedef struct { coco_problem_t *sub_problem_mu0; coco_problem_t *sub_problem_mu1; double *x_hat; } f_lunacek_bi_rastrigin_versatile_data_t; /** * @brief Evaluates the transformation. */ static void transform_vars_x_hat_generic_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_x_hat_generic_data_t *data; coco_problem_t *inner_problem; data = (transform_vars_x_hat_generic_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); for (i = 0; i < problem->number_of_variables; ++i) { data->x[i] = 2.0 * data->sign_vector[i] * x[i]; ((f_lunacek_bi_rastrigin_versatile_data_t *) problem->versatile_data)->x_hat[i] = data->x[i]; } coco_evaluate_function(inner_problem, data->x, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Frees the data object. */ static void transform_vars_x_hat_generic_free(void *thing) { transform_vars_x_hat_generic_data_t *data = (transform_vars_x_hat_generic_data_t *) thing; coco_free_memory(data->x); coco_free_memory(data->sign_vector); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_x_hat_generic(coco_problem_t *inner_problem, const double *sign_vector) { transform_vars_x_hat_generic_data_t *data; coco_problem_t *problem; size_t i; data = (transform_vars_x_hat_generic_data_t *) coco_allocate_memory(sizeof(*data)); data->x = coco_allocate_vector(inner_problem->number_of_variables); data->sign_vector = coco_allocate_vector(inner_problem->number_of_variables); for (i = 0; i < inner_problem->number_of_variables; ++i) { data->sign_vector[i] = sign_vector[i]; } problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_x_hat_generic_free, "transform_vars_x_hat_generic"); problem->evaluate_function = transform_vars_x_hat_generic_evaluate; return problem; } #line 15 "code-experiments/src/f_lunacek_bi_rastrigin.c" #line 16 "code-experiments/src/f_lunacek_bi_rastrigin.c" #line 1 "code-experiments/src/transform_obj_scale.c" /** * @file transform_obj_scale.c * @brief Implementation of scaling the objective value by the given factor. */ #include #line 9 "code-experiments/src/transform_obj_scale.c" #line 10 "code-experiments/src/transform_obj_scale.c" /** * @brief Data type for transform_obj_scale. */ typedef struct { double factor; } transform_obj_scale_data_t; /** * @brief Evaluates the transformed function. */ static void transform_obj_scale_evaluate_function(coco_problem_t *problem, const double *x, double *y) { transform_obj_scale_data_t *data; double *cons_values; int is_feasible; size_t i; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_obj_scale_data_t *) coco_problem_transformed_get_data(problem); coco_evaluate_function(coco_problem_transformed_get_inner_problem(problem), x, y); for (i = 0; i < problem->number_of_objectives; i++) y[i] *= data->factor; if (problem->number_of_constraints > 0) { cons_values = coco_allocate_vector(problem->number_of_constraints); is_feasible = coco_is_feasible(problem, x, cons_values); coco_free_memory(cons_values); if (is_feasible) assert(y[0] + 1e-13 >= problem->best_value[0]); } else assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the gradient of the transformed function at x */ static void transform_obj_scale_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_obj_scale_data_t *data; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } bbob_evaluate_gradient(coco_problem_transformed_get_inner_problem(problem), x, y); data = (transform_obj_scale_data_t *) coco_problem_transformed_get_data(problem); for (i = 0; i < problem->number_of_variables; ++i) { y[i] *= data->factor; } } /** * @brief Creates the transformation. */ static coco_problem_t *transform_obj_scale(coco_problem_t *inner_problem, const double factor) { coco_problem_t *problem; transform_obj_scale_data_t *data; size_t i; data = (transform_obj_scale_data_t *) coco_allocate_memory(sizeof(*data)); data->factor = factor; problem = coco_problem_transformed_allocate(inner_problem, data, NULL, "transform_obj_scale"); if (inner_problem->number_of_objectives > 0) problem->evaluate_function = transform_obj_scale_evaluate_function; problem->evaluate_gradient = transform_obj_scale_evaluate_gradient; for (i = 0; i < problem->number_of_objectives; ++i) problem->best_value[i] *= factor; return problem; } #line 17 "code-experiments/src/f_lunacek_bi_rastrigin.c" /** * @brief Data type for the Lunacek bi-Rastrigin problem. */ typedef struct { double *x_hat, *z; double *xopt, fopt; double **rot1, **rot2; long rseed; coco_problem_free_function_t old_free_problem; } f_lunacek_bi_rastrigin_data_t; /** * @brief Implements the Lunacek bi-Rastrigin function without connections to any COCO structures. */ static double f_lunacek_bi_rastrigin_raw(const double *x, const size_t number_of_variables, f_lunacek_bi_rastrigin_data_t *data) { double result; static const double condition = 100.; size_t i, j; double penalty = 0.0; static const double mu0 = 2.5; static const double d = 1.; const double s = 1. - 0.5 / (sqrt((double) (number_of_variables + 20)) - 4.1); const double mu1 = -sqrt((mu0 * mu0 - d) / s); double *tmpvect, sum1 = 0., sum2 = 0., sum3 = 0.; assert(number_of_variables > 1); if (coco_vector_contains_nan(x, number_of_variables)) return NAN; for (i = 0; i < number_of_variables; ++i) { double tmp; tmp = fabs(x[i]) - 5.0; if (tmp > 0.0) penalty += tmp * tmp; } /* x_hat */ for (i = 0; i < number_of_variables; ++i) { data->x_hat[i] = 2. * x[i]; if (data->xopt[i] < 0.) { data->x_hat[i] *= -1.; } } tmpvect = coco_allocate_vector(number_of_variables); /* affine transformation */ for (i = 0; i < number_of_variables; ++i) { double c1; tmpvect[i] = 0.0; c1 = pow(sqrt(condition), ((double) i) / (double) (number_of_variables - 1)); for (j = 0; j < number_of_variables; ++j) { tmpvect[i] += c1 * data->rot2[i][j] * (data->x_hat[j] - mu0); } } for (i = 0; i < number_of_variables; ++i) { data->z[i] = 0; for (j = 0; j < number_of_variables; ++j) { data->z[i] += data->rot1[i][j] * tmpvect[j]; } } /* Computation core */ for (i = 0; i < number_of_variables; ++i) { sum1 += (data->x_hat[i] - mu0) * (data->x_hat[i] - mu0); sum2 += (data->x_hat[i] - mu1) * (data->x_hat[i] - mu1); sum3 += cos(2 * coco_pi * data->z[i]); } result = coco_double_min(sum1, d * (double) number_of_variables + s * sum2) + 10. * ((double) number_of_variables - sum3) + 1e4 * penalty; coco_free_memory(tmpvect); return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_lunacek_bi_rastrigin_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_lunacek_bi_rastrigin_raw(x, problem->number_of_variables, (f_lunacek_bi_rastrigin_data_t *) problem->data); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Frees the Lunacek bi-Rastrigin data object. */ static void f_lunacek_bi_rastrigin_free(coco_problem_t *problem) { f_lunacek_bi_rastrigin_data_t *data; data = (f_lunacek_bi_rastrigin_data_t *) problem->data; coco_free_memory(data->x_hat); coco_free_memory(data->z); coco_free_memory(data->xopt); bbob2009_free_matrix(data->rot1, problem->number_of_variables); bbob2009_free_matrix(data->rot2, problem->number_of_variables); /* Let the generic free problem code deal with all of the * coco_problem_t fields. */ problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Creates the BBOB Lunacek bi-Rastrigin problem. * * @note There is no separate basic allocate function. */ static coco_problem_t *f_lunacek_bi_rastrigin_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { f_lunacek_bi_rastrigin_data_t *data; coco_problem_t *problem = coco_problem_allocate_from_scalars("Lunacek's bi-Rastrigin function", f_lunacek_bi_rastrigin_evaluate, f_lunacek_bi_rastrigin_free, dimension, -5.0, 5.0, 0.0); const double mu0 = 2.5; double fopt, *tmpvect; size_t i; data = (f_lunacek_bi_rastrigin_data_t *) coco_allocate_memory(sizeof(*data)); /* Allocate temporary storage and space for the rotation matrices */ data->x_hat = coco_allocate_vector(dimension); data->z = coco_allocate_vector(dimension); data->xopt = coco_allocate_vector(dimension); data->rot1 = bbob2009_allocate_matrix(dimension, dimension); data->rot2 = bbob2009_allocate_matrix(dimension, dimension); data->rseed = rseed; data->fopt = bbob2009_compute_fopt(24, instance); bbob2009_compute_xopt(data->xopt, rseed, dimension); bbob2009_compute_rotation(data->rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(data->rot2, rseed, dimension); problem->data = data; /* Compute best solution */ tmpvect = coco_allocate_vector(dimension); bbob2009_gauss(tmpvect, dimension, rseed); for (i = 0; i < dimension; ++i) { data->xopt[i] = 0.5 * mu0; if (tmpvect[i] < 0.0) { data->xopt[i] *= -1.0; } problem->best_parameter[i] = data->xopt[i]; } coco_free_memory(tmpvect); f_lunacek_bi_rastrigin_evaluate(problem, problem->best_parameter, problem->best_value); fopt = bbob2009_compute_fopt(function, instance); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); return problem; } /* Functions used in/related to the large scale suite are below. Eventually either merge with above after the standard version is updated with the new approach or put what's below in a separate file*/ /** * @brief allows to free the versatile_data part of the problem. */ static void f_lunacek_bi_rastrigin_versatile_data_free(coco_problem_t *problem) { f_lunacek_bi_rastrigin_versatile_data_t *versatile_data = (f_lunacek_bi_rastrigin_versatile_data_t *) problem->versatile_data; /*free the two problems*/ if (versatile_data->sub_problem_mu0 != NULL) { coco_problem_free(versatile_data->sub_problem_mu0); } if (versatile_data->sub_problem_mu1 != NULL) { coco_problem_free(versatile_data->sub_problem_mu1); } coco_free_memory(versatile_data->x_hat); /*Manh: free the x_hat*/ coco_free_memory(versatile_data); problem->versatile_data = NULL; problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Uses the core function to evaluate the sub problem. */ static void f_lunacek_bi_rastrigin_sub_evaluate_core(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_sphere_raw(x, problem->number_of_variables); } /** * @brief Allocates the basic lunacek_bi_rastrigin sub problem. */ static coco_problem_t *f_lunacek_bi_rastrigin_sub_problem_allocate(const size_t number_of_variables) { coco_problem_t *problem_i = coco_problem_allocate_from_scalars("lunacek_bi_rastrigin_sub function", f_lunacek_bi_rastrigin_sub_evaluate_core, NULL, number_of_variables, -5.0, 5.0, 0.0); problem_i->versatile_data = NULL; coco_problem_set_id(problem_i, "%s_d%04lu", "lunacek_bi_rastrigin_sub", number_of_variables); f_lunacek_bi_rastrigin_sub_evaluate_core(problem_i, problem_i->best_parameter, problem_i->best_value); return problem_i; } /** * @brief Implements the lunacek_bi_rastrigin function without connections to any COCO structures. * Wassim: core to not conflict with raw for now */ static double f_lunacek_bi_rastrigin_core(const double *x, const size_t number_of_variables,f_lunacek_bi_rastrigin_versatile_data_t *f_lunacek_bi_rastrigin_versatile_data) { coco_problem_t *problem_sub_mu0, *problem_sub_mu1; size_t i; double result = 0.0; double y0, y1; double *x_hat; x_hat = f_lunacek_bi_rastrigin_versatile_data->x_hat; problem_sub_mu0 = f_lunacek_bi_rastrigin_versatile_data->sub_problem_mu0; problem_sub_mu0->evaluate_function(problem_sub_mu0, x_hat, &y0); problem_sub_mu1 = f_lunacek_bi_rastrigin_versatile_data->sub_problem_mu1; problem_sub_mu1->evaluate_function(problem_sub_mu1, x_hat, &y1); result += (double) number_of_variables; for (i = 0; i < number_of_variables; i++) { result -= cos(2 * coco_pi * x[i]); } result *= 10.0; result += coco_double_min(y0, y1); return result; } /** * @brief Uses the core function to evaluate the COCO problem. */ static void f_lunacek_bi_rastrigin_evaluate_core(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_lunacek_bi_rastrigin_core(x, problem->number_of_variables, ((f_lunacek_bi_rastrigin_versatile_data_t *) problem->versatile_data)); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic lunacek_bi_rastrigin problem. */ static coco_problem_t *f_lunacek_bi_rastrigin_problem_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("lunacek_bi_rastrigin function", f_lunacek_bi_rastrigin_evaluate_core, f_lunacek_bi_rastrigin_versatile_data_free, number_of_variables, -5.0, 5.0, 0.0); problem->versatile_data = (f_lunacek_bi_rastrigin_versatile_data_t *) coco_allocate_memory(sizeof(f_lunacek_bi_rastrigin_versatile_data_t)); ((f_lunacek_bi_rastrigin_versatile_data_t *) problem->versatile_data)->x_hat = coco_allocate_vector(number_of_variables); /* Manh: Allocate x_hat in versatile_data */ coco_problem_set_id(problem, "%s_d%04lu", "lunacek_bi_rastrigin", number_of_variables); /* Compute the best solution later once the sub-problems are well defined */ *(problem->best_value) = 0; /* Manh: set default value to avoid assert() in transformation later*/ return problem; } /** * @brief Creates the BBOB large scale suite Lunacek bi-Rastrigin problem. */ static coco_problem_t *f_lunacek_bi_rastrigin_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { size_t i; double fopt; double penalty_factor = 1e4; coco_problem_t *problem = NULL, **sub_problem_tmp; double **B1, **B2; const double *const *B1_copy; const double *const *B2_copy; size_t *P11, *P12, *P21, *P22; size_t *block_sizes1, *block_sizes2; size_t nb_blocks1, nb_blocks2; size_t swap_range1, swap_range2; size_t nb_swaps1, nb_swaps2; double condition = 100.0; double mu0, mu1, d = 1.0, s; double *mu0_vector, *mu1_vector, *sign_vector; /* Wassim sign vector designate the 1^+_- vector*/ double *tmp_normal; fopt = bbob2009_compute_fopt(function, instance); s = 1. - 0.5 / (sqrt((double) (dimension + 20)) - 4.1); mu0 = 2.5; mu1 = -sqrt((mu0 * mu0 - d) / s); block_sizes1 = coco_get_block_sizes(&nb_blocks1, dimension, "bbob-largescale"); block_sizes2 = coco_get_block_sizes(&nb_blocks2, dimension, "bbob-largescale"); swap_range1 = coco_get_swap_range(dimension, "bbob-largescale"); swap_range2 = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps1 = coco_get_nb_swaps(dimension, "bbob-largescale"); nb_swaps2 = coco_get_nb_swaps(dimension, "bbob-largescale"); B1 = coco_allocate_blockmatrix(dimension, block_sizes1, nb_blocks1); B2 = coco_allocate_blockmatrix(dimension, block_sizes2, nb_blocks2); B1_copy = (const double *const *)B1; B2_copy = (const double *const *)B2; coco_compute_blockrotation(B1, rseed + 1000000, dimension, block_sizes1, nb_blocks1); coco_compute_blockrotation(B2, rseed, dimension, block_sizes2, nb_blocks2); P11 = coco_allocate_vector_size_t(dimension); P12 = coco_allocate_vector_size_t(dimension); P21 = coco_allocate_vector_size_t(dimension); P22 = coco_allocate_vector_size_t(dimension); coco_compute_truncated_uniform_swap_permutation(P11, rseed + 3000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P12, rseed + 4000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P21, rseed + 5000000, dimension, nb_swaps2, swap_range2); coco_compute_truncated_uniform_swap_permutation(P22, rseed + 6000000, dimension, nb_swaps2, swap_range2); problem = f_lunacek_bi_rastrigin_problem_allocate(dimension); mu0_vector = coco_allocate_vector(dimension); mu1_vector = coco_allocate_vector(dimension); for (i = 0; i < dimension; i++) { mu0_vector[i] = mu0; mu1_vector[i] = mu1; } /* allocate sub-problems */ ((f_lunacek_bi_rastrigin_versatile_data_t *) problem->versatile_data)->sub_problem_mu0 = f_lunacek_bi_rastrigin_sub_problem_allocate(dimension); ((f_lunacek_bi_rastrigin_versatile_data_t *) problem->versatile_data)->sub_problem_mu1 = f_lunacek_bi_rastrigin_sub_problem_allocate(dimension); /* set sign_vector */ tmp_normal = coco_allocate_vector(dimension); bbob2009_gauss(tmp_normal, dimension, rseed); sign_vector = coco_allocate_vector(dimension); for ( i = 0; i < dimension; i++) { /* set sign(x_opt)*/ if ( tmp_normal[i] < 0.0) {/* Wassim: noraml is used here but unif for Schweffel!!! */ sign_vector[i] = -1.0; } else { sign_vector[i] = 1.0; } coco_debug("An arbitrary message to suppress errors on Windows, see #1909. Please ignore accordingly."); } /* apply transformations to sub-problems */ sub_problem_tmp = &((f_lunacek_bi_rastrigin_versatile_data_t *) problem->versatile_data)->sub_problem_mu0; *sub_problem_tmp = transform_vars_shift(*sub_problem_tmp, mu0_vector, 0); sub_problem_tmp = &((f_lunacek_bi_rastrigin_versatile_data_t *) problem->versatile_data)->sub_problem_mu1; *sub_problem_tmp = transform_vars_shift(*sub_problem_tmp, mu1_vector, 0); *sub_problem_tmp = transform_obj_scale(*sub_problem_tmp, s); /* Manh: need to use s */ *sub_problem_tmp = transform_obj_shift(*sub_problem_tmp, d * (double) dimension); /* transformations on main problem */ problem = transform_vars_permutation(problem, P22, dimension); problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P21, dimension); problem = transform_vars_conditioning(problem, condition); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_blockrotation(problem, B2_copy, dimension, block_sizes2, nb_blocks2); problem = transform_vars_permutation(problem, P11, dimension); problem = transform_vars_shift(problem, mu0_vector, 0); problem = transform_vars_x_hat_generic(problem, sign_vector); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_penalize(problem, penalty_factor); problem = transform_obj_shift(problem, fopt); /* set best_parameter and best value*/ for ( i = 0; i < dimension; i++) { /* Wassim: to silence warning about best_parameter*/ problem->best_parameter[i] = 0.5 * mu0 * sign_vector[i]; /* TODO: Documentation no 0.5 in documentation! */ } /* f_lunacek_bi_rastrigin_evaluate_core(problem, problem->best_parameter, problem->best_value); printf("\n %f , x_opt[0]= %f\n", problem->best_value[0], problem->best_parameter[0]);*/ /* Wassim: for testing purposes, might end up being the one kept though*/ coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); coco_free_memory(tmp_normal); coco_free_block_matrix(B1, dimension); coco_free_block_matrix(B2, dimension); coco_free_memory(P11); coco_free_memory(P12); coco_free_memory(P21); coco_free_memory(P22); coco_free_memory(block_sizes1); coco_free_memory(block_sizes2); coco_free_memory(mu0_vector); coco_free_memory(mu1_vector); coco_free_memory(sign_vector); return problem; } #line 21 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_rastrigin.c" /** * @file f_rastrigin.c * @brief Implementation of the Rastrigin function and problem. */ #include #include #include #line 11 "code-experiments/src/f_rastrigin.c" #line 12 "code-experiments/src/f_rastrigin.c" #line 13 "code-experiments/src/f_rastrigin.c" #line 14 "code-experiments/src/f_rastrigin.c" #line 15 "code-experiments/src/f_rastrigin.c" #line 16 "code-experiments/src/f_rastrigin.c" #line 17 "code-experiments/src/f_rastrigin.c" #line 18 "code-experiments/src/f_rastrigin.c" #line 19 "code-experiments/src/f_rastrigin.c" #line 20 "code-experiments/src/f_rastrigin.c" #line 21 "code-experiments/src/f_rastrigin.c" #line 22 "code-experiments/src/f_rastrigin.c" #line 23 "code-experiments/src/f_rastrigin.c" /** * @brief Implements the Rastrigin function without connections to any COCO structures. */ static double f_rastrigin_raw(const double *x, const size_t number_of_variables) { size_t i = 0; double result; double sum1 = 0.0, sum2 = 0.0; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; for (i = 0; i < number_of_variables; ++i) { sum1 += cos(coco_two_pi * x[i]); sum2 += x[i] * x[i]; } if (coco_is_inf(sum2)) /* cos(inf) -> nan */ return sum2; result = 10.0 * ((double) (long) number_of_variables - sum1) + sum2; return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_rastrigin_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_rastrigin_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Evaluates the gradient of the raw Rastrigin function. */ static void f_rastrigin_evaluate_gradient(coco_problem_t *problem, const double *x, double *y) { size_t i; for (i = 0; i < problem->number_of_variables; ++i) { y[i] = 2.0 * (10. * coco_pi * sin(coco_two_pi * x[i]) + x[i]); } } /** * @brief Allocates the basic Rastrigin problem. */ static coco_problem_t *f_rastrigin_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Rastrigin function", f_rastrigin_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); /* TODO: make sure the gradient is computed correctly for the rotated Rastrigin */ problem->evaluate_gradient = f_rastrigin_evaluate_gradient; coco_problem_set_id(problem, "%s_d%02lu", "rastrigin", number_of_variables); /* Compute best solution */ f_rastrigin_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB Rastrigin problem. */ static coco_problem_t *f_rastrigin_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); problem = f_rastrigin_allocate(dimension); problem = transform_vars_conditioning(problem, 10.0); problem = transform_vars_asymmetric(problem, 0.2); problem = transform_vars_oscillate(problem); problem = transform_vars_shift(problem, xopt, 0); /*if large scale test-bed, normalize by dim*/ if (coco_strfind(problem_name_template, "BBOB large-scale suite") >= 0){ problem = transform_obj_norm_by_dim(problem); } problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "1-separable"); coco_free_memory(xopt); return problem; } /** * @brief Creates the BBOB rotated Rastrigin problem. */ static coco_problem_t *f_rastrigin_rotated_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i, j, k; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *current_row, **rot1, **rot2; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); rot2 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(rot2, rseed, dimension); for (i = 0; i < dimension; ++i) { b[i] = 0.0; current_row = M + i * dimension; for (j = 0; j < dimension; ++j) { current_row[j] = 0.0; for (k = 0; k < dimension; ++k) { double exponent = 1.0 * (int) k / ((double) (long) dimension - 1.0); current_row[j] += rot1[i][k] * pow(sqrt(10), exponent) * rot2[k][j]; } } } problem = f_rastrigin_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_asymmetric(problem, 0.2); problem = transform_vars_oscillate(problem); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); bbob2009_free_matrix(rot1, dimension); bbob2009_free_matrix(rot2, dimension); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } /** * @brief Creates the BBOB rotated Rastrigin problem for large scale. */ static coco_problem_t *f_rastrigin_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B1; double **B2; const double *const *B1_copy; const double *const *B2_copy; size_t *P11 = coco_allocate_vector_size_t(dimension); size_t *P12 = coco_allocate_vector_size_t(dimension); size_t *P21 = coco_allocate_vector_size_t(dimension); size_t *P22 = coco_allocate_vector_size_t(dimension); size_t *block_sizes1, *block_sizes2; size_t nb_blocks1, nb_blocks2; size_t swap_range1, swap_range2; size_t nb_swaps1, nb_swaps2; block_sizes1 = coco_get_block_sizes(&nb_blocks1, dimension, "bbob-largescale"); block_sizes2 = coco_get_block_sizes(&nb_blocks2, dimension, "bbob-largescale"); swap_range1 = coco_get_swap_range(dimension, "bbob-largescale"); swap_range2 = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps1 = coco_get_nb_swaps(dimension, "bbob-largescale"); nb_swaps2 = coco_get_nb_swaps(dimension, "bbob-largescale"); xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); B1 = coco_allocate_blockmatrix(dimension, block_sizes1, nb_blocks1); B2 = coco_allocate_blockmatrix(dimension, block_sizes2, nb_blocks2); B1_copy = (const double *const *)B1; B2_copy = (const double *const *)B2; coco_compute_blockrotation(B1, rseed + 1000000, dimension, block_sizes1, nb_blocks1); coco_compute_blockrotation(B2, rseed, dimension, block_sizes2, nb_blocks2); coco_compute_truncated_uniform_swap_permutation(P11, rseed + 3000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P12, rseed + 4000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P21, rseed + 5000000, dimension, nb_swaps2, swap_range2); coco_compute_truncated_uniform_swap_permutation(P22, rseed + 6000000, dimension, nb_swaps2, swap_range2); problem = f_rastrigin_allocate(dimension); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P11, dimension); problem = transform_vars_conditioning(problem, 10.0); problem = transform_vars_permutation(problem, P22, dimension); problem = transform_vars_blockrotation(problem, B2_copy, dimension, block_sizes2, nb_blocks2); problem = transform_vars_permutation(problem, P21, dimension); problem = transform_vars_asymmetric(problem, 0.2); problem = transform_vars_oscillate(problem); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P11, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_block_matrix(B1, dimension); coco_free_block_matrix(B2, dimension); coco_free_memory(P11); coco_free_memory(P12); coco_free_memory(P21); coco_free_memory(P22); coco_free_memory(block_sizes1); coco_free_memory(block_sizes2); coco_free_memory(xopt); return problem; } /** * @brief Computes xopt for constrained Rastrigin (alternative to bbob2009_compute_xopt()) * xopt is a vector of dim uniform random integers */ static void f_rastrigin_cons_compute_xopt(double *xopt, const long rseed, const size_t dim) { size_t i; bbob2009_unif(xopt, dim, rseed); for (i = 0; i < dim; ++i) { xopt[i] = 10 * xopt[i] - 5; xopt[i] = (int) xopt[i]; } /* In case (0, ..., 0) is sampled, set xopt to a different value */ if (coco_vector_is_zero(xopt, dim)) for (i = 0; i < dim; ++i) { xopt[i] = (int) (i % 9) - 4; } } /** * @brief Creates the Rastrigin problem for the constrained BBOB suite. */ static coco_problem_t *f_rastrigin_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; xopt = coco_allocate_vector(dimension); f_rastrigin_cons_compute_xopt(xopt, rseed, dimension); fopt = bbob2009_compute_fopt(function, instance); problem = f_rastrigin_allocate(dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "1-separable"); coco_free_memory(xopt); return problem; } /** * @brief Creates the rotated Rastrigin problem for the constrained BBOB suite. */ static coco_problem_t *f_rastrigin_rotated_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double **rot1; rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); bbob2009_free_matrix(rot1, dimension); xopt = coco_allocate_vector(dimension); f_rastrigin_cons_compute_xopt(xopt, rseed, dimension); fopt = bbob2009_compute_fopt(function, instance); problem = f_rastrigin_allocate(dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_vars_affine(problem, M, b, dimension); /* Rotate after shifting so R dot xopt is also rotated */ problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "1-separable"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } #line 22 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_rosenbrock.c" /** * @file f_rosenbrock.c * @brief Implementation of the Rosenbrock function and problem. */ #include #line 9 "code-experiments/src/f_rosenbrock.c" #line 10 "code-experiments/src/f_rosenbrock.c" #line 11 "code-experiments/src/f_rosenbrock.c" #line 12 "code-experiments/src/f_rosenbrock.c" #line 13 "code-experiments/src/f_rosenbrock.c" #line 14 "code-experiments/src/f_rosenbrock.c" #line 15 "code-experiments/src/f_rosenbrock.c" #line 16 "code-experiments/src/f_rosenbrock.c" #line 17 "code-experiments/src/f_rosenbrock.c" #line 18 "code-experiments/src/f_rosenbrock.c" /** * @brief Implements the Rosenbrock function without connections to any COCO structures. */ static double f_rosenbrock_raw(const double *x, const size_t number_of_variables) { size_t i = 0; double result; double s1 = 0.0, s2 = 0.0, tmp; assert(number_of_variables > 1); if (coco_vector_contains_nan(x, number_of_variables)) return NAN; for (i = 0; i < number_of_variables - 1; ++i) { tmp = (x[i] * x[i] - x[i + 1]); s1 += tmp * tmp; tmp = (x[i] - 1.0); s2 += tmp * tmp; } result = 100.0 * s1 + s2; return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_rosenbrock_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_rosenbrock_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic Rosenbrock problem. */ static coco_problem_t *f_rosenbrock_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Rosenbrock function", f_rosenbrock_evaluate, NULL, number_of_variables, -5.0, 5.0, 1.0); coco_problem_set_id(problem, "%s_d%02lu", "rosenbrock", number_of_variables); /* Compute best solution */ f_rosenbrock_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB Rosenbrock problem. */ static coco_problem_t *f_rosenbrock_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i, block_size; double *minus_one, factor; minus_one = coco_allocate_vector(dimension); xopt = coco_allocate_vector(dimension); bbob2009_compute_xopt(xopt, rseed, dimension); for (i = 0; i < dimension; ++i) { minus_one[i] = -1.0; xopt[i] *= 0.75; } fopt = bbob2009_compute_fopt(function, instance); if (coco_strfind(problem_name_template, "BBOB large-scale suite") >= 0){ block_size = coco_rotation_matrix_block_size(dimension); factor = coco_double_max(1.0, sqrt((double) block_size) / 8.0); } else { factor = coco_double_max(1.0, sqrt((double) dimension) / 8.0); } problem = f_rosenbrock_allocate(dimension); problem = transform_vars_shift(problem, minus_one, 0); problem = transform_vars_scale(problem, factor); problem = transform_vars_shift(problem, xopt, 0); /*if large scale test-bed, normalize by dim*/ if (coco_strfind(problem_name_template, "BBOB large-scale suite") >= 0){ problem = transform_obj_norm_by_dim(problem); } problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "2-moderate"); coco_free_memory(minus_one); coco_free_memory(xopt); return problem; } /** * @brief Creates the BBOB rotated Rosenbrock problem. */ static coco_problem_t *f_rosenbrock_rotated_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double fopt; coco_problem_t *problem = NULL; size_t row, column; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *current_row, **rot1, factor; double tmp; /* Wassim: will serve to set the optimal solution "manually"*/ fopt = bbob2009_compute_fopt(function, instance); rot1 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed, dimension); factor = coco_double_max(1.0, sqrt((double) dimension) / 8.0); /* Compute affine transformation */ for (row = 0; row < dimension; ++row) { current_row = M + row * dimension; for (column = 0; column < dimension; ++column) { current_row[column] = factor * rot1[row][column]; } b[row] = 0.5; } /*bbob2009_free_matrix(rot1, dimension);*/ problem = f_rosenbrock_allocate(dimension); for (row = 0; row < dimension; row++) { problem->best_parameter[row] = 0; /* Wassim: TODO: not a proper way of avoiding to trigger coco_warning("transform_vars_affine(): 'best_parameter' not updated, set to NAN")*/ } problem = transform_vars_affine(problem, M, b, dimension); problem = transform_obj_shift(problem, fopt); for (column = 0; column < dimension; ++column) { /* Wassim: manually set xopt = rot1^T ones(dimension)/(2*factor) */ tmp = 0; for (row = 0; row < dimension; ++row) { tmp += rot1[row][column]; } problem->best_parameter[column] = tmp / (2. * factor); } bbob2009_free_matrix(rot1, dimension); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "2-moderate"); coco_free_memory(M); coco_free_memory(b); return problem; } /** * @brief Creates the BBOB permuted block-rotated Rosenbrock problem. */ static coco_problem_t *f_rosenbrock_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double *minus_one, factor; size_t i; double **B; const double *const *B_copy; size_t *P1 = coco_allocate_vector_size_t(dimension); size_t *P2 = coco_allocate_vector_size_t(dimension); size_t *block_sizes; size_t block_size; size_t nb_blocks; size_t swap_range; size_t nb_swaps; double *best_parameter = coco_allocate_vector(dimension); /* Manh: will serve to set the optimal solution "manually"*/ block_sizes = coco_get_block_sizes(&nb_blocks, dimension, "bbob-largescale"); block_size = coco_rotation_matrix_block_size(dimension); swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale"); fopt = bbob2009_compute_fopt(function, instance); factor = coco_double_max(1.0, sqrt((double) block_size) / 8.0); minus_one = coco_allocate_vector(dimension); xopt = coco_allocate_vector(dimension); bbob2009_compute_xopt(xopt, rseed, dimension); for (i = 0; i < dimension; ++i) { minus_one[i] = -1.0; xopt[i] *= 0.75; } B = coco_allocate_blockmatrix(dimension, block_sizes, nb_blocks); B_copy = (const double *const *)B; coco_compute_blockrotation(B, rseed, dimension, block_sizes, nb_blocks); coco_compute_truncated_uniform_swap_permutation(P1, rseed + 2000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P2, rseed + 3000000, dimension, nb_swaps, swap_range); problem = f_rosenbrock_allocate(dimension); problem = transform_vars_shift(problem, minus_one, 0); problem = transform_vars_scale(problem, factor); problem = transform_vars_permutation(problem, P2, dimension); problem = transform_vars_blockrotation(problem, B_copy, dimension, block_sizes, nb_blocks); problem = transform_vars_permutation(problem, P1, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "2-moderate"); coco_free_memory(xopt); coco_free_memory(best_parameter); coco_free_memory(minus_one); coco_free_block_matrix(B, dimension); coco_free_memory(P1); coco_free_memory(P2); coco_free_memory(block_sizes); return problem; } #line 23 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_schaffers.c" /** * @file f_schaffers.c * @brief Implementation of the Schaffer's F7 function and problem, transformations not implemented for the * moment. */ #include #include #include #line 12 "code-experiments/src/f_schaffers.c" #line 13 "code-experiments/src/f_schaffers.c" #line 14 "code-experiments/src/f_schaffers.c" #line 15 "code-experiments/src/f_schaffers.c" #line 16 "code-experiments/src/f_schaffers.c" #line 17 "code-experiments/src/f_schaffers.c" #line 18 "code-experiments/src/f_schaffers.c" #line 19 "code-experiments/src/f_schaffers.c" #line 20 "code-experiments/src/f_schaffers.c" #line 21 "code-experiments/src/f_schaffers.c" #line 22 "code-experiments/src/f_schaffers.c" /** * @brief Implements the Schaffer's F7 function without connections to any COCO structures. */ static double f_schaffers_raw(const double *x, const size_t number_of_variables) { size_t i = 0; double result; assert(number_of_variables > 1); if (coco_vector_contains_nan(x, number_of_variables)) return NAN; /* Computation core */ result = 0.0; for (i = 0; i < number_of_variables - 1; ++i) { const double tmp = x[i] * x[i] + x[i + 1] * x[i + 1]; if (coco_is_inf(tmp) && coco_is_nan(sin(50.0 * pow(tmp, 0.1)))) /* sin(inf) -> nan */ /* the second condition is necessary to pass the integration tests under Windows and Linux */ return tmp; result += pow(tmp, 0.25) * (1.0 + pow(sin(50.0 * pow(tmp, 0.1)), 2.0)); } result = pow(result / ((double) (long) number_of_variables - 1.0), 2.0); return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_schaffers_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_schaffers_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic Schaffer's F7 problem. */ static coco_problem_t *f_schaffers_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Schaffer's function", f_schaffers_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); coco_problem_set_id(problem, "%s_d%02lu", "schaffers", number_of_variables); /* Compute best solution */ f_schaffers_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB Schaffer's F7 problem. */ static coco_problem_t *f_schaffers_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const double conditioning, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i, j; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *current_row, **rot1, **rot2; const double penalty_factor = 10.0; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); rot2 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(rot2, rseed, dimension); for (i = 0; i < dimension; ++i) { b[i] = 0.0; current_row = M + i * dimension; for (j = 0; j < dimension; ++j) { double exponent = 1.0 * (int) i / ((double) (long) dimension - 1.0); current_row[j] = rot2[i][j] * pow(sqrt(conditioning), exponent); } } problem = f_schaffers_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_asymmetric(problem, 0.5); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_penalize(problem, penalty_factor); bbob2009_free_matrix(rot1, dimension); bbob2009_free_matrix(rot2, dimension); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } /** * @brief Creates the BBOB permuted block-rotated Schaffer's F7 problem. */ static coco_problem_t *f_schaffers_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const double conditioning, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B1; double **B2; const double *const *B1_copy; const double *const *B2_copy; size_t *P11 = coco_allocate_vector_size_t(dimension); size_t *P21 = coco_allocate_vector_size_t(dimension); size_t *P12 = coco_allocate_vector_size_t(dimension); size_t *P22 = coco_allocate_vector_size_t(dimension); size_t *block_sizes1; size_t *block_sizes2; size_t nb_blocks1; size_t nb_blocks2; size_t swap_range; size_t nb_swaps; const double penalty_factor = 10.0; block_sizes1 = coco_get_block_sizes(&nb_blocks1, dimension, "bbob-largescale"); block_sizes2 = coco_get_block_sizes(&nb_blocks2, dimension, "bbob-largescale"); swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale"); xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); B1 = coco_allocate_blockmatrix(dimension, block_sizes1, nb_blocks1); B2 = coco_allocate_blockmatrix(dimension, block_sizes2, nb_blocks2); B1_copy = (const double *const *)B1; B2_copy = (const double *const *)B2; coco_compute_blockrotation(B1, rseed + 1000000, dimension, block_sizes1, nb_blocks1); coco_compute_blockrotation(B2, rseed, dimension, block_sizes2, nb_blocks2); coco_compute_truncated_uniform_swap_permutation(P11, rseed + 3000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P21, rseed + 4000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P12, rseed + 5000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P22, rseed + 6000000, dimension, nb_swaps, swap_range); problem = f_schaffers_allocate(dimension); problem = transform_vars_conditioning(problem, conditioning); problem = transform_vars_permutation(problem, P21, dimension); problem = transform_vars_blockrotation(problem, B2_copy, dimension, block_sizes2, nb_blocks2); problem = transform_vars_permutation(problem, P11, dimension); problem = transform_vars_asymmetric(problem, 0.5); problem = transform_vars_permutation(problem, P22, dimension); problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_shift(problem, xopt, 0); /*problem = transform_obj_norm_by_dim(problem);*/ /* Wassim: there is already a normalization by dimension*/ problem = transform_obj_penalize(problem, penalty_factor); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_block_matrix(B1, dimension); coco_free_block_matrix(B2, dimension); coco_free_memory(P11); coco_free_memory(P21); coco_free_memory(P12); coco_free_memory(P22); coco_free_memory(block_sizes1); coco_free_memory(block_sizes2); coco_free_memory(xopt); return problem; } #line 24 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_schwefel.c" /** * @file f_schwefel.c * @brief Implementation of the Schwefel function and problem. */ #include #include #include #line 11 "code-experiments/src/f_schwefel.c" #line 12 "code-experiments/src/f_schwefel.c" #line 13 "code-experiments/src/f_schwefel.c" #line 14 "code-experiments/src/f_schwefel.c" #line 15 "code-experiments/src/f_schwefel.c" #line 16 "code-experiments/src/f_schwefel.c" #line 17 "code-experiments/src/f_schwefel.c" #line 18 "code-experiments/src/f_schwefel.c" #line 1 "code-experiments/src/transform_vars_z_hat.c" /** * @file transform_vars_z_hat.c * @brief Implementation of the z^hat transformation of decision values for the BBOB Schwefel problem. */ #include #line 9 "code-experiments/src/transform_vars_z_hat.c" #line 10 "code-experiments/src/transform_vars_z_hat.c" /** * @brief Data type for transform_vars_z_hat. */ typedef struct { double *xopt; double *z; coco_problem_free_function_t old_free_problem; } transform_vars_z_hat_data_t; /** * @brief Evaluates the transformation. */ static void transform_vars_z_hat_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_z_hat_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_z_hat_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); data->z[0] = x[0]; for (i = 1; i < problem->number_of_variables; ++i) { data->z[i] = x[i] + 0.25 * (x[i - 1] - 2.0 * fabs(data->xopt[i - 1])); } coco_evaluate_function(inner_problem, data->z, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Frees the data object. */ static void transform_vars_z_hat_free(void *thing) { transform_vars_z_hat_data_t *data = (transform_vars_z_hat_data_t *) thing; coco_free_memory(data->xopt); coco_free_memory(data->z); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_z_hat(coco_problem_t *inner_problem, const double *xopt) { transform_vars_z_hat_data_t *data; coco_problem_t *problem; data = (transform_vars_z_hat_data_t *) coco_allocate_memory(sizeof(*data)); data->xopt = coco_duplicate_vector(xopt, inner_problem->number_of_variables); data->z = coco_allocate_vector(inner_problem->number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_z_hat_free, "transform_vars_z_hat"); problem->evaluate_function = transform_vars_z_hat_evaluate; /* TODO: implement best_parameter transformation if needed in the case of not zero: see also issue #814. The correct update of best_parameter seems not too difficult and should not anymore break the current implementation of the Schwefel function. coco_warning("transform_vars_z_hat(): 'best_parameter' not updated"); This: size_t i; if (problem->best_parameter != NULL) for (i = 1; i < problem->number_of_variables; ++i) problem->best_parameter[i] -= 0.25 * (problem->best_parameter[i - 1] - 2.0 * fabs(data->xopt[i - 1])); should do, but gives COCO INFO: ..., d=2, running: f18.Assertion failed: (about_equal_value(hypervolume, 8.1699208579037619e-05)), function test_coco_archive_extreme_solutions, file ./test_coco_archive.c, line 123. */ if (strstr(coco_problem_get_id(inner_problem), "schwefel") == NULL) { coco_warning("transform_vars_z_hat(): 'best_parameter' not updated, set to NAN."); coco_vector_set_to_nan(problem->best_parameter, problem->number_of_variables); } return problem; } #line 19 "code-experiments/src/f_schwefel.c" #line 1 "code-experiments/src/transform_vars_x_hat.c" /** * @file transform_vars_x_hat.c * @brief Implementation of multiplying the decision values by the vector 1+-. */ #include #line 9 "code-experiments/src/transform_vars_x_hat.c" #line 10 "code-experiments/src/transform_vars_x_hat.c" #line 11 "code-experiments/src/transform_vars_x_hat.c" /** * @brief Data type for transform_vars_x_hat. */ typedef struct { long seed; double *x; coco_problem_free_function_t old_free_problem; } transform_vars_x_hat_data_t; /** * @brief Evaluates the transformation. */ static void transform_vars_x_hat_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_x_hat_data_t *data; coco_problem_t *inner_problem; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_x_hat_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); do { bbob2009_unif(data->x, problem->number_of_variables, data->seed); for (i = 0; i < problem->number_of_variables; ++i) { if (data->x[i] < 0.5) { data->x[i] = -x[i]; } else { data->x[i] = x[i]; } } coco_evaluate_function(inner_problem, data->x, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } while (0); } /** * @brief Frees the data object. */ static void transform_vars_x_hat_free(void *thing) { transform_vars_x_hat_data_t *data = (transform_vars_x_hat_data_t *) thing; coco_free_memory(data->x); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_x_hat(coco_problem_t *inner_problem, const long seed) { transform_vars_x_hat_data_t *data; coco_problem_t *problem; size_t i; data = (transform_vars_x_hat_data_t *) coco_allocate_memory(sizeof(*data)); data->seed = seed; data->x = coco_allocate_vector(inner_problem->number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_x_hat_free, "transform_vars_x_hat"); problem->evaluate_function = transform_vars_x_hat_evaluate; if (coco_problem_best_parameter_not_zero(problem)) { bbob2009_unif(data->x, problem->number_of_variables, data->seed); for (i = 0; i < problem->number_of_variables; ++i) if (data->x[i] < 0.5) /* with probability 1/2 */ problem->best_parameter[i] *= -1; } return problem; } #line 20 "code-experiments/src/f_schwefel.c" /** * @brief Implements the Schwefel function without connections to any COCO structures. */ static double f_schwefel_raw(const double *x, const size_t number_of_variables) { size_t i = 0; double result; double penalty, sum; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; /* Boundary handling*/ penalty = 0.0; for (i = 0; i < number_of_variables; ++i) { const double tmp = fabs(x[i]) - 500.0; if (tmp > 0.0) penalty += tmp * tmp; } /* Computation core */ sum = 0.0; for (i = 0; i < number_of_variables; ++i) { sum += x[i] * sin(sqrt(fabs(x[i]))); } result = 0.01 * (penalty + 418.9828872724339 - sum / (double) number_of_variables); return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_schwefel_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_schwefel_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic Schwefel problem. */ static coco_problem_t *f_schwefel_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Schwefel function", f_schwefel_evaluate, NULL, number_of_variables, -5.0, 5.0, 420.96874633); coco_problem_set_id(problem, "%s_d%02lu", "schwefel", number_of_variables); /* Compute best solution: best_parameter[i] = 200 * fabs(xopt[i]) */ f_schwefel_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB Schwefel problem. */ static coco_problem_t *f_schwefel_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i; const double condition = 10.; double *tmp1 = coco_allocate_vector(dimension); double *tmp2 = coco_allocate_vector(dimension); xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_unif(tmp1, dimension, rseed); for (i = 0; i < dimension; ++i) { xopt[i] = (tmp1[i] < 0.5 ? -1 : 1) * 0.5 * 4.2096874637; } for (i = 0; i < dimension; ++i) { tmp1[i] = -2 * fabs(xopt[i]); tmp2[i] = 2 * fabs(xopt[i]); } problem = f_schwefel_allocate(dimension); problem = transform_vars_scale(problem, 100); problem = transform_vars_shift(problem, tmp1, 0); /* problem = transform_vars_affine(problem, M, b, dimension); */ problem = transform_vars_conditioning(problem, condition); problem = transform_vars_shift(problem, tmp2, 0); problem = transform_vars_z_hat(problem, xopt); /* only for the correct xopt the best_parameter is not changed */ problem = transform_vars_scale(problem, 2); problem = transform_vars_x_hat(problem, rseed); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); coco_free_memory(tmp1); coco_free_memory(tmp2); coco_free_memory(xopt); return problem; } #line 25 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_sharp_ridge.c" /** * @file f_sharp_ridge.c * @brief Implementation of the sharp ridge function and problem. */ #include #include #line 10 "code-experiments/src/f_sharp_ridge.c" #line 11 "code-experiments/src/f_sharp_ridge.c" #line 12 "code-experiments/src/f_sharp_ridge.c" #line 13 "code-experiments/src/f_sharp_ridge.c" #line 14 "code-experiments/src/f_sharp_ridge.c" #line 15 "code-experiments/src/f_sharp_ridge.c" /** * @brief Implements the sharp ridge function without connections to any COCO structures. */ static double f_sharp_ridge_raw(const double *x, const size_t number_of_variables) { static const double alpha = 100.0; const double d_vars_40 = 1.0; /* generalized: number_of_variables <= 40 ? 1 : number_of_variables / 40.0; */ const size_t vars_40 = coco_double_to_size_t(ceil(d_vars_40)); size_t i = 0; double result; assert(number_of_variables > 1); if (coco_vector_contains_nan(x, number_of_variables)) return NAN; result = 0.0; for (i = vars_40; i < number_of_variables; ++i) { result += x[i] * x[i]; } result = alpha * sqrt(result / d_vars_40); for (i = 0; i < vars_40; ++i) result += x[i] * x[i] / d_vars_40; return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_sharp_ridge_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_sharp_ridge_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic sharp ridge problem. */ static coco_problem_t *f_sharp_ridge_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("sharp ridge function", f_sharp_ridge_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); coco_problem_set_id(problem, "%s_d%02lu", "sharp_ridge", number_of_variables); /* Compute best solution */ f_sharp_ridge_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB sharp ridge problem. */ static coco_problem_t *f_sharp_ridge_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i, j, k; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *current_row, **rot1, **rot2; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); rot2 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(rot2, rseed, dimension); for (i = 0; i < dimension; ++i) { b[i] = 0.0; current_row = M + i * dimension; for (j = 0; j < dimension; ++j) { current_row[j] = 0.0; for (k = 0; k < dimension; ++k) { double exponent = 1.0 * (int) k / ((double) (long) dimension - 1.0); current_row[j] += rot1[i][k] * pow(sqrt(10), exponent) * rot2[k][j]; } } } bbob2009_free_matrix(rot1, dimension); bbob2009_free_matrix(rot2, dimension); problem = f_sharp_ridge_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } #line 26 "code-experiments/src/suite_bbob.c" #line 27 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_step_ellipsoid.c" /** * @file f_step_ellipsoid.c * @brief Implementation of the step ellipsoid function and problem. * * The BBOB step ellipsoid function intertwines the variable and objective transformations in such a way * that it is hard to devise a composition of generic transformations to implement it. In the end one would * have to implement several custom transformations which would be used solely by this problem. Therefore * we opt to implement it as a monolithic function instead. * * TODO: It would be nice to have a generic step ellipsoid function to complement this one. */ #include #line 15 "code-experiments/src/f_step_ellipsoid.c" #line 16 "code-experiments/src/f_step_ellipsoid.c" #line 17 "code-experiments/src/f_step_ellipsoid.c" #line 18 "code-experiments/src/f_step_ellipsoid.c" #line 20 "code-experiments/src/f_step_ellipsoid.c" #line 21 "code-experiments/src/f_step_ellipsoid.c" #line 22 "code-experiments/src/f_step_ellipsoid.c" #line 23 "code-experiments/src/f_step_ellipsoid.c" #line 24 "code-experiments/src/f_step_ellipsoid.c" #line 1 "code-experiments/src/transform_vars_round_step.c" /** * @file transform_vars_round_step.c * @brief Implementation of rounding the variables for the step-ellipsoid function * TODO: should this be a helper function instead? */ #include #line 10 "code-experiments/src/transform_vars_round_step.c" #line 11 "code-experiments/src/transform_vars_round_step.c" #line 12 "code-experiments/src/transform_vars_round_step.c" /** * @brief Data type for transform_vars_round_step. */ typedef struct { double alpha; double *rounded_x; } transform_vars_round_step_data_t; /** * @brief Data type to be used in problem->versatile_data */ typedef struct { double zhat_1; /**< @brief contains the value of \hat{z}_1 that is used to compute the fintess */ } f_step_ellipsoid_versatile_data_t; /** * @brief Evaluates the transformation. */ static void transform_vars_round_step_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_round_step_data_t *data; coco_problem_t *inner_problem; data = (transform_vars_round_step_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); /* multiplication by d to counter-balance the normalization by d*/ ((f_step_ellipsoid_versatile_data_t *) problem->versatile_data)->zhat_1 = fabs(x[0]) * (double) inner_problem->number_of_variables;/* TODO: Discuss: consider not pre-imptively multiplying by dim to not change the outcome of the max in the core function even though we might want to keep it as it is since otherwise, the sum part of the max may take over as dim increases */ for (i = 0; i < inner_problem->number_of_variables; ++i) { if (fabs(x[i]) > 0.5){ data->rounded_x[i] = coco_double_round(x[i]); } else { data->rounded_x[i] = coco_double_round(data->alpha * x[i]) / data->alpha; } } coco_evaluate_function(inner_problem, data->rounded_x, y); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Frees the data object. */ static void transform_vars_round_step_free(void *thing) { transform_vars_round_step_data_t *data = (transform_vars_round_step_data_t *) thing; coco_free_memory(data->rounded_x); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_round_step(coco_problem_t *inner_problem, const double alpha) { transform_vars_round_step_data_t *data; coco_problem_t *problem; size_t i; data = (transform_vars_round_step_data_t *) coco_allocate_memory(sizeof(*data)); data->rounded_x = coco_allocate_vector(inner_problem->number_of_variables + 1); data->alpha = alpha; problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_round_step_free, "transform_vars_round_step"); problem->evaluate_function = transform_vars_round_step_evaluate; /* Compute best parameter */ for (i = 0; i < problem->number_of_variables; i++) { if (fabs(problem->best_parameter[i]) > 0.5) { problem->best_parameter[i] = coco_double_round(problem->best_parameter[i]); } else { problem->best_parameter[i] = coco_double_round(data->alpha * problem->best_parameter[i]) / data->alpha; } } return problem; } #line 25 "code-experiments/src/f_step_ellipsoid.c" #line 26 "code-experiments/src/f_step_ellipsoid.c" /** * @brief Data type for the step ellipsoid problem. */ typedef struct { double *x, *xx; double *xopt, fopt; double **rot1, **rot2; } f_step_ellipsoid_data_t; /** * @brief Implements the step ellipsoid function without connections to any COCO structures. */ static double f_step_ellipsoid_raw(const double *x, const size_t number_of_variables, f_step_ellipsoid_data_t *data) { static const double condition = 100; static const double alpha = 10.0; size_t i, j; double penalty = 0.0, x1; double result; assert(number_of_variables > 1); if (coco_vector_contains_nan(x, number_of_variables)) return NAN; for (i = 0; i < number_of_variables; ++i) { double tmp; tmp = fabs(x[i]) - 5.0; if (tmp > 0.0) penalty += tmp * tmp; } for (i = 0; i < number_of_variables; ++i) { double c1; data->x[i] = 0.0; c1 = sqrt(pow(condition / 10., (double) i / (double) (number_of_variables - 1))); for (j = 0; j < number_of_variables; ++j) { data->x[i] += c1 * data->rot2[i][j] * (x[j] - data->xopt[j]); } } x1 = data->x[0]; for (i = 0; i < number_of_variables; ++i) { if (fabs(data->x[i]) > 0.5) /* TODO: Documentation: no fabs() in documentation */ data->x[i] = coco_double_round(data->x[i]); else data->x[i] = coco_double_round(alpha * data->x[i]) / alpha; } for (i = 0; i < number_of_variables; ++i) { data->xx[i] = 0.0; for (j = 0; j < number_of_variables; ++j) { data->xx[i] += data->rot1[i][j] * data->x[j]; } } /* Computation core */ result = 0.0; for (i = 0; i < number_of_variables; ++i) { double exponent; exponent = (double) (long) i / ((double) (long) number_of_variables - 1.0); result += pow(condition, exponent) * data->xx[i] * data->xx[i]; ; } result = 0.1 * coco_double_max(fabs(x1) * 1.0e-4, result) + penalty + data->fopt; return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_step_ellipsoid_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_step_ellipsoid_raw(x, problem->number_of_variables, (f_step_ellipsoid_data_t *) problem->data); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Frees the step ellipsoid data object. */ static void f_step_ellipsoid_free(coco_problem_t *problem) { f_step_ellipsoid_data_t *data; data = (f_step_ellipsoid_data_t *) problem->data; coco_free_memory(data->x); coco_free_memory(data->xx); coco_free_memory(data->xopt); bbob2009_free_matrix(data->rot1, problem->number_of_variables); bbob2009_free_matrix(data->rot2, problem->number_of_variables); /* Let the generic free problem code deal with all of the coco_problem_t fields */ problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Creates the BBOB step ellipsoid problem. * * @note There is no separate basic allocate function. */ static coco_problem_t *f_step_ellipsoid_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { f_step_ellipsoid_data_t *data; size_t i; coco_problem_t *problem = coco_problem_allocate_from_scalars("step ellipsoid function", f_step_ellipsoid_evaluate, f_step_ellipsoid_free, dimension, -5.0, 5.0, 0); data = (f_step_ellipsoid_data_t *) coco_allocate_memory(sizeof(*data)); /* Allocate temporary storage and space for the rotation matrices */ data->x = coco_allocate_vector(dimension); data->xx = coco_allocate_vector(dimension); data->xopt = coco_allocate_vector(dimension); data->rot1 = bbob2009_allocate_matrix(dimension, dimension); data->rot2 = bbob2009_allocate_matrix(dimension, dimension); data->fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(data->xopt, rseed, dimension); bbob2009_compute_rotation(data->rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(data->rot2, rseed, dimension); problem->data = data; /* Compute best solution * * OME: Dirty hack for now because I did not want to invert the * transformations to find the best_parameter :/ */ for (i = 0; i < problem->number_of_variables; i++) { problem->best_parameter[i] = data->xopt[i]; } problem->best_value[0] = data->fopt; coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "2-moderate"); return problem; } /** * @brief Implements the step ellipsoid function without connections to any COCO structures. */ static double f_step_ellipsoid_core(const double *x, const size_t number_of_variables, f_step_ellipsoid_versatile_data_t *f_step_ellipsoid_versatile_data) { static const double condition = 100; size_t i; double result; result = 0.0; for (i = 0; i < number_of_variables; ++i) { double exponent; exponent = (double) (long) i / ((double) (long) number_of_variables - 1.0); result += pow(condition, exponent) * x[i] * x[i]; } result = 0.1 * coco_double_max(f_step_ellipsoid_versatile_data->zhat_1 * 1.0e-4, result); return result; } /** * @brief Uses the raw function to evaluate the ls COCO problem. */ static void f_step_ellipsoid_permblock_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_step_ellipsoid_core(x, problem->number_of_variables, (f_step_ellipsoid_versatile_data_t *) problem->versatile_data); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief allows to free the versatile_data part of the problem. */ static void f_step_ellipsoid_versatile_data_free(coco_problem_t *problem) { coco_free_memory((f_step_ellipsoid_versatile_data_t *) problem->versatile_data); problem->versatile_data = NULL; problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Allocates the basic step ellipsoid problem. * an additional coordinate is added that will contain the value of \hat{z}_1 but that is ignored by functions other that f_step_ellipsoid_core and transform_vars_round_step. The latter sets it. */ static coco_problem_t *f_step_ellipsoid_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("step ellipsoid function", f_step_ellipsoid_permblock_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.0); problem->versatile_data = (f_step_ellipsoid_versatile_data_t *) coco_allocate_memory(sizeof(f_step_ellipsoid_versatile_data_t)); ((f_step_ellipsoid_versatile_data_t *) problem->versatile_data)->zhat_1 = 0;/*needed for xopt evaluation*/ /* add the free function of the allocated versatile_data*/ problem->problem_free_function = f_step_ellipsoid_versatile_data_free; coco_problem_set_id(problem, "%s_d%02lu", "step_ellipsoid", number_of_variables); /* Compute best solution, here done outside after the zhat is set to the best_value */ f_step_ellipsoid_permblock_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB permuted block-rotated step ellipsoid problem. * * Wassim: TODO: consider implementing it sub-problem style * Wassim: TODO: make the zhat1 value default to x1 when no transformation is applied and the data type defined here */ static coco_problem_t *f_step_ellipsoid_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double alpha = 10.; /*parameter of rounding*/ double *xopt, fopt; coco_problem_t *problem = NULL; double **B1, **B2; const double *const *B1_copy; const double *const *B2_copy; size_t *P11, *P12, *P21, *P22; size_t *block_sizes1, *block_sizes2, nb_blocks1, nb_blocks2, swap_range1, swap_range2, nb_swaps1, nb_swaps2; double penalty_factor = 1.; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); block_sizes1 = coco_get_block_sizes(&nb_blocks1, dimension, "bbob-largescale"); block_sizes2 = coco_get_block_sizes(&nb_blocks2, dimension, "bbob-largescale"); swap_range1 = coco_get_swap_range(dimension, "bbob-largescale"); swap_range2 = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps1 = coco_get_nb_swaps(dimension, "bbob-largescale"); nb_swaps2 = coco_get_nb_swaps(dimension, "bbob-largescale"); B1 = coco_allocate_blockmatrix(dimension, block_sizes1, nb_blocks1); B2 = coco_allocate_blockmatrix(dimension, block_sizes2, nb_blocks2); B1_copy = (const double *const *)B1; B2_copy = (const double *const *)B2; coco_compute_blockrotation(B1, rseed + 1000000, dimension, block_sizes1, nb_blocks1); coco_compute_blockrotation(B2, rseed, dimension, block_sizes2, nb_blocks2); P11 = coco_allocate_vector_size_t(dimension); P12 = coco_allocate_vector_size_t(dimension); P21 = coco_allocate_vector_size_t(dimension); P22 = coco_allocate_vector_size_t(dimension); coco_compute_truncated_uniform_swap_permutation(P11, rseed + 2000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P12, rseed + 3000000, dimension, nb_swaps1, swap_range1); coco_compute_truncated_uniform_swap_permutation(P21, rseed + 4000000, dimension, nb_swaps2, swap_range2); coco_compute_truncated_uniform_swap_permutation(P22, rseed + 5000000, dimension, nb_swaps2, swap_range2); problem = f_step_ellipsoid_allocate(dimension); problem = transform_vars_permutation(problem, P22, dimension); problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P21, dimension); problem = transform_vars_round_step(problem, alpha); problem = transform_vars_conditioning(problem, 10.0); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_blockrotation(problem, B2_copy, dimension, block_sizes2, nb_blocks2); problem = transform_vars_permutation(problem, P11, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_penalize(problem, penalty_factor); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "2-moderate"); coco_free_block_matrix(B1, dimension); coco_free_block_matrix(B2, dimension); coco_free_memory(P11); coco_free_memory(P12); coco_free_memory(P21); coco_free_memory(P22); coco_free_memory(block_sizes1); coco_free_memory(block_sizes2); coco_free_memory(xopt); return problem; } #line 28 "code-experiments/src/suite_bbob.c" #line 1 "code-experiments/src/f_weierstrass.c" /** * @file f_weierstrass.c * @brief Implementation of the Weierstrass function and problem. */ #include #include #include #line 11 "code-experiments/src/f_weierstrass.c" #line 12 "code-experiments/src/f_weierstrass.c" #line 13 "code-experiments/src/f_weierstrass.c" #line 14 "code-experiments/src/f_weierstrass.c" #line 15 "code-experiments/src/f_weierstrass.c" #line 16 "code-experiments/src/f_weierstrass.c" #line 17 "code-experiments/src/f_weierstrass.c" #line 18 "code-experiments/src/f_weierstrass.c" #line 19 "code-experiments/src/f_weierstrass.c" #line 20 "code-experiments/src/f_weierstrass.c" #line 21 "code-experiments/src/f_weierstrass.c" /** @brief Number of summands in the Weierstrass problem. */ #define F_WEIERSTRASS_SUMMANDS 12 /** * @brief Data type for the Weierstrass problem. */ typedef struct { double f0; double ak[F_WEIERSTRASS_SUMMANDS]; double bk[F_WEIERSTRASS_SUMMANDS]; } f_weierstrass_data_t; /** * @brief Implements the Weierstrass function without connections to any COCO structures. */ static double f_weierstrass_raw(const double *x, const size_t number_of_variables, f_weierstrass_data_t *data) { size_t i, j; double result; if (coco_vector_contains_nan(x, number_of_variables)) return NAN; result = 0.0; for (i = 0; i < number_of_variables; ++i) { for (j = 0; j < F_WEIERSTRASS_SUMMANDS; ++j) { result += cos(2 * coco_pi * (x[i] + 0.5) * data->bk[j]) * data->ak[j]; } } result = 10.0 * pow(result / (double) (long) number_of_variables - data->f0, 3.0); return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_weierstrass_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_weierstrass_raw(x, problem->number_of_variables, (f_weierstrass_data_t *) problem->data); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic Weierstrass problem. */ static coco_problem_t *f_weierstrass_allocate(const size_t number_of_variables) { f_weierstrass_data_t *data; size_t i; double *non_unique_best_value; coco_problem_t *problem = coco_problem_allocate_from_scalars("Weierstrass function", f_weierstrass_evaluate, NULL, number_of_variables, -5.0, 5.0, 0.); coco_problem_set_id(problem, "%s_d%02lu", "weierstrass", number_of_variables); data = (f_weierstrass_data_t *) coco_allocate_memory(sizeof(*data)); data->f0 = 0.0; for (i = 0; i < F_WEIERSTRASS_SUMMANDS; ++i) { data->ak[i] = pow(0.5, (double) i); data->bk[i] = pow(3., (double) i); data->f0 += data->ak[i] * cos(2 * coco_pi * data->bk[i] * 0.5); } problem->data = data; /* Compute best solution */ non_unique_best_value = coco_allocate_vector(number_of_variables); for (i = 0; i < number_of_variables; i++) non_unique_best_value[i] = 0.0; f_weierstrass_evaluate(problem, non_unique_best_value, problem->best_value); coco_free_memory(non_unique_best_value); return problem; } /** * @brief Creates the BBOB Weierstrass problem. */ static coco_problem_t *f_weierstrass_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i, j, k; double *M = coco_allocate_vector(dimension * dimension); double *b = coco_allocate_vector(dimension); double *current_row, **rot1, **rot2; const double condition = 100.0; const double penalty_factor = 10.0 / (double) dimension; xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); rot1 = bbob2009_allocate_matrix(dimension, dimension); rot2 = bbob2009_allocate_matrix(dimension, dimension); bbob2009_compute_rotation(rot1, rseed + 1000000, dimension); bbob2009_compute_rotation(rot2, rseed, dimension); for (i = 0; i < dimension; ++i) { b[i] = 0.0; current_row = M + i * dimension; for (j = 0; j < dimension; ++j) { current_row[j] = 0.0; for (k = 0; k < dimension; ++k) { const double base = 1.0 / sqrt(condition); const double exponent = 1.0 * (int) k / ((double) (long) dimension - 1.0); current_row[j] += rot1[i][k] * pow(base, exponent) * rot2[k][j]; } } } problem = f_weierstrass_allocate(dimension); problem = transform_obj_shift(problem, fopt); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_oscillate(problem); bbob2009_copy_rotation_matrix(rot1, M, b, dimension); problem = transform_vars_affine(problem, M, b, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_penalize(problem, penalty_factor); bbob2009_free_matrix(rot1, dimension); bbob2009_free_matrix(rot2, dimension); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_memory(M); coco_free_memory(b); coco_free_memory(xopt); return problem; } /** * @brief Creates the BBOB permuted block-rotated Weierstrass problem. */ static coco_problem_t *f_weierstrass_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B1; double **B2; const double *const *B1_copy; const double *const *B2_copy; size_t *P11 = coco_allocate_vector_size_t(dimension); size_t *P21 = coco_allocate_vector_size_t(dimension); size_t *P12 = coco_allocate_vector_size_t(dimension); size_t *P22 = coco_allocate_vector_size_t(dimension); size_t *block_sizes1; size_t *block_sizes2; size_t nb_blocks1; size_t nb_blocks2; size_t swap_range; size_t nb_swaps; const double condition = 100.0, penalty_factor = 10.0 / (double) dimension; block_sizes1 = coco_get_block_sizes(&nb_blocks1, dimension, "bbob-largescale"); block_sizes2 = coco_get_block_sizes(&nb_blocks2, dimension, "bbob-largescale"); swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale"); xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); B1 = coco_allocate_blockmatrix(dimension, block_sizes1, nb_blocks1); B2 = coco_allocate_blockmatrix(dimension, block_sizes2, nb_blocks2); B1_copy = (const double *const *)B1; B2_copy = (const double *const *)B2; coco_compute_blockrotation(B1, rseed + 1000000, dimension, block_sizes1, nb_blocks1); coco_compute_blockrotation(B2, rseed, dimension, block_sizes2, nb_blocks2); coco_compute_truncated_uniform_swap_permutation(P11, rseed + 3000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P21, rseed + 4000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P12, rseed + 5000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P22, rseed + 6000000, dimension, nb_swaps, swap_range); problem = f_weierstrass_allocate(dimension); problem = transform_vars_permutation(problem, P22, dimension); problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_conditioning(problem, 1.0/condition); problem = transform_vars_permutation(problem, P21, dimension); problem = transform_vars_blockrotation(problem, B2_copy, dimension, block_sizes2, nb_blocks2); problem = transform_vars_permutation(problem, P11, dimension); problem = transform_vars_oscillate(problem); problem = transform_vars_permutation(problem, P22, dimension); problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_shift(problem, xopt, 0); /*problem = transform_obj_norm_by_dim(problem);*/ /* Wassim: there is already a normalization by dimension*/ problem = transform_obj_penalize(problem, penalty_factor); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "4-multi-modal"); coco_free_block_matrix(B1, dimension); coco_free_block_matrix(B2, dimension); coco_free_memory(P11); coco_free_memory(P21); coco_free_memory(P12); coco_free_memory(P22); coco_free_memory(block_sizes1); coco_free_memory(block_sizes2); coco_free_memory(xopt); return problem; } #undef F_WEIERSTRASS_SUMMANDS #line 29 "code-experiments/src/suite_bbob.c" static coco_suite_t *coco_suite_allocate(const char *suite_name, const size_t number_of_functions, const size_t number_of_dimensions, const size_t *dimensions, const char *default_instances); /** * @brief Sets the dimensions and default instances for the bbob suite. */ static coco_suite_t *suite_bbob_initialize(void) { coco_suite_t *suite; const size_t dimensions[] = { 2, 3, 5, 10, 20, 40 }; const size_t num_dimensions = sizeof(dimensions) / sizeof(dimensions[0]); /* IMPORTANT: Make sure to change the default instance for every new workshop! */ suite = coco_suite_allocate("bbob", 24, num_dimensions, dimensions, "year: 2021"); return suite; } /** * @brief Sets the instances associated with years for the bbob suite. */ static const char *suite_bbob_get_instances_by_year(const int year) { if (year >= 2021) { return "1-5,91-100"; } else if (year >= 2018) { return "1-5,71-80"; } else if (year == 2017) { return "1-5,61-70"; } else if ((year == 2016) || (year == 0000)) { /* test case */ return "1-5,51-60"; } else if (year == 2015) { return "1-5,41-50"; } else if (year >= 2013) { return "1-5,31-40"; } else if (year == 2012) { return "1-5,21-30"; } else if (year >= 2010) { return "1-15"; } else if (year == 2009) { return "1-5,1-5,1-5"; } else { coco_error("suite_bbob_get_instances_by_year(): year %d not defined for suite_bbob", year); return NULL; } } /** * @brief Creates and returns a BBOB problem without needing the actual bbob suite. * * Useful for other suites as well (see for example suite_biobj.c). */ static coco_problem_t *coco_get_bbob_problem(const size_t function, const size_t dimension, const size_t instance) { coco_problem_t *problem = NULL; const char *problem_id_template = "bbob_f%03lu_i%02lu_d%02lu"; const char *problem_name_template = "BBOB suite problem f%lu instance %lu in %luD"; const long rseed = (long) (function + 10000 * instance); const long rseed_3 = (long) (3 + 10000 * instance); const long rseed_17 = (long) (17 + 10000 * instance); if (function == 1) { problem = f_sphere_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 2) { problem = f_ellipsoid_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 3) { problem = f_rastrigin_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 4) { problem = f_bueche_rastrigin_bbob_problem_allocate(function, dimension, instance, rseed_3, problem_id_template, problem_name_template); } else if (function == 5) { problem = f_linear_slope_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 6) { problem = f_attractive_sector_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 7) { problem = f_step_ellipsoid_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 8) { problem = f_rosenbrock_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 9) { problem = f_rosenbrock_rotated_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 10) { problem = f_ellipsoid_rotated_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 11) { problem = f_discus_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 12) { problem = f_bent_cigar_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 13) { problem = f_sharp_ridge_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 14) { problem = f_different_powers_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 15) { problem = f_rastrigin_rotated_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 16) { problem = f_weierstrass_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 17) { problem = f_schaffers_bbob_problem_allocate(function, dimension, instance, rseed, 10, problem_id_template, problem_name_template); } else if (function == 18) { problem = f_schaffers_bbob_problem_allocate(function, dimension, instance, rseed_17, 1000, problem_id_template, problem_name_template); } else if (function == 19) { problem = f_griewank_rosenbrock_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 20) { problem = f_schwefel_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 21) { problem = f_gallagher_bbob_problem_allocate(function, dimension, instance, rseed, 101, problem_id_template, problem_name_template); } else if (function == 22) { problem = f_gallagher_bbob_problem_allocate(function, dimension, instance, rseed, 21, problem_id_template, problem_name_template); } else if (function == 23) { problem = f_katsuura_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 24) { problem = f_lunacek_bi_rastrigin_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else { coco_error("coco_get_bbob_problem(): cannot retrieve problem f%lu instance %lu in %luD", (unsigned long) function, (unsigned long) instance, (unsigned long) dimension); return NULL; /* Never reached */ } return problem; } /** * @brief Returns the problem from the bbob suite that corresponds to the given parameters. * * @param suite The COCO suite. * @param function_idx Index of the function (starting from 0). * @param dimension_idx Index of the dimension (starting from 0). * @param instance_idx Index of the instance (starting from 0). * @return The problem that corresponds to the given parameters. */ static coco_problem_t *suite_bbob_get_problem(coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { coco_problem_t *problem = NULL; const size_t function = suite->functions[function_idx]; const size_t dimension = suite->dimensions[dimension_idx]; const size_t instance = suite->instances[instance_idx]; problem = coco_get_bbob_problem(function, dimension, instance); problem->suite_dep_function = function; problem->suite_dep_instance = instance; problem->suite_dep_index = coco_suite_encode_problem_index(suite, function_idx, dimension_idx, instance_idx); return problem; } #line 19 "code-experiments/src/coco_suite.c" #line 1 "code-experiments/src/suite_bbob_mixint.c" /** * @file suite_bbob_mixint.c * @brief Implementation of a suite with mixed-integer bbob problems. The functions are the same * as those in the bbob suite with 24 functions, but the large-scale implementations of the * functions are used instead of the original ones for dimensions over 40. Additionally, the * functions are scaled as given by suite_bbob_mixint_scaling_factors. */ #line 10 "code-experiments/src/suite_bbob_mixint.c" #line 11 "code-experiments/src/suite_bbob_mixint.c" #line 1 "code-experiments/src/suite_largescale.c" /** * @file suite_largescale.c * @brief Implementation of the bbob large-scale suite containing 24 functions in 6 large dimensions. */ #line 7 "code-experiments/src/suite_largescale.c" #line 9 "code-experiments/src/suite_largescale.c" #line 1 "code-experiments/src/f_bent_cigar_generalized.c" /** * @file f_bent_cigar_generalized.c * @brief Implementation of the generalized bent cigar function and problem. */ #include #include #line 10 "code-experiments/src/f_bent_cigar_generalized.c" #line 11 "code-experiments/src/f_bent_cigar_generalized.c" #line 12 "code-experiments/src/f_bent_cigar_generalized.c" #line 13 "code-experiments/src/f_bent_cigar_generalized.c" #line 14 "code-experiments/src/f_bent_cigar_generalized.c" #line 15 "code-experiments/src/f_bent_cigar_generalized.c" #line 16 "code-experiments/src/f_bent_cigar_generalized.c" #line 17 "code-experiments/src/f_bent_cigar_generalized.c" #line 18 "code-experiments/src/f_bent_cigar_generalized.c" #line 19 "code-experiments/src/f_bent_cigar_generalized.c" /** * @brief Data type for the versatile_data_t */ typedef struct { size_t proportion_long_axes_denom; } f_bent_cigar_generalized_versatile_data_t; /** * @brief allows to free the versatile_data part of the problem. */ static void f_bent_cigar_generalized_versatile_data_free(coco_problem_t *problem) { f_bent_cigar_generalized_versatile_data_t *versatile_data = (f_bent_cigar_generalized_versatile_data_t *) problem->versatile_data; coco_free_memory(versatile_data); problem->versatile_data = NULL; problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Implements the generalized bent cigar function without connections to any COCO structures. */ static double f_bent_cigar_generalized_raw(const double *x, const size_t number_of_variables, f_bent_cigar_generalized_versatile_data_t* f_bent_cigar_generalized_versatile_data) { static const double condition = 1.0e6; size_t i, nb_long_axes; double result; result = 0; nb_long_axes = number_of_variables / f_bent_cigar_generalized_versatile_data->proportion_long_axes_denom; if (number_of_variables % f_bent_cigar_generalized_versatile_data->proportion_long_axes_denom != 0) { nb_long_axes += 1; } for (i = 0; i < nb_long_axes; ++i) { result += x[i] * x[i]; } for (i = nb_long_axes; i < number_of_variables; ++i) { result += condition * x[i] * x[i]; } return result; } /** * @brief Uses the generalized raw function to evaluate the COCO problem. */ static void f_bent_cigar_generalized_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_bent_cigar_generalized_raw(x, problem->number_of_variables, (f_bent_cigar_generalized_versatile_data_t *)problem->versatile_data); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic generalized bent cigar problem. */ static coco_problem_t *f_bent_cigar_generalized_allocate(const size_t number_of_variables, size_t proportion_long_axes_denom) { coco_problem_t *problem = coco_problem_allocate_from_scalars("generalized bent cigar function", f_bent_cigar_generalized_evaluate, f_bent_cigar_generalized_versatile_data_free, number_of_variables, -5.0, 5.0, 0.0); coco_problem_set_id(problem, "%s_d%04lu", "bent_cigar", number_of_variables); problem->versatile_data = (f_bent_cigar_generalized_versatile_data_t *) coco_allocate_memory(sizeof(f_bent_cigar_generalized_versatile_data_t)); ((f_bent_cigar_generalized_versatile_data_t *) problem->versatile_data)->proportion_long_axes_denom = proportion_long_axes_denom; /* Compute best solution */ f_bent_cigar_generalized_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB generalized permuted block-rotated bent cigar problem. */ static coco_problem_t *f_bent_cigar_generalized_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B; const double *const *B_copy; size_t *P1 = coco_allocate_vector_size_t(dimension); size_t *P2 = coco_allocate_vector_size_t(dimension); size_t *block_sizes; size_t nb_blocks; size_t swap_range; size_t nb_swaps; const size_t proportion_long_axes_denom = 40; block_sizes = coco_get_block_sizes(&nb_blocks, dimension, "bbob-largescale"); swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale"); xopt = coco_allocate_vector(dimension); bbob2009_compute_xopt(xopt, rseed + 1000000, dimension); fopt = bbob2009_compute_fopt(function, instance); B = coco_allocate_blockmatrix(dimension, block_sizes, nb_blocks); B_copy = (const double *const *)B; coco_compute_blockrotation(B, rseed + 1000000, dimension, block_sizes, nb_blocks); coco_compute_truncated_uniform_swap_permutation(P1, rseed + 2000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P2, rseed + 3000000, dimension, nb_swaps, swap_range); problem = f_bent_cigar_generalized_allocate(dimension, proportion_long_axes_denom); problem = transform_vars_permutation(problem, P2, dimension); problem = transform_vars_blockrotation(problem, B_copy, dimension, block_sizes, nb_blocks); problem = transform_vars_permutation(problem, P1, dimension); problem = transform_vars_asymmetric(problem, 0.5); problem = transform_vars_permutation(problem, P2, dimension); problem = transform_vars_blockrotation(problem, B_copy, dimension, block_sizes, nb_blocks); problem = transform_vars_permutation(problem, P1, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_block_matrix(B, dimension); coco_free_memory(P1); coco_free_memory(P2); coco_free_memory(block_sizes); coco_free_memory(xopt); return problem; } #line 10 "code-experiments/src/suite_largescale.c" #line 11 "code-experiments/src/suite_largescale.c" #line 12 "code-experiments/src/suite_largescale.c" #line 1 "code-experiments/src/f_discus_generalized.c" /** * @file f_discus_generalized.c * @brief Implementation of the discus function and problem. */ #include #line 9 "code-experiments/src/f_discus_generalized.c" #line 10 "code-experiments/src/f_discus_generalized.c" #line 11 "code-experiments/src/f_discus_generalized.c" #line 12 "code-experiments/src/f_discus_generalized.c" #line 13 "code-experiments/src/f_discus_generalized.c" #line 14 "code-experiments/src/f_discus_generalized.c" #line 15 "code-experiments/src/f_discus_generalized.c" #line 16 "code-experiments/src/f_discus_generalized.c" #line 17 "code-experiments/src/f_discus_generalized.c" /** * @brief Data type for the versatile_data_t */ typedef struct { size_t proportion_short_axes_denom; } f_discus_generalized_versatile_data_t; /** * @brief allows to free the versatile_data part of the problem. */ static void f_discus_generalized_versatile_data_free(coco_problem_t *problem) { f_discus_generalized_versatile_data_t *versatile_data = (f_discus_generalized_versatile_data_t *) problem->versatile_data; coco_free_memory(versatile_data); problem->versatile_data = NULL; problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Implements the generalized discus function without connections to any COCO structures. */ static double f_discus_generalized_raw(const double *x, const size_t number_of_variables, f_discus_generalized_versatile_data_t* f_discus_generalized_versatile_data) { static const double condition = 1.0e6; size_t i, nb_short_axes; double result; result = 0; nb_short_axes = number_of_variables / f_discus_generalized_versatile_data->proportion_short_axes_denom; if (number_of_variables % f_discus_generalized_versatile_data->proportion_short_axes_denom != 0) { nb_short_axes += 1; } for (i = 0; i < nb_short_axes; ++i) { result += x[i] * x[i]; } result *= condition; for (i = nb_short_axes; i < number_of_variables; ++i) { result += x[i] * x[i]; } return result; } /** * @brief Uses the generalized raw function to evaluate the COCO problem. */ static void f_discus_generalized_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_discus_generalized_raw(x, problem->number_of_variables, (f_discus_generalized_versatile_data_t *)problem->versatile_data); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic generalized discus problem. */ static coco_problem_t *f_discus_generalized_allocate(const size_t number_of_variables, size_t proportion_short_axes_denom) { coco_problem_t *problem = coco_problem_allocate_from_scalars("generalized discus function", f_discus_generalized_evaluate, f_discus_generalized_versatile_data_free, number_of_variables, -5.0, 5.0, 0.0); coco_problem_set_id(problem, "%s_d%04lu", "discus_generalized", number_of_variables); problem->versatile_data = (f_discus_generalized_versatile_data_t *) coco_allocate_memory(sizeof(f_discus_generalized_versatile_data_t)); ((f_discus_generalized_versatile_data_t *) problem->versatile_data)->proportion_short_axes_denom = proportion_short_axes_denom; /* Compute best solution */ f_discus_generalized_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB generalized permuted block-rotated discus problem. */ static coco_problem_t *f_discus_generalized_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B; const double *const *B_copy; size_t *P1 = coco_allocate_vector_size_t(dimension); size_t *P2 = coco_allocate_vector_size_t(dimension); size_t *block_sizes; size_t nb_blocks; size_t swap_range; size_t nb_swaps; const size_t proportion_short_axes_denom = 40; block_sizes = coco_get_block_sizes(&nb_blocks, dimension, "bbob-largescale"); swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale"); xopt = coco_allocate_vector(dimension); bbob2009_compute_xopt(xopt, rseed, dimension); fopt = bbob2009_compute_fopt(function, instance); B = coco_allocate_blockmatrix(dimension, block_sizes, nb_blocks); B_copy = (const double *const *)B; coco_compute_blockrotation(B, rseed + 1000000, dimension, block_sizes, nb_blocks); coco_compute_truncated_uniform_swap_permutation(P1, rseed + 2000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P2, rseed + 3000000, dimension, nb_swaps, swap_range); problem = f_discus_generalized_allocate(dimension, proportion_short_axes_denom); problem = transform_vars_oscillate(problem); problem = transform_vars_permutation(problem, P2, dimension); problem = transform_vars_blockrotation(problem, B_copy, dimension, block_sizes, nb_blocks); problem = transform_vars_permutation(problem, P1, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_block_matrix(B, dimension); coco_free_memory(P1); coco_free_memory(P2); coco_free_memory(block_sizes); coco_free_memory(xopt); return problem; } #line 13 "code-experiments/src/suite_largescale.c" #line 14 "code-experiments/src/suite_largescale.c" #line 15 "code-experiments/src/suite_largescale.c" #line 16 "code-experiments/src/suite_largescale.c" #line 17 "code-experiments/src/suite_largescale.c" #line 18 "code-experiments/src/suite_largescale.c" #line 1 "code-experiments/src/f_schwefel_generalized.c" /** * @file f_schwefel_generalized.c * @brief Implementation of the Schwefel function and problem. */ #include #include #include #line 11 "code-experiments/src/f_schwefel_generalized.c" #line 12 "code-experiments/src/f_schwefel_generalized.c" #line 13 "code-experiments/src/f_schwefel_generalized.c" #line 14 "code-experiments/src/f_schwefel_generalized.c" #line 15 "code-experiments/src/f_schwefel_generalized.c" #line 16 "code-experiments/src/f_schwefel_generalized.c" #line 17 "code-experiments/src/f_schwefel_generalized.c" #line 18 "code-experiments/src/f_schwefel_generalized.c" #line 19 "code-experiments/src/f_schwefel_generalized.c" #line 20 "code-experiments/src/f_schwefel_generalized.c" #line 21 "code-experiments/src/f_schwefel_generalized.c" /** * @brief Implements the Schwefel function for large scale. */ static double f_schwefel_generalized_raw(const double *x, const size_t number_of_variables) { size_t i = 0; double result; double penalty, sum; const double Schwefel_constant = 4.189828872724339; /* Boundary handling*/ penalty = 0.0; for (i = 0; i < number_of_variables; ++i) { const double tmp = fabs(x[i]) - 500.0; if (tmp > 0.0) penalty += tmp * tmp; } /* Computation core */ sum = 0.0; for (i = 0; i < number_of_variables; ++i) { sum += x[i] * sin(sqrt(fabs(x[i]))); } result = 0.01 * (penalty + Schwefel_constant*100. - sum / (double) number_of_variables); /*result = 0.01 * (penalty - sum);*/ return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_schwefel_generalized_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_schwefel_generalized_raw(x, problem->number_of_variables); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic Schwefel problem. */ static coco_problem_t *f_schwefel_generalized_allocate(const size_t number_of_variables) { coco_problem_t *problem = coco_problem_allocate_from_scalars("Schwefel function", f_schwefel_generalized_evaluate, NULL, number_of_variables, -5.0, 5.0, 420.96874633); coco_problem_set_id(problem, "%s_d%02lu", "schwefel", number_of_variables); /* Compute best solution: best_parameter[i] = 200 * fabs(xopt[i]) */ f_schwefel_generalized_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB Schwefel problem. */ static coco_problem_t *f_schwefel_generalized_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; size_t i; /*const double Schwefel_constant = 4.189828872724339;*/ /* Wassim: now inside the raw function*/ double *tmp1 = coco_allocate_vector(dimension); double *tmp2 = coco_allocate_vector(dimension); xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_unif(tmp1, dimension, rseed); for (i = 0; i < dimension; ++i) { xopt[i] = 0.5 * 4.2096874637; if (tmp1[i] - 0.5 < 0) { xopt[i] *= -1; } } for (i = 0; i < dimension; ++i) { tmp1[i] = -2 * fabs(xopt[i]); tmp2[i] = 2 * fabs(xopt[i]); } problem = f_schwefel_generalized_allocate(dimension); problem = transform_vars_scale(problem, 100); problem = transform_vars_shift(problem, tmp1, 0); problem = transform_vars_conditioning(problem, 10.0); problem = transform_vars_shift(problem, tmp2, 0); problem = transform_vars_z_hat(problem, xopt); problem = transform_vars_scale(problem, 2); problem = transform_vars_x_hat(problem, rseed); /*problem = transform_obj_norm_by_dim(problem);*/ /* Wassim: there is already a normalization by dimension*/ /*problem = transform_obj_shift(problem, Schwefel_constant);*/ /* Wassim: now in the raw definition */ problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "5-weakly-structured"); coco_free_memory(tmp1); coco_free_memory(tmp2); coco_free_memory(xopt); return problem; } #line 19 "code-experiments/src/suite_largescale.c" #line 1 "code-experiments/src/f_sharp_ridge_generalized.c" /** * @file f_sharp_ridge_generalized.c * @brief Implementation of the generalized sharp ridge function and problem. */ #include #include #line 10 "code-experiments/src/f_sharp_ridge_generalized.c" #line 11 "code-experiments/src/f_sharp_ridge_generalized.c" #line 12 "code-experiments/src/f_sharp_ridge_generalized.c" #line 13 "code-experiments/src/f_sharp_ridge_generalized.c" #line 14 "code-experiments/src/f_sharp_ridge_generalized.c" #line 15 "code-experiments/src/f_sharp_ridge_generalized.c" #line 16 "code-experiments/src/f_sharp_ridge_generalized.c" #line 17 "code-experiments/src/f_sharp_ridge_generalized.c" #line 18 "code-experiments/src/f_sharp_ridge_generalized.c" #line 19 "code-experiments/src/f_sharp_ridge_generalized.c" /** * @brief Data type for the versatile_data_t */ typedef struct { size_t proportion_of_linear_dims; } f_sharp_ridge_generalized_versatile_data_t; /** * @brief allows to free the versatile_data part of the problem. */ static void f_sharp_ridge_generalized_versatile_data_free(coco_problem_t *problem) { f_sharp_ridge_generalized_versatile_data_t *versatile_data = (f_sharp_ridge_generalized_versatile_data_t *) problem->versatile_data; coco_free_memory(versatile_data); problem->versatile_data = NULL; problem->problem_free_function = NULL; coco_problem_free(problem); } /** * @brief Implements the generalized sharp ridge function without connections to any COCO structures. */ static double f_sharp_ridge_generalized_raw(const double *x, const size_t number_of_variables, f_sharp_ridge_generalized_versatile_data_t* f_sharp_ridge_generalized_versatile_data) { static const double alpha = 100.0; size_t i = 0, number_linear_dimensions; double result; assert(number_of_variables > 1); if (coco_vector_contains_nan(x, number_of_variables)) return NAN; result = 0.0; number_linear_dimensions = number_of_variables / f_sharp_ridge_generalized_versatile_data->proportion_of_linear_dims; if (number_of_variables % f_sharp_ridge_generalized_versatile_data->proportion_of_linear_dims != 0) { number_linear_dimensions += 1; } for (i = number_linear_dimensions; i < number_of_variables; ++i) { result += x[i] * x[i]; } result = alpha * sqrt(result); for (i = 0; i < number_linear_dimensions; i++) { result += x[i] * x[i]; } return result; } /** * @brief Uses the raw function to evaluate the COCO problem. */ static void f_sharp_ridge_generalized_evaluate(coco_problem_t *problem, const double *x, double *y) { assert(problem->number_of_objectives == 1); y[0] = f_sharp_ridge_generalized_raw(x, problem->number_of_variables, (f_sharp_ridge_generalized_versatile_data_t *)problem->versatile_data); assert(y[0] + 1e-13 >= problem->best_value[0]); } /** * @brief Allocates the basic sharp ridge problem. */ static coco_problem_t *f_sharp_ridge_generalized_allocate(const size_t number_of_variables, size_t proportion_of_linear_dims) { /* Wassim: proportion_of_linear_dims should probably be allowed to be non-integer */ coco_problem_t *problem = coco_problem_allocate_from_scalars("sharp ridge function", f_sharp_ridge_generalized_evaluate, f_sharp_ridge_generalized_versatile_data_free, number_of_variables, -5.0, 5.0, 0.0); coco_problem_set_id(problem, "%s_d%02lu", "sharp_ridge_generalized", number_of_variables); problem->versatile_data = (f_sharp_ridge_generalized_versatile_data_t *) coco_allocate_memory(sizeof(f_sharp_ridge_generalized_versatile_data_t)); ((f_sharp_ridge_generalized_versatile_data_t *) problem->versatile_data)->proportion_of_linear_dims = proportion_of_linear_dims; /* Compute best solution */ f_sharp_ridge_generalized_evaluate(problem, problem->best_parameter, problem->best_value); return problem; } /** * @brief Creates the BBOB permuted block-rotated generalized sharp ridge problem */ static coco_problem_t *f_sharp_ridge_generalized_permblockdiag_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const long rseed, const char *problem_id_template, const char *problem_name_template) { double *xopt, fopt; coco_problem_t *problem = NULL; double **B1; double **B2; const double *const *B1_copy; const double *const *B2_copy; size_t *P11 = coco_allocate_vector_size_t(dimension); size_t *P21 = coco_allocate_vector_size_t(dimension); size_t *P12 = coco_allocate_vector_size_t(dimension); size_t *P22 = coco_allocate_vector_size_t(dimension); size_t *block_sizes1; size_t *block_sizes2; size_t nb_blocks1; size_t nb_blocks2; size_t swap_range; size_t nb_swaps; const size_t proportion_of_linear_dims = 40; block_sizes1 = coco_get_block_sizes(&nb_blocks1, dimension, "bbob-largescale"); block_sizes2 = coco_get_block_sizes(&nb_blocks2, dimension, "bbob-largescale"); swap_range = coco_get_swap_range(dimension, "bbob-largescale"); nb_swaps = coco_get_nb_swaps(dimension, "bbob-largescale"); xopt = coco_allocate_vector(dimension); fopt = bbob2009_compute_fopt(function, instance); bbob2009_compute_xopt(xopt, rseed, dimension); B1 = coco_allocate_blockmatrix(dimension, block_sizes1, nb_blocks1); B2 = coco_allocate_blockmatrix(dimension, block_sizes2, nb_blocks2); B1_copy = (const double *const *)B1; B2_copy = (const double *const *)B2; coco_compute_blockrotation(B1, rseed + 1000000, dimension, block_sizes1, nb_blocks1); coco_compute_blockrotation(B2, rseed, dimension, block_sizes2, nb_blocks2); coco_compute_truncated_uniform_swap_permutation(P11, rseed + 3000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P21, rseed + 4000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P12, rseed + 5000000, dimension, nb_swaps, swap_range); coco_compute_truncated_uniform_swap_permutation(P22, rseed + 6000000, dimension, nb_swaps, swap_range); problem = f_sharp_ridge_generalized_allocate(dimension, proportion_of_linear_dims); problem = transform_vars_permutation(problem, P21, dimension);/* LIFO */ problem = transform_vars_blockrotation(problem, B1_copy, dimension, block_sizes1, nb_blocks1); problem = transform_vars_permutation(problem, P11, dimension); problem = transform_vars_conditioning(problem, 10.0); problem = transform_vars_permutation(problem, P22, dimension);/*Consider replacing P11 and 22 by a single permutation P3*/ problem = transform_vars_blockrotation(problem, B2_copy, dimension, block_sizes2, nb_blocks2); problem = transform_vars_permutation(problem, P12, dimension); problem = transform_vars_shift(problem, xopt, 0); problem = transform_obj_norm_by_dim(problem); problem = transform_obj_shift(problem, fopt); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "3-ill-conditioned"); coco_free_block_matrix(B1, dimension); coco_free_block_matrix(B2, dimension); coco_free_memory(P11); coco_free_memory(P21); coco_free_memory(P12); coco_free_memory(P22); coco_free_memory(block_sizes1); coco_free_memory(block_sizes2); coco_free_memory(xopt); return problem; } #line 20 "code-experiments/src/suite_largescale.c" #line 21 "code-experiments/src/suite_largescale.c" #line 22 "code-experiments/src/suite_largescale.c" #line 23 "code-experiments/src/suite_largescale.c" static coco_suite_t *coco_suite_allocate(const char *suite_name, const size_t number_of_functions, const size_t number_of_dimensions, const size_t *dimensions, const char *default_instances); /** * @brief Sets the dimensions and default instances for the bbob large-scale suite. */ static coco_suite_t *suite_largescale_initialize(void) { coco_suite_t *suite; const size_t dimensions[] = { 20, 40, 80, 160, 320, 640}; const size_t num_dimensions = sizeof(dimensions) / sizeof(dimensions[0]); suite = coco_suite_allocate("bbob-largescale", 24, num_dimensions, dimensions, "instances: 1-15"); return suite; } /** * @brief Sets the instances associated with years for the bbob large-scale suite. */ static const char *suite_largescale_get_instances_by_year(const int year) { if (year >= 2016 || year == 0) { return "1-15"; } else if (year >= 2009) { return "1-15"; } else { coco_error("suite_largescale_get_instances_by_year(): year %d not defined for suite_largescale", year); return NULL; } } /** * @brief Creates and returns a large-scale problem without needing the actual large-scale suite. */ static coco_problem_t *coco_get_largescale_problem(const size_t function, const size_t dimension, const size_t instance) { coco_problem_t *problem = NULL; const char *problem_id_template = "bbob_f%03lu_i%02lu_d%04lu"; const char *problem_name_template = "BBOB large-scale suite problem f%lu instance %lu in %luD"; const long rseed = (long) (function + 10000 * instance); const long rseed_3 = (long) (3 + 10000 * instance); const long rseed_17 = (long) (17 + 10000 * instance); if (function == 1) { problem = f_sphere_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 2) { problem = f_ellipsoid_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 3) { problem = f_rastrigin_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 4) { problem = f_bueche_rastrigin_bbob_problem_allocate(function, dimension, instance, rseed_3, problem_id_template, problem_name_template); } else if (function == 5) { problem = f_linear_slope_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 6) { problem = f_attractive_sector_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 7) { problem = f_step_ellipsoid_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 8) { problem = f_rosenbrock_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 9) { problem = f_rosenbrock_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 10) { problem = f_ellipsoid_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 11) { problem = f_discus_generalized_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 12) { problem = f_bent_cigar_generalized_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 13) { problem = f_sharp_ridge_generalized_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 14) { problem = f_different_powers_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 15) { problem = f_rastrigin_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 16) { problem = f_weierstrass_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 17) { problem = f_schaffers_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, 10, problem_id_template, problem_name_template); } else if (function == 18) { problem = f_schaffers_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed_17, 1000, problem_id_template, problem_name_template); } else if (function == 19) { problem = f_griewank_rosenbrock_permblockdiag_bbob_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 20) { problem = f_schwefel_generalized_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 21) { problem = f_gallagher_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, 101, problem_id_template, problem_name_template); } else if (function == 22) { problem = f_gallagher_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, 21, problem_id_template, problem_name_template); } else if (function == 23) { problem = f_katsuura_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else if (function == 24) { problem = f_lunacek_bi_rastrigin_permblockdiag_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); } else { coco_error("coco_get_largescale_problem(): cannot retrieve problem f%lu instance %lu in %luD", (unsigned long) function, (unsigned long) instance, (unsigned long) dimension); return NULL; /* Never reached */ } if (problem == NULL) { coco_error("coco_get_largescale_problem(): function f%lu not yet implemented ", function); } return problem; } /** * @brief Returns the problem from the bbob large-scale suite that corresponds to the given parameters. * * @param suite The COCO suite. * @param function_idx Index of the function (starting from 0). * @param dimension_idx Index of the dimension (starting from 0). * @param instance_idx Index of the instance (starting from 0). * @return The problem that corresponds to the given parameters. */ static coco_problem_t *suite_largescale_get_problem(coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { coco_problem_t *problem = NULL; const size_t function = suite->functions[function_idx]; const size_t dimension = suite->dimensions[dimension_idx]; const size_t instance = suite->instances[instance_idx]; problem = coco_get_largescale_problem(function, dimension, instance); problem->suite_dep_function = function; problem->suite_dep_instance = instance; problem->suite_dep_index = coco_suite_encode_problem_index(suite, function_idx, dimension_idx, instance_idx); return problem; } #line 12 "code-experiments/src/suite_bbob_mixint.c" #line 1 "code-experiments/src/transform_vars_discretize.c" /** * @file transform_vars_discretize.c * * @brief Implementation of transforming a continuous problem to a mixed-integer problem by making some * of its variables discrete. The integer variables are considered as bounded (any variable outside the * decision space is mapped to the closest boundary point), while the continuous ones are treated as * unbounded. * * @note The first problem->number_of_integer_variables are integer, while the rest are continuous. * * The discretization works as follows. Consider the case where the interval [l, u] of the inner problem * needs to be discretized to n integer values of the outer problem. First, [l, u] is discretized to n * integers by placing the integers so that there is a (u-l)/(n+1) distance between them (and the border * points). Then, the transformation is shifted so that the optimum aligns with the closest integer. In * this way, we make sure that if the optimum is within [l, u], so are all the shifted points. * * When evaluating such a problem, the x values of the integer variables are first discretized. Any value * x < 0 is mapped to 0 and any value x > (n-1) is mapped to (n-1). */ #include #line 24 "code-experiments/src/transform_vars_discretize.c" #line 25 "code-experiments/src/transform_vars_discretize.c" /** * @brief Data type for transform_vars_discretize. */ typedef struct { double *offset; } transform_vars_discretize_data_t; /** * @brief Evaluates the transformed objective function. */ static void transform_vars_discretize_evaluate_function(coco_problem_t *problem, const double *x, double *y) { size_t i; transform_vars_discretize_data_t *data; coco_problem_t *inner_problem; double *discretized_x; double l, u, inner_l, inner_u, outer_l, outer_u; int n; if (coco_vector_contains_nan(x, coco_problem_get_dimension(problem))) { coco_vector_set_to_nan(y, coco_problem_get_number_of_objectives(problem)); return; } data = (transform_vars_discretize_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); /* Transform x to fit in the discretized space */ discretized_x = coco_duplicate_vector(x, problem->number_of_variables); for (i = 0; i < problem->number_of_integer_variables; ++i) { outer_l = problem->smallest_values_of_interest[i]; outer_u = problem->largest_values_of_interest[i]; l = inner_problem->smallest_values_of_interest[i]; u = inner_problem->largest_values_of_interest[i]; n = coco_double_to_int(outer_u) - coco_double_to_int(outer_l) + 1; /* number of integer values in this coordinate */ assert(n > 1); inner_l = l + (u - l) / (n + 1); inner_u = u - (u - l) / (n + 1); /* Make sure you the bounds are respected */ discretized_x[i] = coco_double_round(x[i]); if (discretized_x[i] < outer_l) discretized_x[i] = outer_l; if (discretized_x[i] > outer_u) discretized_x[i] = outer_u; discretized_x[i] = inner_l + (inner_u - inner_l) * (discretized_x[i] - outer_l) / (outer_u - outer_l) - data->offset[i]; } coco_evaluate_function(inner_problem, discretized_x, y); coco_free_memory(discretized_x); } /** * @brief Frees the data object. */ static void transform_vars_discretize_free(void *thing) { transform_vars_discretize_data_t *data = (transform_vars_discretize_data_t *) thing; coco_free_memory(data->offset); } /** * @brief Creates the transformation. */ static coco_problem_t *transform_vars_discretize(coco_problem_t *inner_problem, const double *smallest_values_of_interest, const double *largest_values_of_interest, const size_t number_of_integer_variables) { transform_vars_discretize_data_t *data; coco_problem_t *problem = NULL; double l, u, inner_l, inner_u, outer_l, outer_u; double outer_xopt, inner_xopt, inner_approx_xopt; const double precision_offset = 1e-7; /* Needed to avoid issues with rounding doubles */ int n; size_t i; data = (transform_vars_discretize_data_t *) coco_allocate_memory(sizeof(*data)); data->offset = coco_allocate_vector(inner_problem->number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, data, transform_vars_discretize_free, "transform_vars_discretize"); assert(number_of_integer_variables > 0); problem->number_of_integer_variables = number_of_integer_variables; for (i = 0; i < problem->number_of_variables; i++) { assert(smallest_values_of_interest[i] < largest_values_of_interest[i]); problem->smallest_values_of_interest[i] = smallest_values_of_interest[i]; problem->largest_values_of_interest[i] = largest_values_of_interest[i]; data->offset[i] = 0; if (i < number_of_integer_variables) { /* Compute the offset for integer variables */ outer_l = problem->smallest_values_of_interest[i]; outer_u = problem->largest_values_of_interest[i]; l = inner_problem->smallest_values_of_interest[i]; u = inner_problem->largest_values_of_interest[i]; n = coco_double_to_int(outer_u) - coco_double_to_int(outer_l) + 1; /* number of integer values */ assert(n > 1); inner_l = l + (u - l) / (n + 1); inner_u = u - (u - l) / (n + 1); /* Find the location of the optimum in the coordinates of the outer problem */ inner_xopt = inner_problem->best_parameter[i]; outer_xopt = outer_l + (outer_u - outer_l) * (inner_xopt - inner_l) / (inner_u - inner_l); outer_xopt = coco_double_round(outer_xopt + precision_offset); /* Make sure you the bounds are respected */ if (outer_xopt < outer_l) outer_xopt = outer_l; if (outer_xopt > outer_u) outer_xopt = outer_u; problem->best_parameter[i] = outer_xopt; /* Find the value corresponding to outer_xopt in the coordinates of the inner problem */ inner_approx_xopt = inner_l + (inner_u - inner_l) * (outer_xopt - outer_l) / (outer_u - outer_l); /* Compute the difference between the inner_approx_xopt and inner_xopt */ data->offset[i] = inner_approx_xopt - inner_xopt; } } if (inner_problem->number_of_objectives > 0) problem->evaluate_function = transform_vars_discretize_evaluate_function; if (problem->number_of_constraints > 0) coco_error("transform_vars_discretize(): Constraints not supported yet."); problem->evaluate_constraint = NULL; /* TODO? */ problem->evaluate_gradient = NULL; /* TODO? */ return problem; } #line 13 "code-experiments/src/suite_bbob_mixint.c" #line 14 "code-experiments/src/suite_bbob_mixint.c" static coco_suite_t *coco_suite_allocate(const char *suite_name, const size_t number_of_functions, const size_t number_of_dimensions, const size_t *dimensions, const char *default_instances); /** * @brief Factors used to scale separate functions in order to achieve similar difficulty. */ static double suite_bbob_mixint_scaling_factors[] = { 1, 1e-3, 1e-1, 1e-1, 1, /* f1 to f5 */ 1e-2, 1, 1e-2, 1e-2, 1e-3, /* f6 to f10 */ 1e-2, 1e-4, 1e-1, 1, 1e-1, /* f11 to f15 */ 1, 10, 1, 10, 1e-1, /* f16 to f20 */ 1, 1, 10, 1e-1 /* f21 to f24 */ }; /** * @brief Sets the dimensions and default instances for the bbob-mixint suite. */ static coco_suite_t *suite_bbob_mixint_initialize(const char *suite_name) { coco_suite_t *suite; const size_t dimensions[] = { 5, 10, 20, 40, 80, 160 }; const size_t num_dimensions = sizeof(dimensions) / sizeof(dimensions[0]); suite = coco_suite_allocate(suite_name, 24, num_dimensions, dimensions, "instances: 1-15"); return suite; } /** * @brief Sets the instances associated with years for the bbob-mixint suites. */ static const char *suite_bbob_mixint_get_instances_by_year(const int year) { (void) year; /* To get rid of compiler warnings */ return "1-15"; } /** * @brief Creates and returns a mixed-integer bbob problem without needing the actual bbob-mixint * suite. * * @param function Function * @param dimension Dimension * @param instance Instance * @param coco_get_problem_function The function that is used to access the continuous problem. * @return The problem that corresponds to the given parameters. */ static coco_problem_t *coco_get_bbob_mixint_problem(const size_t function, const size_t dimension, const size_t instance, const coco_get_problem_function_t coco_get_problem_function) { coco_problem_t *problem = NULL; /* The cardinality of variables (0 = continuous variables should always come last) */ const size_t variable_cardinality[] = { 2, 4, 8, 16, 0 }; double *smallest_values_of_interest = coco_allocate_vector(dimension); double *largest_values_of_interest = coco_allocate_vector(dimension); char *inner_problem_id; size_t i, j; size_t cardinality = 0; size_t num_integer = dimension; if (dimension % 5 != 0) coco_error("coco_get_bbob_mixint_problem(): dimension %lu not supported for suite_bbob_mixint", dimension); problem = coco_get_problem_function(function, dimension, instance); assert(problem != NULL); /* Set the ROI of the outer problem according to the given cardinality of variables and the ROI of the * inner problem to [-4, 4] for variables that will be discretized */ for (i = 0; i < dimension; i++) { j = i / (dimension / 5); cardinality = variable_cardinality[j]; if (cardinality == 0) { /* Continuous variables */ /* Outer problem */ smallest_values_of_interest[i] = -5; largest_values_of_interest[i] = 5; if (num_integer == dimension) num_integer = i; } else { /* Outer problem */ smallest_values_of_interest[i] = 0; largest_values_of_interest[i] = (double)cardinality - 1; /* Inner problem */ problem->smallest_values_of_interest[i] = -4; problem->largest_values_of_interest[i] = 4; } } inner_problem_id = problem->problem_id; problem = transform_vars_discretize(problem, smallest_values_of_interest, largest_values_of_interest, num_integer); problem = transform_obj_scale(problem, suite_bbob_mixint_scaling_factors[function - 1]); coco_problem_set_id(problem, "bbob-mixint_f%03lu_i%02lu_d%02lu", function, instance, dimension); coco_problem_set_name(problem, "mixint(%s)", inner_problem_id); coco_free_memory(smallest_values_of_interest); coco_free_memory(largest_values_of_interest); return problem; } /** * @brief Returns the problem from the bbob-mixint suite that corresponds to the given parameters. * * Uses large-scale bbob functions if dimension is equal or larger than the hard-coded dim_large_scale * value (50). * * @param suite The COCO suite. * @param function_idx Index of the function (starting from 0). * @param dimension_idx Index of the dimension (starting from 0). * @param instance_idx Index of the instance (starting from 0). * @return The problem that corresponds to the given parameters. */ static coco_problem_t *suite_bbob_mixint_get_problem(coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { coco_problem_t *problem = NULL; const size_t dim_large_scale = 50; /* Switch to large-scale functions for dimensions over 50 */ const size_t function = suite->functions[function_idx]; const size_t dimension = suite->dimensions[dimension_idx]; const size_t instance = suite->instances[instance_idx]; if (dimension < dim_large_scale) problem = coco_get_bbob_mixint_problem(function, dimension, instance, coco_get_bbob_problem); else problem = coco_get_bbob_mixint_problem(function, dimension, instance, coco_get_largescale_problem); problem->suite_dep_function = function; problem->suite_dep_instance = instance; problem->suite_dep_index = coco_suite_encode_problem_index(suite, function_idx, dimension_idx, instance_idx); return problem; } #line 20 "code-experiments/src/coco_suite.c" #line 1 "code-experiments/src/suite_biobj.c" /** * @file suite_biobj.c * @brief Implementation of two bi-objective suites created by combining two single-objective problems * from the bbob suite: * - bbob-biobj contains 55 functions and 6 dimensions * - bbob-biobj-ext contains 55 + 37 functions and 6 dimensions * * The 55 functions of the bbob-biobj suite are created by combining any two single-objective bbob functions * i,j (where i #include #line 9 "code-experiments/src/mo_utilities.c" /** * @brief Precision used when comparing multi-objective solutions. * * Two solutions are considered equal in objective space when their normalized difference is smaller than * mo_precision. * * @note mo_precision needs to be smaller than mo_discretization */ static const double mo_precision = 1e-13; /** * @brief Discretization interval used for rounding normalized multi-objective solutions. * * @note mo_discretization needs to be larger than mo_precision */ static const double mo_discretization = 5 * 1e-13; /** * @brief Computes and returns the Euclidean norm of two dim-dimensional points first and second. */ static double mo_get_norm(const double *first, const double *second, const size_t dim) { size_t i; double norm = 0; for (i = 0; i < dim; i++) { norm += pow(first[i] - second[i], 2); } return sqrt(norm); } /** * @brief Creates a rounded normalized version of the given solution w.r.t. the given ROI. * * If the solution seems to be better than the extremes it is corrected (2 objectives are assumed). * The caller is responsible for freeing the allocated memory using coco_free_memory(). */ static double *mo_normalize(const double *y, const double *ideal, const double *nadir, const size_t num_obj) { size_t i; double *normalized_y = coco_allocate_vector(num_obj); for (i = 0; i < num_obj; i++) { assert((nadir[i] - ideal[i]) > mo_discretization); normalized_y[i] = (y[i] - ideal[i]) / (nadir[i] - ideal[i]); normalized_y[i] = coco_double_round(normalized_y[i] / mo_discretization) * mo_discretization; if (normalized_y[i] < 0) { coco_debug("Adjusting %.15e to %.15e", y[i], ideal[i]); normalized_y[i] = 0; } } for (i = 0; i < num_obj; i++) { assert(num_obj == 2); if (coco_double_almost_equal(normalized_y[i], 0, mo_precision) && (normalized_y[1-i] < 1)) { coco_debug("Adjusting %.15e to %.15e", y[1-i], nadir[1-i]); normalized_y[1-i] = 1; } } return normalized_y; } /** * @brief Checks the dominance relation in the unconstrained minimization case between two normalized * solutions in the objective space. * * If two values are closer together than mo_precision, they are treated as equal. * * @return * 1 if normalized_y1 dominates normalized_y2
* 0 if normalized_y1 and normalized_y2 are non-dominated
* -1 if normalized_y2 dominates normalized_y1
* -2 if normalized_y1 is identical to normalized_y2 */ static int mo_get_dominance(const double *normalized_y1, const double *normalized_y2, const size_t num_obj) { size_t i; int flag1 = 0; int flag2 = 0; for (i = 0; i < num_obj; i++) { if (coco_double_almost_equal(normalized_y1[i], normalized_y2[i], mo_precision)) { continue; } else if (normalized_y1[i] < normalized_y2[i]) { flag1 = 1; } else if (normalized_y1[i] > normalized_y2[i]) { flag2 = 1; } } if (flag1 && !flag2) { return 1; } else if (!flag1 && flag2) { return -1; } else if (flag1 && flag2) { return 0; } else { /* (!flag1 && !flag2) */ return -2; } } /** * @brief Checks whether the normalized solution is within [0, 1]^num_obj. */ static int mo_is_within_ROI(const double *normalized_y, const size_t num_obj) { size_t i; int within = 1; for (i = 0; i < num_obj; i++) { if (coco_double_almost_equal(normalized_y[i], 0, mo_precision) || coco_double_almost_equal(normalized_y[i], 1, mo_precision) || (normalized_y[i] > 0 && normalized_y[i] < 1)) continue; else within = 0; } return within; } /** * @brief Computes and returns the minimal normalized distance of the point normalized_y from the ROI * (equals 0 if within the ROI). * * @note Assumes num_obj = 2 and normalized_y >= 0 */ static double mo_get_distance_to_ROI(const double *normalized_y, const size_t num_obj) { double diff_0, diff_1; if (mo_is_within_ROI(normalized_y, num_obj)) return 0; assert(num_obj == 2); assert(normalized_y[0] >= 0); assert(normalized_y[1] >= 0); diff_0 = normalized_y[0] - 1; diff_1 = normalized_y[1] - 1; if ((diff_0 > 0) && (diff_1 > 0)) { return sqrt(pow(diff_0, 2) + pow(diff_1, 2)); } else if (diff_0 > 0) return diff_0; else return diff_1; } #line 24 "code-experiments/src/suite_biobj.c" #line 1 "code-experiments/src/suite_biobj_utilities.c" /** * @file suite_biobj_utilities.c * @brief Implementation of some functions (mostly handling instances) used by the bi-objective suites. * * @note Because some bi-objective problems constructed from two single-objective ones have a single optimal * value, some care must be taken when selecting the instances. The already verified instances are stored in * suite_biobj_instances. If a new instance of the problem is called, a check ensures that the two underlying * single-objective instances create a true bi-objective problem. However, these new instances need to be * manually added to suite_biobj_instances, otherwise they will be computed each time the suite constructor * is invoked with these instances. */ #line 14 "code-experiments/src/suite_biobj_utilities.c" #line 1 "code-experiments/src/suite_biobj_best_values_hyp.c" /** * @file suite_biobj_best_values_hyp.c * * @brief The best known hypervolume values for the bbob-biobj and bbob-biobj-ext suite problems. * * @note For now, the hypervolume reference values for the bbob-biobj-ext problems not in the * bbob-biobj suite are 1.0 as well as for the new instances larger than 10 (as of 2017/01/20). * * @note Because this file is used for automatically retrieving the existing best hypervolume values for * pre-processing purposes, its formatting should not be altered. This means that there must be exactly one * string per line, the first string appearing on the next line after "static const char..." (no comments * allowed in between). Nothing should be placed on the last line (line with };). */ static const char *suite_biobj_best_values_hyp[] = { /* Best values on 29.01.2017 16:30:00, copied from: best values current data, 10.07.2016 */ "bbob-biobj_f01_i01_d02 0.833332923849452", "bbob-biobj_f01_i01_d03 0.833332590193468", "bbob-biobj_f01_i01_d05 0.833332871970114", "bbob-biobj_f01_i01_d10 0.833332983507963", "bbob-biobj_f01_i01_d20 0.833332656879612", "bbob-biobj_f01_i01_d40 0.833314650345829", "bbob-biobj_f01_i02_d02 0.833332931307885", "bbob-biobj_f01_i02_d03 0.833332733855334", "bbob-biobj_f01_i02_d05 0.833332480608307", "bbob-biobj_f01_i02_d10 0.833332975206005", "bbob-biobj_f01_i02_d20 0.833333117544167", "bbob-biobj_f01_i02_d40 0.833314493712438", "bbob-biobj_f01_i03_d02 0.833332922354197", "bbob-biobj_f01_i03_d03 0.833332806949774", "bbob-biobj_f01_i03_d05 0.833332842547238", "bbob-biobj_f01_i03_d10 0.833332977573570", "bbob-biobj_f01_i03_d20 0.833333116146967", "bbob-biobj_f01_i03_d40 0.833314058645234", "bbob-biobj_f01_i04_d02 0.833332867309178", "bbob-biobj_f01_i04_d03 0.833332594337647", "bbob-biobj_f01_i04_d05 0.833332839988488", "bbob-biobj_f01_i04_d10 0.833332988612530", "bbob-biobj_f01_i04_d20 0.833333104916722", "bbob-biobj_f01_i04_d40 0.833314378132203", "bbob-biobj_f01_i05_d02 0.833332945296347", "bbob-biobj_f01_i05_d03 0.833332652221029", "bbob-biobj_f01_i05_d05 0.833332837022086", "bbob-biobj_f01_i05_d10 0.833332990781764", "bbob-biobj_f01_i05_d20 0.833333113205696", "bbob-biobj_f01_i05_d40 0.833314458103617", "bbob-biobj_f01_i06_d02 0.833332799189226", "bbob-biobj_f01_i06_d03 0.833332521560045", "bbob-biobj_f01_i06_d05 0.833332854255201", "bbob-biobj_f01_i06_d10 0.833332431471356", "bbob-biobj_f01_i06_d20 0.833333105010663", "bbob-biobj_f01_i06_d40 0.833140980202184", "bbob-biobj_f01_i07_d02 0.833332799479431", "bbob-biobj_f01_i07_d03 0.833332509886665", "bbob-biobj_f01_i07_d05 0.833332870930573", "bbob-biobj_f01_i07_d10 0.833332985899831", "bbob-biobj_f01_i07_d20 0.833332882157948", "bbob-biobj_f01_i07_d40 0.833025632391428", "bbob-biobj_f01_i08_d02 0.833332644870580", "bbob-biobj_f01_i08_d03 0.833332802814295", "bbob-biobj_f01_i08_d05 0.833332837685789", "bbob-biobj_f01_i08_d10 0.833332980221363", "bbob-biobj_f01_i08_d20 0.833333103071380", "bbob-biobj_f01_i08_d40 0.833065287510734", "bbob-biobj_f01_i09_d02 0.833332608159240", "bbob-biobj_f01_i09_d03 0.833332813941859", "bbob-biobj_f01_i09_d05 0.833332858149369", "bbob-biobj_f01_i09_d10 0.833332976673314", "bbob-biobj_f01_i09_d20 0.833333112988244", "bbob-biobj_f01_i09_d40 0.833017475872989", "bbob-biobj_f01_i10_d02 0.833332793837110", "bbob-biobj_f01_i10_d03 0.833332797396180", "bbob-biobj_f01_i10_d05 0.833332479626792", "bbob-biobj_f01_i10_d10 0.833332975447230", "bbob-biobj_f01_i10_d20 0.833332903259388", "bbob-biobj_f01_i10_d40 0.833049367302132", "bbob-biobj_f01_i11_d02 1.0", "bbob-biobj_f01_i11_d03 1.0", "bbob-biobj_f01_i11_d05 1.0", "bbob-biobj_f01_i11_d10 1.0", "bbob-biobj_f01_i11_d20 1.0", "bbob-biobj_f01_i11_d40 1.0", "bbob-biobj_f01_i12_d02 1.0", "bbob-biobj_f01_i12_d03 1.0", "bbob-biobj_f01_i12_d05 1.0", "bbob-biobj_f01_i12_d10 1.0", "bbob-biobj_f01_i12_d20 1.0", "bbob-biobj_f01_i12_d40 1.0", "bbob-biobj_f01_i13_d02 1.0", "bbob-biobj_f01_i13_d03 1.0", "bbob-biobj_f01_i13_d05 1.0", "bbob-biobj_f01_i13_d10 1.0", "bbob-biobj_f01_i13_d20 1.0", "bbob-biobj_f01_i13_d40 1.0", "bbob-biobj_f01_i14_d02 1.0", "bbob-biobj_f01_i14_d03 1.0", "bbob-biobj_f01_i14_d05 1.0", "bbob-biobj_f01_i14_d10 1.0", "bbob-biobj_f01_i14_d20 1.0", "bbob-biobj_f01_i14_d40 1.0", "bbob-biobj_f01_i15_d02 1.0", "bbob-biobj_f01_i15_d03 1.0", "bbob-biobj_f01_i15_d05 1.0", "bbob-biobj_f01_i15_d10 1.0", "bbob-biobj_f01_i15_d20 1.0", "bbob-biobj_f01_i15_d40 1.0", "bbob-biobj_f02_i01_d02 0.995822561023240", "bbob-biobj_f02_i01_d03 0.879310431864156", "bbob-biobj_f02_i01_d05 0.953384084311242", "bbob-biobj_f02_i01_d10 0.978189643915096", "bbob-biobj_f02_i01_d20 0.951903142351403", "bbob-biobj_f02_i01_d40 0.949824650187359", "bbob-biobj_f02_i02_d02 0.917892814584968", "bbob-biobj_f02_i02_d03 0.981135909601684", "bbob-biobj_f02_i02_d05 0.966473231322075", "bbob-biobj_f02_i02_d10 0.954022219761768", "bbob-biobj_f02_i02_d20 0.980915316952865", "bbob-biobj_f02_i02_d40 0.967820288072087", "bbob-biobj_f02_i03_d02 0.990979165827488", "bbob-biobj_f02_i03_d03 0.952601084184924", "bbob-biobj_f02_i03_d05 0.950364402842151", "bbob-biobj_f02_i03_d10 0.890666848167831", "bbob-biobj_f02_i03_d20 0.971903877089018", "bbob-biobj_f02_i03_d40 0.962240289831067", "bbob-biobj_f02_i04_d02 0.956280253169872", "bbob-biobj_f02_i04_d03 0.889457145687917", "bbob-biobj_f02_i04_d05 0.881363552894039", "bbob-biobj_f02_i04_d10 0.972589938217805", "bbob-biobj_f02_i04_d20 0.977355424486821", "bbob-biobj_f02_i04_d40 0.976521983119385", "bbob-biobj_f02_i05_d02 0.960749326556107", "bbob-biobj_f02_i05_d03 0.924022607296279", "bbob-biobj_f02_i05_d05 0.861593353038038", "bbob-biobj_f02_i05_d10 0.933915127767411", "bbob-biobj_f02_i05_d20 0.962923115039428", "bbob-biobj_f02_i05_d40 0.960311958395483", "bbob-biobj_f02_i06_d02 0.875386399710729", "bbob-biobj_f02_i06_d03 0.948381052595089", "bbob-biobj_f02_i06_d05 0.910439280190353", "bbob-biobj_f02_i06_d10 0.977165791278565", "bbob-biobj_f02_i06_d20 0.971870013922785", "bbob-biobj_f02_i06_d40 0.972319995645285", "bbob-biobj_f02_i07_d02 0.832403909990292", "bbob-biobj_f02_i07_d03 0.875220188815227", "bbob-biobj_f02_i07_d05 0.912587284654367", "bbob-biobj_f02_i07_d10 0.958804666468614", "bbob-biobj_f02_i07_d20 0.977380321260569", "bbob-biobj_f02_i07_d40 0.968045916312069", "bbob-biobj_f02_i08_d02 0.829465051906365", "bbob-biobj_f02_i08_d03 0.974523475625668", "bbob-biobj_f02_i08_d05 0.936067436058678", "bbob-biobj_f02_i08_d10 0.922560458802353", "bbob-biobj_f02_i08_d20 0.967069143117920", "bbob-biobj_f02_i08_d40 0.963122260805039", "bbob-biobj_f02_i09_d02 0.991879825579866", "bbob-biobj_f02_i09_d03 0.978472046555062", "bbob-biobj_f02_i09_d05 0.942549982385051", "bbob-biobj_f02_i09_d10 0.953997088214724", "bbob-biobj_f02_i09_d20 0.961031595278923", "bbob-biobj_f02_i09_d40 0.973807415276184", "bbob-biobj_f02_i10_d02 0.947432430910857", "bbob-biobj_f02_i10_d03 0.991603200976025", "bbob-biobj_f02_i10_d05 0.948442017309507", "bbob-biobj_f02_i10_d10 0.965514596960421", "bbob-biobj_f02_i10_d20 0.970944129483383", "bbob-biobj_f02_i10_d40 0.963693463826435", "bbob-biobj_f02_i11_d02 1.0", "bbob-biobj_f02_i11_d03 1.0", "bbob-biobj_f02_i11_d05 1.0", "bbob-biobj_f02_i11_d10 1.0", "bbob-biobj_f02_i11_d20 1.0", "bbob-biobj_f02_i11_d40 1.0", "bbob-biobj_f02_i12_d02 1.0", "bbob-biobj_f02_i12_d03 1.0", "bbob-biobj_f02_i12_d05 1.0", "bbob-biobj_f02_i12_d10 1.0", "bbob-biobj_f02_i12_d20 1.0", "bbob-biobj_f02_i12_d40 1.0", "bbob-biobj_f02_i13_d02 1.0", "bbob-biobj_f02_i13_d03 1.0", "bbob-biobj_f02_i13_d05 1.0", "bbob-biobj_f02_i13_d10 1.0", "bbob-biobj_f02_i13_d20 1.0", "bbob-biobj_f02_i13_d40 1.0", "bbob-biobj_f02_i14_d02 1.0", "bbob-biobj_f02_i14_d03 1.0", "bbob-biobj_f02_i14_d05 1.0", "bbob-biobj_f02_i14_d10 1.0", "bbob-biobj_f02_i14_d20 1.0", "bbob-biobj_f02_i14_d40 1.0", "bbob-biobj_f02_i15_d02 1.0", "bbob-biobj_f02_i15_d03 1.0", "bbob-biobj_f02_i15_d05 1.0", "bbob-biobj_f02_i15_d10 1.0", "bbob-biobj_f02_i15_d20 1.0", "bbob-biobj_f02_i15_d40 1.0", "bbob-biobj_f03_i01_d02 0.811764227919237", "bbob-biobj_f03_i01_d03 0.974987686406398", "bbob-biobj_f03_i01_d05 0.846755821475001", "bbob-biobj_f03_i01_d10 0.916897326744567", "bbob-biobj_f03_i01_d20 0.887093378512445", "bbob-biobj_f03_i01_d40 0.877301209968849", "bbob-biobj_f03_i02_d02 0.870719320227517", "bbob-biobj_f03_i02_d03 0.845126230251145", "bbob-biobj_f03_i02_d05 0.961675547477218", "bbob-biobj_f03_i02_d10 0.980164167551993", "bbob-biobj_f03_i02_d20 0.950054357943145", "bbob-biobj_f03_i02_d40 0.941149877177212", "bbob-biobj_f03_i03_d02 0.843027854657315", "bbob-biobj_f03_i03_d03 0.860130827007275", "bbob-biobj_f03_i03_d05 0.836876534262302", "bbob-biobj_f03_i03_d10 0.985500464678158", "bbob-biobj_f03_i03_d20 0.867661654006730", "bbob-biobj_f03_i03_d40 0.885731348325649", "bbob-biobj_f03_i04_d02 0.816337758672414", "bbob-biobj_f03_i04_d03 0.965017447879510", "bbob-biobj_f03_i04_d05 0.832979226365889", "bbob-biobj_f03_i04_d10 0.908658717348390", "bbob-biobj_f03_i04_d20 0.932782033778145", "bbob-biobj_f03_i04_d40 0.911122582165054", "bbob-biobj_f03_i05_d02 0.854019720086261", "bbob-biobj_f03_i05_d03 0.879236357635921", "bbob-biobj_f03_i05_d05 0.959277121197834", "bbob-biobj_f03_i05_d10 0.881588676730308", "bbob-biobj_f03_i05_d20 0.875617568043751", "bbob-biobj_f03_i05_d40 0.897748784259607", "bbob-biobj_f03_i06_d02 0.830343055064749", "bbob-biobj_f03_i06_d03 0.944959812797630", "bbob-biobj_f03_i06_d05 0.970527337180708", "bbob-biobj_f03_i06_d10 0.844333191961208", "bbob-biobj_f03_i06_d20 0.910362127777293", "bbob-biobj_f03_i06_d40 0.913082625433224", "bbob-biobj_f03_i07_d02 0.868151338090149", "bbob-biobj_f03_i07_d03 0.869382169348494", "bbob-biobj_f03_i07_d05 0.903912429165581", "bbob-biobj_f03_i07_d10 0.845699441056724", "bbob-biobj_f03_i07_d20 0.923299654935261", "bbob-biobj_f03_i07_d40 0.907453227472945", "bbob-biobj_f03_i08_d02 0.990911524871468", "bbob-biobj_f03_i08_d03 0.835187869372628", "bbob-biobj_f03_i08_d05 0.922645354726611", "bbob-biobj_f03_i08_d10 0.886866796169689", "bbob-biobj_f03_i08_d20 0.924597832045464", "bbob-biobj_f03_i08_d40 0.901676028146734", "bbob-biobj_f03_i09_d02 0.813085530790926", "bbob-biobj_f03_i09_d03 0.929449915590067", "bbob-biobj_f03_i09_d05 0.852770622828177", "bbob-biobj_f03_i09_d10 0.988149709245385", "bbob-biobj_f03_i09_d20 0.891263868986904", "bbob-biobj_f03_i09_d40 0.960313249884054", "bbob-biobj_f03_i10_d02 0.806842793172941", "bbob-biobj_f03_i10_d03 0.889858712567055", "bbob-biobj_f03_i10_d05 0.872339918273572", "bbob-biobj_f03_i10_d10 0.838785952959289", "bbob-biobj_f03_i10_d20 0.932837871417158", "bbob-biobj_f03_i10_d40 0.919291853546905", "bbob-biobj_f03_i11_d02 1.0", "bbob-biobj_f03_i11_d03 1.0", "bbob-biobj_f03_i11_d05 1.0", "bbob-biobj_f03_i11_d10 1.0", "bbob-biobj_f03_i11_d20 1.0", "bbob-biobj_f03_i11_d40 1.0", "bbob-biobj_f03_i12_d02 1.0", "bbob-biobj_f03_i12_d03 1.0", "bbob-biobj_f03_i12_d05 1.0", "bbob-biobj_f03_i12_d10 1.0", "bbob-biobj_f03_i12_d20 1.0", "bbob-biobj_f03_i12_d40 1.0", "bbob-biobj_f03_i13_d02 1.0", "bbob-biobj_f03_i13_d03 1.0", "bbob-biobj_f03_i13_d05 1.0", "bbob-biobj_f03_i13_d10 1.0", "bbob-biobj_f03_i13_d20 1.0", "bbob-biobj_f03_i13_d40 1.0", "bbob-biobj_f03_i14_d02 1.0", "bbob-biobj_f03_i14_d03 1.0", "bbob-biobj_f03_i14_d05 1.0", "bbob-biobj_f03_i14_d10 1.0", "bbob-biobj_f03_i14_d20 1.0", "bbob-biobj_f03_i14_d40 1.0", "bbob-biobj_f03_i15_d02 1.0", "bbob-biobj_f03_i15_d03 1.0", "bbob-biobj_f03_i15_d05 1.0", "bbob-biobj_f03_i15_d10 1.0", "bbob-biobj_f03_i15_d20 1.0", "bbob-biobj_f03_i15_d40 1.0", "bbob-biobj_f04_i01_d02 0.965338726794382", "bbob-biobj_f04_i01_d03 0.968687951515035", "bbob-biobj_f04_i01_d05 0.943989863409768", "bbob-biobj_f04_i01_d10 0.944838255687357", "bbob-biobj_f04_i01_d20 0.935875503168791", "bbob-biobj_f04_i01_d40 0.938346564293152", "bbob-biobj_f04_i02_d02 0.970390735576566", "bbob-biobj_f04_i02_d03 0.955014817645219", "bbob-biobj_f04_i02_d05 0.963230490151800", "bbob-biobj_f04_i02_d10 0.954675551328523", "bbob-biobj_f04_i02_d20 0.941764787741878", "bbob-biobj_f04_i02_d40 0.942548357947242", "bbob-biobj_f04_i03_d02 0.971131699210568", "bbob-biobj_f04_i03_d03 0.910481413771928", "bbob-biobj_f04_i03_d05 0.937880321716215", "bbob-biobj_f04_i03_d10 0.951455403991113", "bbob-biobj_f04_i03_d20 0.931490116714832", "bbob-biobj_f04_i03_d40 0.935912840885351", "bbob-biobj_f04_i04_d02 0.977012543483185", "bbob-biobj_f04_i04_d03 0.994699731867687", "bbob-biobj_f04_i04_d05 0.944471116749840", "bbob-biobj_f04_i04_d10 0.936538418626468", "bbob-biobj_f04_i04_d20 0.942534311803126", "bbob-biobj_f04_i04_d40 0.936539435934015", "bbob-biobj_f04_i05_d02 0.924874420000501", "bbob-biobj_f04_i05_d03 0.923161919375749", "bbob-biobj_f04_i05_d05 0.942091615902321", "bbob-biobj_f04_i05_d10 0.941633909892918", "bbob-biobj_f04_i05_d20 0.948833719064138", "bbob-biobj_f04_i05_d40 0.941340383563524", "bbob-biobj_f04_i06_d02 0.972712023086024", "bbob-biobj_f04_i06_d03 0.943259154470174", "bbob-biobj_f04_i06_d05 0.950605294323082", "bbob-biobj_f04_i06_d10 0.952990287497578", "bbob-biobj_f04_i06_d20 0.950812808533448", "bbob-biobj_f04_i06_d40 0.941972851884953", "bbob-biobj_f04_i07_d02 0.955670149154298", "bbob-biobj_f04_i07_d03 0.967708425195390", "bbob-biobj_f04_i07_d05 0.954782909290990", "bbob-biobj_f04_i07_d10 0.963225833055543", "bbob-biobj_f04_i07_d20 0.945577888150042", "bbob-biobj_f04_i07_d40 0.946077143098894", "bbob-biobj_f04_i08_d02 0.907747209528065", "bbob-biobj_f04_i08_d03 0.921849147005426", "bbob-biobj_f04_i08_d05 0.959565746288096", "bbob-biobj_f04_i08_d10 0.948097764116263", "bbob-biobj_f04_i08_d20 0.941570417466490", "bbob-biobj_f04_i08_d40 0.934063924497575", "bbob-biobj_f04_i09_d02 0.810228484370594", "bbob-biobj_f04_i09_d03 0.940463955038713", "bbob-biobj_f04_i09_d05 0.933584265077007", "bbob-biobj_f04_i09_d10 0.942896781839956", "bbob-biobj_f04_i09_d20 0.933010807630098", "bbob-biobj_f04_i09_d40 0.935798291522789", "bbob-biobj_f04_i10_d02 0.954309122443056", "bbob-biobj_f04_i10_d03 0.918874808389024", "bbob-biobj_f04_i10_d05 0.935604060678033", "bbob-biobj_f04_i10_d10 0.926101932209592", "bbob-biobj_f04_i10_d20 0.933741140736711", "bbob-biobj_f04_i10_d40 0.935392338253246", "bbob-biobj_f04_i11_d02 1.0", "bbob-biobj_f04_i11_d03 1.0", "bbob-biobj_f04_i11_d05 1.0", "bbob-biobj_f04_i11_d10 1.0", "bbob-biobj_f04_i11_d20 1.0", "bbob-biobj_f04_i11_d40 1.0", "bbob-biobj_f04_i12_d02 1.0", "bbob-biobj_f04_i12_d03 1.0", "bbob-biobj_f04_i12_d05 1.0", "bbob-biobj_f04_i12_d10 1.0", "bbob-biobj_f04_i12_d20 1.0", "bbob-biobj_f04_i12_d40 1.0", "bbob-biobj_f04_i13_d02 1.0", "bbob-biobj_f04_i13_d03 1.0", "bbob-biobj_f04_i13_d05 1.0", "bbob-biobj_f04_i13_d10 1.0", "bbob-biobj_f04_i13_d20 1.0", "bbob-biobj_f04_i13_d40 1.0", "bbob-biobj_f04_i14_d02 1.0", "bbob-biobj_f04_i14_d03 1.0", "bbob-biobj_f04_i14_d05 1.0", "bbob-biobj_f04_i14_d10 1.0", "bbob-biobj_f04_i14_d20 1.0", "bbob-biobj_f04_i14_d40 1.0", "bbob-biobj_f04_i15_d02 1.0", "bbob-biobj_f04_i15_d03 1.0", "bbob-biobj_f04_i15_d05 1.0", "bbob-biobj_f04_i15_d10 1.0", "bbob-biobj_f04_i15_d20 1.0", "bbob-biobj_f04_i15_d40 1.0", "bbob-biobj_f05_i01_d02 0.754128843554063", "bbob-biobj_f05_i01_d03 0.728475348474197", "bbob-biobj_f05_i01_d05 0.732294673842556", "bbob-biobj_f05_i01_d10 0.714081601978928", "bbob-biobj_f05_i01_d20 0.694491269656484", "bbob-biobj_f05_i01_d40 0.709897599941799", "bbob-biobj_f05_i02_d02 0.954990573126856", "bbob-biobj_f05_i02_d03 0.688043584247301", "bbob-biobj_f05_i02_d05 0.714739513483451", "bbob-biobj_f05_i02_d10 0.730746486457995", "bbob-biobj_f05_i02_d20 0.689211189126236", "bbob-biobj_f05_i02_d40 0.698143247686728", "bbob-biobj_f05_i03_d02 0.684482936855002", "bbob-biobj_f05_i03_d03 0.802889224282279", "bbob-biobj_f05_i03_d05 0.699898464202400", "bbob-biobj_f05_i03_d10 0.683945382318722", "bbob-biobj_f05_i03_d20 0.697145640312030", "bbob-biobj_f05_i03_d40 0.694224764943005", "bbob-biobj_f05_i04_d02 0.878631790550396", "bbob-biobj_f05_i04_d03 0.744997244910120", "bbob-biobj_f05_i04_d05 0.776093236181555", "bbob-biobj_f05_i04_d10 0.716317814175257", "bbob-biobj_f05_i04_d20 0.705280280057881", "bbob-biobj_f05_i04_d40 0.699990681454391", "bbob-biobj_f05_i05_d02 0.926275561653235", "bbob-biobj_f05_i05_d03 0.701518937377523", "bbob-biobj_f05_i05_d05 0.737170729705834", "bbob-biobj_f05_i05_d10 0.749504681924043", "bbob-biobj_f05_i05_d20 0.695500720128268", "bbob-biobj_f05_i05_d40 0.698208388110590", "bbob-biobj_f05_i06_d02 0.885993423655518", "bbob-biobj_f05_i06_d03 0.753054842415797", "bbob-biobj_f05_i06_d05 0.777207864089930", "bbob-biobj_f05_i06_d10 0.760062484063981", "bbob-biobj_f05_i06_d20 0.701429647524717", "bbob-biobj_f05_i06_d40 0.703399229288760", "bbob-biobj_f05_i07_d02 0.733322624337346", "bbob-biobj_f05_i07_d03 0.837353794951257", "bbob-biobj_f05_i07_d05 0.732469624019470", "bbob-biobj_f05_i07_d10 0.704094291056772", "bbob-biobj_f05_i07_d20 0.714293887126808", "bbob-biobj_f05_i07_d40 0.702091851169133", "bbob-biobj_f05_i08_d02 0.720852977164468", "bbob-biobj_f05_i08_d03 0.718993847264250", "bbob-biobj_f05_i08_d05 0.719205565720365", "bbob-biobj_f05_i08_d10 0.695251774184546", "bbob-biobj_f05_i08_d20 0.721402091348061", "bbob-biobj_f05_i08_d40 0.698735224096643", "bbob-biobj_f05_i09_d02 0.843425481280734", "bbob-biobj_f05_i09_d03 0.678680980278178", "bbob-biobj_f05_i09_d05 0.774526799831117", "bbob-biobj_f05_i09_d10 0.702694287379912", "bbob-biobj_f05_i09_d20 0.700114467616452", "bbob-biobj_f05_i09_d40 0.695637998755007", "bbob-biobj_f05_i10_d02 0.781317669360153", "bbob-biobj_f05_i10_d03 0.935431588217515", "bbob-biobj_f05_i10_d05 0.765296061050919", "bbob-biobj_f05_i10_d10 0.703665546454890", "bbob-biobj_f05_i10_d20 0.695348707691516", "bbob-biobj_f05_i10_d40 0.699213843205399", "bbob-biobj_f05_i11_d02 1.0", "bbob-biobj_f05_i11_d03 1.0", "bbob-biobj_f05_i11_d05 1.0", "bbob-biobj_f05_i11_d10 1.0", "bbob-biobj_f05_i11_d20 1.0", "bbob-biobj_f05_i11_d40 1.0", "bbob-biobj_f05_i12_d02 1.0", "bbob-biobj_f05_i12_d03 1.0", "bbob-biobj_f05_i12_d05 1.0", "bbob-biobj_f05_i12_d10 1.0", "bbob-biobj_f05_i12_d20 1.0", "bbob-biobj_f05_i12_d40 1.0", "bbob-biobj_f05_i13_d02 1.0", "bbob-biobj_f05_i13_d03 1.0", "bbob-biobj_f05_i13_d05 1.0", "bbob-biobj_f05_i13_d10 1.0", "bbob-biobj_f05_i13_d20 1.0", "bbob-biobj_f05_i13_d40 1.0", "bbob-biobj_f05_i14_d02 1.0", "bbob-biobj_f05_i14_d03 1.0", "bbob-biobj_f05_i14_d05 1.0", "bbob-biobj_f05_i14_d10 1.0", "bbob-biobj_f05_i14_d20 1.0", "bbob-biobj_f05_i14_d40 1.0", "bbob-biobj_f05_i15_d02 1.0", "bbob-biobj_f05_i15_d03 1.0", "bbob-biobj_f05_i15_d05 1.0", "bbob-biobj_f05_i15_d10 1.0", "bbob-biobj_f05_i15_d20 1.0", "bbob-biobj_f05_i15_d40 1.0", "bbob-biobj_f06_i01_d02 0.667254444373576", "bbob-biobj_f06_i01_d03 0.954292615388024", "bbob-biobj_f06_i01_d05 0.846018108006070", "bbob-biobj_f06_i01_d10 0.937011171661415", "bbob-biobj_f06_i01_d20 0.931062491929114", "bbob-biobj_f06_i01_d40 0.923107376979132", "bbob-biobj_f06_i02_d02 0.901470541064455", "bbob-biobj_f06_i02_d03 0.863894446994245", "bbob-biobj_f06_i02_d05 0.867726820357307", "bbob-biobj_f06_i02_d10 0.875243417373076", "bbob-biobj_f06_i02_d20 0.910534831484962", "bbob-biobj_f06_i02_d40 0.943043761978475", "bbob-biobj_f06_i03_d02 0.884300125495847", "bbob-biobj_f06_i03_d03 0.833639337871505", "bbob-biobj_f06_i03_d05 0.848595402210255", "bbob-biobj_f06_i03_d10 0.895943187528683", "bbob-biobj_f06_i03_d20 0.932804873601530", "bbob-biobj_f06_i03_d40 0.902613635336386", "bbob-biobj_f06_i04_d02 0.945804377878614", "bbob-biobj_f06_i04_d03 0.921371854303564", "bbob-biobj_f06_i04_d05 0.935945307405495", "bbob-biobj_f06_i04_d10 0.930064024521303", "bbob-biobj_f06_i04_d20 0.901083959683698", "bbob-biobj_f06_i04_d40 0.876264281037954", "bbob-biobj_f06_i05_d02 0.942603371250243", "bbob-biobj_f06_i05_d03 0.899137550818265", "bbob-biobj_f06_i05_d05 0.930569530909069", "bbob-biobj_f06_i05_d10 0.743374275978944", "bbob-biobj_f06_i05_d20 0.918107792651112", "bbob-biobj_f06_i05_d40 0.858546452709913", "bbob-biobj_f06_i06_d02 0.899088058493637", "bbob-biobj_f06_i06_d03 0.836273396344679", "bbob-biobj_f06_i06_d05 0.811666818853098", "bbob-biobj_f06_i06_d10 0.928896921971501", "bbob-biobj_f06_i06_d20 0.868880077191445", "bbob-biobj_f06_i06_d40 0.914009310714674", "bbob-biobj_f06_i07_d02 0.813378211274640", "bbob-biobj_f06_i07_d03 0.899764157891963", "bbob-biobj_f06_i07_d05 0.877044131516540", "bbob-biobj_f06_i07_d10 0.815103763392029", "bbob-biobj_f06_i07_d20 0.935546623083071", "bbob-biobj_f06_i07_d40 0.918203928752294", "bbob-biobj_f06_i08_d02 0.910565241257933", "bbob-biobj_f06_i08_d03 0.667404103609139", "bbob-biobj_f06_i08_d05 0.937319850801338", "bbob-biobj_f06_i08_d10 0.930156422143394", "bbob-biobj_f06_i08_d20 0.910955371810017", "bbob-biobj_f06_i08_d40 0.925981149845227", "bbob-biobj_f06_i09_d02 0.675947010648316", "bbob-biobj_f06_i09_d03 0.867855866365995", "bbob-biobj_f06_i09_d05 0.897324697379564", "bbob-biobj_f06_i09_d10 0.845127370421703", "bbob-biobj_f06_i09_d20 0.949720407857437", "bbob-biobj_f06_i09_d40 0.945411493883968", "bbob-biobj_f06_i10_d02 0.882457686653892", "bbob-biobj_f06_i10_d03 0.907422193376687", "bbob-biobj_f06_i10_d05 0.905219354104915", "bbob-biobj_f06_i10_d10 0.906496647250774", "bbob-biobj_f06_i10_d20 0.901309728619030", "bbob-biobj_f06_i10_d40 0.921989810690995", "bbob-biobj_f06_i11_d02 1.0", "bbob-biobj_f06_i11_d03 1.0", "bbob-biobj_f06_i11_d05 1.0", "bbob-biobj_f06_i11_d10 1.0", "bbob-biobj_f06_i11_d20 1.0", "bbob-biobj_f06_i11_d40 1.0", "bbob-biobj_f06_i12_d02 1.0", "bbob-biobj_f06_i12_d03 1.0", "bbob-biobj_f06_i12_d05 1.0", "bbob-biobj_f06_i12_d10 1.0", "bbob-biobj_f06_i12_d20 1.0", "bbob-biobj_f06_i12_d40 1.0", "bbob-biobj_f06_i13_d02 1.0", "bbob-biobj_f06_i13_d03 1.0", "bbob-biobj_f06_i13_d05 1.0", "bbob-biobj_f06_i13_d10 1.0", "bbob-biobj_f06_i13_d20 1.0", "bbob-biobj_f06_i13_d40 1.0", "bbob-biobj_f06_i14_d02 1.0", "bbob-biobj_f06_i14_d03 1.0", "bbob-biobj_f06_i14_d05 1.0", "bbob-biobj_f06_i14_d10 1.0", "bbob-biobj_f06_i14_d20 1.0", "bbob-biobj_f06_i14_d40 1.0", "bbob-biobj_f06_i15_d02 1.0", "bbob-biobj_f06_i15_d03 1.0", "bbob-biobj_f06_i15_d05 1.0", "bbob-biobj_f06_i15_d10 1.0", "bbob-biobj_f06_i15_d20 1.0", "bbob-biobj_f06_i15_d40 1.0", "bbob-biobj_f07_i01_d02 0.936972575085523", "bbob-biobj_f07_i01_d03 0.937571783523299", "bbob-biobj_f07_i01_d05 0.860222475841532", "bbob-biobj_f07_i01_d10 0.897609185174781", "bbob-biobj_f07_i01_d20 0.942671659576489", "bbob-biobj_f07_i01_d40 0.910485687990751", "bbob-biobj_f07_i02_d02 0.906340900885370", "bbob-biobj_f07_i02_d03 0.923761423740148", "bbob-biobj_f07_i02_d05 0.893388606223265", "bbob-biobj_f07_i02_d10 0.896254312553792", "bbob-biobj_f07_i02_d20 0.900483922216280", "bbob-biobj_f07_i02_d40 0.865795482651835", "bbob-biobj_f07_i03_d02 0.886134331413053", "bbob-biobj_f07_i03_d03 0.921398210499996", "bbob-biobj_f07_i03_d05 0.868192249749793", "bbob-biobj_f07_i03_d10 0.894160344923831", "bbob-biobj_f07_i03_d20 0.898091141981344", "bbob-biobj_f07_i03_d40 0.889534578187546", "bbob-biobj_f07_i04_d02 0.870759950441604", "bbob-biobj_f07_i04_d03 0.933982487161439", "bbob-biobj_f07_i04_d05 0.870207948851616", "bbob-biobj_f07_i04_d10 0.884508750253254", "bbob-biobj_f07_i04_d20 0.894023396251866", "bbob-biobj_f07_i04_d40 0.905164921817996", "bbob-biobj_f07_i05_d02 0.911523577984129", "bbob-biobj_f07_i05_d03 0.887628704517619", "bbob-biobj_f07_i05_d05 0.911689477358187", "bbob-biobj_f07_i05_d10 0.868303705443327", "bbob-biobj_f07_i05_d20 0.888205577785785", "bbob-biobj_f07_i05_d40 0.912756246768348", "bbob-biobj_f07_i06_d02 0.937861505018401", "bbob-biobj_f07_i06_d03 0.945942900173665", "bbob-biobj_f07_i06_d05 0.915705285244223", "bbob-biobj_f07_i06_d10 0.891206796700426", "bbob-biobj_f07_i06_d20 0.884437403163543", "bbob-biobj_f07_i06_d40 0.883827465078616", "bbob-biobj_f07_i07_d02 0.871209654272761", "bbob-biobj_f07_i07_d03 0.911170901726427", "bbob-biobj_f07_i07_d05 0.885356348557851", "bbob-biobj_f07_i07_d10 0.895861833448791", "bbob-biobj_f07_i07_d20 0.894942450950192", "bbob-biobj_f07_i07_d40 0.854575042999799", "bbob-biobj_f07_i08_d02 0.849406116302883", "bbob-biobj_f07_i08_d03 0.909560273134834", "bbob-biobj_f07_i08_d05 0.846611979908353", "bbob-biobj_f07_i08_d10 0.916959924844533", "bbob-biobj_f07_i08_d20 0.891124123593114", "bbob-biobj_f07_i08_d40 0.905849069194381", "bbob-biobj_f07_i09_d02 0.877457921891718", "bbob-biobj_f07_i09_d03 0.928694938524451", "bbob-biobj_f07_i09_d05 0.890504447918247", "bbob-biobj_f07_i09_d10 0.911171424258652", "bbob-biobj_f07_i09_d20 0.898982426181766", "bbob-biobj_f07_i09_d40 0.867135361861662", "bbob-biobj_f07_i10_d02 0.907426576520353", "bbob-biobj_f07_i10_d03 0.920344140918204", "bbob-biobj_f07_i10_d05 0.897609858978946", "bbob-biobj_f07_i10_d10 0.902681008338079", "bbob-biobj_f07_i10_d20 0.933248995366967", "bbob-biobj_f07_i10_d40 0.893566872525990", "bbob-biobj_f07_i11_d02 1.0", "bbob-biobj_f07_i11_d03 1.0", "bbob-biobj_f07_i11_d05 1.0", "bbob-biobj_f07_i11_d10 1.0", "bbob-biobj_f07_i11_d20 1.0", "bbob-biobj_f07_i11_d40 1.0", "bbob-biobj_f07_i12_d02 1.0", "bbob-biobj_f07_i12_d03 1.0", "bbob-biobj_f07_i12_d05 1.0", "bbob-biobj_f07_i12_d10 1.0", "bbob-biobj_f07_i12_d20 1.0", "bbob-biobj_f07_i12_d40 1.0", "bbob-biobj_f07_i13_d02 1.0", "bbob-biobj_f07_i13_d03 1.0", "bbob-biobj_f07_i13_d05 1.0", "bbob-biobj_f07_i13_d10 1.0", "bbob-biobj_f07_i13_d20 1.0", "bbob-biobj_f07_i13_d40 1.0", "bbob-biobj_f07_i14_d02 1.0", "bbob-biobj_f07_i14_d03 1.0", "bbob-biobj_f07_i14_d05 1.0", "bbob-biobj_f07_i14_d10 1.0", "bbob-biobj_f07_i14_d20 1.0", "bbob-biobj_f07_i14_d40 1.0", "bbob-biobj_f07_i15_d02 1.0", "bbob-biobj_f07_i15_d03 1.0", "bbob-biobj_f07_i15_d05 1.0", "bbob-biobj_f07_i15_d10 1.0", "bbob-biobj_f07_i15_d20 1.0", "bbob-biobj_f07_i15_d40 1.0", "bbob-biobj_f08_i01_d02 0.903849381293032", "bbob-biobj_f08_i01_d03 0.911799446711896", "bbob-biobj_f08_i01_d05 0.942810865795991", "bbob-biobj_f08_i01_d10 0.982310271948219", "bbob-biobj_f08_i01_d20 0.969081195591175", "bbob-biobj_f08_i01_d40 0.941602861002529", "bbob-biobj_f08_i02_d02 0.784765299142009", "bbob-biobj_f08_i02_d03 0.882040732286310", "bbob-biobj_f08_i02_d05 0.909602249858625", "bbob-biobj_f08_i02_d10 0.916464603099051", "bbob-biobj_f08_i02_d20 0.905238001542862", "bbob-biobj_f08_i02_d40 0.942706996827259", "bbob-biobj_f08_i03_d02 0.748604947410058", "bbob-biobj_f08_i03_d03 0.850955572510764", "bbob-biobj_f08_i03_d05 0.805508853750290", "bbob-biobj_f08_i03_d10 0.931243739617921", "bbob-biobj_f08_i03_d20 0.950573205092055", "bbob-biobj_f08_i03_d40 0.882551515361396", "bbob-biobj_f08_i04_d02 0.743267364302322", "bbob-biobj_f08_i04_d03 0.667007078367313", "bbob-biobj_f08_i04_d05 0.927892758832404", "bbob-biobj_f08_i04_d10 0.951140771552574", "bbob-biobj_f08_i04_d20 0.956543860986805", "bbob-biobj_f08_i04_d40 0.924431301334235", "bbob-biobj_f08_i05_d02 0.865136714427976", "bbob-biobj_f08_i05_d03 0.893998699750253", "bbob-biobj_f08_i05_d05 0.917998781925269", "bbob-biobj_f08_i05_d10 0.930536026397557", "bbob-biobj_f08_i05_d20 0.910195152512765", "bbob-biobj_f08_i05_d40 0.944277101801299", "bbob-biobj_f08_i06_d02 0.829476441539014", "bbob-biobj_f08_i06_d03 0.895408933722067", "bbob-biobj_f08_i06_d05 0.889128202192725", "bbob-biobj_f08_i06_d10 0.912648355358455", "bbob-biobj_f08_i06_d20 0.929751402682770", "bbob-biobj_f08_i06_d40 0.912322766676420", "bbob-biobj_f08_i07_d02 0.933714327146467", "bbob-biobj_f08_i07_d03 0.911121051771586", "bbob-biobj_f08_i07_d05 0.901891452886488", "bbob-biobj_f08_i07_d10 0.876772709102926", "bbob-biobj_f08_i07_d20 0.948895341508442", "bbob-biobj_f08_i07_d40 0.871778232072206", "bbob-biobj_f08_i08_d02 0.901615894941159", "bbob-biobj_f08_i08_d03 0.935771577639889", "bbob-biobj_f08_i08_d05 0.913263769388604", "bbob-biobj_f08_i08_d10 0.924413116450644", "bbob-biobj_f08_i08_d20 0.942886981112154", "bbob-biobj_f08_i08_d40 0.832711391708555", "bbob-biobj_f08_i09_d02 0.904705113882673", "bbob-biobj_f08_i09_d03 0.941784988928111", "bbob-biobj_f08_i09_d05 0.833932222374868", "bbob-biobj_f08_i09_d10 0.920117214003409", "bbob-biobj_f08_i09_d20 0.913696814139621", "bbob-biobj_f08_i09_d40 0.935225792568577", "bbob-biobj_f08_i10_d02 0.904870851433164", "bbob-biobj_f08_i10_d03 0.934442126180304", "bbob-biobj_f08_i10_d05 0.952539863227733", "bbob-biobj_f08_i10_d10 0.924171076528587", "bbob-biobj_f08_i10_d20 0.918327947939103", "bbob-biobj_f08_i10_d40 0.962723183344110", "bbob-biobj_f08_i11_d02 1.0", "bbob-biobj_f08_i11_d03 1.0", "bbob-biobj_f08_i11_d05 1.0", "bbob-biobj_f08_i11_d10 1.0", "bbob-biobj_f08_i11_d20 1.0", "bbob-biobj_f08_i11_d40 1.0", "bbob-biobj_f08_i12_d02 1.0", "bbob-biobj_f08_i12_d03 1.0", "bbob-biobj_f08_i12_d05 1.0", "bbob-biobj_f08_i12_d10 1.0", "bbob-biobj_f08_i12_d20 1.0", "bbob-biobj_f08_i12_d40 1.0", "bbob-biobj_f08_i13_d02 1.0", "bbob-biobj_f08_i13_d03 1.0", "bbob-biobj_f08_i13_d05 1.0", "bbob-biobj_f08_i13_d10 1.0", "bbob-biobj_f08_i13_d20 1.0", "bbob-biobj_f08_i13_d40 1.0", "bbob-biobj_f08_i14_d02 1.0", "bbob-biobj_f08_i14_d03 1.0", "bbob-biobj_f08_i14_d05 1.0", "bbob-biobj_f08_i14_d10 1.0", "bbob-biobj_f08_i14_d20 1.0", "bbob-biobj_f08_i14_d40 1.0", "bbob-biobj_f08_i15_d02 1.0", "bbob-biobj_f08_i15_d03 1.0", "bbob-biobj_f08_i15_d05 1.0", "bbob-biobj_f08_i15_d10 1.0", "bbob-biobj_f08_i15_d20 1.0", "bbob-biobj_f08_i15_d40 1.0", "bbob-biobj_f09_i01_d02 0.925657814170223", "bbob-biobj_f09_i01_d03 0.904197423117471", "bbob-biobj_f09_i01_d05 0.932181427920137", "bbob-biobj_f09_i01_d10 0.940801691617986", "bbob-biobj_f09_i01_d20 0.960316065946310", "bbob-biobj_f09_i01_d40 0.966662588954428", "bbob-biobj_f09_i02_d02 0.977793751262295", "bbob-biobj_f09_i02_d03 0.992207394369088", "bbob-biobj_f09_i02_d05 0.961854320874622", "bbob-biobj_f09_i02_d10 0.975991497292509", "bbob-biobj_f09_i02_d20 0.962608726627843", "bbob-biobj_f09_i02_d40 0.963762685971772", "bbob-biobj_f09_i03_d02 0.968705844447316", "bbob-biobj_f09_i03_d03 0.986085524471979", "bbob-biobj_f09_i03_d05 0.930451696324880", "bbob-biobj_f09_i03_d10 0.955044825826449", "bbob-biobj_f09_i03_d20 0.970332351664872", "bbob-biobj_f09_i03_d40 0.969394339815251", "bbob-biobj_f09_i04_d02 0.948342668463238", "bbob-biobj_f09_i04_d03 0.940844214602507", "bbob-biobj_f09_i04_d05 0.950696199447794", "bbob-biobj_f09_i04_d10 0.944322425851199", "bbob-biobj_f09_i04_d20 0.961728387760400", "bbob-biobj_f09_i04_d40 0.963103853915457", "bbob-biobj_f09_i05_d02 0.860780709822583", "bbob-biobj_f09_i05_d03 0.939789647695892", "bbob-biobj_f09_i05_d05 0.968561825403842", "bbob-biobj_f09_i05_d10 0.940734136756500", "bbob-biobj_f09_i05_d20 0.963736063540811", "bbob-biobj_f09_i05_d40 0.967143960180269", "bbob-biobj_f09_i06_d02 0.957398241336098", "bbob-biobj_f09_i06_d03 0.987802627245661", "bbob-biobj_f09_i06_d05 0.910234055809238", "bbob-biobj_f09_i06_d10 0.958616029953390", "bbob-biobj_f09_i06_d20 0.969292910703259", "bbob-biobj_f09_i06_d40 0.960785018243888", "bbob-biobj_f09_i07_d02 0.990548357014945", "bbob-biobj_f09_i07_d03 0.962705179569111", "bbob-biobj_f09_i07_d05 0.974605803220911", "bbob-biobj_f09_i07_d10 0.974607189329728", "bbob-biobj_f09_i07_d20 0.975338881485032", "bbob-biobj_f09_i07_d40 0.972104542550424", "bbob-biobj_f09_i08_d02 0.889502838059927", "bbob-biobj_f09_i08_d03 0.964124022283451", "bbob-biobj_f09_i08_d05 0.959709821835848", "bbob-biobj_f09_i08_d10 0.954117820334898", "bbob-biobj_f09_i08_d20 0.950915150582074", "bbob-biobj_f09_i08_d40 0.959892153059548", "bbob-biobj_f09_i09_d02 0.950460190109210", "bbob-biobj_f09_i09_d03 0.983671960174457", "bbob-biobj_f09_i09_d05 0.964992545695910", "bbob-biobj_f09_i09_d10 0.979833476209204", "bbob-biobj_f09_i09_d20 0.978347861561944", "bbob-biobj_f09_i09_d40 0.967598075906950", "bbob-biobj_f09_i10_d02 0.869881009407849", "bbob-biobj_f09_i10_d03 0.943447288797987", "bbob-biobj_f09_i10_d05 0.920154801176530", "bbob-biobj_f09_i10_d10 0.944146078493198", "bbob-biobj_f09_i10_d20 0.957505476179459", "bbob-biobj_f09_i10_d40 0.964026681541125", "bbob-biobj_f09_i11_d02 1.0", "bbob-biobj_f09_i11_d03 1.0", "bbob-biobj_f09_i11_d05 1.0", "bbob-biobj_f09_i11_d10 1.0", "bbob-biobj_f09_i11_d20 1.0", "bbob-biobj_f09_i11_d40 1.0", "bbob-biobj_f09_i12_d02 1.0", "bbob-biobj_f09_i12_d03 1.0", "bbob-biobj_f09_i12_d05 1.0", "bbob-biobj_f09_i12_d10 1.0", "bbob-biobj_f09_i12_d20 1.0", "bbob-biobj_f09_i12_d40 1.0", "bbob-biobj_f09_i13_d02 1.0", "bbob-biobj_f09_i13_d03 1.0", "bbob-biobj_f09_i13_d05 1.0", "bbob-biobj_f09_i13_d10 1.0", "bbob-biobj_f09_i13_d20 1.0", "bbob-biobj_f09_i13_d40 1.0", "bbob-biobj_f09_i14_d02 1.0", "bbob-biobj_f09_i14_d03 1.0", "bbob-biobj_f09_i14_d05 1.0", "bbob-biobj_f09_i14_d10 1.0", "bbob-biobj_f09_i14_d20 1.0", "bbob-biobj_f09_i14_d40 1.0", "bbob-biobj_f09_i15_d02 1.0", "bbob-biobj_f09_i15_d03 1.0", "bbob-biobj_f09_i15_d05 1.0", "bbob-biobj_f09_i15_d10 1.0", "bbob-biobj_f09_i15_d20 1.0", "bbob-biobj_f09_i15_d40 1.0", "bbob-biobj_f10_i01_d02 0.922987888165046", "bbob-biobj_f10_i01_d03 0.927568092282234", "bbob-biobj_f10_i01_d05 0.867913922452004", "bbob-biobj_f10_i01_d10 0.879667617760632", "bbob-biobj_f10_i01_d20 0.840992193517756", "bbob-biobj_f10_i01_d40 0.730862112175264", "bbob-biobj_f10_i02_d02 0.889244712003482", "bbob-biobj_f10_i02_d03 0.883788429112751", "bbob-biobj_f10_i02_d05 0.898119402291299", "bbob-biobj_f10_i02_d10 0.798834395729540", "bbob-biobj_f10_i02_d20 0.812130174416182", "bbob-biobj_f10_i02_d40 0.663856072359917", "bbob-biobj_f10_i03_d02 0.921418301089463", "bbob-biobj_f10_i03_d03 0.901135310123523", "bbob-biobj_f10_i03_d05 0.890601509335293", "bbob-biobj_f10_i03_d10 0.710848076679431", "bbob-biobj_f10_i03_d20 0.798315835129164", "bbob-biobj_f10_i03_d40 0.747904986400848", "bbob-biobj_f10_i04_d02 0.942089494535008", "bbob-biobj_f10_i04_d03 0.932702272655739", "bbob-biobj_f10_i04_d05 0.946972264766413", "bbob-biobj_f10_i04_d10 0.906395334139304", "bbob-biobj_f10_i04_d20 0.800335891125016", "bbob-biobj_f10_i04_d40 0.638845426804670", "bbob-biobj_f10_i05_d02 0.940003750569188", "bbob-biobj_f10_i05_d03 0.934364067558401", "bbob-biobj_f10_i05_d05 0.934949844294875", "bbob-biobj_f10_i05_d10 0.842838836991676", "bbob-biobj_f10_i05_d20 0.778548919281115", "bbob-biobj_f10_i05_d40 0.640157170132133", "bbob-biobj_f10_i06_d02 0.884512896964566", "bbob-biobj_f10_i06_d03 0.929345926122951", "bbob-biobj_f10_i06_d05 0.937753565304302", "bbob-biobj_f10_i06_d10 0.916302417802770", "bbob-biobj_f10_i06_d20 0.804216801427507", "bbob-biobj_f10_i06_d40 0.690918114180113", "bbob-biobj_f10_i07_d02 0.972916090945292", "bbob-biobj_f10_i07_d03 0.971450633117566", "bbob-biobj_f10_i07_d05 0.941727082076548", "bbob-biobj_f10_i07_d10 0.817927199823897", "bbob-biobj_f10_i07_d20 0.763258585381718", "bbob-biobj_f10_i07_d40 0.739991394439648", "bbob-biobj_f10_i08_d02 0.926524440495943", "bbob-biobj_f10_i08_d03 0.950976461393930", "bbob-biobj_f10_i08_d05 0.975346535085332", "bbob-biobj_f10_i08_d10 0.916401249392711", "bbob-biobj_f10_i08_d20 0.857675602487971", "bbob-biobj_f10_i08_d40 0.775583712514456", "bbob-biobj_f10_i09_d02 0.663726926800968", "bbob-biobj_f10_i09_d03 0.879016548436657", "bbob-biobj_f10_i09_d05 0.942218870289438", "bbob-biobj_f10_i09_d10 0.904838192250101", "bbob-biobj_f10_i09_d20 0.792568176822578", "bbob-biobj_f10_i09_d40 0.722036310804938", "bbob-biobj_f10_i10_d02 0.909615354906003", "bbob-biobj_f10_i10_d03 0.950985467384464", "bbob-biobj_f10_i10_d05 0.937047585618269", "bbob-biobj_f10_i10_d10 0.894128956510904", "bbob-biobj_f10_i10_d20 0.748700702453785", "bbob-biobj_f10_i10_d40 0.532852626529976", "bbob-biobj_f10_i11_d02 1.0", "bbob-biobj_f10_i11_d03 1.0", "bbob-biobj_f10_i11_d05 1.0", "bbob-biobj_f10_i11_d10 1.0", "bbob-biobj_f10_i11_d20 1.0", "bbob-biobj_f10_i11_d40 1.0", "bbob-biobj_f10_i12_d02 1.0", "bbob-biobj_f10_i12_d03 1.0", "bbob-biobj_f10_i12_d05 1.0", "bbob-biobj_f10_i12_d10 1.0", "bbob-biobj_f10_i12_d20 1.0", "bbob-biobj_f10_i12_d40 1.0", "bbob-biobj_f10_i13_d02 1.0", "bbob-biobj_f10_i13_d03 1.0", "bbob-biobj_f10_i13_d05 1.0", "bbob-biobj_f10_i13_d10 1.0", "bbob-biobj_f10_i13_d20 1.0", "bbob-biobj_f10_i13_d40 1.0", "bbob-biobj_f10_i14_d02 1.0", "bbob-biobj_f10_i14_d03 1.0", "bbob-biobj_f10_i14_d05 1.0", "bbob-biobj_f10_i14_d10 1.0", "bbob-biobj_f10_i14_d20 1.0", "bbob-biobj_f10_i14_d40 1.0", "bbob-biobj_f10_i15_d02 1.0", "bbob-biobj_f10_i15_d03 1.0", "bbob-biobj_f10_i15_d05 1.0", "bbob-biobj_f10_i15_d10 1.0", "bbob-biobj_f10_i15_d20 1.0", "bbob-biobj_f10_i15_d40 1.0", "bbob-biobj_f11_i01_d02 0.823972812562388", "bbob-biobj_f11_i01_d03 0.878621203194964", "bbob-biobj_f11_i01_d05 0.812586648665059", "bbob-biobj_f11_i01_d10 0.836592516333072", "bbob-biobj_f11_i01_d20 0.836424820585753", "bbob-biobj_f11_i01_d40 0.826157745787494", "bbob-biobj_f11_i02_d02 0.834474640589775", "bbob-biobj_f11_i02_d03 0.833334234596160", "bbob-biobj_f11_i02_d05 0.813664713043024", "bbob-biobj_f11_i02_d10 0.829501419795512", "bbob-biobj_f11_i02_d20 0.835498021013514", "bbob-biobj_f11_i02_d40 0.836861505054914", "bbob-biobj_f11_i03_d02 0.817436951100827", "bbob-biobj_f11_i03_d03 0.827370208306986", "bbob-biobj_f11_i03_d05 0.841073303364040", "bbob-biobj_f11_i03_d10 0.821941232889153", "bbob-biobj_f11_i03_d20 0.835250205841700", "bbob-biobj_f11_i03_d40 0.842912564518251", "bbob-biobj_f11_i04_d02 0.883087616206635", "bbob-biobj_f11_i04_d03 0.841524279183524", "bbob-biobj_f11_i04_d05 0.886492170474548", "bbob-biobj_f11_i04_d10 0.834701874121709", "bbob-biobj_f11_i04_d20 0.838340761867027", "bbob-biobj_f11_i04_d40 0.836846910424672", "bbob-biobj_f11_i05_d02 0.849344297999467", "bbob-biobj_f11_i05_d03 0.775581024465445", "bbob-biobj_f11_i05_d05 0.834556160894165", "bbob-biobj_f11_i05_d10 0.840911958504972", "bbob-biobj_f11_i05_d20 0.841666619239648", "bbob-biobj_f11_i05_d40 0.833867420433639", "bbob-biobj_f11_i06_d02 0.826928090908244", "bbob-biobj_f11_i06_d03 0.829311542360003", "bbob-biobj_f11_i06_d05 0.835849754824295", "bbob-biobj_f11_i06_d10 0.834281888590491", "bbob-biobj_f11_i06_d20 0.835890818567694", "bbob-biobj_f11_i06_d40 0.833909224886551", "bbob-biobj_f11_i07_d02 0.827124524692875", "bbob-biobj_f11_i07_d03 0.834101026397339", "bbob-biobj_f11_i07_d05 0.822553859716167", "bbob-biobj_f11_i07_d10 0.828565235659249", "bbob-biobj_f11_i07_d20 0.847995795586526", "bbob-biobj_f11_i07_d40 0.839429981523613", "bbob-biobj_f11_i08_d02 0.816785490280523", "bbob-biobj_f11_i08_d03 0.828801608657967", "bbob-biobj_f11_i08_d05 0.821726221706212", "bbob-biobj_f11_i08_d10 0.837631789427020", "bbob-biobj_f11_i08_d20 0.842921662278686", "bbob-biobj_f11_i08_d40 0.840655475524800", "bbob-biobj_f11_i09_d02 0.832761545730916", "bbob-biobj_f11_i09_d03 0.824043534074746", "bbob-biobj_f11_i09_d05 0.792984808020167", "bbob-biobj_f11_i09_d10 0.824441637294302", "bbob-biobj_f11_i09_d20 0.829359805622782", "bbob-biobj_f11_i09_d40 0.826982642746262", "bbob-biobj_f11_i10_d02 0.826872158038815", "bbob-biobj_f11_i10_d03 0.815632322967258", "bbob-biobj_f11_i10_d05 0.813174586531673", "bbob-biobj_f11_i10_d10 0.845302354695332", "bbob-biobj_f11_i10_d20 0.827523794821044", "bbob-biobj_f11_i10_d40 0.834513234276812", "bbob-biobj_f11_i11_d02 1.0", "bbob-biobj_f11_i11_d03 1.0", "bbob-biobj_f11_i11_d05 1.0", "bbob-biobj_f11_i11_d10 1.0", "bbob-biobj_f11_i11_d20 1.0", "bbob-biobj_f11_i11_d40 1.0", "bbob-biobj_f11_i12_d02 1.0", "bbob-biobj_f11_i12_d03 1.0", "bbob-biobj_f11_i12_d05 1.0", "bbob-biobj_f11_i12_d10 1.0", "bbob-biobj_f11_i12_d20 1.0", "bbob-biobj_f11_i12_d40 1.0", "bbob-biobj_f11_i13_d02 1.0", "bbob-biobj_f11_i13_d03 1.0", "bbob-biobj_f11_i13_d05 1.0", "bbob-biobj_f11_i13_d10 1.0", "bbob-biobj_f11_i13_d20 1.0", "bbob-biobj_f11_i13_d40 1.0", "bbob-biobj_f11_i14_d02 1.0", "bbob-biobj_f11_i14_d03 1.0", "bbob-biobj_f11_i14_d05 1.0", "bbob-biobj_f11_i14_d10 1.0", "bbob-biobj_f11_i14_d20 1.0", "bbob-biobj_f11_i14_d40 1.0", "bbob-biobj_f11_i15_d02 1.0", "bbob-biobj_f11_i15_d03 1.0", "bbob-biobj_f11_i15_d05 1.0", "bbob-biobj_f11_i15_d10 1.0", "bbob-biobj_f11_i15_d20 1.0", "bbob-biobj_f11_i15_d40 1.0", "bbob-biobj_f12_i01_d02 0.981019021891034", "bbob-biobj_f12_i01_d03 0.997359054292220", "bbob-biobj_f12_i01_d05 0.999992980228967", "bbob-biobj_f12_i01_d10 0.997430774247223", "bbob-biobj_f12_i01_d20 0.999555509973294", "bbob-biobj_f12_i01_d40 0.999389239789896", "bbob-biobj_f12_i02_d02 0.999911394690186", "bbob-biobj_f12_i02_d03 0.999935184954457", "bbob-biobj_f12_i02_d05 0.999910225023882", "bbob-biobj_f12_i02_d10 0.999751444384452", "bbob-biobj_f12_i02_d20 0.999573550016330", "bbob-biobj_f12_i02_d40 0.999835569504230", "bbob-biobj_f12_i03_d02 0.999915740303757", "bbob-biobj_f12_i03_d03 0.999886885606420", "bbob-biobj_f12_i03_d05 0.947369433553171", "bbob-biobj_f12_i03_d10 0.999905015565585", "bbob-biobj_f12_i03_d20 0.999773283216776", "bbob-biobj_f12_i03_d40 0.999807886346771", "bbob-biobj_f12_i04_d02 0.972347947492247", "bbob-biobj_f12_i04_d03 0.934336745551181", "bbob-biobj_f12_i04_d05 0.973688344818477", "bbob-biobj_f12_i04_d10 0.999926003977452", "bbob-biobj_f12_i04_d20 0.999900680810457", "bbob-biobj_f12_i04_d40 0.999665196282814", "bbob-biobj_f12_i05_d02 0.908760849106752", "bbob-biobj_f12_i05_d03 0.934983963630235", "bbob-biobj_f12_i05_d05 0.999480774733750", "bbob-biobj_f12_i05_d10 0.999713953626639", "bbob-biobj_f12_i05_d20 0.999230870967443", "bbob-biobj_f12_i05_d40 0.995378202120478", "bbob-biobj_f12_i06_d02 0.951004550116135", "bbob-biobj_f12_i06_d03 0.994674719769856", "bbob-biobj_f12_i06_d05 0.999941998845874", "bbob-biobj_f12_i06_d10 0.998789935943491", "bbob-biobj_f12_i06_d20 0.999917048335107", "bbob-biobj_f12_i06_d40 0.998885474175385", "bbob-biobj_f12_i07_d02 0.999977426010364", "bbob-biobj_f12_i07_d03 0.999953601829309", "bbob-biobj_f12_i07_d05 0.969731923038145", "bbob-biobj_f12_i07_d10 0.999958334143000", "bbob-biobj_f12_i07_d20 0.999849852199318", "bbob-biobj_f12_i07_d40 0.999855587362279", "bbob-biobj_f12_i08_d02 0.995578051763076", "bbob-biobj_f12_i08_d03 0.848219286038717", "bbob-biobj_f12_i08_d05 0.999934633214172", "bbob-biobj_f12_i08_d10 0.999745727463896", "bbob-biobj_f12_i08_d20 0.999509720168614", "bbob-biobj_f12_i08_d40 0.994977499522366", "bbob-biobj_f12_i09_d02 0.927643402901094", "bbob-biobj_f12_i09_d03 0.999275263954279", "bbob-biobj_f12_i09_d05 0.999973997783679", "bbob-biobj_f12_i09_d10 0.999920783244525", "bbob-biobj_f12_i09_d20 0.999724134576184", "bbob-biobj_f12_i09_d40 0.998416448289325", "bbob-biobj_f12_i10_d02 0.865823542233124", "bbob-biobj_f12_i10_d03 0.999979025107695", "bbob-biobj_f12_i10_d05 0.999720439186375", "bbob-biobj_f12_i10_d10 0.998457916849131", "bbob-biobj_f12_i10_d20 0.998159410929698", "bbob-biobj_f12_i10_d40 0.999763956776766", "bbob-biobj_f12_i11_d02 1.0", "bbob-biobj_f12_i11_d03 1.0", "bbob-biobj_f12_i11_d05 1.0", "bbob-biobj_f12_i11_d10 1.0", "bbob-biobj_f12_i11_d20 1.0", "bbob-biobj_f12_i11_d40 1.0", "bbob-biobj_f12_i12_d02 1.0", "bbob-biobj_f12_i12_d03 1.0", "bbob-biobj_f12_i12_d05 1.0", "bbob-biobj_f12_i12_d10 1.0", "bbob-biobj_f12_i12_d20 1.0", "bbob-biobj_f12_i12_d40 1.0", "bbob-biobj_f12_i13_d02 1.0", "bbob-biobj_f12_i13_d03 1.0", "bbob-biobj_f12_i13_d05 1.0", "bbob-biobj_f12_i13_d10 1.0", "bbob-biobj_f12_i13_d20 1.0", "bbob-biobj_f12_i13_d40 1.0", "bbob-biobj_f12_i14_d02 1.0", "bbob-biobj_f12_i14_d03 1.0", "bbob-biobj_f12_i14_d05 1.0", "bbob-biobj_f12_i14_d10 1.0", "bbob-biobj_f12_i14_d20 1.0", "bbob-biobj_f12_i14_d40 1.0", "bbob-biobj_f12_i15_d02 1.0", "bbob-biobj_f12_i15_d03 1.0", "bbob-biobj_f12_i15_d05 1.0", "bbob-biobj_f12_i15_d10 1.0", "bbob-biobj_f12_i15_d20 1.0", "bbob-biobj_f12_i15_d40 1.0", "bbob-biobj_f13_i01_d02 0.944888481495913", "bbob-biobj_f13_i01_d03 0.999495787566523", "bbob-biobj_f13_i01_d05 0.999803029691490", "bbob-biobj_f13_i01_d10 0.999291777318943", "bbob-biobj_f13_i01_d20 0.950020375722517", "bbob-biobj_f13_i01_d40 0.988891641941712", "bbob-biobj_f13_i02_d02 0.999759637668710", "bbob-biobj_f13_i02_d03 0.998700086450386", "bbob-biobj_f13_i02_d05 0.998548467880571", "bbob-biobj_f13_i02_d10 0.999205394321604", "bbob-biobj_f13_i02_d20 0.970036413257736", "bbob-biobj_f13_i02_d40 0.990113397448570", "bbob-biobj_f13_i03_d02 0.999951136530969", "bbob-biobj_f13_i03_d03 0.962146148205073", "bbob-biobj_f13_i03_d05 0.999819062980181", "bbob-biobj_f13_i03_d10 0.999219213475386", "bbob-biobj_f13_i03_d20 0.945700443762299", "bbob-biobj_f13_i03_d40 0.991648066114144", "bbob-biobj_f13_i04_d02 0.999963191976562", "bbob-biobj_f13_i04_d03 0.999978301764668", "bbob-biobj_f13_i04_d05 0.999810945856148", "bbob-biobj_f13_i04_d10 0.991558939642803", "bbob-biobj_f13_i04_d20 0.997758867066474", "bbob-biobj_f13_i04_d40 0.986681645879782", "bbob-biobj_f13_i05_d02 0.999818304544863", "bbob-biobj_f13_i05_d03 0.999920718261273", "bbob-biobj_f13_i05_d05 0.999370197155656", "bbob-biobj_f13_i05_d10 0.994191582583059", "bbob-biobj_f13_i05_d20 0.998411773863768", "bbob-biobj_f13_i05_d40 0.986683196829484", "bbob-biobj_f13_i06_d02 0.999786254118461", "bbob-biobj_f13_i06_d03 0.999444869224228", "bbob-biobj_f13_i06_d05 0.996137458986228", "bbob-biobj_f13_i06_d10 0.999373545789059", "bbob-biobj_f13_i06_d20 0.971364486469867", "bbob-biobj_f13_i06_d40 0.976307325115025", "bbob-biobj_f13_i07_d02 0.998281928552673", "bbob-biobj_f13_i07_d03 0.999947731590753", "bbob-biobj_f13_i07_d05 0.957830089646704", "bbob-biobj_f13_i07_d10 0.997028847143220", "bbob-biobj_f13_i07_d20 0.986328888917346", "bbob-biobj_f13_i07_d40 0.993096262654648", "bbob-biobj_f13_i08_d02 0.986263129922459", "bbob-biobj_f13_i08_d03 0.987267926473285", "bbob-biobj_f13_i08_d05 0.998553113394840", "bbob-biobj_f13_i08_d10 0.997550762872402", "bbob-biobj_f13_i08_d20 0.992896154059295", "bbob-biobj_f13_i08_d40 0.993156766863208", "bbob-biobj_f13_i09_d02 0.999837952938782", "bbob-biobj_f13_i09_d03 0.999565585857190", "bbob-biobj_f13_i09_d05 0.993083126723309", "bbob-biobj_f13_i09_d10 0.996849023496994", "bbob-biobj_f13_i09_d20 0.998252533454138", "bbob-biobj_f13_i09_d40 0.985232252457824", "bbob-biobj_f13_i10_d02 0.999981682852072", "bbob-biobj_f13_i10_d03 0.998118852374587", "bbob-biobj_f13_i10_d05 0.993827383263134", "bbob-biobj_f13_i10_d10 0.999188102145963", "bbob-biobj_f13_i10_d20 0.999301545811323", "bbob-biobj_f13_i10_d40 0.988746713126202", "bbob-biobj_f13_i11_d02 1.0", "bbob-biobj_f13_i11_d03 1.0", "bbob-biobj_f13_i11_d05 1.0", "bbob-biobj_f13_i11_d10 1.0", "bbob-biobj_f13_i11_d20 1.0", "bbob-biobj_f13_i11_d40 1.0", "bbob-biobj_f13_i12_d02 1.0", "bbob-biobj_f13_i12_d03 1.0", "bbob-biobj_f13_i12_d05 1.0", "bbob-biobj_f13_i12_d10 1.0", "bbob-biobj_f13_i12_d20 1.0", "bbob-biobj_f13_i12_d40 1.0", "bbob-biobj_f13_i13_d02 1.0", "bbob-biobj_f13_i13_d03 1.0", "bbob-biobj_f13_i13_d05 1.0", "bbob-biobj_f13_i13_d10 1.0", "bbob-biobj_f13_i13_d20 1.0", "bbob-biobj_f13_i13_d40 1.0", "bbob-biobj_f13_i14_d02 1.0", "bbob-biobj_f13_i14_d03 1.0", "bbob-biobj_f13_i14_d05 1.0", "bbob-biobj_f13_i14_d10 1.0", "bbob-biobj_f13_i14_d20 1.0", "bbob-biobj_f13_i14_d40 1.0", "bbob-biobj_f13_i15_d02 1.0", "bbob-biobj_f13_i15_d03 1.0", "bbob-biobj_f13_i15_d05 1.0", "bbob-biobj_f13_i15_d10 1.0", "bbob-biobj_f13_i15_d20 1.0", "bbob-biobj_f13_i15_d40 1.0", "bbob-biobj_f14_i01_d02 0.912474502758044", "bbob-biobj_f14_i01_d03 0.832552981303613", "bbob-biobj_f14_i01_d05 0.935814561082043", "bbob-biobj_f14_i01_d10 0.856132946104561", "bbob-biobj_f14_i01_d20 0.838350394077427", "bbob-biobj_f14_i01_d40 0.858947036385989", "bbob-biobj_f14_i02_d02 0.997754601564265", "bbob-biobj_f14_i02_d03 0.996014288588860", "bbob-biobj_f14_i02_d05 0.842217695273373", "bbob-biobj_f14_i02_d10 0.880401726227052", "bbob-biobj_f14_i02_d20 0.909312507872731", "bbob-biobj_f14_i02_d40 0.872697649399011", "bbob-biobj_f14_i03_d02 0.966433483456690", "bbob-biobj_f14_i03_d03 0.983421791352917", "bbob-biobj_f14_i03_d05 0.792220674897986", "bbob-biobj_f14_i03_d10 0.931296898791649", "bbob-biobj_f14_i03_d20 0.918558442682632", "bbob-biobj_f14_i03_d40 0.866794368082230", "bbob-biobj_f14_i04_d02 0.982900075173571", "bbob-biobj_f14_i04_d03 0.999128374327137", "bbob-biobj_f14_i04_d05 0.854119062144995", "bbob-biobj_f14_i04_d10 0.871684724976058", "bbob-biobj_f14_i04_d20 0.902486214917498", "bbob-biobj_f14_i04_d40 0.905428785220358", "bbob-biobj_f14_i05_d02 0.987028385153950", "bbob-biobj_f14_i05_d03 0.986703979079455", "bbob-biobj_f14_i05_d05 0.966176301186096", "bbob-biobj_f14_i05_d10 0.940533252230839", "bbob-biobj_f14_i05_d20 0.885673184125202", "bbob-biobj_f14_i05_d40 0.880595320603629", "bbob-biobj_f14_i06_d02 0.989626579264181", "bbob-biobj_f14_i06_d03 0.967890488352312", "bbob-biobj_f14_i06_d05 0.951167651281388", "bbob-biobj_f14_i06_d10 0.969713179805528", "bbob-biobj_f14_i06_d20 0.877598942889784", "bbob-biobj_f14_i06_d40 0.884063329838707", "bbob-biobj_f14_i07_d02 0.888026642624433", "bbob-biobj_f14_i07_d03 0.994848097170878", "bbob-biobj_f14_i07_d05 0.993474418345262", "bbob-biobj_f14_i07_d10 0.918352873191297", "bbob-biobj_f14_i07_d20 0.846020394087209", "bbob-biobj_f14_i07_d40 0.886227765574340", "bbob-biobj_f14_i08_d02 0.785490555803731", "bbob-biobj_f14_i08_d03 0.812199702852755", "bbob-biobj_f14_i08_d05 0.963234245077621", "bbob-biobj_f14_i08_d10 0.837741778995617", "bbob-biobj_f14_i08_d20 0.864659883079803", "bbob-biobj_f14_i08_d40 0.888056073328803", "bbob-biobj_f14_i09_d02 0.999595374320139", "bbob-biobj_f14_i09_d03 0.836230878758369", "bbob-biobj_f14_i09_d05 0.828145060746739", "bbob-biobj_f14_i09_d10 0.903161047421889", "bbob-biobj_f14_i09_d20 0.900002248950141", "bbob-biobj_f14_i09_d40 0.862656054750155", "bbob-biobj_f14_i10_d02 0.980393179492728", "bbob-biobj_f14_i10_d03 0.871033820732873", "bbob-biobj_f14_i10_d05 0.987722998698588", "bbob-biobj_f14_i10_d10 0.804358216871116", "bbob-biobj_f14_i10_d20 0.948265232823403", "bbob-biobj_f14_i10_d40 0.879075253366757", "bbob-biobj_f14_i11_d02 1.0", "bbob-biobj_f14_i11_d03 1.0", "bbob-biobj_f14_i11_d05 1.0", "bbob-biobj_f14_i11_d10 1.0", "bbob-biobj_f14_i11_d20 1.0", "bbob-biobj_f14_i11_d40 1.0", "bbob-biobj_f14_i12_d02 1.0", "bbob-biobj_f14_i12_d03 1.0", "bbob-biobj_f14_i12_d05 1.0", "bbob-biobj_f14_i12_d10 1.0", "bbob-biobj_f14_i12_d20 1.0", "bbob-biobj_f14_i12_d40 1.0", "bbob-biobj_f14_i13_d02 1.0", "bbob-biobj_f14_i13_d03 1.0", "bbob-biobj_f14_i13_d05 1.0", "bbob-biobj_f14_i13_d10 1.0", "bbob-biobj_f14_i13_d20 1.0", "bbob-biobj_f14_i13_d40 1.0", "bbob-biobj_f14_i14_d02 1.0", "bbob-biobj_f14_i14_d03 1.0", "bbob-biobj_f14_i14_d05 1.0", "bbob-biobj_f14_i14_d10 1.0", "bbob-biobj_f14_i14_d20 1.0", "bbob-biobj_f14_i14_d40 1.0", "bbob-biobj_f14_i15_d02 1.0", "bbob-biobj_f14_i15_d03 1.0", "bbob-biobj_f14_i15_d05 1.0", "bbob-biobj_f14_i15_d10 1.0", "bbob-biobj_f14_i15_d20 1.0", "bbob-biobj_f14_i15_d40 1.0", "bbob-biobj_f15_i01_d02 0.978329958464595", "bbob-biobj_f15_i01_d03 0.928763486090370", "bbob-biobj_f15_i01_d05 0.948217515777184", "bbob-biobj_f15_i01_d10 0.965014252434939", "bbob-biobj_f15_i01_d20 0.988172010920960", "bbob-biobj_f15_i01_d40 0.979685330107244", "bbob-biobj_f15_i02_d02 0.941436984787556", "bbob-biobj_f15_i02_d03 0.954422322416083", "bbob-biobj_f15_i02_d05 0.979714682662946", "bbob-biobj_f15_i02_d10 0.992135269377142", "bbob-biobj_f15_i02_d20 0.957738383640000", "bbob-biobj_f15_i02_d40 0.979390495405073", "bbob-biobj_f15_i03_d02 0.998672057695252", "bbob-biobj_f15_i03_d03 0.994036428905887", "bbob-biobj_f15_i03_d05 0.980685118388359", "bbob-biobj_f15_i03_d10 0.991363095374915", "bbob-biobj_f15_i03_d20 0.982822742987328", "bbob-biobj_f15_i03_d40 0.980720242095878", "bbob-biobj_f15_i04_d02 0.825079630387599", "bbob-biobj_f15_i04_d03 0.975014914860254", "bbob-biobj_f15_i04_d05 0.944764896851763", "bbob-biobj_f15_i04_d10 0.994605465945425", "bbob-biobj_f15_i04_d20 0.973604110003641", "bbob-biobj_f15_i04_d40 0.993852848505890", "bbob-biobj_f15_i05_d02 0.988337565201807", "bbob-biobj_f15_i05_d03 0.932553406858140", "bbob-biobj_f15_i05_d05 0.867422911031452", "bbob-biobj_f15_i05_d10 0.985327846602946", "bbob-biobj_f15_i05_d20 0.988082796248327", "bbob-biobj_f15_i05_d40 0.992448395031419", "bbob-biobj_f15_i06_d02 0.969099569124418", "bbob-biobj_f15_i06_d03 0.955415507003273", "bbob-biobj_f15_i06_d05 0.975696462708374", "bbob-biobj_f15_i06_d10 0.985311334071489", "bbob-biobj_f15_i06_d20 0.985018339453307", "bbob-biobj_f15_i06_d40 0.977396751957974", "bbob-biobj_f15_i07_d02 0.982639481792181", "bbob-biobj_f15_i07_d03 0.904575831150473", "bbob-biobj_f15_i07_d05 0.993550969605167", "bbob-biobj_f15_i07_d10 0.956852344383798", "bbob-biobj_f15_i07_d20 0.977291264392811", "bbob-biobj_f15_i07_d40 0.982446927782356", "bbob-biobj_f15_i08_d02 0.925538670864120", "bbob-biobj_f15_i08_d03 0.886713197832339", "bbob-biobj_f15_i08_d05 0.977590338126398", "bbob-biobj_f15_i08_d10 0.987530968987965", "bbob-biobj_f15_i08_d20 0.972980219387174", "bbob-biobj_f15_i08_d40 0.987718098552715", "bbob-biobj_f15_i09_d02 0.985677211419677", "bbob-biobj_f15_i09_d03 0.988758882716527", "bbob-biobj_f15_i09_d05 0.932574336998797", "bbob-biobj_f15_i09_d10 0.974249913721194", "bbob-biobj_f15_i09_d20 0.951580788703233", "bbob-biobj_f15_i09_d40 0.981177296001791", "bbob-biobj_f15_i10_d02 0.932483359039571", "bbob-biobj_f15_i10_d03 0.760369148662153", "bbob-biobj_f15_i10_d05 0.962419327722367", "bbob-biobj_f15_i10_d10 0.968517586729314", "bbob-biobj_f15_i10_d20 0.983982954449852", "bbob-biobj_f15_i10_d40 0.989503840372814", "bbob-biobj_f15_i11_d02 1.0", "bbob-biobj_f15_i11_d03 1.0", "bbob-biobj_f15_i11_d05 1.0", "bbob-biobj_f15_i11_d10 1.0", "bbob-biobj_f15_i11_d20 1.0", "bbob-biobj_f15_i11_d40 1.0", "bbob-biobj_f15_i12_d02 1.0", "bbob-biobj_f15_i12_d03 1.0", "bbob-biobj_f15_i12_d05 1.0", "bbob-biobj_f15_i12_d10 1.0", "bbob-biobj_f15_i12_d20 1.0", "bbob-biobj_f15_i12_d40 1.0", "bbob-biobj_f15_i13_d02 1.0", "bbob-biobj_f15_i13_d03 1.0", "bbob-biobj_f15_i13_d05 1.0", "bbob-biobj_f15_i13_d10 1.0", "bbob-biobj_f15_i13_d20 1.0", "bbob-biobj_f15_i13_d40 1.0", "bbob-biobj_f15_i14_d02 1.0", "bbob-biobj_f15_i14_d03 1.0", "bbob-biobj_f15_i14_d05 1.0", "bbob-biobj_f15_i14_d10 1.0", "bbob-biobj_f15_i14_d20 1.0", "bbob-biobj_f15_i14_d40 1.0", "bbob-biobj_f15_i15_d02 1.0", "bbob-biobj_f15_i15_d03 1.0", "bbob-biobj_f15_i15_d05 1.0", "bbob-biobj_f15_i15_d10 1.0", "bbob-biobj_f15_i15_d20 1.0", "bbob-biobj_f15_i15_d40 1.0", "bbob-biobj_f16_i01_d02 0.981136805943563", "bbob-biobj_f16_i01_d03 0.999116528856403", "bbob-biobj_f16_i01_d05 0.991930799152053", "bbob-biobj_f16_i01_d10 0.985572038817464", "bbob-biobj_f16_i01_d20 0.975714609419363", "bbob-biobj_f16_i01_d40 0.956990166830896", "bbob-biobj_f16_i02_d02 0.965606293624667", "bbob-biobj_f16_i02_d03 0.934172295812466", "bbob-biobj_f16_i02_d05 0.954688360663971", "bbob-biobj_f16_i02_d10 0.962101153358912", "bbob-biobj_f16_i02_d20 0.979237967235992", "bbob-biobj_f16_i02_d40 0.958279379670396", "bbob-biobj_f16_i03_d02 0.959401186688791", "bbob-biobj_f16_i03_d03 0.943745810462135", "bbob-biobj_f16_i03_d05 0.990038348199901", "bbob-biobj_f16_i03_d10 0.968591811327548", "bbob-biobj_f16_i03_d20 0.989124335582215", "bbob-biobj_f16_i03_d40 0.970723944014379", "bbob-biobj_f16_i04_d02 0.995345570126699", "bbob-biobj_f16_i04_d03 0.997825564404976", "bbob-biobj_f16_i04_d05 0.984839714537455", "bbob-biobj_f16_i04_d10 0.985360159508032", "bbob-biobj_f16_i04_d20 0.980330681207284", "bbob-biobj_f16_i04_d40 0.966902504082311", "bbob-biobj_f16_i05_d02 0.999043230290520", "bbob-biobj_f16_i05_d03 0.953343574406745", "bbob-biobj_f16_i05_d05 0.995257304189170", "bbob-biobj_f16_i05_d10 0.974600005218726", "bbob-biobj_f16_i05_d20 0.978627892686058", "bbob-biobj_f16_i05_d40 0.981349905490900", "bbob-biobj_f16_i06_d02 0.139769187387063", "bbob-biobj_f16_i06_d03 0.932548729932145", "bbob-biobj_f16_i06_d05 0.966456880272056", "bbob-biobj_f16_i06_d10 0.978734131874224", "bbob-biobj_f16_i06_d20 0.984064160757473", "bbob-biobj_f16_i06_d40 0.936638336407728", "bbob-biobj_f16_i07_d02 0.997713548522536", "bbob-biobj_f16_i07_d03 0.955359679744685", "bbob-biobj_f16_i07_d05 0.994067502225735", "bbob-biobj_f16_i07_d10 0.954136637460491", "bbob-biobj_f16_i07_d20 0.972292039636678", "bbob-biobj_f16_i07_d40 0.946972200685131", "bbob-biobj_f16_i08_d02 0.968081586517578", "bbob-biobj_f16_i08_d03 0.985370098786813", "bbob-biobj_f16_i08_d05 0.982997262020142", "bbob-biobj_f16_i08_d10 0.983981918026254", "bbob-biobj_f16_i08_d20 0.992281167041330", "bbob-biobj_f16_i08_d40 0.906801714715668", "bbob-biobj_f16_i09_d02 0.971216964728232", "bbob-biobj_f16_i09_d03 0.973148118267147", "bbob-biobj_f16_i09_d05 0.975600577622356", "bbob-biobj_f16_i09_d10 0.993920099434157", "bbob-biobj_f16_i09_d20 0.980655093439768", "bbob-biobj_f16_i09_d40 0.964135748091886", "bbob-biobj_f16_i10_d02 0.928290354838167", "bbob-biobj_f16_i10_d03 0.992105778427930", "bbob-biobj_f16_i10_d05 0.955140928713979", "bbob-biobj_f16_i10_d10 0.993839635641078", "bbob-biobj_f16_i10_d20 0.985730027740502", "bbob-biobj_f16_i10_d40 0.949573101002550", "bbob-biobj_f16_i11_d02 1.0", "bbob-biobj_f16_i11_d03 1.0", "bbob-biobj_f16_i11_d05 1.0", "bbob-biobj_f16_i11_d10 1.0", "bbob-biobj_f16_i11_d20 1.0", "bbob-biobj_f16_i11_d40 1.0", "bbob-biobj_f16_i12_d02 1.0", "bbob-biobj_f16_i12_d03 1.0", "bbob-biobj_f16_i12_d05 1.0", "bbob-biobj_f16_i12_d10 1.0", "bbob-biobj_f16_i12_d20 1.0", "bbob-biobj_f16_i12_d40 1.0", "bbob-biobj_f16_i13_d02 1.0", "bbob-biobj_f16_i13_d03 1.0", "bbob-biobj_f16_i13_d05 1.0", "bbob-biobj_f16_i13_d10 1.0", "bbob-biobj_f16_i13_d20 1.0", "bbob-biobj_f16_i13_d40 1.0", "bbob-biobj_f16_i14_d02 1.0", "bbob-biobj_f16_i14_d03 1.0", "bbob-biobj_f16_i14_d05 1.0", "bbob-biobj_f16_i14_d10 1.0", "bbob-biobj_f16_i14_d20 1.0", "bbob-biobj_f16_i14_d40 1.0", "bbob-biobj_f16_i15_d02 1.0", "bbob-biobj_f16_i15_d03 1.0", "bbob-biobj_f16_i15_d05 1.0", "bbob-biobj_f16_i15_d10 1.0", "bbob-biobj_f16_i15_d20 1.0", "bbob-biobj_f16_i15_d40 1.0", "bbob-biobj_f17_i01_d02 0.979958736285246", "bbob-biobj_f17_i01_d03 0.899963827746614", "bbob-biobj_f17_i01_d05 0.980383162441116", "bbob-biobj_f17_i01_d10 0.991667904464048", "bbob-biobj_f17_i01_d20 0.976040274918623", "bbob-biobj_f17_i01_d40 0.977329603108451", "bbob-biobj_f17_i02_d02 0.942990267586704", "bbob-biobj_f17_i02_d03 0.931457132513428", "bbob-biobj_f17_i02_d05 0.971736847883754", "bbob-biobj_f17_i02_d10 0.982592256494084", "bbob-biobj_f17_i02_d20 0.977069573194543", "bbob-biobj_f17_i02_d40 0.977917762018740", "bbob-biobj_f17_i03_d02 0.941726980158077", "bbob-biobj_f17_i03_d03 0.956417557572814", "bbob-biobj_f17_i03_d05 0.967908237120145", "bbob-biobj_f17_i03_d10 0.990870743467526", "bbob-biobj_f17_i03_d20 0.988448519986969", "bbob-biobj_f17_i03_d40 0.956758020414636", "bbob-biobj_f17_i04_d02 0.766767768354889", "bbob-biobj_f17_i04_d03 0.861040742950137", "bbob-biobj_f17_i04_d05 0.995694983895964", "bbob-biobj_f17_i04_d10 0.993525252835279", "bbob-biobj_f17_i04_d20 0.994425581013768", "bbob-biobj_f17_i04_d40 0.987502438468208", "bbob-biobj_f17_i05_d02 0.940686879206378", "bbob-biobj_f17_i05_d03 0.855795658694083", "bbob-biobj_f17_i05_d05 0.989699773758120", "bbob-biobj_f17_i05_d10 0.988141216910086", "bbob-biobj_f17_i05_d20 0.998383309638694", "bbob-biobj_f17_i05_d40 0.970878934399012", "bbob-biobj_f17_i06_d02 0.987721346183989", "bbob-biobj_f17_i06_d03 0.933842682645463", "bbob-biobj_f17_i06_d05 0.995114738748214", "bbob-biobj_f17_i06_d10 0.988337346516209", "bbob-biobj_f17_i06_d20 0.986706062517203", "bbob-biobj_f17_i06_d40 0.929788434606291", "bbob-biobj_f17_i07_d02 0.996488999370768", "bbob-biobj_f17_i07_d03 0.955505256269616", "bbob-biobj_f17_i07_d05 0.997336955837073", "bbob-biobj_f17_i07_d10 0.994446054246338", "bbob-biobj_f17_i07_d20 0.998927058918791", "bbob-biobj_f17_i07_d40 0.960619879218413", "bbob-biobj_f17_i08_d02 0.889890847545346", "bbob-biobj_f17_i08_d03 0.847970499485007", "bbob-biobj_f17_i08_d05 0.935311368226691", "bbob-biobj_f17_i08_d10 0.992365339808906", "bbob-biobj_f17_i08_d20 0.982187603171574", "bbob-biobj_f17_i08_d40 0.946639360992838", "bbob-biobj_f17_i09_d02 0.939038516134587", "bbob-biobj_f17_i09_d03 0.986156728736634", "bbob-biobj_f17_i09_d05 0.953446290144602", "bbob-biobj_f17_i09_d10 0.991419467988624", "bbob-biobj_f17_i09_d20 0.994472378706110", "bbob-biobj_f17_i09_d40 0.919518078858342", "bbob-biobj_f17_i10_d02 0.998456596594862", "bbob-biobj_f17_i10_d03 0.954549550539068", "bbob-biobj_f17_i10_d05 0.982859786689298", "bbob-biobj_f17_i10_d10 0.994326972525940", "bbob-biobj_f17_i10_d20 0.989077431151756", "bbob-biobj_f17_i10_d40 0.946069625906736", "bbob-biobj_f17_i11_d02 1.0", "bbob-biobj_f17_i11_d03 1.0", "bbob-biobj_f17_i11_d05 1.0", "bbob-biobj_f17_i11_d10 1.0", "bbob-biobj_f17_i11_d20 1.0", "bbob-biobj_f17_i11_d40 1.0", "bbob-biobj_f17_i12_d02 1.0", "bbob-biobj_f17_i12_d03 1.0", "bbob-biobj_f17_i12_d05 1.0", "bbob-biobj_f17_i12_d10 1.0", "bbob-biobj_f17_i12_d20 1.0", "bbob-biobj_f17_i12_d40 1.0", "bbob-biobj_f17_i13_d02 1.0", "bbob-biobj_f17_i13_d03 1.0", "bbob-biobj_f17_i13_d05 1.0", "bbob-biobj_f17_i13_d10 1.0", "bbob-biobj_f17_i13_d20 1.0", "bbob-biobj_f17_i13_d40 1.0", "bbob-biobj_f17_i14_d02 1.0", "bbob-biobj_f17_i14_d03 1.0", "bbob-biobj_f17_i14_d05 1.0", "bbob-biobj_f17_i14_d10 1.0", "bbob-biobj_f17_i14_d20 1.0", "bbob-biobj_f17_i14_d40 1.0", "bbob-biobj_f17_i15_d02 1.0", "bbob-biobj_f17_i15_d03 1.0", "bbob-biobj_f17_i15_d05 1.0", "bbob-biobj_f17_i15_d10 1.0", "bbob-biobj_f17_i15_d20 1.0", "bbob-biobj_f17_i15_d40 1.0", "bbob-biobj_f18_i01_d02 0.969204955463581", "bbob-biobj_f18_i01_d03 0.998688677345057", "bbob-biobj_f18_i01_d05 0.998492990918753", "bbob-biobj_f18_i01_d10 0.992631755064189", "bbob-biobj_f18_i01_d20 0.947928180148035", "bbob-biobj_f18_i01_d40 0.946549388502231", "bbob-biobj_f18_i02_d02 0.953409672783533", "bbob-biobj_f18_i02_d03 0.993777613644610", "bbob-biobj_f18_i02_d05 0.991743086947726", "bbob-biobj_f18_i02_d10 0.962770435464250", "bbob-biobj_f18_i02_d20 0.950150835780217", "bbob-biobj_f18_i02_d40 0.985237661051139", "bbob-biobj_f18_i03_d02 0.999403474100123", "bbob-biobj_f18_i03_d03 0.999304357758777", "bbob-biobj_f18_i03_d05 0.946583934581978", "bbob-biobj_f18_i03_d10 0.992475805892152", "bbob-biobj_f18_i03_d20 0.960674247077403", "bbob-biobj_f18_i03_d40 0.977803190233087", "bbob-biobj_f18_i04_d02 0.990015009660456", "bbob-biobj_f18_i04_d03 0.998331133141258", "bbob-biobj_f18_i04_d05 0.973769141045947", "bbob-biobj_f18_i04_d10 0.950033214296972", "bbob-biobj_f18_i04_d20 0.933611850388737", "bbob-biobj_f18_i04_d40 0.983210373781807", "bbob-biobj_f18_i05_d02 0.999935348038347", "bbob-biobj_f18_i05_d03 0.975931995071483", "bbob-biobj_f18_i05_d05 0.941223676186121", "bbob-biobj_f18_i05_d10 0.954466530642470", "bbob-biobj_f18_i05_d20 0.975454397797652", "bbob-biobj_f18_i05_d40 0.972762716762444", "bbob-biobj_f18_i06_d02 0.999890664800389", "bbob-biobj_f18_i06_d03 0.951984261631391", "bbob-biobj_f18_i06_d05 0.972237437217906", "bbob-biobj_f18_i06_d10 0.983832662814702", "bbob-biobj_f18_i06_d20 0.988509799002198", "bbob-biobj_f18_i06_d40 0.943847382150639", "bbob-biobj_f18_i07_d02 0.999722916185884", "bbob-biobj_f18_i07_d03 0.939354361285139", "bbob-biobj_f18_i07_d05 0.973505022362569", "bbob-biobj_f18_i07_d10 0.956653936959765", "bbob-biobj_f18_i07_d20 0.975130531493727", "bbob-biobj_f18_i07_d40 0.963260507409640", "bbob-biobj_f18_i08_d02 0.979522633177982", "bbob-biobj_f18_i08_d03 0.983582859809175", "bbob-biobj_f18_i08_d05 0.972341214517837", "bbob-biobj_f18_i08_d10 0.943622394038077", "bbob-biobj_f18_i08_d20 0.985012761018232", "bbob-biobj_f18_i08_d40 0.967820102584116", "bbob-biobj_f18_i09_d02 0.826540269777394", "bbob-biobj_f18_i09_d03 0.955266931664022", "bbob-biobj_f18_i09_d05 0.990400188081170", "bbob-biobj_f18_i09_d10 0.973719812711369", "bbob-biobj_f18_i09_d20 0.927184296777493", "bbob-biobj_f18_i09_d40 0.940826217021873", "bbob-biobj_f18_i10_d02 0.981170857987276", "bbob-biobj_f18_i10_d03 0.977487404321554", "bbob-biobj_f18_i10_d05 0.973161994860676", "bbob-biobj_f18_i10_d10 0.930485909829110", "bbob-biobj_f18_i10_d20 0.958214791812810", "bbob-biobj_f18_i10_d40 0.936687847583049", "bbob-biobj_f18_i11_d02 1.0", "bbob-biobj_f18_i11_d03 1.0", "bbob-biobj_f18_i11_d05 1.0", "bbob-biobj_f18_i11_d10 1.0", "bbob-biobj_f18_i11_d20 1.0", "bbob-biobj_f18_i11_d40 1.0", "bbob-biobj_f18_i12_d02 1.0", "bbob-biobj_f18_i12_d03 1.0", "bbob-biobj_f18_i12_d05 1.0", "bbob-biobj_f18_i12_d10 1.0", "bbob-biobj_f18_i12_d20 1.0", "bbob-biobj_f18_i12_d40 1.0", "bbob-biobj_f18_i13_d02 1.0", "bbob-biobj_f18_i13_d03 1.0", "bbob-biobj_f18_i13_d05 1.0", "bbob-biobj_f18_i13_d10 1.0", "bbob-biobj_f18_i13_d20 1.0", "bbob-biobj_f18_i13_d40 1.0", "bbob-biobj_f18_i14_d02 1.0", "bbob-biobj_f18_i14_d03 1.0", "bbob-biobj_f18_i14_d05 1.0", "bbob-biobj_f18_i14_d10 1.0", "bbob-biobj_f18_i14_d20 1.0", "bbob-biobj_f18_i14_d40 1.0", "bbob-biobj_f18_i15_d02 1.0", "bbob-biobj_f18_i15_d03 1.0", "bbob-biobj_f18_i15_d05 1.0", "bbob-biobj_f18_i15_d10 1.0", "bbob-biobj_f18_i15_d20 1.0", "bbob-biobj_f18_i15_d40 1.0", "bbob-biobj_f19_i01_d02 0.865811770731921", "bbob-biobj_f19_i01_d03 0.973017247057512", "bbob-biobj_f19_i01_d05 0.992521544728759", "bbob-biobj_f19_i01_d10 0.992015676750431", "bbob-biobj_f19_i01_d20 0.985727207095561", "bbob-biobj_f19_i01_d40 0.968708111444335", "bbob-biobj_f19_i02_d02 0.920899455182180", "bbob-biobj_f19_i02_d03 0.986110943385011", "bbob-biobj_f19_i02_d05 0.989654348796015", "bbob-biobj_f19_i02_d10 0.998069566869596", "bbob-biobj_f19_i02_d20 0.971946796974695", "bbob-biobj_f19_i02_d40 0.950410504770783", "bbob-biobj_f19_i03_d02 0.904545299274402", "bbob-biobj_f19_i03_d03 0.957587365401640", "bbob-biobj_f19_i03_d05 0.982449904527118", "bbob-biobj_f19_i03_d10 0.991760867868237", "bbob-biobj_f19_i03_d20 0.993345216975816", "bbob-biobj_f19_i03_d40 0.963213924146087", "bbob-biobj_f19_i04_d02 0.999884821364810", "bbob-biobj_f19_i04_d03 0.996381011503881", "bbob-biobj_f19_i04_d05 0.992031985964079", "bbob-biobj_f19_i04_d10 0.992986860540315", "bbob-biobj_f19_i04_d20 0.976801738275965", "bbob-biobj_f19_i04_d40 0.972957229459967", "bbob-biobj_f19_i05_d02 0.997258709261627", "bbob-biobj_f19_i05_d03 0.959361859257914", "bbob-biobj_f19_i05_d05 0.993758691718374", "bbob-biobj_f19_i05_d10 0.992128970471116", "bbob-biobj_f19_i05_d20 0.984470434825430", "bbob-biobj_f19_i05_d40 0.939395739172570", "bbob-biobj_f19_i06_d02 0.955211504788045", "bbob-biobj_f19_i06_d03 0.991795027816023", "bbob-biobj_f19_i06_d05 0.995294664426083", "bbob-biobj_f19_i06_d10 0.993453063414076", "bbob-biobj_f19_i06_d20 0.988881226912081", "bbob-biobj_f19_i06_d40 0.930889367257548", "bbob-biobj_f19_i07_d02 0.916748358468225", "bbob-biobj_f19_i07_d03 0.976697911415346", "bbob-biobj_f19_i07_d05 0.998897439560711", "bbob-biobj_f19_i07_d10 0.985337158797574", "bbob-biobj_f19_i07_d20 0.984294297663750", "bbob-biobj_f19_i07_d40 0.977668769343021", "bbob-biobj_f19_i08_d02 0.954028862879188", "bbob-biobj_f19_i08_d03 0.958851958123935", "bbob-biobj_f19_i08_d05 0.981617688258936", "bbob-biobj_f19_i08_d10 0.991957920230594", "bbob-biobj_f19_i08_d20 0.993384581430229", "bbob-biobj_f19_i08_d40 0.931400004959781", "bbob-biobj_f19_i09_d02 0.949454854397529", "bbob-biobj_f19_i09_d03 0.968348328188755", "bbob-biobj_f19_i09_d05 0.957151920037808", "bbob-biobj_f19_i09_d10 0.990791529652153", "bbob-biobj_f19_i09_d20 0.981446422252370", "bbob-biobj_f19_i09_d40 0.961629256198723", "bbob-biobj_f19_i10_d02 0.946066683377767", "bbob-biobj_f19_i10_d03 0.980578550259608", "bbob-biobj_f19_i10_d05 0.999356136024621", "bbob-biobj_f19_i10_d10 0.988518494846568", "bbob-biobj_f19_i10_d20 0.988884026870925", "bbob-biobj_f19_i10_d40 0.896565501410778", "bbob-biobj_f19_i11_d02 1.0", "bbob-biobj_f19_i11_d03 1.0", "bbob-biobj_f19_i11_d05 1.0", "bbob-biobj_f19_i11_d10 1.0", "bbob-biobj_f19_i11_d20 1.0", "bbob-biobj_f19_i11_d40 1.0", "bbob-biobj_f19_i12_d02 1.0", "bbob-biobj_f19_i12_d03 1.0", "bbob-biobj_f19_i12_d05 1.0", "bbob-biobj_f19_i12_d10 1.0", "bbob-biobj_f19_i12_d20 1.0", "bbob-biobj_f19_i12_d40 1.0", "bbob-biobj_f19_i13_d02 1.0", "bbob-biobj_f19_i13_d03 1.0", "bbob-biobj_f19_i13_d05 1.0", "bbob-biobj_f19_i13_d10 1.0", "bbob-biobj_f19_i13_d20 1.0", "bbob-biobj_f19_i13_d40 1.0", "bbob-biobj_f19_i14_d02 1.0", "bbob-biobj_f19_i14_d03 1.0", "bbob-biobj_f19_i14_d05 1.0", "bbob-biobj_f19_i14_d10 1.0", "bbob-biobj_f19_i14_d20 1.0", "bbob-biobj_f19_i14_d40 1.0", "bbob-biobj_f19_i15_d02 1.0", "bbob-biobj_f19_i15_d03 1.0", "bbob-biobj_f19_i15_d05 1.0", "bbob-biobj_f19_i15_d10 1.0", "bbob-biobj_f19_i15_d20 1.0", "bbob-biobj_f19_i15_d40 1.0", "bbob-biobj_f20_i01_d02 0.995718026456638", "bbob-biobj_f20_i01_d03 0.813230762836442", "bbob-biobj_f20_i01_d05 0.967871002432375", "bbob-biobj_f20_i01_d10 0.999902739804120", "bbob-biobj_f20_i01_d20 0.999775497498613", "bbob-biobj_f20_i01_d40 0.999664116664435", "bbob-biobj_f20_i02_d02 0.910960748030164", "bbob-biobj_f20_i02_d03 0.974017477797567", "bbob-biobj_f20_i02_d05 0.814003461767120", "bbob-biobj_f20_i02_d10 0.999677569102844", "bbob-biobj_f20_i02_d20 0.999654004306429", "bbob-biobj_f20_i02_d40 0.999790560996347", "bbob-biobj_f20_i03_d02 0.985777930049723", "bbob-biobj_f20_i03_d03 0.999442800070996", "bbob-biobj_f20_i03_d05 0.892413297548470", "bbob-biobj_f20_i03_d10 0.972685717809694", "bbob-biobj_f20_i03_d20 0.999810203444123", "bbob-biobj_f20_i03_d40 0.997306868880074", "bbob-biobj_f20_i04_d02 0.890180220604319", "bbob-biobj_f20_i04_d03 0.925392845818037", "bbob-biobj_f20_i04_d05 0.999111564516406", "bbob-biobj_f20_i04_d10 0.999930995483195", "bbob-biobj_f20_i04_d20 0.999631609770450", "bbob-biobj_f20_i04_d40 0.999889174125538", "bbob-biobj_f20_i05_d02 0.980549386581144", "bbob-biobj_f20_i05_d03 0.963675021169463", "bbob-biobj_f20_i05_d05 0.946995300479762", "bbob-biobj_f20_i05_d10 0.999846864012334", "bbob-biobj_f20_i05_d20 0.958608264570341", "bbob-biobj_f20_i05_d40 0.999836960921451", "bbob-biobj_f20_i06_d02 0.869043334279351", "bbob-biobj_f20_i06_d03 0.999660960854221", "bbob-biobj_f20_i06_d05 0.888668538214566", "bbob-biobj_f20_i06_d10 0.921065924714680", "bbob-biobj_f20_i06_d20 0.999867187743562", "bbob-biobj_f20_i06_d40 0.999694714553354", "bbob-biobj_f20_i07_d02 0.951115687828409", "bbob-biobj_f20_i07_d03 0.864351550293221", "bbob-biobj_f20_i07_d05 0.999632572524201", "bbob-biobj_f20_i07_d10 0.972934973625756", "bbob-biobj_f20_i07_d20 0.982969587225086", "bbob-biobj_f20_i07_d40 0.999588862627488", "bbob-biobj_f20_i08_d02 0.840742965786629", "bbob-biobj_f20_i08_d03 0.849646747099705", "bbob-biobj_f20_i08_d05 0.994543846130131", "bbob-biobj_f20_i08_d10 0.999724942401950", "bbob-biobj_f20_i08_d20 0.999806100292651", "bbob-biobj_f20_i08_d40 0.999263843535335", "bbob-biobj_f20_i09_d02 0.998339920553951", "bbob-biobj_f20_i09_d03 0.999067290809170", "bbob-biobj_f20_i09_d05 0.963580072588558", "bbob-biobj_f20_i09_d10 0.999433695629111", "bbob-biobj_f20_i09_d20 0.999767702792318", "bbob-biobj_f20_i09_d40 0.999829335473340", "bbob-biobj_f20_i10_d02 0.994832672081393", "bbob-biobj_f20_i10_d03 0.945569229589977", "bbob-biobj_f20_i10_d05 0.859870669342559", "bbob-biobj_f20_i10_d10 0.999803407505220", "bbob-biobj_f20_i10_d20 0.999323836369105", "bbob-biobj_f20_i10_d40 0.998019183408066", "bbob-biobj_f20_i11_d02 1.0", "bbob-biobj_f20_i11_d03 1.0", "bbob-biobj_f20_i11_d05 1.0", "bbob-biobj_f20_i11_d10 1.0", "bbob-biobj_f20_i11_d20 1.0", "bbob-biobj_f20_i11_d40 1.0", "bbob-biobj_f20_i12_d02 1.0", "bbob-biobj_f20_i12_d03 1.0", "bbob-biobj_f20_i12_d05 1.0", "bbob-biobj_f20_i12_d10 1.0", "bbob-biobj_f20_i12_d20 1.0", "bbob-biobj_f20_i12_d40 1.0", "bbob-biobj_f20_i13_d02 1.0", "bbob-biobj_f20_i13_d03 1.0", "bbob-biobj_f20_i13_d05 1.0", "bbob-biobj_f20_i13_d10 1.0", "bbob-biobj_f20_i13_d20 1.0", "bbob-biobj_f20_i13_d40 1.0", "bbob-biobj_f20_i14_d02 1.0", "bbob-biobj_f20_i14_d03 1.0", "bbob-biobj_f20_i14_d05 1.0", "bbob-biobj_f20_i14_d10 1.0", "bbob-biobj_f20_i14_d20 1.0", "bbob-biobj_f20_i14_d40 1.0", "bbob-biobj_f20_i15_d02 1.0", "bbob-biobj_f20_i15_d03 1.0", "bbob-biobj_f20_i15_d05 1.0", "bbob-biobj_f20_i15_d10 1.0", "bbob-biobj_f20_i15_d20 1.0", "bbob-biobj_f20_i15_d40 1.0", "bbob-biobj_f21_i01_d02 0.999736618189728", "bbob-biobj_f21_i01_d03 0.911543728863680", "bbob-biobj_f21_i01_d05 0.912545592283940", "bbob-biobj_f21_i01_d10 0.993980399482700", "bbob-biobj_f21_i01_d20 0.981413338740226", "bbob-biobj_f21_i01_d40 0.983728574746616", "bbob-biobj_f21_i02_d02 0.985471502176322", "bbob-biobj_f21_i02_d03 0.980784705794501", "bbob-biobj_f21_i02_d05 0.998160647068493", "bbob-biobj_f21_i02_d10 0.997301495041459", "bbob-biobj_f21_i02_d20 0.993496201263574", "bbob-biobj_f21_i02_d40 0.996307110176717", "bbob-biobj_f21_i03_d02 0.973889905170571", "bbob-biobj_f21_i03_d03 0.968954320323192", "bbob-biobj_f21_i03_d05 0.929908020902274", "bbob-biobj_f21_i03_d10 0.998453798823771", "bbob-biobj_f21_i03_d20 0.993066368397647", "bbob-biobj_f21_i03_d40 0.995963598347175", "bbob-biobj_f21_i04_d02 0.999788754145244", "bbob-biobj_f21_i04_d03 0.954074968597077", "bbob-biobj_f21_i04_d05 0.928306129173680", "bbob-biobj_f21_i04_d10 0.904334442460224", "bbob-biobj_f21_i04_d20 0.996041198064085", "bbob-biobj_f21_i04_d40 0.968559650834793", "bbob-biobj_f21_i05_d02 0.890725681076297", "bbob-biobj_f21_i05_d03 0.999573377249035", "bbob-biobj_f21_i05_d05 0.997872881727144", "bbob-biobj_f21_i05_d10 0.958085510372521", "bbob-biobj_f21_i05_d20 0.982091917659635", "bbob-biobj_f21_i05_d40 0.985788879474571", "bbob-biobj_f21_i06_d02 0.998906461755895", "bbob-biobj_f21_i06_d03 0.898698179313327", "bbob-biobj_f21_i06_d05 0.999922910143998", "bbob-biobj_f21_i06_d10 0.993121495443903", "bbob-biobj_f21_i06_d20 0.995678603147139", "bbob-biobj_f21_i06_d40 0.990854319668004", "bbob-biobj_f21_i07_d02 0.862088180810070", "bbob-biobj_f21_i07_d03 0.994766867282409", "bbob-biobj_f21_i07_d05 0.999835182167843", "bbob-biobj_f21_i07_d10 0.997671966993714", "bbob-biobj_f21_i07_d20 0.953953966750356", "bbob-biobj_f21_i07_d40 0.978273920139613", "bbob-biobj_f21_i08_d02 0.986058931076662", "bbob-biobj_f21_i08_d03 0.999631463214444", "bbob-biobj_f21_i08_d05 0.942384927863932", "bbob-biobj_f21_i08_d10 0.996932728163747", "bbob-biobj_f21_i08_d20 0.988146384617908", "bbob-biobj_f21_i08_d40 0.998385840941191", "bbob-biobj_f21_i09_d02 0.972494611963315", "bbob-biobj_f21_i09_d03 0.998500373745383", "bbob-biobj_f21_i09_d05 0.998994382749117", "bbob-biobj_f21_i09_d10 0.981106741445144", "bbob-biobj_f21_i09_d20 0.981978280713147", "bbob-biobj_f21_i09_d40 0.989400835138566", "bbob-biobj_f21_i10_d02 0.940893377121817", "bbob-biobj_f21_i10_d03 0.949363879049512", "bbob-biobj_f21_i10_d05 0.979604346471867", "bbob-biobj_f21_i10_d10 0.977275303898697", "bbob-biobj_f21_i10_d20 0.972982656541522", "bbob-biobj_f21_i10_d40 0.997081448699098", "bbob-biobj_f21_i11_d02 1.0", "bbob-biobj_f21_i11_d03 1.0", "bbob-biobj_f21_i11_d05 1.0", "bbob-biobj_f21_i11_d10 1.0", "bbob-biobj_f21_i11_d20 1.0", "bbob-biobj_f21_i11_d40 1.0", "bbob-biobj_f21_i12_d02 1.0", "bbob-biobj_f21_i12_d03 1.0", "bbob-biobj_f21_i12_d05 1.0", "bbob-biobj_f21_i12_d10 1.0", "bbob-biobj_f21_i12_d20 1.0", "bbob-biobj_f21_i12_d40 1.0", "bbob-biobj_f21_i13_d02 1.0", "bbob-biobj_f21_i13_d03 1.0", "bbob-biobj_f21_i13_d05 1.0", "bbob-biobj_f21_i13_d10 1.0", "bbob-biobj_f21_i13_d20 1.0", "bbob-biobj_f21_i13_d40 1.0", "bbob-biobj_f21_i14_d02 1.0", "bbob-biobj_f21_i14_d03 1.0", "bbob-biobj_f21_i14_d05 1.0", "bbob-biobj_f21_i14_d10 1.0", "bbob-biobj_f21_i14_d20 1.0", "bbob-biobj_f21_i14_d40 1.0", "bbob-biobj_f21_i15_d02 1.0", "bbob-biobj_f21_i15_d03 1.0", "bbob-biobj_f21_i15_d05 1.0", "bbob-biobj_f21_i15_d10 1.0", "bbob-biobj_f21_i15_d20 1.0", "bbob-biobj_f21_i15_d40 1.0", "bbob-biobj_f22_i01_d02 0.700916438458949", "bbob-biobj_f22_i01_d03 0.694484080130242", "bbob-biobj_f22_i01_d05 0.986978393520645", "bbob-biobj_f22_i01_d10 0.837909044739840", "bbob-biobj_f22_i01_d20 0.771234269693943", "bbob-biobj_f22_i01_d40 0.795805716891725", "bbob-biobj_f22_i02_d02 0.999055968888817", "bbob-biobj_f22_i02_d03 0.742603415635723", "bbob-biobj_f22_i02_d05 0.764278616146223", "bbob-biobj_f22_i02_d10 0.728760863755530", "bbob-biobj_f22_i02_d20 0.756692138841068", "bbob-biobj_f22_i02_d40 0.854998423517715", "bbob-biobj_f22_i03_d02 0.678523358470699", "bbob-biobj_f22_i03_d03 0.951238744037570", "bbob-biobj_f22_i03_d05 0.735426416509445", "bbob-biobj_f22_i03_d10 0.862594276552713", "bbob-biobj_f22_i03_d20 0.863135740546530", "bbob-biobj_f22_i03_d40 0.775341469507760", "bbob-biobj_f22_i04_d02 0.846367984738874", "bbob-biobj_f22_i04_d03 0.803806833320501", "bbob-biobj_f22_i04_d05 0.834646162414875", "bbob-biobj_f22_i04_d10 0.842317802659711", "bbob-biobj_f22_i04_d20 0.915887707245297", "bbob-biobj_f22_i04_d40 0.805194046957110", "bbob-biobj_f22_i05_d02 0.856039950461191", "bbob-biobj_f22_i05_d03 0.929859265278102", "bbob-biobj_f22_i05_d05 0.892887709868479", "bbob-biobj_f22_i05_d10 0.819642006415066", "bbob-biobj_f22_i05_d20 0.789452742291418", "bbob-biobj_f22_i05_d40 0.764365637153030", "bbob-biobj_f22_i06_d02 0.977995690715274", "bbob-biobj_f22_i06_d03 0.724548962936434", "bbob-biobj_f22_i06_d05 0.812081047098926", "bbob-biobj_f22_i06_d10 0.861080402018885", "bbob-biobj_f22_i06_d20 0.761773450745187", "bbob-biobj_f22_i06_d40 0.890819565561763", "bbob-biobj_f22_i07_d02 0.910044699639924", "bbob-biobj_f22_i07_d03 0.691497046586329", "bbob-biobj_f22_i07_d05 0.722689208326945", "bbob-biobj_f22_i07_d10 0.786295128946995", "bbob-biobj_f22_i07_d20 0.763717376257625", "bbob-biobj_f22_i07_d40 0.771665444522524", "bbob-biobj_f22_i08_d02 0.906996575764602", "bbob-biobj_f22_i08_d03 0.835949129023862", "bbob-biobj_f22_i08_d05 0.772262918155847", "bbob-biobj_f22_i08_d10 0.940087182487452", "bbob-biobj_f22_i08_d20 0.769339400709221", "bbob-biobj_f22_i08_d40 0.784553862839583", "bbob-biobj_f22_i09_d02 0.968992795251485", "bbob-biobj_f22_i09_d03 0.916981949396889", "bbob-biobj_f22_i09_d05 0.950507879748341", "bbob-biobj_f22_i09_d10 0.899124450109738", "bbob-biobj_f22_i09_d20 0.812683075569951", "bbob-biobj_f22_i09_d40 0.825849882521296", "bbob-biobj_f22_i10_d02 0.928391619677447", "bbob-biobj_f22_i10_d03 0.652494766185522", "bbob-biobj_f22_i10_d05 0.761558277329775", "bbob-biobj_f22_i10_d10 0.743060120366039", "bbob-biobj_f22_i10_d20 0.700275027790970", "bbob-biobj_f22_i10_d40 0.822934283135951", "bbob-biobj_f22_i11_d02 1.0", "bbob-biobj_f22_i11_d03 1.0", "bbob-biobj_f22_i11_d05 1.0", "bbob-biobj_f22_i11_d10 1.0", "bbob-biobj_f22_i11_d20 1.0", "bbob-biobj_f22_i11_d40 1.0", "bbob-biobj_f22_i12_d02 1.0", "bbob-biobj_f22_i12_d03 1.0", "bbob-biobj_f22_i12_d05 1.0", "bbob-biobj_f22_i12_d10 1.0", "bbob-biobj_f22_i12_d20 1.0", "bbob-biobj_f22_i12_d40 1.0", "bbob-biobj_f22_i13_d02 1.0", "bbob-biobj_f22_i13_d03 1.0", "bbob-biobj_f22_i13_d05 1.0", "bbob-biobj_f22_i13_d10 1.0", "bbob-biobj_f22_i13_d20 1.0", "bbob-biobj_f22_i13_d40 1.0", "bbob-biobj_f22_i14_d02 1.0", "bbob-biobj_f22_i14_d03 1.0", "bbob-biobj_f22_i14_d05 1.0", "bbob-biobj_f22_i14_d10 1.0", "bbob-biobj_f22_i14_d20 1.0", "bbob-biobj_f22_i14_d40 1.0", "bbob-biobj_f22_i15_d02 1.0", "bbob-biobj_f22_i15_d03 1.0", "bbob-biobj_f22_i15_d05 1.0", "bbob-biobj_f22_i15_d10 1.0", "bbob-biobj_f22_i15_d20 1.0", "bbob-biobj_f22_i15_d40 1.0", "bbob-biobj_f23_i01_d02 0.992534054268812", "bbob-biobj_f23_i01_d03 0.872237030138405", "bbob-biobj_f23_i01_d05 0.980182962061889", "bbob-biobj_f23_i01_d10 0.991308488908461", "bbob-biobj_f23_i01_d20 0.941127578039942", "bbob-biobj_f23_i01_d40 0.969136640388886", "bbob-biobj_f23_i02_d02 0.996445292624505", "bbob-biobj_f23_i02_d03 0.862095706452471", "bbob-biobj_f23_i02_d05 0.919722216097581", "bbob-biobj_f23_i02_d10 0.957106291743395", "bbob-biobj_f23_i02_d20 0.916213075021448", "bbob-biobj_f23_i02_d40 0.976239423933783", "bbob-biobj_f23_i03_d02 0.928112249455155", "bbob-biobj_f23_i03_d03 0.880344320238549", "bbob-biobj_f23_i03_d05 0.894403398636602", "bbob-biobj_f23_i03_d10 0.985390261740675", "bbob-biobj_f23_i03_d20 0.969070196929476", "bbob-biobj_f23_i03_d40 0.978589794415086", "bbob-biobj_f23_i04_d02 0.965419264936455", "bbob-biobj_f23_i04_d03 0.925757047133570", "bbob-biobj_f23_i04_d05 0.887977988719971", "bbob-biobj_f23_i04_d10 0.980016070326204", "bbob-biobj_f23_i04_d20 0.983100676088016", "bbob-biobj_f23_i04_d40 0.970816589257367", "bbob-biobj_f23_i05_d02 0.738909732737773", "bbob-biobj_f23_i05_d03 0.840966518574642", "bbob-biobj_f23_i05_d05 0.891343027607885", "bbob-biobj_f23_i05_d10 0.954458858293685", "bbob-biobj_f23_i05_d20 0.958522644454065", "bbob-biobj_f23_i05_d40 0.952036620183425", "bbob-biobj_f23_i06_d02 0.897625000364078", "bbob-biobj_f23_i06_d03 0.850455709554025", "bbob-biobj_f23_i06_d05 0.902953778767981", "bbob-biobj_f23_i06_d10 0.953871508298359", "bbob-biobj_f23_i06_d20 0.961806271708952", "bbob-biobj_f23_i06_d40 0.973529155239116", "bbob-biobj_f23_i07_d02 0.911732420138085", "bbob-biobj_f23_i07_d03 0.945122055110574", "bbob-biobj_f23_i07_d05 0.984532827314458", "bbob-biobj_f23_i07_d10 0.892809064107139", "bbob-biobj_f23_i07_d20 0.885739321899932", "bbob-biobj_f23_i07_d40 0.957880351545702", "bbob-biobj_f23_i08_d02 0.980413763708752", "bbob-biobj_f23_i08_d03 0.940189636105499", "bbob-biobj_f23_i08_d05 0.912738863710758", "bbob-biobj_f23_i08_d10 0.957188314008682", "bbob-biobj_f23_i08_d20 0.968134176347444", "bbob-biobj_f23_i08_d40 0.974280055391648", "bbob-biobj_f23_i09_d02 0.965467065790784", "bbob-biobj_f23_i09_d03 0.949242147095511", "bbob-biobj_f23_i09_d05 0.975255259508653", "bbob-biobj_f23_i09_d10 0.957152835866277", "bbob-biobj_f23_i09_d20 0.930236450073095", "bbob-biobj_f23_i09_d40 0.972137109059265", "bbob-biobj_f23_i10_d02 0.965992184639191", "bbob-biobj_f23_i10_d03 0.935204676725171", "bbob-biobj_f23_i10_d05 0.842935224036951", "bbob-biobj_f23_i10_d10 0.926191647516182", "bbob-biobj_f23_i10_d20 0.896701726989031", "bbob-biobj_f23_i10_d40 0.969163906891611", "bbob-biobj_f23_i11_d02 1.0", "bbob-biobj_f23_i11_d03 1.0", "bbob-biobj_f23_i11_d05 1.0", "bbob-biobj_f23_i11_d10 1.0", "bbob-biobj_f23_i11_d20 1.0", "bbob-biobj_f23_i11_d40 1.0", "bbob-biobj_f23_i12_d02 1.0", "bbob-biobj_f23_i12_d03 1.0", "bbob-biobj_f23_i12_d05 1.0", "bbob-biobj_f23_i12_d10 1.0", "bbob-biobj_f23_i12_d20 1.0", "bbob-biobj_f23_i12_d40 1.0", "bbob-biobj_f23_i13_d02 1.0", "bbob-biobj_f23_i13_d03 1.0", "bbob-biobj_f23_i13_d05 1.0", "bbob-biobj_f23_i13_d10 1.0", "bbob-biobj_f23_i13_d20 1.0", "bbob-biobj_f23_i13_d40 1.0", "bbob-biobj_f23_i14_d02 1.0", "bbob-biobj_f23_i14_d03 1.0", "bbob-biobj_f23_i14_d05 1.0", "bbob-biobj_f23_i14_d10 1.0", "bbob-biobj_f23_i14_d20 1.0", "bbob-biobj_f23_i14_d40 1.0", "bbob-biobj_f23_i15_d02 1.0", "bbob-biobj_f23_i15_d03 1.0", "bbob-biobj_f23_i15_d05 1.0", "bbob-biobj_f23_i15_d10 1.0", "bbob-biobj_f23_i15_d20 1.0", "bbob-biobj_f23_i15_d40 1.0", "bbob-biobj_f24_i01_d02 0.886263607678189", "bbob-biobj_f24_i01_d03 0.987114738235866", "bbob-biobj_f24_i01_d05 0.869900434826347", "bbob-biobj_f24_i01_d10 0.954785088308314", "bbob-biobj_f24_i01_d20 0.943800367180536", "bbob-biobj_f24_i01_d40 0.949986153251480", "bbob-biobj_f24_i02_d02 0.988139648340057", "bbob-biobj_f24_i02_d03 0.906308249603081", "bbob-biobj_f24_i02_d05 0.948010371784443", "bbob-biobj_f24_i02_d10 0.897865958220916", "bbob-biobj_f24_i02_d20 0.987059232687201", "bbob-biobj_f24_i02_d40 0.968007269361948", "bbob-biobj_f24_i03_d02 0.952811649213530", "bbob-biobj_f24_i03_d03 0.855068095684849", "bbob-biobj_f24_i03_d05 0.935534198962083", "bbob-biobj_f24_i03_d10 0.911447630079168", "bbob-biobj_f24_i03_d20 0.982501571019476", "bbob-biobj_f24_i03_d40 0.932892937400739", "bbob-biobj_f24_i04_d02 0.953732580833603", "bbob-biobj_f24_i04_d03 0.931783237315413", "bbob-biobj_f24_i04_d05 0.881151127927997", "bbob-biobj_f24_i04_d10 0.968856602598105", "bbob-biobj_f24_i04_d20 0.950459841911081", "bbob-biobj_f24_i04_d40 0.944023946290275", "bbob-biobj_f24_i05_d02 0.823877137496916", "bbob-biobj_f24_i05_d03 0.892824055307102", "bbob-biobj_f24_i05_d05 0.958081666884363", "bbob-biobj_f24_i05_d10 0.939871414605463", "bbob-biobj_f24_i05_d20 0.927432042163679", "bbob-biobj_f24_i05_d40 0.949016725327886", "bbob-biobj_f24_i06_d02 0.961551593219125", "bbob-biobj_f24_i06_d03 0.993394862477095", "bbob-biobj_f24_i06_d05 0.874370681463446", "bbob-biobj_f24_i06_d10 0.955515530362279", "bbob-biobj_f24_i06_d20 0.969428910758238", "bbob-biobj_f24_i06_d40 0.966430959788954", "bbob-biobj_f24_i07_d02 0.881087719966057", "bbob-biobj_f24_i07_d03 0.927025246802620", "bbob-biobj_f24_i07_d05 0.953592183500972", "bbob-biobj_f24_i07_d10 0.930995458287158", "bbob-biobj_f24_i07_d20 0.937478402473053", "bbob-biobj_f24_i07_d40 0.925844990010482", "bbob-biobj_f24_i08_d02 0.746749823443233", "bbob-biobj_f24_i08_d03 0.975106631219541", "bbob-biobj_f24_i08_d05 0.910590009382779", "bbob-biobj_f24_i08_d10 0.976367018095116", "bbob-biobj_f24_i08_d20 0.910905968470937", "bbob-biobj_f24_i08_d40 0.903930930125308", "bbob-biobj_f24_i09_d02 0.941309282349682", "bbob-biobj_f24_i09_d03 0.997025018274453", "bbob-biobj_f24_i09_d05 0.972035209899614", "bbob-biobj_f24_i09_d10 0.910417850467829", "bbob-biobj_f24_i09_d20 0.942610674256181", "bbob-biobj_f24_i09_d40 0.900887613079224", "bbob-biobj_f24_i10_d02 0.929447945801003", "bbob-biobj_f24_i10_d03 0.995092437929069", "bbob-biobj_f24_i10_d05 0.877392585145231", "bbob-biobj_f24_i10_d10 0.948433552062243", "bbob-biobj_f24_i10_d20 0.958192162368286", "bbob-biobj_f24_i10_d40 0.929477278156345", "bbob-biobj_f24_i11_d02 1.0", "bbob-biobj_f24_i11_d03 1.0", "bbob-biobj_f24_i11_d05 1.0", "bbob-biobj_f24_i11_d10 1.0", "bbob-biobj_f24_i11_d20 1.0", "bbob-biobj_f24_i11_d40 1.0", "bbob-biobj_f24_i12_d02 1.0", "bbob-biobj_f24_i12_d03 1.0", "bbob-biobj_f24_i12_d05 1.0", "bbob-biobj_f24_i12_d10 1.0", "bbob-biobj_f24_i12_d20 1.0", "bbob-biobj_f24_i12_d40 1.0", "bbob-biobj_f24_i13_d02 1.0", "bbob-biobj_f24_i13_d03 1.0", "bbob-biobj_f24_i13_d05 1.0", "bbob-biobj_f24_i13_d10 1.0", "bbob-biobj_f24_i13_d20 1.0", "bbob-biobj_f24_i13_d40 1.0", "bbob-biobj_f24_i14_d02 1.0", "bbob-biobj_f24_i14_d03 1.0", "bbob-biobj_f24_i14_d05 1.0", "bbob-biobj_f24_i14_d10 1.0", "bbob-biobj_f24_i14_d20 1.0", "bbob-biobj_f24_i14_d40 1.0", "bbob-biobj_f24_i15_d02 1.0", "bbob-biobj_f24_i15_d03 1.0", "bbob-biobj_f24_i15_d05 1.0", "bbob-biobj_f24_i15_d10 1.0", "bbob-biobj_f24_i15_d20 1.0", "bbob-biobj_f24_i15_d40 1.0", "bbob-biobj_f25_i01_d02 0.890543038798975", "bbob-biobj_f25_i01_d03 0.996743415999830", "bbob-biobj_f25_i01_d05 0.993207593187196", "bbob-biobj_f25_i01_d10 0.986814215720081", "bbob-biobj_f25_i01_d20 0.980467784715618", "bbob-biobj_f25_i01_d40 0.965373602633378", "bbob-biobj_f25_i02_d02 0.944370927074528", "bbob-biobj_f25_i02_d03 0.961712928294577", "bbob-biobj_f25_i02_d05 0.983975393346627", "bbob-biobj_f25_i02_d10 0.972675484610256", "bbob-biobj_f25_i02_d20 0.937188891611961", "bbob-biobj_f25_i02_d40 0.980258323163874", "bbob-biobj_f25_i03_d02 0.978560043300318", "bbob-biobj_f25_i03_d03 0.957789042519712", "bbob-biobj_f25_i03_d05 0.970084792278332", "bbob-biobj_f25_i03_d10 0.988227800329668", "bbob-biobj_f25_i03_d20 0.986540713045901", "bbob-biobj_f25_i03_d40 0.966498227782967", "bbob-biobj_f25_i04_d02 0.827380671367650", "bbob-biobj_f25_i04_d03 0.985284603938040", "bbob-biobj_f25_i04_d05 0.992678058338896", "bbob-biobj_f25_i04_d10 0.972909138535233", "bbob-biobj_f25_i04_d20 0.992295634647113", "bbob-biobj_f25_i04_d40 0.955202373496471", "bbob-biobj_f25_i05_d02 0.903625214843076", "bbob-biobj_f25_i05_d03 0.987244839347358", "bbob-biobj_f25_i05_d05 0.938620430685910", "bbob-biobj_f25_i05_d10 0.957995840802201", "bbob-biobj_f25_i05_d20 0.961012519647219", "bbob-biobj_f25_i05_d40 0.936720256813014", "bbob-biobj_f25_i06_d02 0.953597929830999", "bbob-biobj_f25_i06_d03 0.973854013837476", "bbob-biobj_f25_i06_d05 0.795906462798231", "bbob-biobj_f25_i06_d10 0.962497101024527", "bbob-biobj_f25_i06_d20 0.996988957184134", "bbob-biobj_f25_i06_d40 0.889472473043087", "bbob-biobj_f25_i07_d02 0.723624129010671", "bbob-biobj_f25_i07_d03 0.964012619854987", "bbob-biobj_f25_i07_d05 0.909500148998780", "bbob-biobj_f25_i07_d10 0.993126174158272", "bbob-biobj_f25_i07_d20 0.996350558340747", "bbob-biobj_f25_i07_d40 0.958555839241515", "bbob-biobj_f25_i08_d02 0.877837312082041", "bbob-biobj_f25_i08_d03 0.873300181393398", "bbob-biobj_f25_i08_d05 0.991399141885842", "bbob-biobj_f25_i08_d10 0.965310117151957", "bbob-biobj_f25_i08_d20 0.996417564685983", "bbob-biobj_f25_i08_d40 0.954034666543565", "bbob-biobj_f25_i09_d02 0.865140328123062", "bbob-biobj_f25_i09_d03 0.995947820347842", "bbob-biobj_f25_i09_d05 0.964898722604236", "bbob-biobj_f25_i09_d10 0.972570074149609", "bbob-biobj_f25_i09_d20 0.946782160081355", "bbob-biobj_f25_i09_d40 0.917252796575144", "bbob-biobj_f25_i10_d02 0.885990743877604", "bbob-biobj_f25_i10_d03 0.983929386161724", "bbob-biobj_f25_i10_d05 0.942512487443841", "bbob-biobj_f25_i10_d10 0.998291464917026", "bbob-biobj_f25_i10_d20 0.971696871369013", "bbob-biobj_f25_i10_d40 0.951976806873060", "bbob-biobj_f25_i11_d02 1.0", "bbob-biobj_f25_i11_d03 1.0", "bbob-biobj_f25_i11_d05 1.0", "bbob-biobj_f25_i11_d10 1.0", "bbob-biobj_f25_i11_d20 1.0", "bbob-biobj_f25_i11_d40 1.0", "bbob-biobj_f25_i12_d02 1.0", "bbob-biobj_f25_i12_d03 1.0", "bbob-biobj_f25_i12_d05 1.0", "bbob-biobj_f25_i12_d10 1.0", "bbob-biobj_f25_i12_d20 1.0", "bbob-biobj_f25_i12_d40 1.0", "bbob-biobj_f25_i13_d02 1.0", "bbob-biobj_f25_i13_d03 1.0", "bbob-biobj_f25_i13_d05 1.0", "bbob-biobj_f25_i13_d10 1.0", "bbob-biobj_f25_i13_d20 1.0", "bbob-biobj_f25_i13_d40 1.0", "bbob-biobj_f25_i14_d02 1.0", "bbob-biobj_f25_i14_d03 1.0", "bbob-biobj_f25_i14_d05 1.0", "bbob-biobj_f25_i14_d10 1.0", "bbob-biobj_f25_i14_d20 1.0", "bbob-biobj_f25_i14_d40 1.0", "bbob-biobj_f25_i15_d02 1.0", "bbob-biobj_f25_i15_d03 1.0", "bbob-biobj_f25_i15_d05 1.0", "bbob-biobj_f25_i15_d10 1.0", "bbob-biobj_f25_i15_d20 1.0", "bbob-biobj_f25_i15_d40 1.0", "bbob-biobj_f26_i01_d02 0.978921982681011", "bbob-biobj_f26_i01_d03 0.999860007752057", "bbob-biobj_f26_i01_d05 0.949035194489816", "bbob-biobj_f26_i01_d10 0.999623861039334", "bbob-biobj_f26_i01_d20 0.999902274088330", "bbob-biobj_f26_i01_d40 0.999593261593257", "bbob-biobj_f26_i02_d02 0.994494713596938", "bbob-biobj_f26_i02_d03 0.988829353431115", "bbob-biobj_f26_i02_d05 0.979222106784557", "bbob-biobj_f26_i02_d10 0.999635351294537", "bbob-biobj_f26_i02_d20 0.996348467425628", "bbob-biobj_f26_i02_d40 0.997476701245914", "bbob-biobj_f26_i03_d02 0.999888275992974", "bbob-biobj_f26_i03_d03 0.996486879482429", "bbob-biobj_f26_i03_d05 0.984010781647230", "bbob-biobj_f26_i03_d10 0.997283808894049", "bbob-biobj_f26_i03_d20 0.999942747534485", "bbob-biobj_f26_i03_d40 0.999675454511395", "bbob-biobj_f26_i04_d02 0.929919263339422", "bbob-biobj_f26_i04_d03 0.996886251406220", "bbob-biobj_f26_i04_d05 0.965393641764490", "bbob-biobj_f26_i04_d10 0.999902015865428", "bbob-biobj_f26_i04_d20 0.999910685806054", "bbob-biobj_f26_i04_d40 0.992570055689473", "bbob-biobj_f26_i05_d02 0.732359031442187", "bbob-biobj_f26_i05_d03 0.919257197619109", "bbob-biobj_f26_i05_d05 0.999565024330862", "bbob-biobj_f26_i05_d10 0.998146858129032", "bbob-biobj_f26_i05_d20 0.994309396955916", "bbob-biobj_f26_i05_d40 0.995553407285418", "bbob-biobj_f26_i06_d02 0.998259269935287", "bbob-biobj_f26_i06_d03 0.999730545891778", "bbob-biobj_f26_i06_d05 0.999950884709179", "bbob-biobj_f26_i06_d10 0.999961381926083", "bbob-biobj_f26_i06_d20 0.996029693542029", "bbob-biobj_f26_i06_d40 0.999915832962006", "bbob-biobj_f26_i07_d02 0.958138168639729", "bbob-biobj_f26_i07_d03 0.982256290624622", "bbob-biobj_f26_i07_d05 0.999648489126283", "bbob-biobj_f26_i07_d10 0.997384707121421", "bbob-biobj_f26_i07_d20 0.970139253020355", "bbob-biobj_f26_i07_d40 0.988318689116821", "bbob-biobj_f26_i08_d02 0.893980110702659", "bbob-biobj_f26_i08_d03 0.904151590886388", "bbob-biobj_f26_i08_d05 0.993795024317420", "bbob-biobj_f26_i08_d10 0.995847245270051", "bbob-biobj_f26_i08_d20 0.999614815433601", "bbob-biobj_f26_i08_d40 0.999580757097517", "bbob-biobj_f26_i09_d02 0.928186501872019", "bbob-biobj_f26_i09_d03 0.948229931197733", "bbob-biobj_f26_i09_d05 0.999708624389292", "bbob-biobj_f26_i09_d10 0.976182017061119", "bbob-biobj_f26_i09_d20 0.991850094961123", "bbob-biobj_f26_i09_d40 0.999529662180170", "bbob-biobj_f26_i10_d02 0.975780733014457", "bbob-biobj_f26_i10_d03 0.792423375244880", "bbob-biobj_f26_i10_d05 0.994495887173813", "bbob-biobj_f26_i10_d10 0.999418944318252", "bbob-biobj_f26_i10_d20 0.986079733726734", "bbob-biobj_f26_i10_d40 0.999900773346504", "bbob-biobj_f26_i11_d02 1.0", "bbob-biobj_f26_i11_d03 1.0", "bbob-biobj_f26_i11_d05 1.0", "bbob-biobj_f26_i11_d10 1.0", "bbob-biobj_f26_i11_d20 1.0", "bbob-biobj_f26_i11_d40 1.0", "bbob-biobj_f26_i12_d02 1.0", "bbob-biobj_f26_i12_d03 1.0", "bbob-biobj_f26_i12_d05 1.0", "bbob-biobj_f26_i12_d10 1.0", "bbob-biobj_f26_i12_d20 1.0", "bbob-biobj_f26_i12_d40 1.0", "bbob-biobj_f26_i13_d02 1.0", "bbob-biobj_f26_i13_d03 1.0", "bbob-biobj_f26_i13_d05 1.0", "bbob-biobj_f26_i13_d10 1.0", "bbob-biobj_f26_i13_d20 1.0", "bbob-biobj_f26_i13_d40 1.0", "bbob-biobj_f26_i14_d02 1.0", "bbob-biobj_f26_i14_d03 1.0", "bbob-biobj_f26_i14_d05 1.0", "bbob-biobj_f26_i14_d10 1.0", "bbob-biobj_f26_i14_d20 1.0", "bbob-biobj_f26_i14_d40 1.0", "bbob-biobj_f26_i15_d02 1.0", "bbob-biobj_f26_i15_d03 1.0", "bbob-biobj_f26_i15_d05 1.0", "bbob-biobj_f26_i15_d10 1.0", "bbob-biobj_f26_i15_d20 1.0", "bbob-biobj_f26_i15_d40 1.0", "bbob-biobj_f27_i01_d02 0.903502360859576", "bbob-biobj_f27_i01_d03 0.987126659857804", "bbob-biobj_f27_i01_d05 0.992204039648331", "bbob-biobj_f27_i01_d10 0.981633765867045", "bbob-biobj_f27_i01_d20 0.977456099993406", "bbob-biobj_f27_i01_d40 0.933361039015257", "bbob-biobj_f27_i02_d02 0.951959020655848", "bbob-biobj_f27_i02_d03 0.953826363356710", "bbob-biobj_f27_i02_d05 0.932663039854700", "bbob-biobj_f27_i02_d10 0.903607612085008", "bbob-biobj_f27_i02_d20 0.966846358922970", "bbob-biobj_f27_i02_d40 0.895128052744702", "bbob-biobj_f27_i03_d02 0.957759418302702", "bbob-biobj_f27_i03_d03 0.964059704651274", "bbob-biobj_f27_i03_d05 0.978491185290137", "bbob-biobj_f27_i03_d10 0.991362976843701", "bbob-biobj_f27_i03_d20 0.966360698252087", "bbob-biobj_f27_i03_d40 0.922382792737987", "bbob-biobj_f27_i04_d02 0.960857862516853", "bbob-biobj_f27_i04_d03 0.952867716096942", "bbob-biobj_f27_i04_d05 0.981450553799186", "bbob-biobj_f27_i04_d10 0.987221945469656", "bbob-biobj_f27_i04_d20 0.978986516494064", "bbob-biobj_f27_i04_d40 0.877932504329183", "bbob-biobj_f27_i05_d02 0.930274907344689", "bbob-biobj_f27_i05_d03 0.960952865988819", "bbob-biobj_f27_i05_d05 0.975426290474826", "bbob-biobj_f27_i05_d10 0.981754257654295", "bbob-biobj_f27_i05_d20 0.926159038181840", "bbob-biobj_f27_i05_d40 0.842053796842232", "bbob-biobj_f27_i06_d02 0.962264097364663", "bbob-biobj_f27_i06_d03 0.993501202677761", "bbob-biobj_f27_i06_d05 0.964516742175064", "bbob-biobj_f27_i06_d10 0.952513248144868", "bbob-biobj_f27_i06_d20 0.951520512743833", "bbob-biobj_f27_i06_d40 0.885894360808665", "bbob-biobj_f27_i07_d02 0.950865324455741", "bbob-biobj_f27_i07_d03 0.946807607449187", "bbob-biobj_f27_i07_d05 0.997102178147074", "bbob-biobj_f27_i07_d10 0.966057902059931", "bbob-biobj_f27_i07_d20 0.933505493507962", "bbob-biobj_f27_i07_d40 0.811723833872017", "bbob-biobj_f27_i08_d02 0.989196266545765", "bbob-biobj_f27_i08_d03 0.944526899527912", "bbob-biobj_f27_i08_d05 0.982111603130709", "bbob-biobj_f27_i08_d10 0.995676001826639", "bbob-biobj_f27_i08_d20 0.940450662237770", "bbob-biobj_f27_i08_d40 0.760563946752818", "bbob-biobj_f27_i09_d02 0.931460125810749", "bbob-biobj_f27_i09_d03 0.986123409450877", "bbob-biobj_f27_i09_d05 0.999683816880195", "bbob-biobj_f27_i09_d10 0.925587074782249", "bbob-biobj_f27_i09_d20 0.983192589804257", "bbob-biobj_f27_i09_d40 0.854360098666703", "bbob-biobj_f27_i10_d02 0.976309654875098", "bbob-biobj_f27_i10_d03 0.995372072303659", "bbob-biobj_f27_i10_d05 0.937317068589800", "bbob-biobj_f27_i10_d10 0.959888207198668", "bbob-biobj_f27_i10_d20 0.980521651346730", "bbob-biobj_f27_i10_d40 0.787348659613970", "bbob-biobj_f27_i11_d02 1.0", "bbob-biobj_f27_i11_d03 1.0", "bbob-biobj_f27_i11_d05 1.0", "bbob-biobj_f27_i11_d10 1.0", "bbob-biobj_f27_i11_d20 1.0", "bbob-biobj_f27_i11_d40 1.0", "bbob-biobj_f27_i12_d02 1.0", "bbob-biobj_f27_i12_d03 1.0", "bbob-biobj_f27_i12_d05 1.0", "bbob-biobj_f27_i12_d10 1.0", "bbob-biobj_f27_i12_d20 1.0", "bbob-biobj_f27_i12_d40 1.0", "bbob-biobj_f27_i13_d02 1.0", "bbob-biobj_f27_i13_d03 1.0", "bbob-biobj_f27_i13_d05 1.0", "bbob-biobj_f27_i13_d10 1.0", "bbob-biobj_f27_i13_d20 1.0", "bbob-biobj_f27_i13_d40 1.0", "bbob-biobj_f27_i14_d02 1.0", "bbob-biobj_f27_i14_d03 1.0", "bbob-biobj_f27_i14_d05 1.0", "bbob-biobj_f27_i14_d10 1.0", "bbob-biobj_f27_i14_d20 1.0", "bbob-biobj_f27_i14_d40 1.0", "bbob-biobj_f27_i15_d02 1.0", "bbob-biobj_f27_i15_d03 1.0", "bbob-biobj_f27_i15_d05 1.0", "bbob-biobj_f27_i15_d10 1.0", "bbob-biobj_f27_i15_d20 1.0", "bbob-biobj_f27_i15_d40 1.0", "bbob-biobj_f28_i01_d02 0.977401999066625", "bbob-biobj_f28_i01_d03 0.998639738664743", "bbob-biobj_f28_i01_d05 0.995557746846828", "bbob-biobj_f28_i01_d10 0.994072439832833", "bbob-biobj_f28_i01_d20 0.992463218537431", "bbob-biobj_f28_i01_d40 0.992414213096006", "bbob-biobj_f28_i02_d02 0.998930207760655", "bbob-biobj_f28_i02_d03 0.993519710437286", "bbob-biobj_f28_i02_d05 0.991806547665404", "bbob-biobj_f28_i02_d10 0.992230831814733", "bbob-biobj_f28_i02_d20 0.990009499042260", "bbob-biobj_f28_i02_d40 0.990106398998538", "bbob-biobj_f28_i03_d02 0.999666285076891", "bbob-biobj_f28_i03_d03 0.977207039636466", "bbob-biobj_f28_i03_d05 0.993682678054200", "bbob-biobj_f28_i03_d10 0.994082775916324", "bbob-biobj_f28_i03_d20 0.993735723579743", "bbob-biobj_f28_i03_d40 0.993556096096843", "bbob-biobj_f28_i04_d02 0.984721520157451", "bbob-biobj_f28_i04_d03 0.992074459843054", "bbob-biobj_f28_i04_d05 0.997393288512045", "bbob-biobj_f28_i04_d10 0.992803283337928", "bbob-biobj_f28_i04_d20 0.994521653588152", "bbob-biobj_f28_i04_d40 0.992190072632095", "bbob-biobj_f28_i05_d02 0.999901258252883", "bbob-biobj_f28_i05_d03 0.990127198930246", "bbob-biobj_f28_i05_d05 0.987358603286700", "bbob-biobj_f28_i05_d10 0.993739971345883", "bbob-biobj_f28_i05_d20 0.995300696754144", "bbob-biobj_f28_i05_d40 0.992485959020777", "bbob-biobj_f28_i06_d02 0.999626447634610", "bbob-biobj_f28_i06_d03 0.958212010427058", "bbob-biobj_f28_i06_d05 0.997899397583847", "bbob-biobj_f28_i06_d10 0.993885165299602", "bbob-biobj_f28_i06_d20 0.992419988958514", "bbob-biobj_f28_i06_d40 0.991015746943900", "bbob-biobj_f28_i07_d02 0.997315263406170", "bbob-biobj_f28_i07_d03 0.991252216118587", "bbob-biobj_f28_i07_d05 0.991916981494586", "bbob-biobj_f28_i07_d10 0.995119902702797", "bbob-biobj_f28_i07_d20 0.991092804449868", "bbob-biobj_f28_i07_d40 0.991380726848034", "bbob-biobj_f28_i08_d02 0.985044198727011", "bbob-biobj_f28_i08_d03 0.970025788092634", "bbob-biobj_f28_i08_d05 0.991797875341854", "bbob-biobj_f28_i08_d10 0.994125424477083", "bbob-biobj_f28_i08_d20 0.990425211605881", "bbob-biobj_f28_i08_d40 0.991812429475186", "bbob-biobj_f28_i09_d02 0.992233419283827", "bbob-biobj_f28_i09_d03 0.978709253453134", "bbob-biobj_f28_i09_d05 0.995106604135360", "bbob-biobj_f28_i09_d10 0.995406461110909", "bbob-biobj_f28_i09_d20 0.992532195946441", "bbob-biobj_f28_i09_d40 0.992693013689914", "bbob-biobj_f28_i10_d02 0.999840936604087", "bbob-biobj_f28_i10_d03 0.994850417699833", "bbob-biobj_f28_i10_d05 0.989213621719788", "bbob-biobj_f28_i10_d10 0.996382743554660", "bbob-biobj_f28_i10_d20 0.993636432001135", "bbob-biobj_f28_i10_d40 0.989841821448926", "bbob-biobj_f28_i11_d02 1.0", "bbob-biobj_f28_i11_d03 1.0", "bbob-biobj_f28_i11_d05 1.0", "bbob-biobj_f28_i11_d10 1.0", "bbob-biobj_f28_i11_d20 1.0", "bbob-biobj_f28_i11_d40 1.0", "bbob-biobj_f28_i12_d02 1.0", "bbob-biobj_f28_i12_d03 1.0", "bbob-biobj_f28_i12_d05 1.0", "bbob-biobj_f28_i12_d10 1.0", "bbob-biobj_f28_i12_d20 1.0", "bbob-biobj_f28_i12_d40 1.0", "bbob-biobj_f28_i13_d02 1.0", "bbob-biobj_f28_i13_d03 1.0", "bbob-biobj_f28_i13_d05 1.0", "bbob-biobj_f28_i13_d10 1.0", "bbob-biobj_f28_i13_d20 1.0", "bbob-biobj_f28_i13_d40 1.0", "bbob-biobj_f28_i14_d02 1.0", "bbob-biobj_f28_i14_d03 1.0", "bbob-biobj_f28_i14_d05 1.0", "bbob-biobj_f28_i14_d10 1.0", "bbob-biobj_f28_i14_d20 1.0", "bbob-biobj_f28_i14_d40 1.0", "bbob-biobj_f28_i15_d02 1.0", "bbob-biobj_f28_i15_d03 1.0", "bbob-biobj_f28_i15_d05 1.0", "bbob-biobj_f28_i15_d10 1.0", "bbob-biobj_f28_i15_d20 1.0", "bbob-biobj_f28_i15_d40 1.0", "bbob-biobj_f29_i01_d02 0.972457455413490", "bbob-biobj_f29_i01_d03 0.866370346657890", "bbob-biobj_f29_i01_d05 0.870445739074006", "bbob-biobj_f29_i01_d10 0.894388363117107", "bbob-biobj_f29_i01_d20 0.808762122504279", "bbob-biobj_f29_i01_d40 0.840453851920017", "bbob-biobj_f29_i02_d02 0.999165568899664", "bbob-biobj_f29_i02_d03 0.939195283003279", "bbob-biobj_f29_i02_d05 0.882828302937317", "bbob-biobj_f29_i02_d10 0.804966339230319", "bbob-biobj_f29_i02_d20 0.859893815195278", "bbob-biobj_f29_i02_d40 0.835724630030829", "bbob-biobj_f29_i03_d02 0.993280459075654", "bbob-biobj_f29_i03_d03 0.980543061350425", "bbob-biobj_f29_i03_d05 0.830303971380969", "bbob-biobj_f29_i03_d10 0.851093726256976", "bbob-biobj_f29_i03_d20 0.830680809881492", "bbob-biobj_f29_i03_d40 0.837222139669099", "bbob-biobj_f29_i04_d02 0.966909956807889", "bbob-biobj_f29_i04_d03 0.973842229090499", "bbob-biobj_f29_i04_d05 0.899730185027102", "bbob-biobj_f29_i04_d10 0.894932413687638", "bbob-biobj_f29_i04_d20 0.865286297173798", "bbob-biobj_f29_i04_d40 0.836656239480014", "bbob-biobj_f29_i05_d02 0.988529417699778", "bbob-biobj_f29_i05_d03 0.949159799844754", "bbob-biobj_f29_i05_d05 0.927476309493910", "bbob-biobj_f29_i05_d10 0.900624474319130", "bbob-biobj_f29_i05_d20 0.835998458242497", "bbob-biobj_f29_i05_d40 0.846002036747550", "bbob-biobj_f29_i06_d02 0.967561275916612", "bbob-biobj_f29_i06_d03 0.967381034072613", "bbob-biobj_f29_i06_d05 0.931360954695002", "bbob-biobj_f29_i06_d10 0.847570141723538", "bbob-biobj_f29_i06_d20 0.842328347108882", "bbob-biobj_f29_i06_d40 0.824828363278599", "bbob-biobj_f29_i07_d02 0.981144976196740", "bbob-biobj_f29_i07_d03 0.957221055688806", "bbob-biobj_f29_i07_d05 0.902497486504058", "bbob-biobj_f29_i07_d10 0.947016245190751", "bbob-biobj_f29_i07_d20 0.821568365741335", "bbob-biobj_f29_i07_d40 0.861935573164123", "bbob-biobj_f29_i08_d02 0.984747228463624", "bbob-biobj_f29_i08_d03 0.924610488247452", "bbob-biobj_f29_i08_d05 0.804302384537842", "bbob-biobj_f29_i08_d10 0.919025320584330", "bbob-biobj_f29_i08_d20 0.842093400939269", "bbob-biobj_f29_i08_d40 0.852737325066746", "bbob-biobj_f29_i09_d02 0.992967815171660", "bbob-biobj_f29_i09_d03 0.997316964918812", "bbob-biobj_f29_i09_d05 0.872403467217192", "bbob-biobj_f29_i09_d10 0.868612481971066", "bbob-biobj_f29_i09_d20 0.832062370273532", "bbob-biobj_f29_i09_d40 0.824499220933538", "bbob-biobj_f29_i10_d02 0.998399141958328", "bbob-biobj_f29_i10_d03 0.957728840680481", "bbob-biobj_f29_i10_d05 0.987548487098636", "bbob-biobj_f29_i10_d10 0.855764301444605", "bbob-biobj_f29_i10_d20 0.862220662567331", "bbob-biobj_f29_i10_d40 0.815090921214875", "bbob-biobj_f29_i11_d02 1.0", "bbob-biobj_f29_i11_d03 1.0", "bbob-biobj_f29_i11_d05 1.0", "bbob-biobj_f29_i11_d10 1.0", "bbob-biobj_f29_i11_d20 1.0", "bbob-biobj_f29_i11_d40 1.0", "bbob-biobj_f29_i12_d02 1.0", "bbob-biobj_f29_i12_d03 1.0", "bbob-biobj_f29_i12_d05 1.0", "bbob-biobj_f29_i12_d10 1.0", "bbob-biobj_f29_i12_d20 1.0", "bbob-biobj_f29_i12_d40 1.0", "bbob-biobj_f29_i13_d02 1.0", "bbob-biobj_f29_i13_d03 1.0", "bbob-biobj_f29_i13_d05 1.0", "bbob-biobj_f29_i13_d10 1.0", "bbob-biobj_f29_i13_d20 1.0", "bbob-biobj_f29_i13_d40 1.0", "bbob-biobj_f29_i14_d02 1.0", "bbob-biobj_f29_i14_d03 1.0", "bbob-biobj_f29_i14_d05 1.0", "bbob-biobj_f29_i14_d10 1.0", "bbob-biobj_f29_i14_d20 1.0", "bbob-biobj_f29_i14_d40 1.0", "bbob-biobj_f29_i15_d02 1.0", "bbob-biobj_f29_i15_d03 1.0", "bbob-biobj_f29_i15_d05 1.0", "bbob-biobj_f29_i15_d10 1.0", "bbob-biobj_f29_i15_d20 1.0", "bbob-biobj_f29_i15_d40 1.0", "bbob-biobj_f30_i01_d02 0.976212496500615", "bbob-biobj_f30_i01_d03 0.795600491238115", "bbob-biobj_f30_i01_d05 0.940212728170741", "bbob-biobj_f30_i01_d10 0.926791108055421", "bbob-biobj_f30_i01_d20 0.962016418104353", "bbob-biobj_f30_i01_d40 0.971355928747424", "bbob-biobj_f30_i02_d02 0.996222809065562", "bbob-biobj_f30_i02_d03 0.931861838448886", "bbob-biobj_f30_i02_d05 0.982392914075324", "bbob-biobj_f30_i02_d10 0.979277027146897", "bbob-biobj_f30_i02_d20 0.948080162530366", "bbob-biobj_f30_i02_d40 0.968917233282535", "bbob-biobj_f30_i03_d02 0.941596330281521", "bbob-biobj_f30_i03_d03 0.913955563877558", "bbob-biobj_f30_i03_d05 0.914687792830228", "bbob-biobj_f30_i03_d10 0.986335271790599", "bbob-biobj_f30_i03_d20 0.968017340368554", "bbob-biobj_f30_i03_d40 0.963762378676632", "bbob-biobj_f30_i04_d02 0.983030095609877", "bbob-biobj_f30_i04_d03 0.977328392211862", "bbob-biobj_f30_i04_d05 0.979633656408353", "bbob-biobj_f30_i04_d10 0.980904314822086", "bbob-biobj_f30_i04_d20 0.981008986766704", "bbob-biobj_f30_i04_d40 0.989250894160866", "bbob-biobj_f30_i05_d02 0.995608485934112", "bbob-biobj_f30_i05_d03 0.938514746776463", "bbob-biobj_f30_i05_d05 0.933174697747160", "bbob-biobj_f30_i05_d10 0.978395618518700", "bbob-biobj_f30_i05_d20 0.986572139258712", "bbob-biobj_f30_i05_d40 0.943187951117802", "bbob-biobj_f30_i06_d02 0.869044705496845", "bbob-biobj_f30_i06_d03 0.941160771663024", "bbob-biobj_f30_i06_d05 0.956684475241962", "bbob-biobj_f30_i06_d10 0.943060007508355", "bbob-biobj_f30_i06_d20 0.983039746676330", "bbob-biobj_f30_i06_d40 0.981497478183836", "bbob-biobj_f30_i07_d02 0.850960681023553", "bbob-biobj_f30_i07_d03 0.992467861821325", "bbob-biobj_f30_i07_d05 0.978309575157745", "bbob-biobj_f30_i07_d10 0.961499382394324", "bbob-biobj_f30_i07_d20 0.977389065119878", "bbob-biobj_f30_i07_d40 0.984027487033295", "bbob-biobj_f30_i08_d02 0.994801823711915", "bbob-biobj_f30_i08_d03 0.971842687259984", "bbob-biobj_f30_i08_d05 0.983779330291038", "bbob-biobj_f30_i08_d10 0.979515650534861", "bbob-biobj_f30_i08_d20 0.962484456332405", "bbob-biobj_f30_i08_d40 0.989696154928725", "bbob-biobj_f30_i09_d02 0.940370678583058", "bbob-biobj_f30_i09_d03 0.992737527012105", "bbob-biobj_f30_i09_d05 0.985290453392201", "bbob-biobj_f30_i09_d10 0.951809039137262", "bbob-biobj_f30_i09_d20 0.958857385033886", "bbob-biobj_f30_i09_d40 0.980920533375933", "bbob-biobj_f30_i10_d02 0.833084721027244", "bbob-biobj_f30_i10_d03 0.971038926173698", "bbob-biobj_f30_i10_d05 0.988040718239608", "bbob-biobj_f30_i10_d10 0.964535015378092", "bbob-biobj_f30_i10_d20 0.969259910717665", "bbob-biobj_f30_i10_d40 0.956033907644104", "bbob-biobj_f30_i11_d02 1.0", "bbob-biobj_f30_i11_d03 1.0", "bbob-biobj_f30_i11_d05 1.0", "bbob-biobj_f30_i11_d10 1.0", "bbob-biobj_f30_i11_d20 1.0", "bbob-biobj_f30_i11_d40 1.0", "bbob-biobj_f30_i12_d02 1.0", "bbob-biobj_f30_i12_d03 1.0", "bbob-biobj_f30_i12_d05 1.0", "bbob-biobj_f30_i12_d10 1.0", "bbob-biobj_f30_i12_d20 1.0", "bbob-biobj_f30_i12_d40 1.0", "bbob-biobj_f30_i13_d02 1.0", "bbob-biobj_f30_i13_d03 1.0", "bbob-biobj_f30_i13_d05 1.0", "bbob-biobj_f30_i13_d10 1.0", "bbob-biobj_f30_i13_d20 1.0", "bbob-biobj_f30_i13_d40 1.0", "bbob-biobj_f30_i14_d02 1.0", "bbob-biobj_f30_i14_d03 1.0", "bbob-biobj_f30_i14_d05 1.0", "bbob-biobj_f30_i14_d10 1.0", "bbob-biobj_f30_i14_d20 1.0", "bbob-biobj_f30_i14_d40 1.0", "bbob-biobj_f30_i15_d02 1.0", "bbob-biobj_f30_i15_d03 1.0", "bbob-biobj_f30_i15_d05 1.0", "bbob-biobj_f30_i15_d10 1.0", "bbob-biobj_f30_i15_d20 1.0", "bbob-biobj_f30_i15_d40 1.0", "bbob-biobj_f31_i01_d02 0.955984203318467", "bbob-biobj_f31_i01_d03 0.988038763109000", "bbob-biobj_f31_i01_d05 0.973310702562224", "bbob-biobj_f31_i01_d10 0.961863891126134", "bbob-biobj_f31_i01_d20 0.965891744541523", "bbob-biobj_f31_i01_d40 0.964799971076738", "bbob-biobj_f31_i02_d02 0.963697290724264", "bbob-biobj_f31_i02_d03 0.923775493019718", "bbob-biobj_f31_i02_d05 0.977110292317126", "bbob-biobj_f31_i02_d10 0.943832912280240", "bbob-biobj_f31_i02_d20 0.968205987196875", "bbob-biobj_f31_i02_d40 0.930030695053169", "bbob-biobj_f31_i03_d02 0.981722066734756", "bbob-biobj_f31_i03_d03 0.984776066232686", "bbob-biobj_f31_i03_d05 0.976057593637481", "bbob-biobj_f31_i03_d10 0.955101239990016", "bbob-biobj_f31_i03_d20 0.971423707814403", "bbob-biobj_f31_i03_d40 0.952189734459685", "bbob-biobj_f31_i04_d02 0.952958780406800", "bbob-biobj_f31_i04_d03 0.994016773366593", "bbob-biobj_f31_i04_d05 0.977998109456579", "bbob-biobj_f31_i04_d10 0.972504038682838", "bbob-biobj_f31_i04_d20 0.975249631453836", "bbob-biobj_f31_i04_d40 0.953391474750933", "bbob-biobj_f31_i05_d02 0.989988727984181", "bbob-biobj_f31_i05_d03 0.975602682258664", "bbob-biobj_f31_i05_d05 0.985516667669071", "bbob-biobj_f31_i05_d10 0.974740149273617", "bbob-biobj_f31_i05_d20 0.962503915381192", "bbob-biobj_f31_i05_d40 0.954674973148641", "bbob-biobj_f31_i06_d02 0.993357857224112", "bbob-biobj_f31_i06_d03 0.997778716569991", "bbob-biobj_f31_i06_d05 0.972233776312855", "bbob-biobj_f31_i06_d10 0.965556182517270", "bbob-biobj_f31_i06_d20 0.967195654811397", "bbob-biobj_f31_i06_d40 0.980987684830602", "bbob-biobj_f31_i07_d02 0.974743597398361", "bbob-biobj_f31_i07_d03 0.980529945532394", "bbob-biobj_f31_i07_d05 0.969699321870536", "bbob-biobj_f31_i07_d10 0.967682773907980", "bbob-biobj_f31_i07_d20 0.965103317096624", "bbob-biobj_f31_i07_d40 0.940523398304900", "bbob-biobj_f31_i08_d02 0.979779884141499", "bbob-biobj_f31_i08_d03 0.941945659669748", "bbob-biobj_f31_i08_d05 0.966924518837618", "bbob-biobj_f31_i08_d10 0.959246003469760", "bbob-biobj_f31_i08_d20 0.968526371519269", "bbob-biobj_f31_i08_d40 0.932858285108423", "bbob-biobj_f31_i09_d02 0.975510769784063", "bbob-biobj_f31_i09_d03 0.946197097176584", "bbob-biobj_f31_i09_d05 0.957823291215911", "bbob-biobj_f31_i09_d10 0.986319214118380", "bbob-biobj_f31_i09_d20 0.961832047996528", "bbob-biobj_f31_i09_d40 0.938909433905805", "bbob-biobj_f31_i10_d02 0.933842856787938", "bbob-biobj_f31_i10_d03 0.961940385993735", "bbob-biobj_f31_i10_d05 0.950563580668377", "bbob-biobj_f31_i10_d10 0.974970269649730", "bbob-biobj_f31_i10_d20 0.972029378489098", "bbob-biobj_f31_i10_d40 0.932931521286107", "bbob-biobj_f31_i11_d02 1.0", "bbob-biobj_f31_i11_d03 1.0", "bbob-biobj_f31_i11_d05 1.0", "bbob-biobj_f31_i11_d10 1.0", "bbob-biobj_f31_i11_d20 1.0", "bbob-biobj_f31_i11_d40 1.0", "bbob-biobj_f31_i12_d02 1.0", "bbob-biobj_f31_i12_d03 1.0", "bbob-biobj_f31_i12_d05 1.0", "bbob-biobj_f31_i12_d10 1.0", "bbob-biobj_f31_i12_d20 1.0", "bbob-biobj_f31_i12_d40 1.0", "bbob-biobj_f31_i13_d02 1.0", "bbob-biobj_f31_i13_d03 1.0", "bbob-biobj_f31_i13_d05 1.0", "bbob-biobj_f31_i13_d10 1.0", "bbob-biobj_f31_i13_d20 1.0", "bbob-biobj_f31_i13_d40 1.0", "bbob-biobj_f31_i14_d02 1.0", "bbob-biobj_f31_i14_d03 1.0", "bbob-biobj_f31_i14_d05 1.0", "bbob-biobj_f31_i14_d10 1.0", "bbob-biobj_f31_i14_d20 1.0", "bbob-biobj_f31_i14_d40 1.0", "bbob-biobj_f31_i15_d02 1.0", "bbob-biobj_f31_i15_d03 1.0", "bbob-biobj_f31_i15_d05 1.0", "bbob-biobj_f31_i15_d10 1.0", "bbob-biobj_f31_i15_d20 1.0", "bbob-biobj_f31_i15_d40 1.0", "bbob-biobj_f32_i01_d02 0.920330807593056", "bbob-biobj_f32_i01_d03 0.915347636063932", "bbob-biobj_f32_i01_d05 0.972868759339442", "bbob-biobj_f32_i01_d10 0.949751776226948", "bbob-biobj_f32_i01_d20 0.982261266068264", "bbob-biobj_f32_i01_d40 0.961314360293532", "bbob-biobj_f32_i02_d02 0.675234526590275", "bbob-biobj_f32_i02_d03 0.922157604765695", "bbob-biobj_f32_i02_d05 0.938926461979921", "bbob-biobj_f32_i02_d10 0.964591928399060", "bbob-biobj_f32_i02_d20 0.963820281610019", "bbob-biobj_f32_i02_d40 0.957708349242610", "bbob-biobj_f32_i03_d02 0.921767853591544", "bbob-biobj_f32_i03_d03 0.968199302056700", "bbob-biobj_f32_i03_d05 0.983208237869525", "bbob-biobj_f32_i03_d10 0.963910336376183", "bbob-biobj_f32_i03_d20 0.981327925011236", "bbob-biobj_f32_i03_d40 0.965118174109783", "bbob-biobj_f32_i04_d02 0.944003999651929", "bbob-biobj_f32_i04_d03 0.906091440313324", "bbob-biobj_f32_i04_d05 0.988063008394600", "bbob-biobj_f32_i04_d10 0.988153900557819", "bbob-biobj_f32_i04_d20 0.990484909433935", "bbob-biobj_f32_i04_d40 0.962618969844935", "bbob-biobj_f32_i05_d02 0.844964589477472", "bbob-biobj_f32_i05_d03 0.983689208376728", "bbob-biobj_f32_i05_d05 0.982677657147418", "bbob-biobj_f32_i05_d10 0.993430675481161", "bbob-biobj_f32_i05_d20 0.990033697332113", "bbob-biobj_f32_i05_d40 0.951484636110526", "bbob-biobj_f32_i06_d02 0.936204097698518", "bbob-biobj_f32_i06_d03 0.956619283725773", "bbob-biobj_f32_i06_d05 0.950112390592106", "bbob-biobj_f32_i06_d10 0.946943467616295", "bbob-biobj_f32_i06_d20 0.989994441779766", "bbob-biobj_f32_i06_d40 0.919737293782797", "bbob-biobj_f32_i07_d02 0.957436979340003", "bbob-biobj_f32_i07_d03 0.944961624486113", "bbob-biobj_f32_i07_d05 0.978229682653724", "bbob-biobj_f32_i07_d10 0.979327906952184", "bbob-biobj_f32_i07_d20 0.979526216532551", "bbob-biobj_f32_i07_d40 0.910205393765360", "bbob-biobj_f32_i08_d02 0.969123822394381", "bbob-biobj_f32_i08_d03 0.995708954595939", "bbob-biobj_f32_i08_d05 0.987304424437171", "bbob-biobj_f32_i08_d10 0.972058059457178", "bbob-biobj_f32_i08_d20 0.967219697949135", "bbob-biobj_f32_i08_d40 0.949088678292387", "bbob-biobj_f32_i09_d02 0.721600217882241", "bbob-biobj_f32_i09_d03 0.987357454724409", "bbob-biobj_f32_i09_d05 0.970303366825941", "bbob-biobj_f32_i09_d10 0.967120897293300", "bbob-biobj_f32_i09_d20 0.946781561034528", "bbob-biobj_f32_i09_d40 0.944323858726891", "bbob-biobj_f32_i10_d02 0.650841308813176", "bbob-biobj_f32_i10_d03 0.976666059973336", "bbob-biobj_f32_i10_d05 0.965946078228456", "bbob-biobj_f32_i10_d10 0.988498634332224", "bbob-biobj_f32_i10_d20 0.986184571295129", "bbob-biobj_f32_i10_d40 0.919965785330364", "bbob-biobj_f32_i11_d02 1.0", "bbob-biobj_f32_i11_d03 1.0", "bbob-biobj_f32_i11_d05 1.0", "bbob-biobj_f32_i11_d10 1.0", "bbob-biobj_f32_i11_d20 1.0", "bbob-biobj_f32_i11_d40 1.0", "bbob-biobj_f32_i12_d02 1.0", "bbob-biobj_f32_i12_d03 1.0", "bbob-biobj_f32_i12_d05 1.0", "bbob-biobj_f32_i12_d10 1.0", "bbob-biobj_f32_i12_d20 1.0", "bbob-biobj_f32_i12_d40 1.0", "bbob-biobj_f32_i13_d02 1.0", "bbob-biobj_f32_i13_d03 1.0", "bbob-biobj_f32_i13_d05 1.0", "bbob-biobj_f32_i13_d10 1.0", "bbob-biobj_f32_i13_d20 1.0", "bbob-biobj_f32_i13_d40 1.0", "bbob-biobj_f32_i14_d02 1.0", "bbob-biobj_f32_i14_d03 1.0", "bbob-biobj_f32_i14_d05 1.0", "bbob-biobj_f32_i14_d10 1.0", "bbob-biobj_f32_i14_d20 1.0", "bbob-biobj_f32_i14_d40 1.0", "bbob-biobj_f32_i15_d02 1.0", "bbob-biobj_f32_i15_d03 1.0", "bbob-biobj_f32_i15_d05 1.0", "bbob-biobj_f32_i15_d10 1.0", "bbob-biobj_f32_i15_d20 1.0", "bbob-biobj_f32_i15_d40 1.0", "bbob-biobj_f33_i01_d02 0.997888861007257", "bbob-biobj_f33_i01_d03 0.997624607259834", "bbob-biobj_f33_i01_d05 0.998342123785751", "bbob-biobj_f33_i01_d10 0.995514921361480", "bbob-biobj_f33_i01_d20 0.990229526419369", "bbob-biobj_f33_i01_d40 0.996701111011607", "bbob-biobj_f33_i02_d02 0.997492969261123", "bbob-biobj_f33_i02_d03 0.998822661203961", "bbob-biobj_f33_i02_d05 0.989647953655975", "bbob-biobj_f33_i02_d10 0.995932074985828", "bbob-biobj_f33_i02_d20 0.995150898775676", "bbob-biobj_f33_i02_d40 0.994052083498776", "bbob-biobj_f33_i03_d02 0.999823325771698", "bbob-biobj_f33_i03_d03 0.935833479827530", "bbob-biobj_f33_i03_d05 0.999018432915998", "bbob-biobj_f33_i03_d10 0.998456700267246", "bbob-biobj_f33_i03_d20 0.998381767176213", "bbob-biobj_f33_i03_d40 0.994147433157067", "bbob-biobj_f33_i04_d02 0.959892993583654", "bbob-biobj_f33_i04_d03 0.989064355606771", "bbob-biobj_f33_i04_d05 0.999673943582960", "bbob-biobj_f33_i04_d10 0.996077761850721", "bbob-biobj_f33_i04_d20 0.996916761370186", "bbob-biobj_f33_i04_d40 0.994789090637766", "bbob-biobj_f33_i05_d02 0.966110435471982", "bbob-biobj_f33_i05_d03 0.998861256315896", "bbob-biobj_f33_i05_d05 0.999857137978720", "bbob-biobj_f33_i05_d10 0.999704303631583", "bbob-biobj_f33_i05_d20 0.994312060281260", "bbob-biobj_f33_i05_d40 0.994376965244970", "bbob-biobj_f33_i06_d02 0.988009732046640", "bbob-biobj_f33_i06_d03 0.998480224248358", "bbob-biobj_f33_i06_d05 0.994232785423387", "bbob-biobj_f33_i06_d10 0.997422760448887", "bbob-biobj_f33_i06_d20 0.995665197211799", "bbob-biobj_f33_i06_d40 0.991042766384042", "bbob-biobj_f33_i07_d02 0.908430553337673", "bbob-biobj_f33_i07_d03 0.893739385154451", "bbob-biobj_f33_i07_d05 0.975829278284660", "bbob-biobj_f33_i07_d10 0.999470787751560", "bbob-biobj_f33_i07_d20 0.986509510317036", "bbob-biobj_f33_i07_d40 0.994583833048433", "bbob-biobj_f33_i08_d02 0.999902182898304", "bbob-biobj_f33_i08_d03 0.995374809986469", "bbob-biobj_f33_i08_d05 0.999239753141073", "bbob-biobj_f33_i08_d10 0.997624890172242", "bbob-biobj_f33_i08_d20 0.998073374826546", "bbob-biobj_f33_i08_d40 0.995614476200213", "bbob-biobj_f33_i09_d02 0.797570804275967", "bbob-biobj_f33_i09_d03 0.817567756795762", "bbob-biobj_f33_i09_d05 0.881506581668767", "bbob-biobj_f33_i09_d10 0.997480885377791", "bbob-biobj_f33_i09_d20 0.995999979147304", "bbob-biobj_f33_i09_d40 0.991403299118439", "bbob-biobj_f33_i10_d02 0.999798379887308", "bbob-biobj_f33_i10_d03 0.999774876932958", "bbob-biobj_f33_i10_d05 0.998698332765040", "bbob-biobj_f33_i10_d10 0.999978774834782", "bbob-biobj_f33_i10_d20 0.994436919909665", "bbob-biobj_f33_i10_d40 0.990882022342690", "bbob-biobj_f33_i11_d02 1.0", "bbob-biobj_f33_i11_d03 1.0", "bbob-biobj_f33_i11_d05 1.0", "bbob-biobj_f33_i11_d10 1.0", "bbob-biobj_f33_i11_d20 1.0", "bbob-biobj_f33_i11_d40 1.0", "bbob-biobj_f33_i12_d02 1.0", "bbob-biobj_f33_i12_d03 1.0", "bbob-biobj_f33_i12_d05 1.0", "bbob-biobj_f33_i12_d10 1.0", "bbob-biobj_f33_i12_d20 1.0", "bbob-biobj_f33_i12_d40 1.0", "bbob-biobj_f33_i13_d02 1.0", "bbob-biobj_f33_i13_d03 1.0", "bbob-biobj_f33_i13_d05 1.0", "bbob-biobj_f33_i13_d10 1.0", "bbob-biobj_f33_i13_d20 1.0", "bbob-biobj_f33_i13_d40 1.0", "bbob-biobj_f33_i14_d02 1.0", "bbob-biobj_f33_i14_d03 1.0", "bbob-biobj_f33_i14_d05 1.0", "bbob-biobj_f33_i14_d10 1.0", "bbob-biobj_f33_i14_d20 1.0", "bbob-biobj_f33_i14_d40 1.0", "bbob-biobj_f33_i15_d02 1.0", "bbob-biobj_f33_i15_d03 1.0", "bbob-biobj_f33_i15_d05 1.0", "bbob-biobj_f33_i15_d10 1.0", "bbob-biobj_f33_i15_d20 1.0", "bbob-biobj_f33_i15_d40 1.0", "bbob-biobj_f34_i01_d02 0.929758929322608", "bbob-biobj_f34_i01_d03 0.914925194601784", "bbob-biobj_f34_i01_d05 0.981337253946081", "bbob-biobj_f34_i01_d10 0.966135341522572", "bbob-biobj_f34_i01_d20 0.950027819314510", "bbob-biobj_f34_i01_d40 0.936086573703597", "bbob-biobj_f34_i02_d02 0.996825933655160", "bbob-biobj_f34_i02_d03 0.914730991843946", "bbob-biobj_f34_i02_d05 0.991099954828458", "bbob-biobj_f34_i02_d10 0.959859389596542", "bbob-biobj_f34_i02_d20 0.945916596486679", "bbob-biobj_f34_i02_d40 0.927594653284621", "bbob-biobj_f34_i03_d02 0.990964408471433", "bbob-biobj_f34_i03_d03 0.962894086641955", "bbob-biobj_f34_i03_d05 0.968963676660207", "bbob-biobj_f34_i03_d10 0.983124332815711", "bbob-biobj_f34_i03_d20 0.940566682476787", "bbob-biobj_f34_i03_d40 0.906946793901871", "bbob-biobj_f34_i04_d02 0.967251442667350", "bbob-biobj_f34_i04_d03 0.985996809599654", "bbob-biobj_f34_i04_d05 0.990433973580184", "bbob-biobj_f34_i04_d10 0.985663113470084", "bbob-biobj_f34_i04_d20 0.948754075971924", "bbob-biobj_f34_i04_d40 0.946951667926375", "bbob-biobj_f34_i05_d02 0.956107428609130", "bbob-biobj_f34_i05_d03 0.990692180330387", "bbob-biobj_f34_i05_d05 0.991916562797896", "bbob-biobj_f34_i05_d10 0.986752097164820", "bbob-biobj_f34_i05_d20 0.946958487980024", "bbob-biobj_f34_i05_d40 0.918444229830166", "bbob-biobj_f34_i06_d02 0.992429886449376", "bbob-biobj_f34_i06_d03 0.932399280827160", "bbob-biobj_f34_i06_d05 0.977893847715360", "bbob-biobj_f34_i06_d10 0.958563676459415", "bbob-biobj_f34_i06_d20 0.894811155382025", "bbob-biobj_f34_i06_d40 0.931703102080399", "bbob-biobj_f34_i07_d02 0.997954492490622", "bbob-biobj_f34_i07_d03 0.968805690123032", "bbob-biobj_f34_i07_d05 0.968367998531163", "bbob-biobj_f34_i07_d10 0.987731138382579", "bbob-biobj_f34_i07_d20 0.969075746932237", "bbob-biobj_f34_i07_d40 0.917332073668378", "bbob-biobj_f34_i08_d02 0.986443420424866", "bbob-biobj_f34_i08_d03 0.987754907741372", "bbob-biobj_f34_i08_d05 0.974500340117013", "bbob-biobj_f34_i08_d10 0.978729873615868", "bbob-biobj_f34_i08_d20 0.953820740741337", "bbob-biobj_f34_i08_d40 0.924674794407715", "bbob-biobj_f34_i09_d02 0.979374484880669", "bbob-biobj_f34_i09_d03 0.985062906638243", "bbob-biobj_f34_i09_d05 0.971686099090047", "bbob-biobj_f34_i09_d10 0.974275115903830", "bbob-biobj_f34_i09_d20 0.954195747728012", "bbob-biobj_f34_i09_d40 0.901234461994402", "bbob-biobj_f34_i10_d02 0.986288225521123", "bbob-biobj_f34_i10_d03 0.995621185099773", "bbob-biobj_f34_i10_d05 0.979832910022795", "bbob-biobj_f34_i10_d10 0.967225902546355", "bbob-biobj_f34_i10_d20 0.977569814442117", "bbob-biobj_f34_i10_d40 0.952895733599954", "bbob-biobj_f34_i11_d02 1.0", "bbob-biobj_f34_i11_d03 1.0", "bbob-biobj_f34_i11_d05 1.0", "bbob-biobj_f34_i11_d10 1.0", "bbob-biobj_f34_i11_d20 1.0", "bbob-biobj_f34_i11_d40 1.0", "bbob-biobj_f34_i12_d02 1.0", "bbob-biobj_f34_i12_d03 1.0", "bbob-biobj_f34_i12_d05 1.0", "bbob-biobj_f34_i12_d10 1.0", "bbob-biobj_f34_i12_d20 1.0", "bbob-biobj_f34_i12_d40 1.0", "bbob-biobj_f34_i13_d02 1.0", "bbob-biobj_f34_i13_d03 1.0", "bbob-biobj_f34_i13_d05 1.0", "bbob-biobj_f34_i13_d10 1.0", "bbob-biobj_f34_i13_d20 1.0", "bbob-biobj_f34_i13_d40 1.0", "bbob-biobj_f34_i14_d02 1.0", "bbob-biobj_f34_i14_d03 1.0", "bbob-biobj_f34_i14_d05 1.0", "bbob-biobj_f34_i14_d10 1.0", "bbob-biobj_f34_i14_d20 1.0", "bbob-biobj_f34_i14_d40 1.0", "bbob-biobj_f34_i15_d02 1.0", "bbob-biobj_f34_i15_d03 1.0", "bbob-biobj_f34_i15_d05 1.0", "bbob-biobj_f34_i15_d10 1.0", "bbob-biobj_f34_i15_d20 1.0", "bbob-biobj_f34_i15_d40 1.0", "bbob-biobj_f35_i01_d02 0.928165023377733", "bbob-biobj_f35_i01_d03 0.534055619821766", "bbob-biobj_f35_i01_d05 0.635785264847719", "bbob-biobj_f35_i01_d10 0.580893332905660", "bbob-biobj_f35_i01_d20 0.555009913932858", "bbob-biobj_f35_i01_d40 0.559291679999780", "bbob-biobj_f35_i02_d02 0.502442148070469", "bbob-biobj_f35_i02_d03 0.788715455127397", "bbob-biobj_f35_i02_d05 0.581829083029604", "bbob-biobj_f35_i02_d10 0.592322531696048", "bbob-biobj_f35_i02_d20 0.562948570954766", "bbob-biobj_f35_i02_d40 0.592245557480910", "bbob-biobj_f35_i03_d02 0.875499317155131", "bbob-biobj_f35_i03_d03 0.573982254861297", "bbob-biobj_f35_i03_d05 0.768271998392316", "bbob-biobj_f35_i03_d10 0.606855088657482", "bbob-biobj_f35_i03_d20 0.608162028996865", "bbob-biobj_f35_i03_d40 0.570890760357843", "bbob-biobj_f35_i04_d02 0.818254253194650", "bbob-biobj_f35_i04_d03 0.945470032951302", "bbob-biobj_f35_i04_d05 0.735474192489836", "bbob-biobj_f35_i04_d10 0.582620387060225", "bbob-biobj_f35_i04_d20 0.561822431849767", "bbob-biobj_f35_i04_d40 0.578381821406569", "bbob-biobj_f35_i05_d02 0.572776224251585", "bbob-biobj_f35_i05_d03 0.773381678533065", "bbob-biobj_f35_i05_d05 0.761556411704463", "bbob-biobj_f35_i05_d10 0.597858723534282", "bbob-biobj_f35_i05_d20 0.540863511855373", "bbob-biobj_f35_i05_d40 0.564959774511071", "bbob-biobj_f35_i06_d02 0.980545810362832", "bbob-biobj_f35_i06_d03 0.835515917249604", "bbob-biobj_f35_i06_d05 0.562675894859738", "bbob-biobj_f35_i06_d10 0.587998910768782", "bbob-biobj_f35_i06_d20 0.610158534435878", "bbob-biobj_f35_i06_d40 0.557990262720255", "bbob-biobj_f35_i07_d02 0.990109059705509", "bbob-biobj_f35_i07_d03 0.582852699773140", "bbob-biobj_f35_i07_d05 0.622869533970826", "bbob-biobj_f35_i07_d10 0.558675575323569", "bbob-biobj_f35_i07_d20 0.581910823709002", "bbob-biobj_f35_i07_d40 0.575992078136005", "bbob-biobj_f35_i08_d02 0.585094381837897", "bbob-biobj_f35_i08_d03 0.650187942772000", "bbob-biobj_f35_i08_d05 0.527195232798797", "bbob-biobj_f35_i08_d10 0.589619688257382", "bbob-biobj_f35_i08_d20 0.560957241658461", "bbob-biobj_f35_i08_d40 0.571976375123490", "bbob-biobj_f35_i09_d02 0.812412156635612", "bbob-biobj_f35_i09_d03 0.853294574665627", "bbob-biobj_f35_i09_d05 0.536664471012996", "bbob-biobj_f35_i09_d10 0.540732629900937", "bbob-biobj_f35_i09_d20 0.596217349423397", "bbob-biobj_f35_i09_d40 0.558307017123422", "bbob-biobj_f35_i10_d02 0.997531862926884", "bbob-biobj_f35_i10_d03 0.587724972246620", "bbob-biobj_f35_i10_d05 0.714494414954690", "bbob-biobj_f35_i10_d10 0.588778532125469", "bbob-biobj_f35_i10_d20 0.602194058692651", "bbob-biobj_f35_i10_d40 0.579319565668644", "bbob-biobj_f35_i11_d02 1.0", "bbob-biobj_f35_i11_d03 1.0", "bbob-biobj_f35_i11_d05 1.0", "bbob-biobj_f35_i11_d10 1.0", "bbob-biobj_f35_i11_d20 1.0", "bbob-biobj_f35_i11_d40 1.0", "bbob-biobj_f35_i12_d02 1.0", "bbob-biobj_f35_i12_d03 1.0", "bbob-biobj_f35_i12_d05 1.0", "bbob-biobj_f35_i12_d10 1.0", "bbob-biobj_f35_i12_d20 1.0", "bbob-biobj_f35_i12_d40 1.0", "bbob-biobj_f35_i13_d02 1.0", "bbob-biobj_f35_i13_d03 1.0", "bbob-biobj_f35_i13_d05 1.0", "bbob-biobj_f35_i13_d10 1.0", "bbob-biobj_f35_i13_d20 1.0", "bbob-biobj_f35_i13_d40 1.0", "bbob-biobj_f35_i14_d02 1.0", "bbob-biobj_f35_i14_d03 1.0", "bbob-biobj_f35_i14_d05 1.0", "bbob-biobj_f35_i14_d10 1.0", "bbob-biobj_f35_i14_d20 1.0", "bbob-biobj_f35_i14_d40 1.0", "bbob-biobj_f35_i15_d02 1.0", "bbob-biobj_f35_i15_d03 1.0", "bbob-biobj_f35_i15_d05 1.0", "bbob-biobj_f35_i15_d10 1.0", "bbob-biobj_f35_i15_d20 1.0", "bbob-biobj_f35_i15_d40 1.0", "bbob-biobj_f36_i01_d02 0.945914909650879", "bbob-biobj_f36_i01_d03 0.700109856462607", "bbob-biobj_f36_i01_d05 0.885952164445788", "bbob-biobj_f36_i01_d10 0.781262866659404", "bbob-biobj_f36_i01_d20 0.804662561948655", "bbob-biobj_f36_i01_d40 0.843727110022577", "bbob-biobj_f36_i02_d02 0.982339540243401", "bbob-biobj_f36_i02_d03 0.737153235635198", "bbob-biobj_f36_i02_d05 0.930168983454577", "bbob-biobj_f36_i02_d10 0.793783018152196", "bbob-biobj_f36_i02_d20 0.853227721845795", "bbob-biobj_f36_i02_d40 0.813629554178298", "bbob-biobj_f36_i03_d02 0.808775848047423", "bbob-biobj_f36_i03_d03 0.842944476275771", "bbob-biobj_f36_i03_d05 0.627315450736968", "bbob-biobj_f36_i03_d10 0.756222564706876", "bbob-biobj_f36_i03_d20 0.787428462209797", "bbob-biobj_f36_i03_d40 0.828040162624608", "bbob-biobj_f36_i04_d02 0.913204042095969", "bbob-biobj_f36_i04_d03 0.970232389126045", "bbob-biobj_f36_i04_d05 0.914724538410507", "bbob-biobj_f36_i04_d10 0.850577591819772", "bbob-biobj_f36_i04_d20 0.765304766819093", "bbob-biobj_f36_i04_d40 0.832480177648528", "bbob-biobj_f36_i05_d02 0.771462368593207", "bbob-biobj_f36_i05_d03 0.852784708249660", "bbob-biobj_f36_i05_d05 0.954700600300869", "bbob-biobj_f36_i05_d10 0.808824228788957", "bbob-biobj_f36_i05_d20 0.865957681426684", "bbob-biobj_f36_i05_d40 0.817384571058914", "bbob-biobj_f36_i06_d02 0.933757511624877", "bbob-biobj_f36_i06_d03 0.801490292261758", "bbob-biobj_f36_i06_d05 0.831167509137038", "bbob-biobj_f36_i06_d10 0.753171814797282", "bbob-biobj_f36_i06_d20 0.886786607453693", "bbob-biobj_f36_i06_d40 0.847003001535661", "bbob-biobj_f36_i07_d02 0.937778239862453", "bbob-biobj_f36_i07_d03 0.733737285335212", "bbob-biobj_f36_i07_d05 0.893219544430853", "bbob-biobj_f36_i07_d10 0.726223759918117", "bbob-biobj_f36_i07_d20 0.877639804021368", "bbob-biobj_f36_i07_d40 0.793394212282513", "bbob-biobj_f36_i08_d02 0.773830567033427", "bbob-biobj_f36_i08_d03 0.582247061486501", "bbob-biobj_f36_i08_d05 0.936003331558890", "bbob-biobj_f36_i08_d10 0.876721678494681", "bbob-biobj_f36_i08_d20 0.824199112721230", "bbob-biobj_f36_i08_d40 0.866349154828268", "bbob-biobj_f36_i09_d02 0.891599150476082", "bbob-biobj_f36_i09_d03 0.625247418888436", "bbob-biobj_f36_i09_d05 0.820474066076352", "bbob-biobj_f36_i09_d10 0.861572066804544", "bbob-biobj_f36_i09_d20 0.829598520946785", "bbob-biobj_f36_i09_d40 0.831002696373230", "bbob-biobj_f36_i10_d02 0.934505677966086", "bbob-biobj_f36_i10_d03 0.705534355336708", "bbob-biobj_f36_i10_d05 0.921117234905876", "bbob-biobj_f36_i10_d10 0.835625761352605", "bbob-biobj_f36_i10_d20 0.809940774549477", "bbob-biobj_f36_i10_d40 0.791407454276026", "bbob-biobj_f36_i11_d02 1.0", "bbob-biobj_f36_i11_d03 1.0", "bbob-biobj_f36_i11_d05 1.0", "bbob-biobj_f36_i11_d10 1.0", "bbob-biobj_f36_i11_d20 1.0", "bbob-biobj_f36_i11_d40 1.0", "bbob-biobj_f36_i12_d02 1.0", "bbob-biobj_f36_i12_d03 1.0", "bbob-biobj_f36_i12_d05 1.0", "bbob-biobj_f36_i12_d10 1.0", "bbob-biobj_f36_i12_d20 1.0", "bbob-biobj_f36_i12_d40 1.0", "bbob-biobj_f36_i13_d02 1.0", "bbob-biobj_f36_i13_d03 1.0", "bbob-biobj_f36_i13_d05 1.0", "bbob-biobj_f36_i13_d10 1.0", "bbob-biobj_f36_i13_d20 1.0", "bbob-biobj_f36_i13_d40 1.0", "bbob-biobj_f36_i14_d02 1.0", "bbob-biobj_f36_i14_d03 1.0", "bbob-biobj_f36_i14_d05 1.0", "bbob-biobj_f36_i14_d10 1.0", "bbob-biobj_f36_i14_d20 1.0", "bbob-biobj_f36_i14_d40 1.0", "bbob-biobj_f36_i15_d02 1.0", "bbob-biobj_f36_i15_d03 1.0", "bbob-biobj_f36_i15_d05 1.0", "bbob-biobj_f36_i15_d10 1.0", "bbob-biobj_f36_i15_d20 1.0", "bbob-biobj_f36_i15_d40 1.0", "bbob-biobj_f37_i01_d02 0.887327150785189", "bbob-biobj_f37_i01_d03 0.807659103583171", "bbob-biobj_f37_i01_d05 0.835169073581692", "bbob-biobj_f37_i01_d10 0.783383806133355", "bbob-biobj_f37_i01_d20 0.842538681321092", "bbob-biobj_f37_i01_d40 0.789266834004849", "bbob-biobj_f37_i02_d02 0.737269531615254", "bbob-biobj_f37_i02_d03 0.835012042630217", "bbob-biobj_f37_i02_d05 0.929695833351144", "bbob-biobj_f37_i02_d10 0.807367846432204", "bbob-biobj_f37_i02_d20 0.795982543055911", "bbob-biobj_f37_i02_d40 0.799926339032289", "bbob-biobj_f37_i03_d02 0.802436789939889", "bbob-biobj_f37_i03_d03 0.779817789428857", "bbob-biobj_f37_i03_d05 0.841136949398313", "bbob-biobj_f37_i03_d10 0.836194268914144", "bbob-biobj_f37_i03_d20 0.810391886715767", "bbob-biobj_f37_i03_d40 0.795436593770643", "bbob-biobj_f37_i04_d02 0.827630242603522", "bbob-biobj_f37_i04_d03 0.927472402212497", "bbob-biobj_f37_i04_d05 0.767439994597515", "bbob-biobj_f37_i04_d10 0.783346258032096", "bbob-biobj_f37_i04_d20 0.834870828901681", "bbob-biobj_f37_i04_d40 0.773457976069492", "bbob-biobj_f37_i05_d02 0.833851305921953", "bbob-biobj_f37_i05_d03 0.841497210688420", "bbob-biobj_f37_i05_d05 0.837678216567634", "bbob-biobj_f37_i05_d10 0.756617132180980", "bbob-biobj_f37_i05_d20 0.761274844547117", "bbob-biobj_f37_i05_d40 0.808772206948863", "bbob-biobj_f37_i06_d02 0.966420015253537", "bbob-biobj_f37_i06_d03 0.920849455423808", "bbob-biobj_f37_i06_d05 0.873507320873903", "bbob-biobj_f37_i06_d10 0.804471040357580", "bbob-biobj_f37_i06_d20 0.789492844708795", "bbob-biobj_f37_i06_d40 0.827597990486504", "bbob-biobj_f37_i07_d02 0.865979675631339", "bbob-biobj_f37_i07_d03 0.888456306531734", "bbob-biobj_f37_i07_d05 0.854814203846037", "bbob-biobj_f37_i07_d10 0.772690622496085", "bbob-biobj_f37_i07_d20 0.758857267001082", "bbob-biobj_f37_i07_d40 0.777389827183152", "bbob-biobj_f37_i08_d02 0.954408950578442", "bbob-biobj_f37_i08_d03 0.780283570455847", "bbob-biobj_f37_i08_d05 0.877427033200894", "bbob-biobj_f37_i08_d10 0.824052669824190", "bbob-biobj_f37_i08_d20 0.854319728694541", "bbob-biobj_f37_i08_d40 0.741015280728301", "bbob-biobj_f37_i09_d02 0.651230495436546", "bbob-biobj_f37_i09_d03 0.972084171390988", "bbob-biobj_f37_i09_d05 0.877591783597792", "bbob-biobj_f37_i09_d10 0.933689627469846", "bbob-biobj_f37_i09_d20 0.825557689086336", "bbob-biobj_f37_i09_d40 0.812287034624196", "bbob-biobj_f37_i10_d02 0.846357897009702", "bbob-biobj_f37_i10_d03 0.783860232975673", "bbob-biobj_f37_i10_d05 0.780136988735689", "bbob-biobj_f37_i10_d10 0.828012221896017", "bbob-biobj_f37_i10_d20 0.843542995824816", "bbob-biobj_f37_i10_d40 0.778211407123295", "bbob-biobj_f37_i11_d02 1.0", "bbob-biobj_f37_i11_d03 1.0", "bbob-biobj_f37_i11_d05 1.0", "bbob-biobj_f37_i11_d10 1.0", "bbob-biobj_f37_i11_d20 1.0", "bbob-biobj_f37_i11_d40 1.0", "bbob-biobj_f37_i12_d02 1.0", "bbob-biobj_f37_i12_d03 1.0", "bbob-biobj_f37_i12_d05 1.0", "bbob-biobj_f37_i12_d10 1.0", "bbob-biobj_f37_i12_d20 1.0", "bbob-biobj_f37_i12_d40 1.0", "bbob-biobj_f37_i13_d02 1.0", "bbob-biobj_f37_i13_d03 1.0", "bbob-biobj_f37_i13_d05 1.0", "bbob-biobj_f37_i13_d10 1.0", "bbob-biobj_f37_i13_d20 1.0", "bbob-biobj_f37_i13_d40 1.0", "bbob-biobj_f37_i14_d02 1.0", "bbob-biobj_f37_i14_d03 1.0", "bbob-biobj_f37_i14_d05 1.0", "bbob-biobj_f37_i14_d10 1.0", "bbob-biobj_f37_i14_d20 1.0", "bbob-biobj_f37_i14_d40 1.0", "bbob-biobj_f37_i15_d02 1.0", "bbob-biobj_f37_i15_d03 1.0", "bbob-biobj_f37_i15_d05 1.0", "bbob-biobj_f37_i15_d10 1.0", "bbob-biobj_f37_i15_d20 1.0", "bbob-biobj_f37_i15_d40 1.0", "bbob-biobj_f38_i01_d02 0.877156843506436", "bbob-biobj_f38_i01_d03 0.866660750237696", "bbob-biobj_f38_i01_d05 0.915603692393344", "bbob-biobj_f38_i01_d10 0.843099701921333", "bbob-biobj_f38_i01_d20 0.863967450160593", "bbob-biobj_f38_i01_d40 0.824400441198263", "bbob-biobj_f38_i02_d02 0.906613260227146", "bbob-biobj_f38_i02_d03 0.793052724368069", "bbob-biobj_f38_i02_d05 0.873182776085757", "bbob-biobj_f38_i02_d10 0.886942198063175", "bbob-biobj_f38_i02_d20 0.839510401884203", "bbob-biobj_f38_i02_d40 0.846825019783951", "bbob-biobj_f38_i03_d02 0.700820333532969", "bbob-biobj_f38_i03_d03 0.753316709210581", "bbob-biobj_f38_i03_d05 0.891034871722847", "bbob-biobj_f38_i03_d10 0.876129020211822", "bbob-biobj_f38_i03_d20 0.838138772336944", "bbob-biobj_f38_i03_d40 0.884522048799347", "bbob-biobj_f38_i04_d02 0.629304231237416", "bbob-biobj_f38_i04_d03 0.886856579988315", "bbob-biobj_f38_i04_d05 0.807520695902719", "bbob-biobj_f38_i04_d10 0.888020207269440", "bbob-biobj_f38_i04_d20 0.900010122202705", "bbob-biobj_f38_i04_d40 0.861091112317590", "bbob-biobj_f38_i05_d02 0.802625605762915", "bbob-biobj_f38_i05_d03 0.930559083395830", "bbob-biobj_f38_i05_d05 0.906957714667672", "bbob-biobj_f38_i05_d10 0.873582089195529", "bbob-biobj_f38_i05_d20 0.879901788772980", "bbob-biobj_f38_i05_d40 0.853941170248609", "bbob-biobj_f38_i06_d02 0.853438943384095", "bbob-biobj_f38_i06_d03 0.904605729077286", "bbob-biobj_f38_i06_d05 0.809818054476904", "bbob-biobj_f38_i06_d10 0.832582085732755", "bbob-biobj_f38_i06_d20 0.900769552940082", "bbob-biobj_f38_i06_d40 0.868311434245990", "bbob-biobj_f38_i07_d02 0.737929740773552", "bbob-biobj_f38_i07_d03 0.950678057069629", "bbob-biobj_f38_i07_d05 0.873532192074075", "bbob-biobj_f38_i07_d10 0.910023034171693", "bbob-biobj_f38_i07_d20 0.875502508826690", "bbob-biobj_f38_i07_d40 0.851028475183864", "bbob-biobj_f38_i08_d02 0.935955754649867", "bbob-biobj_f38_i08_d03 0.843236331688389", "bbob-biobj_f38_i08_d05 0.904238494052232", "bbob-biobj_f38_i08_d10 0.881791805051563", "bbob-biobj_f38_i08_d20 0.860665425596752", "bbob-biobj_f38_i08_d40 0.787794169083193", "bbob-biobj_f38_i09_d02 0.629808149332137", "bbob-biobj_f38_i09_d03 0.945175953384347", "bbob-biobj_f38_i09_d05 0.849833350256497", "bbob-biobj_f38_i09_d10 0.776135238303976", "bbob-biobj_f38_i09_d20 0.852273565562963", "bbob-biobj_f38_i09_d40 0.848647145774241", "bbob-biobj_f38_i10_d02 0.861762938112428", "bbob-biobj_f38_i10_d03 0.908446440795465", "bbob-biobj_f38_i10_d05 0.950441319887604", "bbob-biobj_f38_i10_d10 0.935265987677227", "bbob-biobj_f38_i10_d20 0.898876233462130", "bbob-biobj_f38_i10_d40 0.883444006163019", "bbob-biobj_f38_i11_d02 1.0", "bbob-biobj_f38_i11_d03 1.0", "bbob-biobj_f38_i11_d05 1.0", "bbob-biobj_f38_i11_d10 1.0", "bbob-biobj_f38_i11_d20 1.0", "bbob-biobj_f38_i11_d40 1.0", "bbob-biobj_f38_i12_d02 1.0", "bbob-biobj_f38_i12_d03 1.0", "bbob-biobj_f38_i12_d05 1.0", "bbob-biobj_f38_i12_d10 1.0", "bbob-biobj_f38_i12_d20 1.0", "bbob-biobj_f38_i12_d40 1.0", "bbob-biobj_f38_i13_d02 1.0", "bbob-biobj_f38_i13_d03 1.0", "bbob-biobj_f38_i13_d05 1.0", "bbob-biobj_f38_i13_d10 1.0", "bbob-biobj_f38_i13_d20 1.0", "bbob-biobj_f38_i13_d40 1.0", "bbob-biobj_f38_i14_d02 1.0", "bbob-biobj_f38_i14_d03 1.0", "bbob-biobj_f38_i14_d05 1.0", "bbob-biobj_f38_i14_d10 1.0", "bbob-biobj_f38_i14_d20 1.0", "bbob-biobj_f38_i14_d40 1.0", "bbob-biobj_f38_i15_d02 1.0", "bbob-biobj_f38_i15_d03 1.0", "bbob-biobj_f38_i15_d05 1.0", "bbob-biobj_f38_i15_d10 1.0", "bbob-biobj_f38_i15_d20 1.0", "bbob-biobj_f38_i15_d40 1.0", "bbob-biobj_f39_i01_d02 0.904226041231484", "bbob-biobj_f39_i01_d03 0.853573746699372", "bbob-biobj_f39_i01_d05 0.891207393990008", "bbob-biobj_f39_i01_d10 0.980211550827831", "bbob-biobj_f39_i01_d20 0.867119325562294", "bbob-biobj_f39_i01_d40 0.840147372120187", "bbob-biobj_f39_i02_d02 0.983637777721370", "bbob-biobj_f39_i02_d03 0.963324588533684", "bbob-biobj_f39_i02_d05 0.979070560169339", "bbob-biobj_f39_i02_d10 0.937097427270213", "bbob-biobj_f39_i02_d20 0.927055417557828", "bbob-biobj_f39_i02_d40 0.872981528838690", "bbob-biobj_f39_i03_d02 0.979201351160540", "bbob-biobj_f39_i03_d03 0.842277108051492", "bbob-biobj_f39_i03_d05 0.903051958458865", "bbob-biobj_f39_i03_d10 0.857805673867875", "bbob-biobj_f39_i03_d20 0.868170329189111", "bbob-biobj_f39_i03_d40 0.881480213422992", "bbob-biobj_f39_i04_d02 0.978307712731035", "bbob-biobj_f39_i04_d03 0.956663318916884", "bbob-biobj_f39_i04_d05 0.968094919360432", "bbob-biobj_f39_i04_d10 0.906017852170130", "bbob-biobj_f39_i04_d20 0.876867427446496", "bbob-biobj_f39_i04_d40 0.887145156397282", "bbob-biobj_f39_i05_d02 0.986275618889540", "bbob-biobj_f39_i05_d03 0.958680470699555", "bbob-biobj_f39_i05_d05 0.921040002155228", "bbob-biobj_f39_i05_d10 0.884172759606038", "bbob-biobj_f39_i05_d20 0.868533797925938", "bbob-biobj_f39_i05_d40 0.866860232364979", "bbob-biobj_f39_i06_d02 0.996952730131110", "bbob-biobj_f39_i06_d03 0.953947539293277", "bbob-biobj_f39_i06_d05 0.845030994798176", "bbob-biobj_f39_i06_d10 0.891285361180478", "bbob-biobj_f39_i06_d20 0.889771417560960", "bbob-biobj_f39_i06_d40 0.887168950613248", "bbob-biobj_f39_i07_d02 0.945548966985767", "bbob-biobj_f39_i07_d03 0.990685319479432", "bbob-biobj_f39_i07_d05 0.943155366283496", "bbob-biobj_f39_i07_d10 0.844355265733683", "bbob-biobj_f39_i07_d20 0.871126501732900", "bbob-biobj_f39_i07_d40 0.852384048442937", "bbob-biobj_f39_i08_d02 0.784535495200657", "bbob-biobj_f39_i08_d03 0.787172668018590", "bbob-biobj_f39_i08_d05 0.992843816462946", "bbob-biobj_f39_i08_d10 0.810579392397199", "bbob-biobj_f39_i08_d20 0.849764168665382", "bbob-biobj_f39_i08_d40 0.852499131000823", "bbob-biobj_f39_i09_d02 0.995638433562137", "bbob-biobj_f39_i09_d03 0.929891599701217", "bbob-biobj_f39_i09_d05 0.880536302208195", "bbob-biobj_f39_i09_d10 0.992998001826045", "bbob-biobj_f39_i09_d20 0.902078102558508", "bbob-biobj_f39_i09_d40 0.875004561638512", "bbob-biobj_f39_i10_d02 0.733472668213708", "bbob-biobj_f39_i10_d03 0.811074833803342", "bbob-biobj_f39_i10_d05 0.906479471448780", "bbob-biobj_f39_i10_d10 0.864345054451404", "bbob-biobj_f39_i10_d20 0.870539322571479", "bbob-biobj_f39_i10_d40 0.863108028491588", "bbob-biobj_f39_i11_d02 1.0", "bbob-biobj_f39_i11_d03 1.0", "bbob-biobj_f39_i11_d05 1.0", "bbob-biobj_f39_i11_d10 1.0", "bbob-biobj_f39_i11_d20 1.0", "bbob-biobj_f39_i11_d40 1.0", "bbob-biobj_f39_i12_d02 1.0", "bbob-biobj_f39_i12_d03 1.0", "bbob-biobj_f39_i12_d05 1.0", "bbob-biobj_f39_i12_d10 1.0", "bbob-biobj_f39_i12_d20 1.0", "bbob-biobj_f39_i12_d40 1.0", "bbob-biobj_f39_i13_d02 1.0", "bbob-biobj_f39_i13_d03 1.0", "bbob-biobj_f39_i13_d05 1.0", "bbob-biobj_f39_i13_d10 1.0", "bbob-biobj_f39_i13_d20 1.0", "bbob-biobj_f39_i13_d40 1.0", "bbob-biobj_f39_i14_d02 1.0", "bbob-biobj_f39_i14_d03 1.0", "bbob-biobj_f39_i14_d05 1.0", "bbob-biobj_f39_i14_d10 1.0", "bbob-biobj_f39_i14_d20 1.0", "bbob-biobj_f39_i14_d40 1.0", "bbob-biobj_f39_i15_d02 1.0", "bbob-biobj_f39_i15_d03 1.0", "bbob-biobj_f39_i15_d05 1.0", "bbob-biobj_f39_i15_d10 1.0", "bbob-biobj_f39_i15_d20 1.0", "bbob-biobj_f39_i15_d40 1.0", "bbob-biobj_f40_i01_d02 0.800161494536693", "bbob-biobj_f40_i01_d03 0.914340224327633", "bbob-biobj_f40_i01_d05 0.903892856481269", "bbob-biobj_f40_i01_d10 0.728473869257068", "bbob-biobj_f40_i01_d20 0.604365459168164", "bbob-biobj_f40_i01_d40 0.459307378153473", "bbob-biobj_f40_i02_d02 0.814422943992905", "bbob-biobj_f40_i02_d03 0.684385884079890", "bbob-biobj_f40_i02_d05 0.823853518802178", "bbob-biobj_f40_i02_d10 0.744541086997719", "bbob-biobj_f40_i02_d20 0.645764795297761", "bbob-biobj_f40_i02_d40 0.481198540236717", "bbob-biobj_f40_i03_d02 0.841354252700995", "bbob-biobj_f40_i03_d03 0.938507644904524", "bbob-biobj_f40_i03_d05 0.809182823776307", "bbob-biobj_f40_i03_d10 0.729687061912397", "bbob-biobj_f40_i03_d20 0.527197277062025", "bbob-biobj_f40_i03_d40 0.594846348813518", "bbob-biobj_f40_i04_d02 0.545132030408484", "bbob-biobj_f40_i04_d03 0.820237436915800", "bbob-biobj_f40_i04_d05 0.914046946523336", "bbob-biobj_f40_i04_d10 0.707855529463683", "bbob-biobj_f40_i04_d20 0.748188983914643", "bbob-biobj_f40_i04_d40 0.594662978172518", "bbob-biobj_f40_i05_d02 0.710070245743081", "bbob-biobj_f40_i05_d03 0.761269356172402", "bbob-biobj_f40_i05_d05 0.946428096409420", "bbob-biobj_f40_i05_d10 0.738294222442384", "bbob-biobj_f40_i05_d20 0.619037463430707", "bbob-biobj_f40_i05_d40 0.525261934519682", "bbob-biobj_f40_i06_d02 0.940602213917627", "bbob-biobj_f40_i06_d03 0.965600494584402", "bbob-biobj_f40_i06_d05 0.874266215663434", "bbob-biobj_f40_i06_d10 0.712568335159037", "bbob-biobj_f40_i06_d20 0.837228563460123", "bbob-biobj_f40_i06_d40 0.581922202344157", "bbob-biobj_f40_i07_d02 0.911307906444006", "bbob-biobj_f40_i07_d03 0.831573964105432", "bbob-biobj_f40_i07_d05 0.906195003329187", "bbob-biobj_f40_i07_d10 0.785546219384903", "bbob-biobj_f40_i07_d20 0.632231071888189", "bbob-biobj_f40_i07_d40 0.602091185443697", "bbob-biobj_f40_i08_d02 0.931109790953942", "bbob-biobj_f40_i08_d03 0.960523180912951", "bbob-biobj_f40_i08_d05 0.866076738417337", "bbob-biobj_f40_i08_d10 0.823347856120497", "bbob-biobj_f40_i08_d20 0.681358009427460", "bbob-biobj_f40_i08_d40 0.591788902137592", "bbob-biobj_f40_i09_d02 0.929776153108144", "bbob-biobj_f40_i09_d03 0.706659001418762", "bbob-biobj_f40_i09_d05 0.846713727987104", "bbob-biobj_f40_i09_d10 0.873474383102206", "bbob-biobj_f40_i09_d20 0.679130772298345", "bbob-biobj_f40_i09_d40 0.561415958634155", "bbob-biobj_f40_i10_d02 0.978837863487893", "bbob-biobj_f40_i10_d03 0.932807541759723", "bbob-biobj_f40_i10_d05 0.839724013939153", "bbob-biobj_f40_i10_d10 0.835128803151321", "bbob-biobj_f40_i10_d20 0.720869751773177", "bbob-biobj_f40_i10_d40 0.555111732383338", "bbob-biobj_f40_i11_d02 1.0", "bbob-biobj_f40_i11_d03 1.0", "bbob-biobj_f40_i11_d05 1.0", "bbob-biobj_f40_i11_d10 1.0", "bbob-biobj_f40_i11_d20 1.0", "bbob-biobj_f40_i11_d40 1.0", "bbob-biobj_f40_i12_d02 1.0", "bbob-biobj_f40_i12_d03 1.0", "bbob-biobj_f40_i12_d05 1.0", "bbob-biobj_f40_i12_d10 1.0", "bbob-biobj_f40_i12_d20 1.0", "bbob-biobj_f40_i12_d40 1.0", "bbob-biobj_f40_i13_d02 1.0", "bbob-biobj_f40_i13_d03 1.0", "bbob-biobj_f40_i13_d05 1.0", "bbob-biobj_f40_i13_d10 1.0", "bbob-biobj_f40_i13_d20 1.0", "bbob-biobj_f40_i13_d40 1.0", "bbob-biobj_f40_i14_d02 1.0", "bbob-biobj_f40_i14_d03 1.0", "bbob-biobj_f40_i14_d05 1.0", "bbob-biobj_f40_i14_d10 1.0", "bbob-biobj_f40_i14_d20 1.0", "bbob-biobj_f40_i14_d40 1.0", "bbob-biobj_f40_i15_d02 1.0", "bbob-biobj_f40_i15_d03 1.0", "bbob-biobj_f40_i15_d05 1.0", "bbob-biobj_f40_i15_d10 1.0", "bbob-biobj_f40_i15_d20 1.0", "bbob-biobj_f40_i15_d40 1.0", "bbob-biobj_f41_i01_d02 0.822033307817962", "bbob-biobj_f41_i01_d03 0.885738075689406", "bbob-biobj_f41_i01_d05 0.975610197116841", "bbob-biobj_f41_i01_d10 0.976594721097833", "bbob-biobj_f41_i01_d20 0.971528564301038", "bbob-biobj_f41_i01_d40 0.965160551572485", "bbob-biobj_f41_i02_d02 0.914732085156474", "bbob-biobj_f41_i02_d03 0.923052605100394", "bbob-biobj_f41_i02_d05 0.924070436138730", "bbob-biobj_f41_i02_d10 0.931074251640139", "bbob-biobj_f41_i02_d20 0.981609407937339", "bbob-biobj_f41_i02_d40 0.951243795129035", "bbob-biobj_f41_i03_d02 0.853587922588129", "bbob-biobj_f41_i03_d03 0.914428027190248", "bbob-biobj_f41_i03_d05 0.974030934514910", "bbob-biobj_f41_i03_d10 0.872008403001157", "bbob-biobj_f41_i03_d20 0.941022611913163", "bbob-biobj_f41_i03_d40 0.954750241529540", "bbob-biobj_f41_i04_d02 0.512373847991457", "bbob-biobj_f41_i04_d03 0.695238799108705", "bbob-biobj_f41_i04_d05 0.889989722498128", "bbob-biobj_f41_i04_d10 0.951237336242326", "bbob-biobj_f41_i04_d20 0.913071583840937", "bbob-biobj_f41_i04_d40 0.980678709328714", "bbob-biobj_f41_i05_d02 0.821558599298996", "bbob-biobj_f41_i05_d03 0.822872733697532", "bbob-biobj_f41_i05_d05 0.876473147087528", "bbob-biobj_f41_i05_d10 0.966128724260189", "bbob-biobj_f41_i05_d20 0.924564290390755", "bbob-biobj_f41_i05_d40 0.951503528251981", "bbob-biobj_f41_i06_d02 0.767877747901371", "bbob-biobj_f41_i06_d03 0.896826333117921", "bbob-biobj_f41_i06_d05 0.792741819695997", "bbob-biobj_f41_i06_d10 0.893687033801400", "bbob-biobj_f41_i06_d20 0.963777758984029", "bbob-biobj_f41_i06_d40 0.958296705553301", "bbob-biobj_f41_i07_d02 0.935919502696871", "bbob-biobj_f41_i07_d03 0.915129505092837", "bbob-biobj_f41_i07_d05 0.922633056935486", "bbob-biobj_f41_i07_d10 0.850434631393912", "bbob-biobj_f41_i07_d20 0.901424361629473", "bbob-biobj_f41_i07_d40 0.978178007181946", "bbob-biobj_f41_i08_d02 0.948612145014462", "bbob-biobj_f41_i08_d03 0.818796188016961", "bbob-biobj_f41_i08_d05 0.967973190423149", "bbob-biobj_f41_i08_d10 0.823557579779486", "bbob-biobj_f41_i08_d20 0.958607082914751", "bbob-biobj_f41_i08_d40 0.945546529248454", "bbob-biobj_f41_i09_d02 0.784344360812359", "bbob-biobj_f41_i09_d03 0.946504928270416", "bbob-biobj_f41_i09_d05 0.824379078684278", "bbob-biobj_f41_i09_d10 0.938668422809685", "bbob-biobj_f41_i09_d20 0.980249890151125", "bbob-biobj_f41_i09_d40 0.949698682084359", "bbob-biobj_f41_i10_d02 0.636649862585077", "bbob-biobj_f41_i10_d03 0.839207215249613", "bbob-biobj_f41_i10_d05 0.911512650028684", "bbob-biobj_f41_i10_d10 0.875925359818394", "bbob-biobj_f41_i10_d20 0.976035237647000", "bbob-biobj_f41_i10_d40 0.953358560472507", "bbob-biobj_f41_i11_d02 1.0", "bbob-biobj_f41_i11_d03 1.0", "bbob-biobj_f41_i11_d05 1.0", "bbob-biobj_f41_i11_d10 1.0", "bbob-biobj_f41_i11_d20 1.0", "bbob-biobj_f41_i11_d40 1.0", "bbob-biobj_f41_i12_d02 1.0", "bbob-biobj_f41_i12_d03 1.0", "bbob-biobj_f41_i12_d05 1.0", "bbob-biobj_f41_i12_d10 1.0", "bbob-biobj_f41_i12_d20 1.0", "bbob-biobj_f41_i12_d40 1.0", "bbob-biobj_f41_i13_d02 1.0", "bbob-biobj_f41_i13_d03 1.0", "bbob-biobj_f41_i13_d05 1.0", "bbob-biobj_f41_i13_d10 1.0", "bbob-biobj_f41_i13_d20 1.0", "bbob-biobj_f41_i13_d40 1.0", "bbob-biobj_f41_i14_d02 1.0", "bbob-biobj_f41_i14_d03 1.0", "bbob-biobj_f41_i14_d05 1.0", "bbob-biobj_f41_i14_d10 1.0", "bbob-biobj_f41_i14_d20 1.0", "bbob-biobj_f41_i14_d40 1.0", "bbob-biobj_f41_i15_d02 1.0", "bbob-biobj_f41_i15_d03 1.0", "bbob-biobj_f41_i15_d05 1.0", "bbob-biobj_f41_i15_d10 1.0", "bbob-biobj_f41_i15_d20 1.0", "bbob-biobj_f41_i15_d40 1.0", "bbob-biobj_f42_i01_d02 0.948464970307738", "bbob-biobj_f42_i01_d03 0.964394084499346", "bbob-biobj_f42_i01_d05 0.935365033796674", "bbob-biobj_f42_i01_d10 0.943128312717771", "bbob-biobj_f42_i01_d20 0.963643732031699", "bbob-biobj_f42_i01_d40 0.965657560445270", "bbob-biobj_f42_i02_d02 0.938890033676112", "bbob-biobj_f42_i02_d03 0.896774246071198", "bbob-biobj_f42_i02_d05 0.918221443136859", "bbob-biobj_f42_i02_d10 0.933845341832528", "bbob-biobj_f42_i02_d20 0.934284063910811", "bbob-biobj_f42_i02_d40 0.930178208511253", "bbob-biobj_f42_i03_d02 0.813087641534480", "bbob-biobj_f42_i03_d03 0.936776356752616", "bbob-biobj_f42_i03_d05 0.860970332418219", "bbob-biobj_f42_i03_d10 0.912972610994230", "bbob-biobj_f42_i03_d20 0.940879346362087", "bbob-biobj_f42_i03_d40 0.938604902807888", "bbob-biobj_f42_i04_d02 0.882606100873865", "bbob-biobj_f42_i04_d03 0.956287162433495", "bbob-biobj_f42_i04_d05 0.929527509865346", "bbob-biobj_f42_i04_d10 0.870792113484450", "bbob-biobj_f42_i04_d20 0.953784523505501", "bbob-biobj_f42_i04_d40 0.917639525057008", "bbob-biobj_f42_i05_d02 0.980207584330832", "bbob-biobj_f42_i05_d03 0.933372828275547", "bbob-biobj_f42_i05_d05 0.970898927457852", "bbob-biobj_f42_i05_d10 0.914627662372202", "bbob-biobj_f42_i05_d20 0.957373316635058", "bbob-biobj_f42_i05_d40 0.953427715660606", "bbob-biobj_f42_i06_d02 0.948846761282047", "bbob-biobj_f42_i06_d03 0.887124002044022", "bbob-biobj_f42_i06_d05 0.935908567200754", "bbob-biobj_f42_i06_d10 0.944780454333613", "bbob-biobj_f42_i06_d20 0.949590672140516", "bbob-biobj_f42_i06_d40 0.923157629370350", "bbob-biobj_f42_i07_d02 0.973656420019213", "bbob-biobj_f42_i07_d03 0.912513948568898", "bbob-biobj_f42_i07_d05 0.955518741476096", "bbob-biobj_f42_i07_d10 0.896366744021679", "bbob-biobj_f42_i07_d20 0.966419103159295", "bbob-biobj_f42_i07_d40 0.938747933877435", "bbob-biobj_f42_i08_d02 0.917270613774874", "bbob-biobj_f42_i08_d03 0.966076886108044", "bbob-biobj_f42_i08_d05 0.947996999410747", "bbob-biobj_f42_i08_d10 0.954771017540515", "bbob-biobj_f42_i08_d20 0.956942184799609", "bbob-biobj_f42_i08_d40 0.905355950827379", "bbob-biobj_f42_i09_d02 0.966954242919577", "bbob-biobj_f42_i09_d03 0.965253588182618", "bbob-biobj_f42_i09_d05 0.917762969301912", "bbob-biobj_f42_i09_d10 0.927523147148266", "bbob-biobj_f42_i09_d20 0.963016275684763", "bbob-biobj_f42_i09_d40 0.903749434997353", "bbob-biobj_f42_i10_d02 0.968069449243095", "bbob-biobj_f42_i10_d03 0.958413404226314", "bbob-biobj_f42_i10_d05 0.931477412814219", "bbob-biobj_f42_i10_d10 0.946346732258908", "bbob-biobj_f42_i10_d20 0.967523989495793", "bbob-biobj_f42_i10_d40 0.870374219537932", "bbob-biobj_f42_i11_d02 1.0", "bbob-biobj_f42_i11_d03 1.0", "bbob-biobj_f42_i11_d05 1.0", "bbob-biobj_f42_i11_d10 1.0", "bbob-biobj_f42_i11_d20 1.0", "bbob-biobj_f42_i11_d40 1.0", "bbob-biobj_f42_i12_d02 1.0", "bbob-biobj_f42_i12_d03 1.0", "bbob-biobj_f42_i12_d05 1.0", "bbob-biobj_f42_i12_d10 1.0", "bbob-biobj_f42_i12_d20 1.0", "bbob-biobj_f42_i12_d40 1.0", "bbob-biobj_f42_i13_d02 1.0", "bbob-biobj_f42_i13_d03 1.0", "bbob-biobj_f42_i13_d05 1.0", "bbob-biobj_f42_i13_d10 1.0", "bbob-biobj_f42_i13_d20 1.0", "bbob-biobj_f42_i13_d40 1.0", "bbob-biobj_f42_i14_d02 1.0", "bbob-biobj_f42_i14_d03 1.0", "bbob-biobj_f42_i14_d05 1.0", "bbob-biobj_f42_i14_d10 1.0", "bbob-biobj_f42_i14_d20 1.0", "bbob-biobj_f42_i14_d40 1.0", "bbob-biobj_f42_i15_d02 1.0", "bbob-biobj_f42_i15_d03 1.0", "bbob-biobj_f42_i15_d05 1.0", "bbob-biobj_f42_i15_d10 1.0", "bbob-biobj_f42_i15_d20 1.0", "bbob-biobj_f42_i15_d40 1.0", "bbob-biobj_f43_i01_d02 0.806235943768491", "bbob-biobj_f43_i01_d03 0.961033203638514", "bbob-biobj_f43_i01_d05 0.898217378671209", "bbob-biobj_f43_i01_d10 0.993264379743037", "bbob-biobj_f43_i01_d20 0.940948652738029", "bbob-biobj_f43_i01_d40 0.983857298283952", "bbob-biobj_f43_i02_d02 0.928981208319704", "bbob-biobj_f43_i02_d03 0.900499905679907", "bbob-biobj_f43_i02_d05 0.953668359506045", "bbob-biobj_f43_i02_d10 0.943994958453547", "bbob-biobj_f43_i02_d20 0.958781146064377", "bbob-biobj_f43_i02_d40 0.975597556762495", "bbob-biobj_f43_i03_d02 0.703325658552559", "bbob-biobj_f43_i03_d03 0.738244890811554", "bbob-biobj_f43_i03_d05 0.988642280121935", "bbob-biobj_f43_i03_d10 0.982688206261094", "bbob-biobj_f43_i03_d20 0.973220372898028", "bbob-biobj_f43_i03_d40 0.944180440428360", "bbob-biobj_f43_i04_d02 0.955511395205191", "bbob-biobj_f43_i04_d03 0.898306002923848", "bbob-biobj_f43_i04_d05 0.945720250592969", "bbob-biobj_f43_i04_d10 0.963172283120474", "bbob-biobj_f43_i04_d20 0.966626097868362", "bbob-biobj_f43_i04_d40 0.966946756102161", "bbob-biobj_f43_i05_d02 0.527808863109296", "bbob-biobj_f43_i05_d03 0.967872270114991", "bbob-biobj_f43_i05_d05 0.902672633183536", "bbob-biobj_f43_i05_d10 0.969216100402235", "bbob-biobj_f43_i05_d20 0.979575039404802", "bbob-biobj_f43_i05_d40 0.966070621705196", "bbob-biobj_f43_i06_d02 0.913935322722399", "bbob-biobj_f43_i06_d03 0.914558564989063", "bbob-biobj_f43_i06_d05 0.973356892013738", "bbob-biobj_f43_i06_d10 0.932387469095507", "bbob-biobj_f43_i06_d20 0.961581182505789", "bbob-biobj_f43_i06_d40 0.918320667845127", "bbob-biobj_f43_i07_d02 0.901301713558448", "bbob-biobj_f43_i07_d03 0.882128040824323", "bbob-biobj_f43_i07_d05 0.963346626771001", "bbob-biobj_f43_i07_d10 0.985079491142971", "bbob-biobj_f43_i07_d20 0.968594673624419", "bbob-biobj_f43_i07_d40 0.950843373521710", "bbob-biobj_f43_i08_d02 0.701553018378812", "bbob-biobj_f43_i08_d03 0.969205249181385", "bbob-biobj_f43_i08_d05 0.952748332982779", "bbob-biobj_f43_i08_d10 0.987278435011227", "bbob-biobj_f43_i08_d20 0.976546324177090", "bbob-biobj_f43_i08_d40 0.957306668204760", "bbob-biobj_f43_i09_d02 0.862739669961301", "bbob-biobj_f43_i09_d03 0.862473364865682", "bbob-biobj_f43_i09_d05 0.990618031218341", "bbob-biobj_f43_i09_d10 0.979466959858262", "bbob-biobj_f43_i09_d20 0.972941110626848", "bbob-biobj_f43_i09_d40 0.855701729006963", "bbob-biobj_f43_i10_d02 0.848752159713627", "bbob-biobj_f43_i10_d03 0.820261488990871", "bbob-biobj_f43_i10_d05 0.940942353330467", "bbob-biobj_f43_i10_d10 0.959250198964312", "bbob-biobj_f43_i10_d20 0.982486894377839", "bbob-biobj_f43_i10_d40 0.966505095865004", "bbob-biobj_f43_i11_d02 1.0", "bbob-biobj_f43_i11_d03 1.0", "bbob-biobj_f43_i11_d05 1.0", "bbob-biobj_f43_i11_d10 1.0", "bbob-biobj_f43_i11_d20 1.0", "bbob-biobj_f43_i11_d40 1.0", "bbob-biobj_f43_i12_d02 1.0", "bbob-biobj_f43_i12_d03 1.0", "bbob-biobj_f43_i12_d05 1.0", "bbob-biobj_f43_i12_d10 1.0", "bbob-biobj_f43_i12_d20 1.0", "bbob-biobj_f43_i12_d40 1.0", "bbob-biobj_f43_i13_d02 1.0", "bbob-biobj_f43_i13_d03 1.0", "bbob-biobj_f43_i13_d05 1.0", "bbob-biobj_f43_i13_d10 1.0", "bbob-biobj_f43_i13_d20 1.0", "bbob-biobj_f43_i13_d40 1.0", "bbob-biobj_f43_i14_d02 1.0", "bbob-biobj_f43_i14_d03 1.0", "bbob-biobj_f43_i14_d05 1.0", "bbob-biobj_f43_i14_d10 1.0", "bbob-biobj_f43_i14_d20 1.0", "bbob-biobj_f43_i14_d40 1.0", "bbob-biobj_f43_i15_d02 1.0", "bbob-biobj_f43_i15_d03 1.0", "bbob-biobj_f43_i15_d05 1.0", "bbob-biobj_f43_i15_d10 1.0", "bbob-biobj_f43_i15_d20 1.0", "bbob-biobj_f43_i15_d40 1.0", "bbob-biobj_f44_i01_d02 0.990000595892640", "bbob-biobj_f44_i01_d03 0.989550585423686", "bbob-biobj_f44_i01_d05 0.993557596127607", "bbob-biobj_f44_i01_d10 0.977883915649076", "bbob-biobj_f44_i01_d20 0.989486565699468", "bbob-biobj_f44_i01_d40 0.992108571259436", "bbob-biobj_f44_i02_d02 0.996682463157142", "bbob-biobj_f44_i02_d03 0.744916519935829", "bbob-biobj_f44_i02_d05 0.951282424534247", "bbob-biobj_f44_i02_d10 0.975039053298177", "bbob-biobj_f44_i02_d20 0.984828537903076", "bbob-biobj_f44_i02_d40 0.981720374250759", "bbob-biobj_f44_i03_d02 0.982516671080787", "bbob-biobj_f44_i03_d03 0.988830152101750", "bbob-biobj_f44_i03_d05 0.958340799855323", "bbob-biobj_f44_i03_d10 0.978364069931773", "bbob-biobj_f44_i03_d20 0.977809886620423", "bbob-biobj_f44_i03_d40 0.982023087875918", "bbob-biobj_f44_i04_d02 0.975372409782800", "bbob-biobj_f44_i04_d03 0.927814333720962", "bbob-biobj_f44_i04_d05 0.965365808549549", "bbob-biobj_f44_i04_d10 0.987132635647892", "bbob-biobj_f44_i04_d20 0.984400141874121", "bbob-biobj_f44_i04_d40 0.980545459880095", "bbob-biobj_f44_i05_d02 0.992233483129565", "bbob-biobj_f44_i05_d03 0.972161392354809", "bbob-biobj_f44_i05_d05 0.966253887504727", "bbob-biobj_f44_i05_d10 0.972827697321209", "bbob-biobj_f44_i05_d20 0.974162510436130", "bbob-biobj_f44_i05_d40 0.981283407181326", "bbob-biobj_f44_i06_d02 0.955968657960968", "bbob-biobj_f44_i06_d03 0.938348236403148", "bbob-biobj_f44_i06_d05 0.926885126651733", "bbob-biobj_f44_i06_d10 0.970964654710173", "bbob-biobj_f44_i06_d20 0.981304079255180", "bbob-biobj_f44_i06_d40 0.989117615203209", "bbob-biobj_f44_i07_d02 0.982852507134425", "bbob-biobj_f44_i07_d03 0.968227402387315", "bbob-biobj_f44_i07_d05 0.996067968789636", "bbob-biobj_f44_i07_d10 0.961750345752744", "bbob-biobj_f44_i07_d20 0.936897342317752", "bbob-biobj_f44_i07_d40 0.987908927174219", "bbob-biobj_f44_i08_d02 0.881906919128662", "bbob-biobj_f44_i08_d03 0.950801778125565", "bbob-biobj_f44_i08_d05 0.982836821697150", "bbob-biobj_f44_i08_d10 0.976118709915315", "bbob-biobj_f44_i08_d20 0.985350032800047", "bbob-biobj_f44_i08_d40 0.981973075253610", "bbob-biobj_f44_i09_d02 0.974727927786401", "bbob-biobj_f44_i09_d03 0.993236716308686", "bbob-biobj_f44_i09_d05 0.952963758145309", "bbob-biobj_f44_i09_d10 0.966612414910251", "bbob-biobj_f44_i09_d20 0.996512281009713", "bbob-biobj_f44_i09_d40 0.991905893016871", "bbob-biobj_f44_i10_d02 0.742777154829549", "bbob-biobj_f44_i10_d03 0.788223027934632", "bbob-biobj_f44_i10_d05 0.997556014152405", "bbob-biobj_f44_i10_d10 0.974890816409705", "bbob-biobj_f44_i10_d20 0.961984655728772", "bbob-biobj_f44_i10_d40 0.984830506106585", "bbob-biobj_f44_i11_d02 1.0", "bbob-biobj_f44_i11_d03 1.0", "bbob-biobj_f44_i11_d05 1.0", "bbob-biobj_f44_i11_d10 1.0", "bbob-biobj_f44_i11_d20 1.0", "bbob-biobj_f44_i11_d40 1.0", "bbob-biobj_f44_i12_d02 1.0", "bbob-biobj_f44_i12_d03 1.0", "bbob-biobj_f44_i12_d05 1.0", "bbob-biobj_f44_i12_d10 1.0", "bbob-biobj_f44_i12_d20 1.0", "bbob-biobj_f44_i12_d40 1.0", "bbob-biobj_f44_i13_d02 1.0", "bbob-biobj_f44_i13_d03 1.0", "bbob-biobj_f44_i13_d05 1.0", "bbob-biobj_f44_i13_d10 1.0", "bbob-biobj_f44_i13_d20 1.0", "bbob-biobj_f44_i13_d40 1.0", "bbob-biobj_f44_i14_d02 1.0", "bbob-biobj_f44_i14_d03 1.0", "bbob-biobj_f44_i14_d05 1.0", "bbob-biobj_f44_i14_d10 1.0", "bbob-biobj_f44_i14_d20 1.0", "bbob-biobj_f44_i14_d40 1.0", "bbob-biobj_f44_i15_d02 1.0", "bbob-biobj_f44_i15_d03 1.0", "bbob-biobj_f44_i15_d05 1.0", "bbob-biobj_f44_i15_d10 1.0", "bbob-biobj_f44_i15_d20 1.0", "bbob-biobj_f44_i15_d40 1.0", "bbob-biobj_f45_i01_d02 0.951720778563444", "bbob-biobj_f45_i01_d03 0.828188774139641", "bbob-biobj_f45_i01_d05 0.917829241994999", "bbob-biobj_f45_i01_d10 0.962469633903938", "bbob-biobj_f45_i01_d20 0.916304775084538", "bbob-biobj_f45_i01_d40 0.785675041892531", "bbob-biobj_f45_i02_d02 0.797328068544284", "bbob-biobj_f45_i02_d03 0.976528938897792", "bbob-biobj_f45_i02_d05 0.892698290420688", "bbob-biobj_f45_i02_d10 0.937581779101428", "bbob-biobj_f45_i02_d20 0.852142004666287", "bbob-biobj_f45_i02_d40 0.842088275967232", "bbob-biobj_f45_i03_d02 0.729950961654969", "bbob-biobj_f45_i03_d03 0.953106329190224", "bbob-biobj_f45_i03_d05 0.953232088542056", "bbob-biobj_f45_i03_d10 0.939036646431562", "bbob-biobj_f45_i03_d20 0.945642771814716", "bbob-biobj_f45_i03_d40 0.870390002108839", "bbob-biobj_f45_i04_d02 0.962996637246124", "bbob-biobj_f45_i04_d03 0.954354478584170", "bbob-biobj_f45_i04_d05 0.946648046778442", "bbob-biobj_f45_i04_d10 0.932574403452305", "bbob-biobj_f45_i04_d20 0.929155103399460", "bbob-biobj_f45_i04_d40 0.920627283625365", "bbob-biobj_f45_i05_d02 0.924715343675183", "bbob-biobj_f45_i05_d03 0.942411861147468", "bbob-biobj_f45_i05_d05 0.909309881321831", "bbob-biobj_f45_i05_d10 0.875483160778896", "bbob-biobj_f45_i05_d20 0.913250748248638", "bbob-biobj_f45_i05_d40 0.885145586412210", "bbob-biobj_f45_i06_d02 0.904151517470615", "bbob-biobj_f45_i06_d03 0.926797766252780", "bbob-biobj_f45_i06_d05 0.908617558889420", "bbob-biobj_f45_i06_d10 0.974109498807929", "bbob-biobj_f45_i06_d20 0.850302309800901", "bbob-biobj_f45_i06_d40 0.845186435780144", "bbob-biobj_f45_i07_d02 0.436539479783815", "bbob-biobj_f45_i07_d03 0.967414649977868", "bbob-biobj_f45_i07_d05 0.948236042645629", "bbob-biobj_f45_i07_d10 0.960582199925476", "bbob-biobj_f45_i07_d20 0.868675710134838", "bbob-biobj_f45_i07_d40 0.882136275227096", "bbob-biobj_f45_i08_d02 0.780758545153498", "bbob-biobj_f45_i08_d03 0.986355057252456", "bbob-biobj_f45_i08_d05 0.971723931694909", "bbob-biobj_f45_i08_d10 0.895507628923304", "bbob-biobj_f45_i08_d20 0.920745397390923", "bbob-biobj_f45_i08_d40 0.935690944028907", "bbob-biobj_f45_i09_d02 0.717458466488061", "bbob-biobj_f45_i09_d03 0.983845938391830", "bbob-biobj_f45_i09_d05 0.661805959381686", "bbob-biobj_f45_i09_d10 0.944316649954434", "bbob-biobj_f45_i09_d20 0.879514185323017", "bbob-biobj_f45_i09_d40 0.874909222653475", "bbob-biobj_f45_i10_d02 0.963315916430492", "bbob-biobj_f45_i10_d03 0.911574142441829", "bbob-biobj_f45_i10_d05 0.888738706562716", "bbob-biobj_f45_i10_d10 0.921140534269231", "bbob-biobj_f45_i10_d20 0.919843625609510", "bbob-biobj_f45_i10_d40 0.862108899490471", "bbob-biobj_f45_i11_d02 1.0", "bbob-biobj_f45_i11_d03 1.0", "bbob-biobj_f45_i11_d05 1.0", "bbob-biobj_f45_i11_d10 1.0", "bbob-biobj_f45_i11_d20 1.0", "bbob-biobj_f45_i11_d40 1.0", "bbob-biobj_f45_i12_d02 1.0", "bbob-biobj_f45_i12_d03 1.0", "bbob-biobj_f45_i12_d05 1.0", "bbob-biobj_f45_i12_d10 1.0", "bbob-biobj_f45_i12_d20 1.0", "bbob-biobj_f45_i12_d40 1.0", "bbob-biobj_f45_i13_d02 1.0", "bbob-biobj_f45_i13_d03 1.0", "bbob-biobj_f45_i13_d05 1.0", "bbob-biobj_f45_i13_d10 1.0", "bbob-biobj_f45_i13_d20 1.0", "bbob-biobj_f45_i13_d40 1.0", "bbob-biobj_f45_i14_d02 1.0", "bbob-biobj_f45_i14_d03 1.0", "bbob-biobj_f45_i14_d05 1.0", "bbob-biobj_f45_i14_d10 1.0", "bbob-biobj_f45_i14_d20 1.0", "bbob-biobj_f45_i14_d40 1.0", "bbob-biobj_f45_i15_d02 1.0", "bbob-biobj_f45_i15_d03 1.0", "bbob-biobj_f45_i15_d05 1.0", "bbob-biobj_f45_i15_d10 1.0", "bbob-biobj_f45_i15_d20 1.0", "bbob-biobj_f45_i15_d40 1.0", "bbob-biobj_f46_i01_d02 0.761066104646006", "bbob-biobj_f46_i01_d03 0.903455657283090", "bbob-biobj_f46_i01_d05 0.947155255052143", "bbob-biobj_f46_i01_d10 0.919954436328063", "bbob-biobj_f46_i01_d20 0.945598418627500", "bbob-biobj_f46_i01_d40 0.854396387596525", "bbob-biobj_f46_i02_d02 0.848797542826665", "bbob-biobj_f46_i02_d03 0.962407933268246", "bbob-biobj_f46_i02_d05 0.903214891429348", "bbob-biobj_f46_i02_d10 0.909587131133991", "bbob-biobj_f46_i02_d20 0.966860028053004", "bbob-biobj_f46_i02_d40 0.870595248224547", "bbob-biobj_f46_i03_d02 0.924046984238807", "bbob-biobj_f46_i03_d03 0.899715614728189", "bbob-biobj_f46_i03_d05 0.893336832760998", "bbob-biobj_f46_i03_d10 0.895450896546758", "bbob-biobj_f46_i03_d20 0.927204345279249", "bbob-biobj_f46_i03_d40 0.891228213110070", "bbob-biobj_f46_i04_d02 0.934267008284511", "bbob-biobj_f46_i04_d03 0.892788551956789", "bbob-biobj_f46_i04_d05 0.909706115828279", "bbob-biobj_f46_i04_d10 0.908484577426152", "bbob-biobj_f46_i04_d20 0.942407577748297", "bbob-biobj_f46_i04_d40 0.945168681141010", "bbob-biobj_f46_i05_d02 0.925925620986090", "bbob-biobj_f46_i05_d03 0.846193701948347", "bbob-biobj_f46_i05_d05 0.942645632857587", "bbob-biobj_f46_i05_d10 0.901215565547812", "bbob-biobj_f46_i05_d20 0.908885610056779", "bbob-biobj_f46_i05_d40 0.922071009546490", "bbob-biobj_f46_i06_d02 0.860734962124473", "bbob-biobj_f46_i06_d03 0.909512574555902", "bbob-biobj_f46_i06_d05 0.912395540418240", "bbob-biobj_f46_i06_d10 0.945879219145466", "bbob-biobj_f46_i06_d20 0.934417784485787", "bbob-biobj_f46_i06_d40 0.896824860378772", "bbob-biobj_f46_i07_d02 0.839634628439667", "bbob-biobj_f46_i07_d03 0.924631055190915", "bbob-biobj_f46_i07_d05 0.905744579684656", "bbob-biobj_f46_i07_d10 0.936001504422621", "bbob-biobj_f46_i07_d20 0.931713066453506", "bbob-biobj_f46_i07_d40 0.844508631054395", "bbob-biobj_f46_i08_d02 0.936215978446970", "bbob-biobj_f46_i08_d03 0.935361352163704", "bbob-biobj_f46_i08_d05 0.930770425017802", "bbob-biobj_f46_i08_d10 0.940363563270556", "bbob-biobj_f46_i08_d20 0.901716131910073", "bbob-biobj_f46_i08_d40 0.876036789920220", "bbob-biobj_f46_i09_d02 0.883558016602446", "bbob-biobj_f46_i09_d03 0.961217059863281", "bbob-biobj_f46_i09_d05 0.920512705062287", "bbob-biobj_f46_i09_d10 0.915637929973320", "bbob-biobj_f46_i09_d20 0.919588637937134", "bbob-biobj_f46_i09_d40 0.832647572651101", "bbob-biobj_f46_i10_d02 0.881302389490815", "bbob-biobj_f46_i10_d03 0.912389800404993", "bbob-biobj_f46_i10_d05 0.950846397090625", "bbob-biobj_f46_i10_d10 0.940838283358756", "bbob-biobj_f46_i10_d20 0.957739921106021", "bbob-biobj_f46_i10_d40 0.866216426397061", "bbob-biobj_f46_i11_d02 1.0", "bbob-biobj_f46_i11_d03 1.0", "bbob-biobj_f46_i11_d05 1.0", "bbob-biobj_f46_i11_d10 1.0", "bbob-biobj_f46_i11_d20 1.0", "bbob-biobj_f46_i11_d40 1.0", "bbob-biobj_f46_i12_d02 1.0", "bbob-biobj_f46_i12_d03 1.0", "bbob-biobj_f46_i12_d05 1.0", "bbob-biobj_f46_i12_d10 1.0", "bbob-biobj_f46_i12_d20 1.0", "bbob-biobj_f46_i12_d40 1.0", "bbob-biobj_f46_i13_d02 1.0", "bbob-biobj_f46_i13_d03 1.0", "bbob-biobj_f46_i13_d05 1.0", "bbob-biobj_f46_i13_d10 1.0", "bbob-biobj_f46_i13_d20 1.0", "bbob-biobj_f46_i13_d40 1.0", "bbob-biobj_f46_i14_d02 1.0", "bbob-biobj_f46_i14_d03 1.0", "bbob-biobj_f46_i14_d05 1.0", "bbob-biobj_f46_i14_d10 1.0", "bbob-biobj_f46_i14_d20 1.0", "bbob-biobj_f46_i14_d40 1.0", "bbob-biobj_f46_i15_d02 1.0", "bbob-biobj_f46_i15_d03 1.0", "bbob-biobj_f46_i15_d05 1.0", "bbob-biobj_f46_i15_d10 1.0", "bbob-biobj_f46_i15_d20 1.0", "bbob-biobj_f46_i15_d40 1.0", "bbob-biobj_f47_i01_d02 0.712272111791356", "bbob-biobj_f47_i01_d03 0.868966645319236", "bbob-biobj_f47_i01_d05 0.942803986114097", "bbob-biobj_f47_i01_d10 0.958595956960254", "bbob-biobj_f47_i01_d20 0.956311217436412", "bbob-biobj_f47_i01_d40 0.897754675221834", "bbob-biobj_f47_i02_d02 0.939177930209109", "bbob-biobj_f47_i02_d03 0.954707497948604", "bbob-biobj_f47_i02_d05 0.930188556236347", "bbob-biobj_f47_i02_d10 0.907412646523823", "bbob-biobj_f47_i02_d20 0.957628844998111", "bbob-biobj_f47_i02_d40 0.897070275922110", "bbob-biobj_f47_i03_d02 0.739793311026710", "bbob-biobj_f47_i03_d03 0.961193348929021", "bbob-biobj_f47_i03_d05 0.976761772334493", "bbob-biobj_f47_i03_d10 0.947746576774328", "bbob-biobj_f47_i03_d20 0.948952272573593", "bbob-biobj_f47_i03_d40 0.910206700506767", "bbob-biobj_f47_i04_d02 0.779551399583096", "bbob-biobj_f47_i04_d03 0.940080659208807", "bbob-biobj_f47_i04_d05 0.923138847386112", "bbob-biobj_f47_i04_d10 0.954607220664130", "bbob-biobj_f47_i04_d20 0.950790324701075", "bbob-biobj_f47_i04_d40 0.959029969929543", "bbob-biobj_f47_i05_d02 0.944459738086973", "bbob-biobj_f47_i05_d03 0.910114477537581", "bbob-biobj_f47_i05_d05 0.870342540144716", "bbob-biobj_f47_i05_d10 0.976767183928314", "bbob-biobj_f47_i05_d20 0.925275080789924", "bbob-biobj_f47_i05_d40 0.960071913752091", "bbob-biobj_f47_i06_d02 0.844227429918601", "bbob-biobj_f47_i06_d03 0.970327206332497", "bbob-biobj_f47_i06_d05 0.923220981670475", "bbob-biobj_f47_i06_d10 0.958667740503491", "bbob-biobj_f47_i06_d20 0.963271559272385", "bbob-biobj_f47_i06_d40 0.889244323840422", "bbob-biobj_f47_i07_d02 0.868593925185596", "bbob-biobj_f47_i07_d03 0.831195707749476", "bbob-biobj_f47_i07_d05 0.973478443591967", "bbob-biobj_f47_i07_d10 0.981014053828823", "bbob-biobj_f47_i07_d20 0.990613064893604", "bbob-biobj_f47_i07_d40 0.892267489922570", "bbob-biobj_f47_i08_d02 0.958237497140224", "bbob-biobj_f47_i08_d03 0.914357101153653", "bbob-biobj_f47_i08_d05 0.925329224941109", "bbob-biobj_f47_i08_d10 0.955671208532904", "bbob-biobj_f47_i08_d20 0.960990198339395", "bbob-biobj_f47_i08_d40 0.899984046495390", "bbob-biobj_f47_i09_d02 0.889918311037458", "bbob-biobj_f47_i09_d03 0.962481922443155", "bbob-biobj_f47_i09_d05 0.951487158898893", "bbob-biobj_f47_i09_d10 0.938769098398943", "bbob-biobj_f47_i09_d20 0.942997363149960", "bbob-biobj_f47_i09_d40 0.855410552220298", "bbob-biobj_f47_i10_d02 0.645459744382548", "bbob-biobj_f47_i10_d03 0.900594867338457", "bbob-biobj_f47_i10_d05 0.913296663358001", "bbob-biobj_f47_i10_d10 0.955661889534839", "bbob-biobj_f47_i10_d20 0.957137531350378", "bbob-biobj_f47_i10_d40 0.817284464911829", "bbob-biobj_f47_i11_d02 1.0", "bbob-biobj_f47_i11_d03 1.0", "bbob-biobj_f47_i11_d05 1.0", "bbob-biobj_f47_i11_d10 1.0", "bbob-biobj_f47_i11_d20 1.0", "bbob-biobj_f47_i11_d40 1.0", "bbob-biobj_f47_i12_d02 1.0", "bbob-biobj_f47_i12_d03 1.0", "bbob-biobj_f47_i12_d05 1.0", "bbob-biobj_f47_i12_d10 1.0", "bbob-biobj_f47_i12_d20 1.0", "bbob-biobj_f47_i12_d40 1.0", "bbob-biobj_f47_i13_d02 1.0", "bbob-biobj_f47_i13_d03 1.0", "bbob-biobj_f47_i13_d05 1.0", "bbob-biobj_f47_i13_d10 1.0", "bbob-biobj_f47_i13_d20 1.0", "bbob-biobj_f47_i13_d40 1.0", "bbob-biobj_f47_i14_d02 1.0", "bbob-biobj_f47_i14_d03 1.0", "bbob-biobj_f47_i14_d05 1.0", "bbob-biobj_f47_i14_d10 1.0", "bbob-biobj_f47_i14_d20 1.0", "bbob-biobj_f47_i14_d40 1.0", "bbob-biobj_f47_i15_d02 1.0", "bbob-biobj_f47_i15_d03 1.0", "bbob-biobj_f47_i15_d05 1.0", "bbob-biobj_f47_i15_d10 1.0", "bbob-biobj_f47_i15_d20 1.0", "bbob-biobj_f47_i15_d40 1.0", "bbob-biobj_f48_i01_d02 0.848026567036178", "bbob-biobj_f48_i01_d03 0.973370144857933", "bbob-biobj_f48_i01_d05 0.970800527122283", "bbob-biobj_f48_i01_d10 0.975895168240419", "bbob-biobj_f48_i01_d20 0.973375090620421", "bbob-biobj_f48_i01_d40 0.967214456244375", "bbob-biobj_f48_i02_d02 0.994793675128085", "bbob-biobj_f48_i02_d03 0.870173205353387", "bbob-biobj_f48_i02_d05 0.991213945773693", "bbob-biobj_f48_i02_d10 0.987508273428610", "bbob-biobj_f48_i02_d20 0.974128630034868", "bbob-biobj_f48_i02_d40 0.950354813207245", "bbob-biobj_f48_i03_d02 0.974655409279260", "bbob-biobj_f48_i03_d03 0.980825113451769", "bbob-biobj_f48_i03_d05 0.992968816240894", "bbob-biobj_f48_i03_d10 0.980232053391337", "bbob-biobj_f48_i03_d20 0.973440818791231", "bbob-biobj_f48_i03_d40 0.963798862128042", "bbob-biobj_f48_i04_d02 0.991892550874017", "bbob-biobj_f48_i04_d03 0.977081432021119", "bbob-biobj_f48_i04_d05 0.979439532610778", "bbob-biobj_f48_i04_d10 0.971231534195990", "bbob-biobj_f48_i04_d20 0.985547755790250", "bbob-biobj_f48_i04_d40 0.963752407198306", "bbob-biobj_f48_i05_d02 0.988654650933056", "bbob-biobj_f48_i05_d03 0.980478926766229", "bbob-biobj_f48_i05_d05 0.973958153574718", "bbob-biobj_f48_i05_d10 0.988012377114494", "bbob-biobj_f48_i05_d20 0.964751207182267", "bbob-biobj_f48_i05_d40 0.974037853059613", "bbob-biobj_f48_i06_d02 0.389161282124619", "bbob-biobj_f48_i06_d03 0.992882959391076", "bbob-biobj_f48_i06_d05 0.970629126722307", "bbob-biobj_f48_i06_d10 0.983341943001059", "bbob-biobj_f48_i06_d20 0.970668477893046", "bbob-biobj_f48_i06_d40 0.939575270632468", "bbob-biobj_f48_i07_d02 0.986578674413247", "bbob-biobj_f48_i07_d03 0.985043874797828", "bbob-biobj_f48_i07_d05 0.988805264493350", "bbob-biobj_f48_i07_d10 0.982119946475616", "bbob-biobj_f48_i07_d20 0.993810678267889", "bbob-biobj_f48_i07_d40 0.923761463863783", "bbob-biobj_f48_i08_d02 0.954772791083423", "bbob-biobj_f48_i08_d03 0.954650939645044", "bbob-biobj_f48_i08_d05 0.972928647840613", "bbob-biobj_f48_i08_d10 0.974914493338424", "bbob-biobj_f48_i08_d20 0.987509150847552", "bbob-biobj_f48_i08_d40 0.934297273342588", "bbob-biobj_f48_i09_d02 0.957382149250395", "bbob-biobj_f48_i09_d03 0.953072541289578", "bbob-biobj_f48_i09_d05 0.976017541500116", "bbob-biobj_f48_i09_d10 0.992404633270568", "bbob-biobj_f48_i09_d20 0.980543548849746", "bbob-biobj_f48_i09_d40 0.925438387242997", "bbob-biobj_f48_i10_d02 0.993959990229703", "bbob-biobj_f48_i10_d03 0.983284115742582", "bbob-biobj_f48_i10_d05 0.974352914287965", "bbob-biobj_f48_i10_d10 0.994718446676883", "bbob-biobj_f48_i10_d20 0.988265396177716", "bbob-biobj_f48_i10_d40 0.914954240869837", "bbob-biobj_f48_i11_d02 1.0", "bbob-biobj_f48_i11_d03 1.0", "bbob-biobj_f48_i11_d05 1.0", "bbob-biobj_f48_i11_d10 1.0", "bbob-biobj_f48_i11_d20 1.0", "bbob-biobj_f48_i11_d40 1.0", "bbob-biobj_f48_i12_d02 1.0", "bbob-biobj_f48_i12_d03 1.0", "bbob-biobj_f48_i12_d05 1.0", "bbob-biobj_f48_i12_d10 1.0", "bbob-biobj_f48_i12_d20 1.0", "bbob-biobj_f48_i12_d40 1.0", "bbob-biobj_f48_i13_d02 1.0", "bbob-biobj_f48_i13_d03 1.0", "bbob-biobj_f48_i13_d05 1.0", "bbob-biobj_f48_i13_d10 1.0", "bbob-biobj_f48_i13_d20 1.0", "bbob-biobj_f48_i13_d40 1.0", "bbob-biobj_f48_i14_d02 1.0", "bbob-biobj_f48_i14_d03 1.0", "bbob-biobj_f48_i14_d05 1.0", "bbob-biobj_f48_i14_d10 1.0", "bbob-biobj_f48_i14_d20 1.0", "bbob-biobj_f48_i14_d40 1.0", "bbob-biobj_f48_i15_d02 1.0", "bbob-biobj_f48_i15_d03 1.0", "bbob-biobj_f48_i15_d05 1.0", "bbob-biobj_f48_i15_d10 1.0", "bbob-biobj_f48_i15_d20 1.0", "bbob-biobj_f48_i15_d40 1.0", "bbob-biobj_f49_i01_d02 0.926653583269295", "bbob-biobj_f49_i01_d03 0.957627451209422", "bbob-biobj_f49_i01_d05 0.956464400283289", "bbob-biobj_f49_i01_d10 0.924691143308051", "bbob-biobj_f49_i01_d20 0.883001271777902", "bbob-biobj_f49_i01_d40 0.808010446209920", "bbob-biobj_f49_i02_d02 0.961467454994650", "bbob-biobj_f49_i02_d03 0.946679568656762", "bbob-biobj_f49_i02_d05 0.955517449441158", "bbob-biobj_f49_i02_d10 0.850133695702020", "bbob-biobj_f49_i02_d20 0.840080814232969", "bbob-biobj_f49_i02_d40 0.774650848356241", "bbob-biobj_f49_i03_d02 0.848123581192731", "bbob-biobj_f49_i03_d03 0.942236304247361", "bbob-biobj_f49_i03_d05 0.964450544000933", "bbob-biobj_f49_i03_d10 0.928249510306635", "bbob-biobj_f49_i03_d20 0.870765936863144", "bbob-biobj_f49_i03_d40 0.774359285613625", "bbob-biobj_f49_i04_d02 0.934365886903383", "bbob-biobj_f49_i04_d03 0.927010836573489", "bbob-biobj_f49_i04_d05 0.968264078437842", "bbob-biobj_f49_i04_d10 0.879063574520805", "bbob-biobj_f49_i04_d20 0.874796797376654", "bbob-biobj_f49_i04_d40 0.904891343924901", "bbob-biobj_f49_i05_d02 0.928529428713596", "bbob-biobj_f49_i05_d03 0.899348277744186", "bbob-biobj_f49_i05_d05 0.951111018439651", "bbob-biobj_f49_i05_d10 0.876306137236896", "bbob-biobj_f49_i05_d20 0.841627007998341", "bbob-biobj_f49_i05_d40 0.866802118424087", "bbob-biobj_f49_i06_d02 0.786973926020565", "bbob-biobj_f49_i06_d03 0.938858420224315", "bbob-biobj_f49_i06_d05 0.892745715408364", "bbob-biobj_f49_i06_d10 0.960146156492849", "bbob-biobj_f49_i06_d20 0.921534008454093", "bbob-biobj_f49_i06_d40 0.794969577213544", "bbob-biobj_f49_i07_d02 0.725230278357155", "bbob-biobj_f49_i07_d03 0.976798654205709", "bbob-biobj_f49_i07_d05 0.959532844172694", "bbob-biobj_f49_i07_d10 0.949618692671281", "bbob-biobj_f49_i07_d20 0.859873584525347", "bbob-biobj_f49_i07_d40 0.764664632091040", "bbob-biobj_f49_i08_d02 0.959123907095592", "bbob-biobj_f49_i08_d03 0.979610246558130", "bbob-biobj_f49_i08_d05 0.887922490868379", "bbob-biobj_f49_i08_d10 0.951943512943179", "bbob-biobj_f49_i08_d20 0.924566368254306", "bbob-biobj_f49_i08_d40 0.765412859882910", "bbob-biobj_f49_i09_d02 0.970413096029000", "bbob-biobj_f49_i09_d03 0.934579800752181", "bbob-biobj_f49_i09_d05 0.984332151398107", "bbob-biobj_f49_i09_d10 0.919846544331273", "bbob-biobj_f49_i09_d20 0.817439482831461", "bbob-biobj_f49_i09_d40 0.781086100934854", "bbob-biobj_f49_i10_d02 0.914459126016654", "bbob-biobj_f49_i10_d03 0.956448691116473", "bbob-biobj_f49_i10_d05 0.983357299901989", "bbob-biobj_f49_i10_d10 0.971101207563038", "bbob-biobj_f49_i10_d20 0.908009824573513", "bbob-biobj_f49_i10_d40 0.853708880678775", "bbob-biobj_f49_i11_d02 1.0", "bbob-biobj_f49_i11_d03 1.0", "bbob-biobj_f49_i11_d05 1.0", "bbob-biobj_f49_i11_d10 1.0", "bbob-biobj_f49_i11_d20 1.0", "bbob-biobj_f49_i11_d40 1.0", "bbob-biobj_f49_i12_d02 1.0", "bbob-biobj_f49_i12_d03 1.0", "bbob-biobj_f49_i12_d05 1.0", "bbob-biobj_f49_i12_d10 1.0", "bbob-biobj_f49_i12_d20 1.0", "bbob-biobj_f49_i12_d40 1.0", "bbob-biobj_f49_i13_d02 1.0", "bbob-biobj_f49_i13_d03 1.0", "bbob-biobj_f49_i13_d05 1.0", "bbob-biobj_f49_i13_d10 1.0", "bbob-biobj_f49_i13_d20 1.0", "bbob-biobj_f49_i13_d40 1.0", "bbob-biobj_f49_i14_d02 1.0", "bbob-biobj_f49_i14_d03 1.0", "bbob-biobj_f49_i14_d05 1.0", "bbob-biobj_f49_i14_d10 1.0", "bbob-biobj_f49_i14_d20 1.0", "bbob-biobj_f49_i14_d40 1.0", "bbob-biobj_f49_i15_d02 1.0", "bbob-biobj_f49_i15_d03 1.0", "bbob-biobj_f49_i15_d05 1.0", "bbob-biobj_f49_i15_d10 1.0", "bbob-biobj_f49_i15_d20 1.0", "bbob-biobj_f49_i15_d40 1.0", "bbob-biobj_f50_i01_d02 0.908153019029111", "bbob-biobj_f50_i01_d03 0.969143802394247", "bbob-biobj_f50_i01_d05 0.971221008283031", "bbob-biobj_f50_i01_d10 0.937806045408397", "bbob-biobj_f50_i01_d20 0.970534096699938", "bbob-biobj_f50_i01_d40 0.963208776860388", "bbob-biobj_f50_i02_d02 0.951055982970115", "bbob-biobj_f50_i02_d03 0.967318967089656", "bbob-biobj_f50_i02_d05 0.954449745524030", "bbob-biobj_f50_i02_d10 0.962522683964437", "bbob-biobj_f50_i02_d20 0.972725400959617", "bbob-biobj_f50_i02_d40 0.961091047677661", "bbob-biobj_f50_i03_d02 0.921885288089289", "bbob-biobj_f50_i03_d03 0.913001104267832", "bbob-biobj_f50_i03_d05 0.961402283754169", "bbob-biobj_f50_i03_d10 0.935786175448639", "bbob-biobj_f50_i03_d20 0.961360669884832", "bbob-biobj_f50_i03_d40 0.930380508112140", "bbob-biobj_f50_i04_d02 0.908169184637656", "bbob-biobj_f50_i04_d03 0.826472492158909", "bbob-biobj_f50_i04_d05 0.972864780921446", "bbob-biobj_f50_i04_d10 0.980278685964988", "bbob-biobj_f50_i04_d20 0.988771672486027", "bbob-biobj_f50_i04_d40 0.948589732443901", "bbob-biobj_f50_i05_d02 0.808869771430175", "bbob-biobj_f50_i05_d03 0.990888217555794", "bbob-biobj_f50_i05_d05 0.994314364726843", "bbob-biobj_f50_i05_d10 0.975063208666217", "bbob-biobj_f50_i05_d20 0.984258303473839", "bbob-biobj_f50_i05_d40 0.974082920338684", "bbob-biobj_f50_i06_d02 0.917893652037625", "bbob-biobj_f50_i06_d03 0.982435397284171", "bbob-biobj_f50_i06_d05 0.960919636000301", "bbob-biobj_f50_i06_d10 0.932682528025179", "bbob-biobj_f50_i06_d20 0.987220010500114", "bbob-biobj_f50_i06_d40 0.949611215723517", "bbob-biobj_f50_i07_d02 0.900109012077019", "bbob-biobj_f50_i07_d03 0.920306601245777", "bbob-biobj_f50_i07_d05 0.964454455379369", "bbob-biobj_f50_i07_d10 0.920054372340101", "bbob-biobj_f50_i07_d20 0.969312542880872", "bbob-biobj_f50_i07_d40 0.909610744875217", "bbob-biobj_f50_i08_d02 0.947066859501796", "bbob-biobj_f50_i08_d03 0.907539940520492", "bbob-biobj_f50_i08_d05 0.934424379801040", "bbob-biobj_f50_i08_d10 0.955482538306266", "bbob-biobj_f50_i08_d20 0.967561661901138", "bbob-biobj_f50_i08_d40 0.920378712617924", "bbob-biobj_f50_i09_d02 0.864750386477023", "bbob-biobj_f50_i09_d03 0.838936880954842", "bbob-biobj_f50_i09_d05 0.974769010237717", "bbob-biobj_f50_i09_d10 0.959771707855121", "bbob-biobj_f50_i09_d20 0.978814760423101", "bbob-biobj_f50_i09_d40 0.919391253272068", "bbob-biobj_f50_i10_d02 0.901004616658922", "bbob-biobj_f50_i10_d03 0.792672193879899", "bbob-biobj_f50_i10_d05 0.861738251567046", "bbob-biobj_f50_i10_d10 0.967553940320211", "bbob-biobj_f50_i10_d20 0.979927098989679", "bbob-biobj_f50_i10_d40 0.921438436191370", "bbob-biobj_f50_i11_d02 1.0", "bbob-biobj_f50_i11_d03 1.0", "bbob-biobj_f50_i11_d05 1.0", "bbob-biobj_f50_i11_d10 1.0", "bbob-biobj_f50_i11_d20 1.0", "bbob-biobj_f50_i11_d40 1.0", "bbob-biobj_f50_i12_d02 1.0", "bbob-biobj_f50_i12_d03 1.0", "bbob-biobj_f50_i12_d05 1.0", "bbob-biobj_f50_i12_d10 1.0", "bbob-biobj_f50_i12_d20 1.0", "bbob-biobj_f50_i12_d40 1.0", "bbob-biobj_f50_i13_d02 1.0", "bbob-biobj_f50_i13_d03 1.0", "bbob-biobj_f50_i13_d05 1.0", "bbob-biobj_f50_i13_d10 1.0", "bbob-biobj_f50_i13_d20 1.0", "bbob-biobj_f50_i13_d40 1.0", "bbob-biobj_f50_i14_d02 1.0", "bbob-biobj_f50_i14_d03 1.0", "bbob-biobj_f50_i14_d05 1.0", "bbob-biobj_f50_i14_d10 1.0", "bbob-biobj_f50_i14_d20 1.0", "bbob-biobj_f50_i14_d40 1.0", "bbob-biobj_f50_i15_d02 1.0", "bbob-biobj_f50_i15_d03 1.0", "bbob-biobj_f50_i15_d05 1.0", "bbob-biobj_f50_i15_d10 1.0", "bbob-biobj_f50_i15_d20 1.0", "bbob-biobj_f50_i15_d40 1.0", "bbob-biobj_f51_i01_d02 0.940860622956402", "bbob-biobj_f51_i01_d03 0.868132937449447", "bbob-biobj_f51_i01_d05 0.986104585596155", "bbob-biobj_f51_i01_d10 0.980590654398549", "bbob-biobj_f51_i01_d20 0.988870039487499", "bbob-biobj_f51_i01_d40 0.962072401299433", "bbob-biobj_f51_i02_d02 0.909955920096103", "bbob-biobj_f51_i02_d03 0.990190457639888", "bbob-biobj_f51_i02_d05 0.980597486676055", "bbob-biobj_f51_i02_d10 0.991120502560612", "bbob-biobj_f51_i02_d20 0.993638471205306", "bbob-biobj_f51_i02_d40 0.971053668423443", "bbob-biobj_f51_i03_d02 0.941593321951149", "bbob-biobj_f51_i03_d03 0.933223460442475", "bbob-biobj_f51_i03_d05 0.972313234080961", "bbob-biobj_f51_i03_d10 0.968916597600458", "bbob-biobj_f51_i03_d20 0.984620917109957", "bbob-biobj_f51_i03_d40 0.976831958247220", "bbob-biobj_f51_i04_d02 0.986038980461909", "bbob-biobj_f51_i04_d03 0.947539307416669", "bbob-biobj_f51_i04_d05 0.983531663993893", "bbob-biobj_f51_i04_d10 0.997696597033701", "bbob-biobj_f51_i04_d20 0.989275960210909", "bbob-biobj_f51_i04_d40 0.987757024704872", "bbob-biobj_f51_i05_d02 0.971128897412135", "bbob-biobj_f51_i05_d03 0.983405022796850", "bbob-biobj_f51_i05_d05 0.994450760664070", "bbob-biobj_f51_i05_d10 0.965345335670043", "bbob-biobj_f51_i05_d20 0.985153015165469", "bbob-biobj_f51_i05_d40 0.980794637268118", "bbob-biobj_f51_i06_d02 0.911416519677454", "bbob-biobj_f51_i06_d03 0.973249576387185", "bbob-biobj_f51_i06_d05 0.983513317510326", "bbob-biobj_f51_i06_d10 0.982481654524230", "bbob-biobj_f51_i06_d20 0.981270294614853", "bbob-biobj_f51_i06_d40 0.976389464264435", "bbob-biobj_f51_i07_d02 0.993373695494302", "bbob-biobj_f51_i07_d03 0.993098771393319", "bbob-biobj_f51_i07_d05 0.986024836022638", "bbob-biobj_f51_i07_d10 0.990500668757965", "bbob-biobj_f51_i07_d20 0.981966525510357", "bbob-biobj_f51_i07_d40 0.966246144584898", "bbob-biobj_f51_i08_d02 0.985466839182422", "bbob-biobj_f51_i08_d03 0.761177260258873", "bbob-biobj_f51_i08_d05 0.964401210532718", "bbob-biobj_f51_i08_d10 0.995237997246082", "bbob-biobj_f51_i08_d20 0.985624637157006", "bbob-biobj_f51_i08_d40 0.962822382253301", "bbob-biobj_f51_i09_d02 0.942349371111133", "bbob-biobj_f51_i09_d03 0.994401740148738", "bbob-biobj_f51_i09_d05 0.981355916126111", "bbob-biobj_f51_i09_d10 0.982895323802829", "bbob-biobj_f51_i09_d20 0.992431408415566", "bbob-biobj_f51_i09_d40 0.904488520450946", "bbob-biobj_f51_i10_d02 0.969188689957788", "bbob-biobj_f51_i10_d03 0.982914020236925", "bbob-biobj_f51_i10_d05 0.961917917181196", "bbob-biobj_f51_i10_d10 0.976536065224792", "bbob-biobj_f51_i10_d20 0.982313386455097", "bbob-biobj_f51_i10_d40 0.972730879274001", "bbob-biobj_f51_i11_d02 1.0", "bbob-biobj_f51_i11_d03 1.0", "bbob-biobj_f51_i11_d05 1.0", "bbob-biobj_f51_i11_d10 1.0", "bbob-biobj_f51_i11_d20 1.0", "bbob-biobj_f51_i11_d40 1.0", "bbob-biobj_f51_i12_d02 1.0", "bbob-biobj_f51_i12_d03 1.0", "bbob-biobj_f51_i12_d05 1.0", "bbob-biobj_f51_i12_d10 1.0", "bbob-biobj_f51_i12_d20 1.0", "bbob-biobj_f51_i12_d40 1.0", "bbob-biobj_f51_i13_d02 1.0", "bbob-biobj_f51_i13_d03 1.0", "bbob-biobj_f51_i13_d05 1.0", "bbob-biobj_f51_i13_d10 1.0", "bbob-biobj_f51_i13_d20 1.0", "bbob-biobj_f51_i13_d40 1.0", "bbob-biobj_f51_i14_d02 1.0", "bbob-biobj_f51_i14_d03 1.0", "bbob-biobj_f51_i14_d05 1.0", "bbob-biobj_f51_i14_d10 1.0", "bbob-biobj_f51_i14_d20 1.0", "bbob-biobj_f51_i14_d40 1.0", "bbob-biobj_f51_i15_d02 1.0", "bbob-biobj_f51_i15_d03 1.0", "bbob-biobj_f51_i15_d05 1.0", "bbob-biobj_f51_i15_d10 1.0", "bbob-biobj_f51_i15_d20 1.0", "bbob-biobj_f51_i15_d40 1.0", "bbob-biobj_f52_i01_d02 0.947011565973429", "bbob-biobj_f52_i01_d03 0.887655083094057", "bbob-biobj_f52_i01_d05 0.961544365098409", "bbob-biobj_f52_i01_d10 0.880609852012585", "bbob-biobj_f52_i01_d20 0.951850617726202", "bbob-biobj_f52_i01_d40 0.959665804760387", "bbob-biobj_f52_i02_d02 0.786879929743507", "bbob-biobj_f52_i02_d03 0.975827723704229", "bbob-biobj_f52_i02_d05 0.979002884357261", "bbob-biobj_f52_i02_d10 0.908877396177977", "bbob-biobj_f52_i02_d20 0.952795318395061", "bbob-biobj_f52_i02_d40 0.763031400172234", "bbob-biobj_f52_i03_d02 0.931104872267525", "bbob-biobj_f52_i03_d03 0.944892661248204", "bbob-biobj_f52_i03_d05 0.981095090201299", "bbob-biobj_f52_i03_d10 0.928681714337413", "bbob-biobj_f52_i03_d20 0.898681720929998", "bbob-biobj_f52_i03_d40 0.930998941682665", "bbob-biobj_f52_i04_d02 0.719116774075094", "bbob-biobj_f52_i04_d03 0.963898316853337", "bbob-biobj_f52_i04_d05 0.990702143798999", "bbob-biobj_f52_i04_d10 0.991866341435212", "bbob-biobj_f52_i04_d20 0.922398943813953", "bbob-biobj_f52_i04_d40 0.850048158211609", "bbob-biobj_f52_i05_d02 0.781598890865292", "bbob-biobj_f52_i05_d03 0.970416804183748", "bbob-biobj_f52_i05_d05 0.986024903943445", "bbob-biobj_f52_i05_d10 0.882103650889895", "bbob-biobj_f52_i05_d20 0.937532910793425", "bbob-biobj_f52_i05_d40 0.915203342619471", "bbob-biobj_f52_i06_d02 0.642310315034435", "bbob-biobj_f52_i06_d03 0.891675389086588", "bbob-biobj_f52_i06_d05 0.973023404031696", "bbob-biobj_f52_i06_d10 0.800202443940251", "bbob-biobj_f52_i06_d20 0.868836337974470", "bbob-biobj_f52_i06_d40 0.869567853696131", "bbob-biobj_f52_i07_d02 0.921082784944154", "bbob-biobj_f52_i07_d03 0.981614450878430", "bbob-biobj_f52_i07_d05 0.944431471766394", "bbob-biobj_f52_i07_d10 0.956950187414469", "bbob-biobj_f52_i07_d20 0.943960851479189", "bbob-biobj_f52_i07_d40 0.872863936698003", "bbob-biobj_f52_i08_d02 0.993175903549896", "bbob-biobj_f52_i08_d03 0.936550893756555", "bbob-biobj_f52_i08_d05 0.974796495933045", "bbob-biobj_f52_i08_d10 0.913646661161340", "bbob-biobj_f52_i08_d20 0.900335395151447", "bbob-biobj_f52_i08_d40 0.926013943945283", "bbob-biobj_f52_i09_d02 0.975729533922839", "bbob-biobj_f52_i09_d03 0.946974860900458", "bbob-biobj_f52_i09_d05 0.973454345970633", "bbob-biobj_f52_i09_d10 0.937299524235731", "bbob-biobj_f52_i09_d20 0.987128376438317", "bbob-biobj_f52_i09_d40 0.849349703458808", "bbob-biobj_f52_i10_d02 0.873618189290749", "bbob-biobj_f52_i10_d03 0.976858150689502", "bbob-biobj_f52_i10_d05 0.968338375271559", "bbob-biobj_f52_i10_d10 0.948528475089375", "bbob-biobj_f52_i10_d20 0.926756784862981", "bbob-biobj_f52_i10_d40 0.857193764938067", "bbob-biobj_f52_i11_d02 1.0", "bbob-biobj_f52_i11_d03 1.0", "bbob-biobj_f52_i11_d05 1.0", "bbob-biobj_f52_i11_d10 1.0", "bbob-biobj_f52_i11_d20 1.0", "bbob-biobj_f52_i11_d40 1.0", "bbob-biobj_f52_i12_d02 1.0", "bbob-biobj_f52_i12_d03 1.0", "bbob-biobj_f52_i12_d05 1.0", "bbob-biobj_f52_i12_d10 1.0", "bbob-biobj_f52_i12_d20 1.0", "bbob-biobj_f52_i12_d40 1.0", "bbob-biobj_f52_i13_d02 1.0", "bbob-biobj_f52_i13_d03 1.0", "bbob-biobj_f52_i13_d05 1.0", "bbob-biobj_f52_i13_d10 1.0", "bbob-biobj_f52_i13_d20 1.0", "bbob-biobj_f52_i13_d40 1.0", "bbob-biobj_f52_i14_d02 1.0", "bbob-biobj_f52_i14_d03 1.0", "bbob-biobj_f52_i14_d05 1.0", "bbob-biobj_f52_i14_d10 1.0", "bbob-biobj_f52_i14_d20 1.0", "bbob-biobj_f52_i14_d40 1.0", "bbob-biobj_f52_i15_d02 1.0", "bbob-biobj_f52_i15_d03 1.0", "bbob-biobj_f52_i15_d05 1.0", "bbob-biobj_f52_i15_d10 1.0", "bbob-biobj_f52_i15_d20 1.0", "bbob-biobj_f52_i15_d40 1.0", "bbob-biobj_f53_i01_d02 0.997875692921781", "bbob-biobj_f53_i01_d03 0.999784714181698", "bbob-biobj_f53_i01_d05 0.999101073133201", "bbob-biobj_f53_i01_d10 0.997770935634617", "bbob-biobj_f53_i01_d20 0.993620588032558", "bbob-biobj_f53_i01_d40 0.997008253936025", "bbob-biobj_f53_i02_d02 0.975730767360763", "bbob-biobj_f53_i02_d03 0.981829133734374", "bbob-biobj_f53_i02_d05 0.998940051716482", "bbob-biobj_f53_i02_d10 0.995012930374049", "bbob-biobj_f53_i02_d20 0.987972894242487", "bbob-biobj_f53_i02_d40 0.997893943682911", "bbob-biobj_f53_i03_d02 0.975730768524520", "bbob-biobj_f53_i03_d03 0.981829137688355", "bbob-biobj_f53_i03_d05 0.997632245909664", "bbob-biobj_f53_i03_d10 0.999758330110187", "bbob-biobj_f53_i03_d20 0.998226457785466", "bbob-biobj_f53_i03_d40 0.999617870488956", "bbob-biobj_f53_i04_d02 0.997875695023842", "bbob-biobj_f53_i04_d03 0.999784714340619", "bbob-biobj_f53_i04_d05 0.999956640160364", "bbob-biobj_f53_i04_d10 0.998086949083842", "bbob-biobj_f53_i04_d20 0.998921075119552", "bbob-biobj_f53_i04_d40 0.998673414327444", "bbob-biobj_f53_i05_d02 0.706101956086970", "bbob-biobj_f53_i05_d03 0.998471514383848", "bbob-biobj_f53_i05_d05 0.998401788287043", "bbob-biobj_f53_i05_d10 0.999964506688086", "bbob-biobj_f53_i05_d20 0.995342078634822", "bbob-biobj_f53_i05_d40 0.992053521228669", "bbob-biobj_f53_i06_d02 0.975730736637401", "bbob-biobj_f53_i06_d03 0.981829088690173", "bbob-biobj_f53_i06_d05 0.999948601090440", "bbob-biobj_f53_i06_d10 0.999359368456460", "bbob-biobj_f53_i06_d20 0.991810210157473", "bbob-biobj_f53_i06_d40 0.994170782028727", "bbob-biobj_f53_i07_d02 0.975730732746261", "bbob-biobj_f53_i07_d03 0.981829051670767", "bbob-biobj_f53_i07_d05 0.997626866918283", "bbob-biobj_f53_i07_d10 0.991073860517323", "bbob-biobj_f53_i07_d20 0.994946657102409", "bbob-biobj_f53_i07_d40 0.997128393161806", "bbob-biobj_f53_i08_d02 0.975730731124355", "bbob-biobj_f53_i08_d03 0.981829129285381", "bbob-biobj_f53_i08_d05 0.986891604919335", "bbob-biobj_f53_i08_d10 0.992859639681137", "bbob-biobj_f53_i08_d20 0.991326253228450", "bbob-biobj_f53_i08_d40 0.993144813419714", "bbob-biobj_f53_i09_d02 0.997875685000665", "bbob-biobj_f53_i09_d03 0.999784714335332", "bbob-biobj_f53_i09_d05 0.999955671721642", "bbob-biobj_f53_i09_d10 0.999954725874065", "bbob-biobj_f53_i09_d20 0.997813381121439", "bbob-biobj_f53_i09_d40 0.989629515726637", "bbob-biobj_f53_i10_d02 0.706101787141003", "bbob-biobj_f53_i10_d03 0.998471495513510", "bbob-biobj_f53_i10_d05 0.996114532965430", "bbob-biobj_f53_i10_d10 0.999940309390393", "bbob-biobj_f53_i10_d20 0.998288727005705", "bbob-biobj_f53_i10_d40 0.996969229118885", "bbob-biobj_f53_i11_d02 1.0", "bbob-biobj_f53_i11_d03 1.0", "bbob-biobj_f53_i11_d05 1.0", "bbob-biobj_f53_i11_d10 1.0", "bbob-biobj_f53_i11_d20 1.0", "bbob-biobj_f53_i11_d40 1.0", "bbob-biobj_f53_i12_d02 1.0", "bbob-biobj_f53_i12_d03 1.0", "bbob-biobj_f53_i12_d05 1.0", "bbob-biobj_f53_i12_d10 1.0", "bbob-biobj_f53_i12_d20 1.0", "bbob-biobj_f53_i12_d40 1.0", "bbob-biobj_f53_i13_d02 1.0", "bbob-biobj_f53_i13_d03 1.0", "bbob-biobj_f53_i13_d05 1.0", "bbob-biobj_f53_i13_d10 1.0", "bbob-biobj_f53_i13_d20 1.0", "bbob-biobj_f53_i13_d40 1.0", "bbob-biobj_f53_i14_d02 1.0", "bbob-biobj_f53_i14_d03 1.0", "bbob-biobj_f53_i14_d05 1.0", "bbob-biobj_f53_i14_d10 1.0", "bbob-biobj_f53_i14_d20 1.0", "bbob-biobj_f53_i14_d40 1.0", "bbob-biobj_f53_i15_d02 1.0", "bbob-biobj_f53_i15_d03 1.0", "bbob-biobj_f53_i15_d05 1.0", "bbob-biobj_f53_i15_d10 1.0", "bbob-biobj_f53_i15_d20 1.0", "bbob-biobj_f53_i15_d40 1.0", "bbob-biobj_f54_i01_d02 0.943563947345365", "bbob-biobj_f54_i01_d03 0.975179483828660", "bbob-biobj_f54_i01_d05 0.986735978557260", "bbob-biobj_f54_i01_d10 0.971020975989233", "bbob-biobj_f54_i01_d20 0.975754562298456", "bbob-biobj_f54_i01_d40 0.940619701836704", "bbob-biobj_f54_i02_d02 0.929274474829962", "bbob-biobj_f54_i02_d03 0.971505490328074", "bbob-biobj_f54_i02_d05 0.988596502264416", "bbob-biobj_f54_i02_d10 0.979018161955299", "bbob-biobj_f54_i02_d20 0.978503935730430", "bbob-biobj_f54_i02_d40 0.944836572146846", "bbob-biobj_f54_i03_d02 0.991716135247573", "bbob-biobj_f54_i03_d03 0.991021577879334", "bbob-biobj_f54_i03_d05 0.990017103886950", "bbob-biobj_f54_i03_d10 0.971485743914789", "bbob-biobj_f54_i03_d20 0.985298830810207", "bbob-biobj_f54_i03_d40 0.956655441082847", "bbob-biobj_f54_i04_d02 0.984075359489210", "bbob-biobj_f54_i04_d03 0.985246735720961", "bbob-biobj_f54_i04_d05 0.992621802368755", "bbob-biobj_f54_i04_d10 0.987233984371954", "bbob-biobj_f54_i04_d20 0.980209807661969", "bbob-biobj_f54_i04_d40 0.913196115921382", "bbob-biobj_f54_i05_d02 0.977343826732106", "bbob-biobj_f54_i05_d03 0.956277057377107", "bbob-biobj_f54_i05_d05 0.991382525490389", "bbob-biobj_f54_i05_d10 0.963574327834559", "bbob-biobj_f54_i05_d20 0.984351904270309", "bbob-biobj_f54_i05_d40 0.912702276221518", "bbob-biobj_f54_i06_d02 0.737530413924196", "bbob-biobj_f54_i06_d03 0.999165572581585", "bbob-biobj_f54_i06_d05 0.989460331214994", "bbob-biobj_f54_i06_d10 0.978486755665419", "bbob-biobj_f54_i06_d20 0.975547602300677", "bbob-biobj_f54_i06_d40 0.972391142773130", "bbob-biobj_f54_i07_d02 0.905800915025149", "bbob-biobj_f54_i07_d03 0.998327608576897", "bbob-biobj_f54_i07_d05 0.978766814862955", "bbob-biobj_f54_i07_d10 0.967201101453933", "bbob-biobj_f54_i07_d20 0.965349683834782", "bbob-biobj_f54_i07_d40 0.952199451989289", "bbob-biobj_f54_i08_d02 0.989659979524769", "bbob-biobj_f54_i08_d03 0.980826071667587", "bbob-biobj_f54_i08_d05 0.978332540639450", "bbob-biobj_f54_i08_d10 0.986066276830726", "bbob-biobj_f54_i08_d20 0.988117414569477", "bbob-biobj_f54_i08_d40 0.965650240352066", "bbob-biobj_f54_i09_d02 0.948189832749533", "bbob-biobj_f54_i09_d03 0.982166030217899", "bbob-biobj_f54_i09_d05 0.994880188200191", "bbob-biobj_f54_i09_d10 0.983274688085683", "bbob-biobj_f54_i09_d20 0.977318477762187", "bbob-biobj_f54_i09_d40 0.961157141306381", "bbob-biobj_f54_i10_d02 0.974466009143839", "bbob-biobj_f54_i10_d03 0.993510177330670", "bbob-biobj_f54_i10_d05 0.979811064365768", "bbob-biobj_f54_i10_d10 0.980122926489943", "bbob-biobj_f54_i10_d20 0.973981891477217", "bbob-biobj_f54_i10_d40 0.808176202164876", "bbob-biobj_f54_i11_d02 1.0", "bbob-biobj_f54_i11_d03 1.0", "bbob-biobj_f54_i11_d05 1.0", "bbob-biobj_f54_i11_d10 1.0", "bbob-biobj_f54_i11_d20 1.0", "bbob-biobj_f54_i11_d40 1.0", "bbob-biobj_f54_i12_d02 1.0", "bbob-biobj_f54_i12_d03 1.0", "bbob-biobj_f54_i12_d05 1.0", "bbob-biobj_f54_i12_d10 1.0", "bbob-biobj_f54_i12_d20 1.0", "bbob-biobj_f54_i12_d40 1.0", "bbob-biobj_f54_i13_d02 1.0", "bbob-biobj_f54_i13_d03 1.0", "bbob-biobj_f54_i13_d05 1.0", "bbob-biobj_f54_i13_d10 1.0", "bbob-biobj_f54_i13_d20 1.0", "bbob-biobj_f54_i13_d40 1.0", "bbob-biobj_f54_i14_d02 1.0", "bbob-biobj_f54_i14_d03 1.0", "bbob-biobj_f54_i14_d05 1.0", "bbob-biobj_f54_i14_d10 1.0", "bbob-biobj_f54_i14_d20 1.0", "bbob-biobj_f54_i14_d40 1.0", "bbob-biobj_f54_i15_d02 1.0", "bbob-biobj_f54_i15_d03 1.0", "bbob-biobj_f54_i15_d05 1.0", "bbob-biobj_f54_i15_d10 1.0", "bbob-biobj_f54_i15_d20 1.0", "bbob-biobj_f54_i15_d40 1.0", "bbob-biobj_f55_i01_d02 0.994912013563836", "bbob-biobj_f55_i01_d03 0.969816640299804", "bbob-biobj_f55_i01_d05 0.966515517568895", "bbob-biobj_f55_i01_d10 0.911775730837247", "bbob-biobj_f55_i01_d20 0.625511450683819", "bbob-biobj_f55_i01_d40 0.718241618381943", "bbob-biobj_f55_i02_d02 0.936711803357930", "bbob-biobj_f55_i02_d03 0.932687634023037", "bbob-biobj_f55_i02_d05 0.982279478571098", "bbob-biobj_f55_i02_d10 0.933516109255220", "bbob-biobj_f55_i02_d20 0.739370942673084", "bbob-biobj_f55_i02_d40 0.523868454410108", "bbob-biobj_f55_i03_d02 0.979743710493495", "bbob-biobj_f55_i03_d03 0.960031091125810", "bbob-biobj_f55_i03_d05 0.964544646626252", "bbob-biobj_f55_i03_d10 0.953346430698596", "bbob-biobj_f55_i03_d20 0.669096157082512", "bbob-biobj_f55_i03_d40 0.275426248650253", "bbob-biobj_f55_i04_d02 0.931560158530144", "bbob-biobj_f55_i04_d03 0.978791413401360", "bbob-biobj_f55_i04_d05 0.987527825777800", "bbob-biobj_f55_i04_d10 0.853420086888775", "bbob-biobj_f55_i04_d20 0.673468643988903", "bbob-biobj_f55_i04_d40 0.395054772003883", "bbob-biobj_f55_i05_d02 0.890941864072125", "bbob-biobj_f55_i05_d03 0.890297839156039", "bbob-biobj_f55_i05_d05 0.972349521936232", "bbob-biobj_f55_i05_d10 0.932483593169201", "bbob-biobj_f55_i05_d20 0.831137046489323", "bbob-biobj_f55_i05_d40 0.613317764576754", "bbob-biobj_f55_i06_d02 0.878456416911427", "bbob-biobj_f55_i06_d03 0.907837070000508", "bbob-biobj_f55_i06_d05 0.960630894628764", "bbob-biobj_f55_i06_d10 0.872164591569205", "bbob-biobj_f55_i06_d20 0.788122550862569", "bbob-biobj_f55_i06_d40 0.319534927517951", "bbob-biobj_f55_i07_d02 0.938782814424875", "bbob-biobj_f55_i07_d03 0.971714983311250", "bbob-biobj_f55_i07_d05 0.986550279789914", "bbob-biobj_f55_i07_d10 0.938174903148621", "bbob-biobj_f55_i07_d20 0.737311436988115", "bbob-biobj_f55_i07_d40 0.491484808717019", "bbob-biobj_f55_i08_d02 0.901150986249256", "bbob-biobj_f55_i08_d03 0.986755213840288", "bbob-biobj_f55_i08_d05 0.986851570930107", "bbob-biobj_f55_i08_d10 0.863147731496326", "bbob-biobj_f55_i08_d20 0.696497298536161", "bbob-biobj_f55_i08_d40 0.396202187649523", "bbob-biobj_f55_i09_d02 0.869253762734078", "bbob-biobj_f55_i09_d03 0.938483554432844", "bbob-biobj_f55_i09_d05 0.960424634210952", "bbob-biobj_f55_i09_d10 0.910655216684625", "bbob-biobj_f55_i09_d20 0.782795793522196", "bbob-biobj_f55_i09_d40 0.444870008526301", "bbob-biobj_f55_i10_d02 0.851309741230642", "bbob-biobj_f55_i10_d03 0.983937286062800", "bbob-biobj_f55_i10_d05 0.960687748293214", "bbob-biobj_f55_i10_d10 0.892965931330228", "bbob-biobj_f55_i10_d20 0.753936183639365", "bbob-biobj_f55_i10_d40 0.320849661893284", "bbob-biobj_f55_i11_d02 1.0", "bbob-biobj_f55_i11_d03 1.0", "bbob-biobj_f55_i11_d05 1.0", "bbob-biobj_f55_i11_d10 1.0", "bbob-biobj_f55_i11_d20 1.0", "bbob-biobj_f55_i11_d40 1.0", "bbob-biobj_f55_i12_d02 1.0", "bbob-biobj_f55_i12_d03 1.0", "bbob-biobj_f55_i12_d05 1.0", "bbob-biobj_f55_i12_d10 1.0", "bbob-biobj_f55_i12_d20 1.0", "bbob-biobj_f55_i12_d40 1.0", "bbob-biobj_f55_i13_d02 1.0", "bbob-biobj_f55_i13_d03 1.0", "bbob-biobj_f55_i13_d05 1.0", "bbob-biobj_f55_i13_d10 1.0", "bbob-biobj_f55_i13_d20 1.0", "bbob-biobj_f55_i13_d40 1.0", "bbob-biobj_f55_i14_d02 1.0", "bbob-biobj_f55_i14_d03 1.0", "bbob-biobj_f55_i14_d05 1.0", "bbob-biobj_f55_i14_d10 1.0", "bbob-biobj_f55_i14_d20 1.0", "bbob-biobj_f55_i14_d40 1.0", "bbob-biobj_f55_i15_d02 1.0", "bbob-biobj_f55_i15_d03 1.0", "bbob-biobj_f55_i15_d05 1.0", "bbob-biobj_f55_i15_d10 1.0", "bbob-biobj_f55_i15_d20 1.0", "bbob-biobj_f55_i15_d40 1.0", "bbob-biobj_f56_i01_d02 1.0", "bbob-biobj_f56_i01_d03 1.0", "bbob-biobj_f56_i01_d05 1.0", "bbob-biobj_f56_i01_d10 1.0", "bbob-biobj_f56_i01_d20 1.0", "bbob-biobj_f56_i01_d40 1.0", "bbob-biobj_f56_i02_d02 1.0", "bbob-biobj_f56_i02_d03 1.0", "bbob-biobj_f56_i02_d05 1.0", "bbob-biobj_f56_i02_d10 1.0", "bbob-biobj_f56_i02_d20 1.0", "bbob-biobj_f56_i02_d40 1.0", "bbob-biobj_f56_i03_d02 1.0", "bbob-biobj_f56_i03_d03 1.0", "bbob-biobj_f56_i03_d05 1.0", "bbob-biobj_f56_i03_d10 1.0", "bbob-biobj_f56_i03_d20 1.0", "bbob-biobj_f56_i03_d40 1.0", "bbob-biobj_f56_i04_d02 1.0", "bbob-biobj_f56_i04_d03 1.0", "bbob-biobj_f56_i04_d05 1.0", "bbob-biobj_f56_i04_d10 1.0", "bbob-biobj_f56_i04_d20 1.0", "bbob-biobj_f56_i04_d40 1.0", "bbob-biobj_f56_i05_d02 1.0", "bbob-biobj_f56_i05_d03 1.0", "bbob-biobj_f56_i05_d05 1.0", "bbob-biobj_f56_i05_d10 1.0", "bbob-biobj_f56_i05_d20 1.0", "bbob-biobj_f56_i05_d40 1.0", "bbob-biobj_f56_i06_d02 1.0", "bbob-biobj_f56_i06_d03 1.0", "bbob-biobj_f56_i06_d05 1.0", "bbob-biobj_f56_i06_d10 1.0", "bbob-biobj_f56_i06_d20 1.0", "bbob-biobj_f56_i06_d40 1.0", "bbob-biobj_f56_i07_d02 1.0", "bbob-biobj_f56_i07_d03 1.0", "bbob-biobj_f56_i07_d05 1.0", "bbob-biobj_f56_i07_d10 1.0", "bbob-biobj_f56_i07_d20 1.0", "bbob-biobj_f56_i07_d40 1.0", "bbob-biobj_f56_i08_d02 1.0", "bbob-biobj_f56_i08_d03 1.0", "bbob-biobj_f56_i08_d05 1.0", "bbob-biobj_f56_i08_d10 1.0", "bbob-biobj_f56_i08_d20 1.0", "bbob-biobj_f56_i08_d40 1.0", "bbob-biobj_f56_i09_d02 1.0", "bbob-biobj_f56_i09_d03 1.0", "bbob-biobj_f56_i09_d05 1.0", "bbob-biobj_f56_i09_d10 1.0", "bbob-biobj_f56_i09_d20 1.0", "bbob-biobj_f56_i09_d40 1.0", "bbob-biobj_f56_i10_d02 1.0", "bbob-biobj_f56_i10_d03 1.0", "bbob-biobj_f56_i10_d05 1.0", "bbob-biobj_f56_i10_d10 1.0", "bbob-biobj_f56_i10_d20 1.0", "bbob-biobj_f56_i10_d40 1.0", "bbob-biobj_f56_i11_d02 1.0", "bbob-biobj_f56_i11_d03 1.0", "bbob-biobj_f56_i11_d05 1.0", "bbob-biobj_f56_i11_d10 1.0", "bbob-biobj_f56_i11_d20 1.0", "bbob-biobj_f56_i11_d40 1.0", "bbob-biobj_f56_i12_d02 1.0", "bbob-biobj_f56_i12_d03 1.0", "bbob-biobj_f56_i12_d05 1.0", "bbob-biobj_f56_i12_d10 1.0", "bbob-biobj_f56_i12_d20 1.0", "bbob-biobj_f56_i12_d40 1.0", "bbob-biobj_f56_i13_d02 1.0", "bbob-biobj_f56_i13_d03 1.0", "bbob-biobj_f56_i13_d05 1.0", "bbob-biobj_f56_i13_d10 1.0", "bbob-biobj_f56_i13_d20 1.0", "bbob-biobj_f56_i13_d40 1.0", "bbob-biobj_f56_i14_d02 1.0", "bbob-biobj_f56_i14_d03 1.0", "bbob-biobj_f56_i14_d05 1.0", "bbob-biobj_f56_i14_d10 1.0", "bbob-biobj_f56_i14_d20 1.0", "bbob-biobj_f56_i14_d40 1.0", "bbob-biobj_f56_i15_d02 1.0", "bbob-biobj_f56_i15_d03 1.0", "bbob-biobj_f56_i15_d05 1.0", "bbob-biobj_f56_i15_d10 1.0", "bbob-biobj_f56_i15_d20 1.0", "bbob-biobj_f56_i15_d40 1.0", "bbob-biobj_f57_i01_d02 1.0", "bbob-biobj_f57_i01_d03 1.0", "bbob-biobj_f57_i01_d05 1.0", "bbob-biobj_f57_i01_d10 1.0", "bbob-biobj_f57_i01_d20 1.0", "bbob-biobj_f57_i01_d40 1.0", "bbob-biobj_f57_i02_d02 1.0", "bbob-biobj_f57_i02_d03 1.0", "bbob-biobj_f57_i02_d05 1.0", "bbob-biobj_f57_i02_d10 1.0", "bbob-biobj_f57_i02_d20 1.0", "bbob-biobj_f57_i02_d40 1.0", "bbob-biobj_f57_i03_d02 1.0", "bbob-biobj_f57_i03_d03 1.0", "bbob-biobj_f57_i03_d05 1.0", "bbob-biobj_f57_i03_d10 1.0", "bbob-biobj_f57_i03_d20 1.0", "bbob-biobj_f57_i03_d40 1.0", "bbob-biobj_f57_i04_d02 1.0", "bbob-biobj_f57_i04_d03 1.0", "bbob-biobj_f57_i04_d05 1.0", "bbob-biobj_f57_i04_d10 1.0", "bbob-biobj_f57_i04_d20 1.0", "bbob-biobj_f57_i04_d40 1.0", "bbob-biobj_f57_i05_d02 1.0", "bbob-biobj_f57_i05_d03 1.0", "bbob-biobj_f57_i05_d05 1.0", "bbob-biobj_f57_i05_d10 1.0", "bbob-biobj_f57_i05_d20 1.0", "bbob-biobj_f57_i05_d40 1.0", "bbob-biobj_f57_i06_d02 1.0", "bbob-biobj_f57_i06_d03 1.0", "bbob-biobj_f57_i06_d05 1.0", "bbob-biobj_f57_i06_d10 1.0", "bbob-biobj_f57_i06_d20 1.0", "bbob-biobj_f57_i06_d40 1.0", "bbob-biobj_f57_i07_d02 1.0", "bbob-biobj_f57_i07_d03 1.0", "bbob-biobj_f57_i07_d05 1.0", "bbob-biobj_f57_i07_d10 1.0", "bbob-biobj_f57_i07_d20 1.0", "bbob-biobj_f57_i07_d40 1.0", "bbob-biobj_f57_i08_d02 1.0", "bbob-biobj_f57_i08_d03 1.0", "bbob-biobj_f57_i08_d05 1.0", "bbob-biobj_f57_i08_d10 1.0", "bbob-biobj_f57_i08_d20 1.0", "bbob-biobj_f57_i08_d40 1.0", "bbob-biobj_f57_i09_d02 1.0", "bbob-biobj_f57_i09_d03 1.0", "bbob-biobj_f57_i09_d05 1.0", "bbob-biobj_f57_i09_d10 1.0", "bbob-biobj_f57_i09_d20 1.0", "bbob-biobj_f57_i09_d40 1.0", "bbob-biobj_f57_i10_d02 1.0", "bbob-biobj_f57_i10_d03 1.0", "bbob-biobj_f57_i10_d05 1.0", "bbob-biobj_f57_i10_d10 1.0", "bbob-biobj_f57_i10_d20 1.0", "bbob-biobj_f57_i10_d40 1.0", "bbob-biobj_f57_i11_d02 1.0", "bbob-biobj_f57_i11_d03 1.0", "bbob-biobj_f57_i11_d05 1.0", "bbob-biobj_f57_i11_d10 1.0", "bbob-biobj_f57_i11_d20 1.0", "bbob-biobj_f57_i11_d40 1.0", "bbob-biobj_f57_i12_d02 1.0", "bbob-biobj_f57_i12_d03 1.0", "bbob-biobj_f57_i12_d05 1.0", "bbob-biobj_f57_i12_d10 1.0", "bbob-biobj_f57_i12_d20 1.0", "bbob-biobj_f57_i12_d40 1.0", "bbob-biobj_f57_i13_d02 1.0", "bbob-biobj_f57_i13_d03 1.0", "bbob-biobj_f57_i13_d05 1.0", "bbob-biobj_f57_i13_d10 1.0", "bbob-biobj_f57_i13_d20 1.0", "bbob-biobj_f57_i13_d40 1.0", "bbob-biobj_f57_i14_d02 1.0", "bbob-biobj_f57_i14_d03 1.0", "bbob-biobj_f57_i14_d05 1.0", "bbob-biobj_f57_i14_d10 1.0", "bbob-biobj_f57_i14_d20 1.0", "bbob-biobj_f57_i14_d40 1.0", "bbob-biobj_f57_i15_d02 1.0", "bbob-biobj_f57_i15_d03 1.0", "bbob-biobj_f57_i15_d05 1.0", "bbob-biobj_f57_i15_d10 1.0", "bbob-biobj_f57_i15_d20 1.0", "bbob-biobj_f57_i15_d40 1.0", "bbob-biobj_f58_i01_d02 1.0", "bbob-biobj_f58_i01_d03 1.0", "bbob-biobj_f58_i01_d05 1.0", "bbob-biobj_f58_i01_d10 1.0", "bbob-biobj_f58_i01_d20 1.0", "bbob-biobj_f58_i01_d40 1.0", "bbob-biobj_f58_i02_d02 1.0", "bbob-biobj_f58_i02_d03 1.0", "bbob-biobj_f58_i02_d05 1.0", "bbob-biobj_f58_i02_d10 1.0", "bbob-biobj_f58_i02_d20 1.0", "bbob-biobj_f58_i02_d40 1.0", "bbob-biobj_f58_i03_d02 1.0", "bbob-biobj_f58_i03_d03 1.0", "bbob-biobj_f58_i03_d05 1.0", "bbob-biobj_f58_i03_d10 1.0", "bbob-biobj_f58_i03_d20 1.0", "bbob-biobj_f58_i03_d40 1.0", "bbob-biobj_f58_i04_d02 1.0", "bbob-biobj_f58_i04_d03 1.0", "bbob-biobj_f58_i04_d05 1.0", "bbob-biobj_f58_i04_d10 1.0", "bbob-biobj_f58_i04_d20 1.0", "bbob-biobj_f58_i04_d40 1.0", "bbob-biobj_f58_i05_d02 1.0", "bbob-biobj_f58_i05_d03 1.0", "bbob-biobj_f58_i05_d05 1.0", "bbob-biobj_f58_i05_d10 1.0", "bbob-biobj_f58_i05_d20 1.0", "bbob-biobj_f58_i05_d40 1.0", "bbob-biobj_f58_i06_d02 1.0", "bbob-biobj_f58_i06_d03 1.0", "bbob-biobj_f58_i06_d05 1.0", "bbob-biobj_f58_i06_d10 1.0", "bbob-biobj_f58_i06_d20 1.0", "bbob-biobj_f58_i06_d40 1.0", "bbob-biobj_f58_i07_d02 1.0", "bbob-biobj_f58_i07_d03 1.0", "bbob-biobj_f58_i07_d05 1.0", "bbob-biobj_f58_i07_d10 1.0", "bbob-biobj_f58_i07_d20 1.0", "bbob-biobj_f58_i07_d40 1.0", "bbob-biobj_f58_i08_d02 1.0", "bbob-biobj_f58_i08_d03 1.0", "bbob-biobj_f58_i08_d05 1.0", "bbob-biobj_f58_i08_d10 1.0", "bbob-biobj_f58_i08_d20 1.0", "bbob-biobj_f58_i08_d40 1.0", "bbob-biobj_f58_i09_d02 1.0", "bbob-biobj_f58_i09_d03 1.0", "bbob-biobj_f58_i09_d05 1.0", "bbob-biobj_f58_i09_d10 1.0", "bbob-biobj_f58_i09_d20 1.0", "bbob-biobj_f58_i09_d40 1.0", "bbob-biobj_f58_i10_d02 1.0", "bbob-biobj_f58_i10_d03 1.0", "bbob-biobj_f58_i10_d05 1.0", "bbob-biobj_f58_i10_d10 1.0", "bbob-biobj_f58_i10_d20 1.0", "bbob-biobj_f58_i10_d40 1.0", "bbob-biobj_f58_i11_d02 1.0", "bbob-biobj_f58_i11_d03 1.0", "bbob-biobj_f58_i11_d05 1.0", "bbob-biobj_f58_i11_d10 1.0", "bbob-biobj_f58_i11_d20 1.0", "bbob-biobj_f58_i11_d40 1.0", "bbob-biobj_f58_i12_d02 1.0", "bbob-biobj_f58_i12_d03 1.0", "bbob-biobj_f58_i12_d05 1.0", "bbob-biobj_f58_i12_d10 1.0", "bbob-biobj_f58_i12_d20 1.0", "bbob-biobj_f58_i12_d40 1.0", "bbob-biobj_f58_i13_d02 1.0", "bbob-biobj_f58_i13_d03 1.0", "bbob-biobj_f58_i13_d05 1.0", "bbob-biobj_f58_i13_d10 1.0", "bbob-biobj_f58_i13_d20 1.0", "bbob-biobj_f58_i13_d40 1.0", "bbob-biobj_f58_i14_d02 1.0", "bbob-biobj_f58_i14_d03 1.0", "bbob-biobj_f58_i14_d05 1.0", "bbob-biobj_f58_i14_d10 1.0", "bbob-biobj_f58_i14_d20 1.0", "bbob-biobj_f58_i14_d40 1.0", "bbob-biobj_f58_i15_d02 1.0", "bbob-biobj_f58_i15_d03 1.0", "bbob-biobj_f58_i15_d05 1.0", "bbob-biobj_f58_i15_d10 1.0", "bbob-biobj_f58_i15_d20 1.0", "bbob-biobj_f58_i15_d40 1.0", "bbob-biobj_f59_i01_d02 1.0", "bbob-biobj_f59_i01_d03 1.0", "bbob-biobj_f59_i01_d05 1.0", "bbob-biobj_f59_i01_d10 1.0", "bbob-biobj_f59_i01_d20 1.0", "bbob-biobj_f59_i01_d40 1.0", "bbob-biobj_f59_i02_d02 1.0", "bbob-biobj_f59_i02_d03 1.0", "bbob-biobj_f59_i02_d05 1.0", "bbob-biobj_f59_i02_d10 1.0", "bbob-biobj_f59_i02_d20 1.0", "bbob-biobj_f59_i02_d40 1.0", "bbob-biobj_f59_i03_d02 1.0", "bbob-biobj_f59_i03_d03 1.0", "bbob-biobj_f59_i03_d05 1.0", "bbob-biobj_f59_i03_d10 1.0", "bbob-biobj_f59_i03_d20 1.0", "bbob-biobj_f59_i03_d40 1.0", "bbob-biobj_f59_i04_d02 1.0", "bbob-biobj_f59_i04_d03 1.0", "bbob-biobj_f59_i04_d05 1.0", "bbob-biobj_f59_i04_d10 1.0", "bbob-biobj_f59_i04_d20 1.0", "bbob-biobj_f59_i04_d40 1.0", "bbob-biobj_f59_i05_d02 1.0", "bbob-biobj_f59_i05_d03 1.0", "bbob-biobj_f59_i05_d05 1.0", "bbob-biobj_f59_i05_d10 1.0", "bbob-biobj_f59_i05_d20 1.0", "bbob-biobj_f59_i05_d40 1.0", "bbob-biobj_f59_i06_d02 1.0", "bbob-biobj_f59_i06_d03 1.0", "bbob-biobj_f59_i06_d05 1.0", "bbob-biobj_f59_i06_d10 1.0", "bbob-biobj_f59_i06_d20 1.0", "bbob-biobj_f59_i06_d40 1.0", "bbob-biobj_f59_i07_d02 1.0", "bbob-biobj_f59_i07_d03 1.0", "bbob-biobj_f59_i07_d05 1.0", "bbob-biobj_f59_i07_d10 1.0", "bbob-biobj_f59_i07_d20 1.0", "bbob-biobj_f59_i07_d40 1.0", "bbob-biobj_f59_i08_d02 1.0", "bbob-biobj_f59_i08_d03 1.0", "bbob-biobj_f59_i08_d05 1.0", "bbob-biobj_f59_i08_d10 1.0", "bbob-biobj_f59_i08_d20 1.0", "bbob-biobj_f59_i08_d40 1.0", "bbob-biobj_f59_i09_d02 1.0", "bbob-biobj_f59_i09_d03 1.0", "bbob-biobj_f59_i09_d05 1.0", "bbob-biobj_f59_i09_d10 1.0", "bbob-biobj_f59_i09_d20 1.0", "bbob-biobj_f59_i09_d40 1.0", "bbob-biobj_f59_i10_d02 1.0", "bbob-biobj_f59_i10_d03 1.0", "bbob-biobj_f59_i10_d05 1.0", "bbob-biobj_f59_i10_d10 1.0", "bbob-biobj_f59_i10_d20 1.0", "bbob-biobj_f59_i10_d40 1.0", "bbob-biobj_f59_i11_d02 1.0", "bbob-biobj_f59_i11_d03 1.0", "bbob-biobj_f59_i11_d05 1.0", "bbob-biobj_f59_i11_d10 1.0", "bbob-biobj_f59_i11_d20 1.0", "bbob-biobj_f59_i11_d40 1.0", "bbob-biobj_f59_i12_d02 1.0", "bbob-biobj_f59_i12_d03 1.0", "bbob-biobj_f59_i12_d05 1.0", "bbob-biobj_f59_i12_d10 1.0", "bbob-biobj_f59_i12_d20 1.0", "bbob-biobj_f59_i12_d40 1.0", "bbob-biobj_f59_i13_d02 1.0", "bbob-biobj_f59_i13_d03 1.0", "bbob-biobj_f59_i13_d05 1.0", "bbob-biobj_f59_i13_d10 1.0", "bbob-biobj_f59_i13_d20 1.0", "bbob-biobj_f59_i13_d40 1.0", "bbob-biobj_f59_i14_d02 1.0", "bbob-biobj_f59_i14_d03 1.0", "bbob-biobj_f59_i14_d05 1.0", "bbob-biobj_f59_i14_d10 1.0", "bbob-biobj_f59_i14_d20 1.0", "bbob-biobj_f59_i14_d40 1.0", "bbob-biobj_f59_i15_d02 1.0", "bbob-biobj_f59_i15_d03 1.0", "bbob-biobj_f59_i15_d05 1.0", "bbob-biobj_f59_i15_d10 1.0", "bbob-biobj_f59_i15_d20 1.0", "bbob-biobj_f59_i15_d40 1.0", "bbob-biobj_f60_i01_d02 1.0", "bbob-biobj_f60_i01_d03 1.0", "bbob-biobj_f60_i01_d05 1.0", "bbob-biobj_f60_i01_d10 1.0", "bbob-biobj_f60_i01_d20 1.0", "bbob-biobj_f60_i01_d40 1.0", "bbob-biobj_f60_i02_d02 1.0", "bbob-biobj_f60_i02_d03 1.0", "bbob-biobj_f60_i02_d05 1.0", "bbob-biobj_f60_i02_d10 1.0", "bbob-biobj_f60_i02_d20 1.0", "bbob-biobj_f60_i02_d40 1.0", "bbob-biobj_f60_i03_d02 1.0", "bbob-biobj_f60_i03_d03 1.0", "bbob-biobj_f60_i03_d05 1.0", "bbob-biobj_f60_i03_d10 1.0", "bbob-biobj_f60_i03_d20 1.0", "bbob-biobj_f60_i03_d40 1.0", "bbob-biobj_f60_i04_d02 1.0", "bbob-biobj_f60_i04_d03 1.0", "bbob-biobj_f60_i04_d05 1.0", "bbob-biobj_f60_i04_d10 1.0", "bbob-biobj_f60_i04_d20 1.0", "bbob-biobj_f60_i04_d40 1.0", "bbob-biobj_f60_i05_d02 1.0", "bbob-biobj_f60_i05_d03 1.0", "bbob-biobj_f60_i05_d05 1.0", "bbob-biobj_f60_i05_d10 1.0", "bbob-biobj_f60_i05_d20 1.0", "bbob-biobj_f60_i05_d40 1.0", "bbob-biobj_f60_i06_d02 1.0", "bbob-biobj_f60_i06_d03 1.0", "bbob-biobj_f60_i06_d05 1.0", "bbob-biobj_f60_i06_d10 1.0", "bbob-biobj_f60_i06_d20 1.0", "bbob-biobj_f60_i06_d40 1.0", "bbob-biobj_f60_i07_d02 1.0", "bbob-biobj_f60_i07_d03 1.0", "bbob-biobj_f60_i07_d05 1.0", "bbob-biobj_f60_i07_d10 1.0", "bbob-biobj_f60_i07_d20 1.0", "bbob-biobj_f60_i07_d40 1.0", "bbob-biobj_f60_i08_d02 1.0", "bbob-biobj_f60_i08_d03 1.0", "bbob-biobj_f60_i08_d05 1.0", "bbob-biobj_f60_i08_d10 1.0", "bbob-biobj_f60_i08_d20 1.0", "bbob-biobj_f60_i08_d40 1.0", "bbob-biobj_f60_i09_d02 1.0", "bbob-biobj_f60_i09_d03 1.0", "bbob-biobj_f60_i09_d05 1.0", "bbob-biobj_f60_i09_d10 1.0", "bbob-biobj_f60_i09_d20 1.0", "bbob-biobj_f60_i09_d40 1.0", "bbob-biobj_f60_i10_d02 1.0", "bbob-biobj_f60_i10_d03 1.0", "bbob-biobj_f60_i10_d05 1.0", "bbob-biobj_f60_i10_d10 1.0", "bbob-biobj_f60_i10_d20 1.0", "bbob-biobj_f60_i10_d40 1.0", "bbob-biobj_f60_i11_d02 1.0", "bbob-biobj_f60_i11_d03 1.0", "bbob-biobj_f60_i11_d05 1.0", "bbob-biobj_f60_i11_d10 1.0", "bbob-biobj_f60_i11_d20 1.0", "bbob-biobj_f60_i11_d40 1.0", "bbob-biobj_f60_i12_d02 1.0", "bbob-biobj_f60_i12_d03 1.0", "bbob-biobj_f60_i12_d05 1.0", "bbob-biobj_f60_i12_d10 1.0", "bbob-biobj_f60_i12_d20 1.0", "bbob-biobj_f60_i12_d40 1.0", "bbob-biobj_f60_i13_d02 1.0", "bbob-biobj_f60_i13_d03 1.0", "bbob-biobj_f60_i13_d05 1.0", "bbob-biobj_f60_i13_d10 1.0", "bbob-biobj_f60_i13_d20 1.0", "bbob-biobj_f60_i13_d40 1.0", "bbob-biobj_f60_i14_d02 1.0", "bbob-biobj_f60_i14_d03 1.0", "bbob-biobj_f60_i14_d05 1.0", "bbob-biobj_f60_i14_d10 1.0", "bbob-biobj_f60_i14_d20 1.0", "bbob-biobj_f60_i14_d40 1.0", "bbob-biobj_f60_i15_d02 1.0", "bbob-biobj_f60_i15_d03 1.0", "bbob-biobj_f60_i15_d05 1.0", "bbob-biobj_f60_i15_d10 1.0", "bbob-biobj_f60_i15_d20 1.0", "bbob-biobj_f60_i15_d40 1.0", "bbob-biobj_f61_i01_d02 1.0", "bbob-biobj_f61_i01_d03 1.0", "bbob-biobj_f61_i01_d05 1.0", "bbob-biobj_f61_i01_d10 1.0", "bbob-biobj_f61_i01_d20 1.0", "bbob-biobj_f61_i01_d40 1.0", "bbob-biobj_f61_i02_d02 1.0", "bbob-biobj_f61_i02_d03 1.0", "bbob-biobj_f61_i02_d05 1.0", "bbob-biobj_f61_i02_d10 1.0", "bbob-biobj_f61_i02_d20 1.0", "bbob-biobj_f61_i02_d40 1.0", "bbob-biobj_f61_i03_d02 1.0", "bbob-biobj_f61_i03_d03 1.0", "bbob-biobj_f61_i03_d05 1.0", "bbob-biobj_f61_i03_d10 1.0", "bbob-biobj_f61_i03_d20 1.0", "bbob-biobj_f61_i03_d40 1.0", "bbob-biobj_f61_i04_d02 1.0", "bbob-biobj_f61_i04_d03 1.0", "bbob-biobj_f61_i04_d05 1.0", "bbob-biobj_f61_i04_d10 1.0", "bbob-biobj_f61_i04_d20 1.0", "bbob-biobj_f61_i04_d40 1.0", "bbob-biobj_f61_i05_d02 1.0", "bbob-biobj_f61_i05_d03 1.0", "bbob-biobj_f61_i05_d05 1.0", "bbob-biobj_f61_i05_d10 1.0", "bbob-biobj_f61_i05_d20 1.0", "bbob-biobj_f61_i05_d40 1.0", "bbob-biobj_f61_i06_d02 1.0", "bbob-biobj_f61_i06_d03 1.0", "bbob-biobj_f61_i06_d05 1.0", "bbob-biobj_f61_i06_d10 1.0", "bbob-biobj_f61_i06_d20 1.0", "bbob-biobj_f61_i06_d40 1.0", "bbob-biobj_f61_i07_d02 1.0", "bbob-biobj_f61_i07_d03 1.0", "bbob-biobj_f61_i07_d05 1.0", "bbob-biobj_f61_i07_d10 1.0", "bbob-biobj_f61_i07_d20 1.0", "bbob-biobj_f61_i07_d40 1.0", "bbob-biobj_f61_i08_d02 1.0", "bbob-biobj_f61_i08_d03 1.0", "bbob-biobj_f61_i08_d05 1.0", "bbob-biobj_f61_i08_d10 1.0", "bbob-biobj_f61_i08_d20 1.0", "bbob-biobj_f61_i08_d40 1.0", "bbob-biobj_f61_i09_d02 1.0", "bbob-biobj_f61_i09_d03 1.0", "bbob-biobj_f61_i09_d05 1.0", "bbob-biobj_f61_i09_d10 1.0", "bbob-biobj_f61_i09_d20 1.0", "bbob-biobj_f61_i09_d40 1.0", "bbob-biobj_f61_i10_d02 1.0", "bbob-biobj_f61_i10_d03 1.0", "bbob-biobj_f61_i10_d05 1.0", "bbob-biobj_f61_i10_d10 1.0", "bbob-biobj_f61_i10_d20 1.0", "bbob-biobj_f61_i10_d40 1.0", "bbob-biobj_f61_i11_d02 1.0", "bbob-biobj_f61_i11_d03 1.0", "bbob-biobj_f61_i11_d05 1.0", "bbob-biobj_f61_i11_d10 1.0", "bbob-biobj_f61_i11_d20 1.0", "bbob-biobj_f61_i11_d40 1.0", "bbob-biobj_f61_i12_d02 1.0", "bbob-biobj_f61_i12_d03 1.0", "bbob-biobj_f61_i12_d05 1.0", "bbob-biobj_f61_i12_d10 1.0", "bbob-biobj_f61_i12_d20 1.0", "bbob-biobj_f61_i12_d40 1.0", "bbob-biobj_f61_i13_d02 1.0", "bbob-biobj_f61_i13_d03 1.0", "bbob-biobj_f61_i13_d05 1.0", "bbob-biobj_f61_i13_d10 1.0", "bbob-biobj_f61_i13_d20 1.0", "bbob-biobj_f61_i13_d40 1.0", "bbob-biobj_f61_i14_d02 1.0", "bbob-biobj_f61_i14_d03 1.0", "bbob-biobj_f61_i14_d05 1.0", "bbob-biobj_f61_i14_d10 1.0", "bbob-biobj_f61_i14_d20 1.0", "bbob-biobj_f61_i14_d40 1.0", "bbob-biobj_f61_i15_d02 1.0", "bbob-biobj_f61_i15_d03 1.0", "bbob-biobj_f61_i15_d05 1.0", "bbob-biobj_f61_i15_d10 1.0", "bbob-biobj_f61_i15_d20 1.0", "bbob-biobj_f61_i15_d40 1.0", "bbob-biobj_f62_i01_d02 1.0", "bbob-biobj_f62_i01_d03 1.0", "bbob-biobj_f62_i01_d05 1.0", "bbob-biobj_f62_i01_d10 1.0", "bbob-biobj_f62_i01_d20 1.0", "bbob-biobj_f62_i01_d40 1.0", "bbob-biobj_f62_i02_d02 1.0", "bbob-biobj_f62_i02_d03 1.0", "bbob-biobj_f62_i02_d05 1.0", "bbob-biobj_f62_i02_d10 1.0", "bbob-biobj_f62_i02_d20 1.0", "bbob-biobj_f62_i02_d40 1.0", "bbob-biobj_f62_i03_d02 1.0", "bbob-biobj_f62_i03_d03 1.0", "bbob-biobj_f62_i03_d05 1.0", "bbob-biobj_f62_i03_d10 1.0", "bbob-biobj_f62_i03_d20 1.0", "bbob-biobj_f62_i03_d40 1.0", "bbob-biobj_f62_i04_d02 1.0", "bbob-biobj_f62_i04_d03 1.0", "bbob-biobj_f62_i04_d05 1.0", "bbob-biobj_f62_i04_d10 1.0", "bbob-biobj_f62_i04_d20 1.0", "bbob-biobj_f62_i04_d40 1.0", "bbob-biobj_f62_i05_d02 1.0", "bbob-biobj_f62_i05_d03 1.0", "bbob-biobj_f62_i05_d05 1.0", "bbob-biobj_f62_i05_d10 1.0", "bbob-biobj_f62_i05_d20 1.0", "bbob-biobj_f62_i05_d40 1.0", "bbob-biobj_f62_i06_d02 1.0", "bbob-biobj_f62_i06_d03 1.0", "bbob-biobj_f62_i06_d05 1.0", "bbob-biobj_f62_i06_d10 1.0", "bbob-biobj_f62_i06_d20 1.0", "bbob-biobj_f62_i06_d40 1.0", "bbob-biobj_f62_i07_d02 1.0", "bbob-biobj_f62_i07_d03 1.0", "bbob-biobj_f62_i07_d05 1.0", "bbob-biobj_f62_i07_d10 1.0", "bbob-biobj_f62_i07_d20 1.0", "bbob-biobj_f62_i07_d40 1.0", "bbob-biobj_f62_i08_d02 1.0", "bbob-biobj_f62_i08_d03 1.0", "bbob-biobj_f62_i08_d05 1.0", "bbob-biobj_f62_i08_d10 1.0", "bbob-biobj_f62_i08_d20 1.0", "bbob-biobj_f62_i08_d40 1.0", "bbob-biobj_f62_i09_d02 1.0", "bbob-biobj_f62_i09_d03 1.0", "bbob-biobj_f62_i09_d05 1.0", "bbob-biobj_f62_i09_d10 1.0", "bbob-biobj_f62_i09_d20 1.0", "bbob-biobj_f62_i09_d40 1.0", "bbob-biobj_f62_i10_d02 1.0", "bbob-biobj_f62_i10_d03 1.0", "bbob-biobj_f62_i10_d05 1.0", "bbob-biobj_f62_i10_d10 1.0", "bbob-biobj_f62_i10_d20 1.0", "bbob-biobj_f62_i10_d40 1.0", "bbob-biobj_f62_i11_d02 1.0", "bbob-biobj_f62_i11_d03 1.0", "bbob-biobj_f62_i11_d05 1.0", "bbob-biobj_f62_i11_d10 1.0", "bbob-biobj_f62_i11_d20 1.0", "bbob-biobj_f62_i11_d40 1.0", "bbob-biobj_f62_i12_d02 1.0", "bbob-biobj_f62_i12_d03 1.0", "bbob-biobj_f62_i12_d05 1.0", "bbob-biobj_f62_i12_d10 1.0", "bbob-biobj_f62_i12_d20 1.0", "bbob-biobj_f62_i12_d40 1.0", "bbob-biobj_f62_i13_d02 1.0", "bbob-biobj_f62_i13_d03 1.0", "bbob-biobj_f62_i13_d05 1.0", "bbob-biobj_f62_i13_d10 1.0", "bbob-biobj_f62_i13_d20 1.0", "bbob-biobj_f62_i13_d40 1.0", "bbob-biobj_f62_i14_d02 1.0", "bbob-biobj_f62_i14_d03 1.0", "bbob-biobj_f62_i14_d05 1.0", "bbob-biobj_f62_i14_d10 1.0", "bbob-biobj_f62_i14_d20 1.0", "bbob-biobj_f62_i14_d40 1.0", "bbob-biobj_f62_i15_d02 1.0", "bbob-biobj_f62_i15_d03 1.0", "bbob-biobj_f62_i15_d05 1.0", "bbob-biobj_f62_i15_d10 1.0", "bbob-biobj_f62_i15_d20 1.0", "bbob-biobj_f62_i15_d40 1.0", "bbob-biobj_f63_i01_d02 1.0", "bbob-biobj_f63_i01_d03 1.0", "bbob-biobj_f63_i01_d05 1.0", "bbob-biobj_f63_i01_d10 1.0", "bbob-biobj_f63_i01_d20 1.0", "bbob-biobj_f63_i01_d40 1.0", "bbob-biobj_f63_i02_d02 1.0", "bbob-biobj_f63_i02_d03 1.0", "bbob-biobj_f63_i02_d05 1.0", "bbob-biobj_f63_i02_d10 1.0", "bbob-biobj_f63_i02_d20 1.0", "bbob-biobj_f63_i02_d40 1.0", "bbob-biobj_f63_i03_d02 1.0", "bbob-biobj_f63_i03_d03 1.0", "bbob-biobj_f63_i03_d05 1.0", "bbob-biobj_f63_i03_d10 1.0", "bbob-biobj_f63_i03_d20 1.0", "bbob-biobj_f63_i03_d40 1.0", "bbob-biobj_f63_i04_d02 1.0", "bbob-biobj_f63_i04_d03 1.0", "bbob-biobj_f63_i04_d05 1.0", "bbob-biobj_f63_i04_d10 1.0", "bbob-biobj_f63_i04_d20 1.0", "bbob-biobj_f63_i04_d40 1.0", "bbob-biobj_f63_i05_d02 1.0", "bbob-biobj_f63_i05_d03 1.0", "bbob-biobj_f63_i05_d05 1.0", "bbob-biobj_f63_i05_d10 1.0", "bbob-biobj_f63_i05_d20 1.0", "bbob-biobj_f63_i05_d40 1.0", "bbob-biobj_f63_i06_d02 1.0", "bbob-biobj_f63_i06_d03 1.0", "bbob-biobj_f63_i06_d05 1.0", "bbob-biobj_f63_i06_d10 1.0", "bbob-biobj_f63_i06_d20 1.0", "bbob-biobj_f63_i06_d40 1.0", "bbob-biobj_f63_i07_d02 1.0", "bbob-biobj_f63_i07_d03 1.0", "bbob-biobj_f63_i07_d05 1.0", "bbob-biobj_f63_i07_d10 1.0", "bbob-biobj_f63_i07_d20 1.0", "bbob-biobj_f63_i07_d40 1.0", "bbob-biobj_f63_i08_d02 1.0", "bbob-biobj_f63_i08_d03 1.0", "bbob-biobj_f63_i08_d05 1.0", "bbob-biobj_f63_i08_d10 1.0", "bbob-biobj_f63_i08_d20 1.0", "bbob-biobj_f63_i08_d40 1.0", "bbob-biobj_f63_i09_d02 1.0", "bbob-biobj_f63_i09_d03 1.0", "bbob-biobj_f63_i09_d05 1.0", "bbob-biobj_f63_i09_d10 1.0", "bbob-biobj_f63_i09_d20 1.0", "bbob-biobj_f63_i09_d40 1.0", "bbob-biobj_f63_i10_d02 1.0", "bbob-biobj_f63_i10_d03 1.0", "bbob-biobj_f63_i10_d05 1.0", "bbob-biobj_f63_i10_d10 1.0", "bbob-biobj_f63_i10_d20 1.0", "bbob-biobj_f63_i10_d40 1.0", "bbob-biobj_f63_i11_d02 1.0", "bbob-biobj_f63_i11_d03 1.0", "bbob-biobj_f63_i11_d05 1.0", "bbob-biobj_f63_i11_d10 1.0", "bbob-biobj_f63_i11_d20 1.0", "bbob-biobj_f63_i11_d40 1.0", "bbob-biobj_f63_i12_d02 1.0", "bbob-biobj_f63_i12_d03 1.0", "bbob-biobj_f63_i12_d05 1.0", "bbob-biobj_f63_i12_d10 1.0", "bbob-biobj_f63_i12_d20 1.0", "bbob-biobj_f63_i12_d40 1.0", "bbob-biobj_f63_i13_d02 1.0", "bbob-biobj_f63_i13_d03 1.0", "bbob-biobj_f63_i13_d05 1.0", "bbob-biobj_f63_i13_d10 1.0", "bbob-biobj_f63_i13_d20 1.0", "bbob-biobj_f63_i13_d40 1.0", "bbob-biobj_f63_i14_d02 1.0", "bbob-biobj_f63_i14_d03 1.0", "bbob-biobj_f63_i14_d05 1.0", "bbob-biobj_f63_i14_d10 1.0", "bbob-biobj_f63_i14_d20 1.0", "bbob-biobj_f63_i14_d40 1.0", "bbob-biobj_f63_i15_d02 1.0", "bbob-biobj_f63_i15_d03 1.0", "bbob-biobj_f63_i15_d05 1.0", "bbob-biobj_f63_i15_d10 1.0", "bbob-biobj_f63_i15_d20 1.0", "bbob-biobj_f63_i15_d40 1.0", "bbob-biobj_f64_i01_d02 1.0", "bbob-biobj_f64_i01_d03 1.0", "bbob-biobj_f64_i01_d05 1.0", "bbob-biobj_f64_i01_d10 1.0", "bbob-biobj_f64_i01_d20 1.0", "bbob-biobj_f64_i01_d40 1.0", "bbob-biobj_f64_i02_d02 1.0", "bbob-biobj_f64_i02_d03 1.0", "bbob-biobj_f64_i02_d05 1.0", "bbob-biobj_f64_i02_d10 1.0", "bbob-biobj_f64_i02_d20 1.0", "bbob-biobj_f64_i02_d40 1.0", "bbob-biobj_f64_i03_d02 1.0", "bbob-biobj_f64_i03_d03 1.0", "bbob-biobj_f64_i03_d05 1.0", "bbob-biobj_f64_i03_d10 1.0", "bbob-biobj_f64_i03_d20 1.0", "bbob-biobj_f64_i03_d40 1.0", "bbob-biobj_f64_i04_d02 1.0", "bbob-biobj_f64_i04_d03 1.0", "bbob-biobj_f64_i04_d05 1.0", "bbob-biobj_f64_i04_d10 1.0", "bbob-biobj_f64_i04_d20 1.0", "bbob-biobj_f64_i04_d40 1.0", "bbob-biobj_f64_i05_d02 1.0", "bbob-biobj_f64_i05_d03 1.0", "bbob-biobj_f64_i05_d05 1.0", "bbob-biobj_f64_i05_d10 1.0", "bbob-biobj_f64_i05_d20 1.0", "bbob-biobj_f64_i05_d40 1.0", "bbob-biobj_f64_i06_d02 1.0", "bbob-biobj_f64_i06_d03 1.0", "bbob-biobj_f64_i06_d05 1.0", "bbob-biobj_f64_i06_d10 1.0", "bbob-biobj_f64_i06_d20 1.0", "bbob-biobj_f64_i06_d40 1.0", "bbob-biobj_f64_i07_d02 1.0", "bbob-biobj_f64_i07_d03 1.0", "bbob-biobj_f64_i07_d05 1.0", "bbob-biobj_f64_i07_d10 1.0", "bbob-biobj_f64_i07_d20 1.0", "bbob-biobj_f64_i07_d40 1.0", "bbob-biobj_f64_i08_d02 1.0", "bbob-biobj_f64_i08_d03 1.0", "bbob-biobj_f64_i08_d05 1.0", "bbob-biobj_f64_i08_d10 1.0", "bbob-biobj_f64_i08_d20 1.0", "bbob-biobj_f64_i08_d40 1.0", "bbob-biobj_f64_i09_d02 1.0", "bbob-biobj_f64_i09_d03 1.0", "bbob-biobj_f64_i09_d05 1.0", "bbob-biobj_f64_i09_d10 1.0", "bbob-biobj_f64_i09_d20 1.0", "bbob-biobj_f64_i09_d40 1.0", "bbob-biobj_f64_i10_d02 1.0", "bbob-biobj_f64_i10_d03 1.0", "bbob-biobj_f64_i10_d05 1.0", "bbob-biobj_f64_i10_d10 1.0", "bbob-biobj_f64_i10_d20 1.0", "bbob-biobj_f64_i10_d40 1.0", "bbob-biobj_f64_i11_d02 1.0", "bbob-biobj_f64_i11_d03 1.0", "bbob-biobj_f64_i11_d05 1.0", "bbob-biobj_f64_i11_d10 1.0", "bbob-biobj_f64_i11_d20 1.0", "bbob-biobj_f64_i11_d40 1.0", "bbob-biobj_f64_i12_d02 1.0", "bbob-biobj_f64_i12_d03 1.0", "bbob-biobj_f64_i12_d05 1.0", "bbob-biobj_f64_i12_d10 1.0", "bbob-biobj_f64_i12_d20 1.0", "bbob-biobj_f64_i12_d40 1.0", "bbob-biobj_f64_i13_d02 1.0", "bbob-biobj_f64_i13_d03 1.0", "bbob-biobj_f64_i13_d05 1.0", "bbob-biobj_f64_i13_d10 1.0", "bbob-biobj_f64_i13_d20 1.0", "bbob-biobj_f64_i13_d40 1.0", "bbob-biobj_f64_i14_d02 1.0", "bbob-biobj_f64_i14_d03 1.0", "bbob-biobj_f64_i14_d05 1.0", "bbob-biobj_f64_i14_d10 1.0", "bbob-biobj_f64_i14_d20 1.0", "bbob-biobj_f64_i14_d40 1.0", "bbob-biobj_f64_i15_d02 1.0", "bbob-biobj_f64_i15_d03 1.0", "bbob-biobj_f64_i15_d05 1.0", "bbob-biobj_f64_i15_d10 1.0", "bbob-biobj_f64_i15_d20 1.0", "bbob-biobj_f64_i15_d40 1.0", "bbob-biobj_f65_i01_d02 1.0", "bbob-biobj_f65_i01_d03 1.0", "bbob-biobj_f65_i01_d05 1.0", "bbob-biobj_f65_i01_d10 1.0", "bbob-biobj_f65_i01_d20 1.0", "bbob-biobj_f65_i01_d40 1.0", "bbob-biobj_f65_i02_d02 1.0", "bbob-biobj_f65_i02_d03 1.0", "bbob-biobj_f65_i02_d05 1.0", "bbob-biobj_f65_i02_d10 1.0", "bbob-biobj_f65_i02_d20 1.0", "bbob-biobj_f65_i02_d40 1.0", "bbob-biobj_f65_i03_d02 1.0", "bbob-biobj_f65_i03_d03 1.0", "bbob-biobj_f65_i03_d05 1.0", "bbob-biobj_f65_i03_d10 1.0", "bbob-biobj_f65_i03_d20 1.0", "bbob-biobj_f65_i03_d40 1.0", "bbob-biobj_f65_i04_d02 1.0", "bbob-biobj_f65_i04_d03 1.0", "bbob-biobj_f65_i04_d05 1.0", "bbob-biobj_f65_i04_d10 1.0", "bbob-biobj_f65_i04_d20 1.0", "bbob-biobj_f65_i04_d40 1.0", "bbob-biobj_f65_i05_d02 1.0", "bbob-biobj_f65_i05_d03 1.0", "bbob-biobj_f65_i05_d05 1.0", "bbob-biobj_f65_i05_d10 1.0", "bbob-biobj_f65_i05_d20 1.0", "bbob-biobj_f65_i05_d40 1.0", "bbob-biobj_f65_i06_d02 1.0", "bbob-biobj_f65_i06_d03 1.0", "bbob-biobj_f65_i06_d05 1.0", "bbob-biobj_f65_i06_d10 1.0", "bbob-biobj_f65_i06_d20 1.0", "bbob-biobj_f65_i06_d40 1.0", "bbob-biobj_f65_i07_d02 1.0", "bbob-biobj_f65_i07_d03 1.0", "bbob-biobj_f65_i07_d05 1.0", "bbob-biobj_f65_i07_d10 1.0", "bbob-biobj_f65_i07_d20 1.0", "bbob-biobj_f65_i07_d40 1.0", "bbob-biobj_f65_i08_d02 1.0", "bbob-biobj_f65_i08_d03 1.0", "bbob-biobj_f65_i08_d05 1.0", "bbob-biobj_f65_i08_d10 1.0", "bbob-biobj_f65_i08_d20 1.0", "bbob-biobj_f65_i08_d40 1.0", "bbob-biobj_f65_i09_d02 1.0", "bbob-biobj_f65_i09_d03 1.0", "bbob-biobj_f65_i09_d05 1.0", "bbob-biobj_f65_i09_d10 1.0", "bbob-biobj_f65_i09_d20 1.0", "bbob-biobj_f65_i09_d40 1.0", "bbob-biobj_f65_i10_d02 1.0", "bbob-biobj_f65_i10_d03 1.0", "bbob-biobj_f65_i10_d05 1.0", "bbob-biobj_f65_i10_d10 1.0", "bbob-biobj_f65_i10_d20 1.0", "bbob-biobj_f65_i10_d40 1.0", "bbob-biobj_f65_i11_d02 1.0", "bbob-biobj_f65_i11_d03 1.0", "bbob-biobj_f65_i11_d05 1.0", "bbob-biobj_f65_i11_d10 1.0", "bbob-biobj_f65_i11_d20 1.0", "bbob-biobj_f65_i11_d40 1.0", "bbob-biobj_f65_i12_d02 1.0", "bbob-biobj_f65_i12_d03 1.0", "bbob-biobj_f65_i12_d05 1.0", "bbob-biobj_f65_i12_d10 1.0", "bbob-biobj_f65_i12_d20 1.0", "bbob-biobj_f65_i12_d40 1.0", "bbob-biobj_f65_i13_d02 1.0", "bbob-biobj_f65_i13_d03 1.0", "bbob-biobj_f65_i13_d05 1.0", "bbob-biobj_f65_i13_d10 1.0", "bbob-biobj_f65_i13_d20 1.0", "bbob-biobj_f65_i13_d40 1.0", "bbob-biobj_f65_i14_d02 1.0", "bbob-biobj_f65_i14_d03 1.0", "bbob-biobj_f65_i14_d05 1.0", "bbob-biobj_f65_i14_d10 1.0", "bbob-biobj_f65_i14_d20 1.0", "bbob-biobj_f65_i14_d40 1.0", "bbob-biobj_f65_i15_d02 1.0", "bbob-biobj_f65_i15_d03 1.0", "bbob-biobj_f65_i15_d05 1.0", "bbob-biobj_f65_i15_d10 1.0", "bbob-biobj_f65_i15_d20 1.0", "bbob-biobj_f65_i15_d40 1.0", "bbob-biobj_f66_i01_d02 1.0", "bbob-biobj_f66_i01_d03 1.0", "bbob-biobj_f66_i01_d05 1.0", "bbob-biobj_f66_i01_d10 1.0", "bbob-biobj_f66_i01_d20 1.0", "bbob-biobj_f66_i01_d40 1.0", "bbob-biobj_f66_i02_d02 1.0", "bbob-biobj_f66_i02_d03 1.0", "bbob-biobj_f66_i02_d05 1.0", "bbob-biobj_f66_i02_d10 1.0", "bbob-biobj_f66_i02_d20 1.0", "bbob-biobj_f66_i02_d40 1.0", "bbob-biobj_f66_i03_d02 1.0", "bbob-biobj_f66_i03_d03 1.0", "bbob-biobj_f66_i03_d05 1.0", "bbob-biobj_f66_i03_d10 1.0", "bbob-biobj_f66_i03_d20 1.0", "bbob-biobj_f66_i03_d40 1.0", "bbob-biobj_f66_i04_d02 1.0", "bbob-biobj_f66_i04_d03 1.0", "bbob-biobj_f66_i04_d05 1.0", "bbob-biobj_f66_i04_d10 1.0", "bbob-biobj_f66_i04_d20 1.0", "bbob-biobj_f66_i04_d40 1.0", "bbob-biobj_f66_i05_d02 1.0", "bbob-biobj_f66_i05_d03 1.0", "bbob-biobj_f66_i05_d05 1.0", "bbob-biobj_f66_i05_d10 1.0", "bbob-biobj_f66_i05_d20 1.0", "bbob-biobj_f66_i05_d40 1.0", "bbob-biobj_f66_i06_d02 1.0", "bbob-biobj_f66_i06_d03 1.0", "bbob-biobj_f66_i06_d05 1.0", "bbob-biobj_f66_i06_d10 1.0", "bbob-biobj_f66_i06_d20 1.0", "bbob-biobj_f66_i06_d40 1.0", "bbob-biobj_f66_i07_d02 1.0", "bbob-biobj_f66_i07_d03 1.0", "bbob-biobj_f66_i07_d05 1.0", "bbob-biobj_f66_i07_d10 1.0", "bbob-biobj_f66_i07_d20 1.0", "bbob-biobj_f66_i07_d40 1.0", "bbob-biobj_f66_i08_d02 1.0", "bbob-biobj_f66_i08_d03 1.0", "bbob-biobj_f66_i08_d05 1.0", "bbob-biobj_f66_i08_d10 1.0", "bbob-biobj_f66_i08_d20 1.0", "bbob-biobj_f66_i08_d40 1.0", "bbob-biobj_f66_i09_d02 1.0", "bbob-biobj_f66_i09_d03 1.0", "bbob-biobj_f66_i09_d05 1.0", "bbob-biobj_f66_i09_d10 1.0", "bbob-biobj_f66_i09_d20 1.0", "bbob-biobj_f66_i09_d40 1.0", "bbob-biobj_f66_i10_d02 1.0", "bbob-biobj_f66_i10_d03 1.0", "bbob-biobj_f66_i10_d05 1.0", "bbob-biobj_f66_i10_d10 1.0", "bbob-biobj_f66_i10_d20 1.0", "bbob-biobj_f66_i10_d40 1.0", "bbob-biobj_f66_i11_d02 1.0", "bbob-biobj_f66_i11_d03 1.0", "bbob-biobj_f66_i11_d05 1.0", "bbob-biobj_f66_i11_d10 1.0", "bbob-biobj_f66_i11_d20 1.0", "bbob-biobj_f66_i11_d40 1.0", "bbob-biobj_f66_i12_d02 1.0", "bbob-biobj_f66_i12_d03 1.0", "bbob-biobj_f66_i12_d05 1.0", "bbob-biobj_f66_i12_d10 1.0", "bbob-biobj_f66_i12_d20 1.0", "bbob-biobj_f66_i12_d40 1.0", "bbob-biobj_f66_i13_d02 1.0", "bbob-biobj_f66_i13_d03 1.0", "bbob-biobj_f66_i13_d05 1.0", "bbob-biobj_f66_i13_d10 1.0", "bbob-biobj_f66_i13_d20 1.0", "bbob-biobj_f66_i13_d40 1.0", "bbob-biobj_f66_i14_d02 1.0", "bbob-biobj_f66_i14_d03 1.0", "bbob-biobj_f66_i14_d05 1.0", "bbob-biobj_f66_i14_d10 1.0", "bbob-biobj_f66_i14_d20 1.0", "bbob-biobj_f66_i14_d40 1.0", "bbob-biobj_f66_i15_d02 1.0", "bbob-biobj_f66_i15_d03 1.0", "bbob-biobj_f66_i15_d05 1.0", "bbob-biobj_f66_i15_d10 1.0", "bbob-biobj_f66_i15_d20 1.0", "bbob-biobj_f66_i15_d40 1.0", "bbob-biobj_f67_i01_d02 1.0", "bbob-biobj_f67_i01_d03 1.0", "bbob-biobj_f67_i01_d05 1.0", "bbob-biobj_f67_i01_d10 1.0", "bbob-biobj_f67_i01_d20 1.0", "bbob-biobj_f67_i01_d40 1.0", "bbob-biobj_f67_i02_d02 1.0", "bbob-biobj_f67_i02_d03 1.0", "bbob-biobj_f67_i02_d05 1.0", "bbob-biobj_f67_i02_d10 1.0", "bbob-biobj_f67_i02_d20 1.0", "bbob-biobj_f67_i02_d40 1.0", "bbob-biobj_f67_i03_d02 1.0", "bbob-biobj_f67_i03_d03 1.0", "bbob-biobj_f67_i03_d05 1.0", "bbob-biobj_f67_i03_d10 1.0", "bbob-biobj_f67_i03_d20 1.0", "bbob-biobj_f67_i03_d40 1.0", "bbob-biobj_f67_i04_d02 1.0", "bbob-biobj_f67_i04_d03 1.0", "bbob-biobj_f67_i04_d05 1.0", "bbob-biobj_f67_i04_d10 1.0", "bbob-biobj_f67_i04_d20 1.0", "bbob-biobj_f67_i04_d40 1.0", "bbob-biobj_f67_i05_d02 1.0", "bbob-biobj_f67_i05_d03 1.0", "bbob-biobj_f67_i05_d05 1.0", "bbob-biobj_f67_i05_d10 1.0", "bbob-biobj_f67_i05_d20 1.0", "bbob-biobj_f67_i05_d40 1.0", "bbob-biobj_f67_i06_d02 1.0", "bbob-biobj_f67_i06_d03 1.0", "bbob-biobj_f67_i06_d05 1.0", "bbob-biobj_f67_i06_d10 1.0", "bbob-biobj_f67_i06_d20 1.0", "bbob-biobj_f67_i06_d40 1.0", "bbob-biobj_f67_i07_d02 1.0", "bbob-biobj_f67_i07_d03 1.0", "bbob-biobj_f67_i07_d05 1.0", "bbob-biobj_f67_i07_d10 1.0", "bbob-biobj_f67_i07_d20 1.0", "bbob-biobj_f67_i07_d40 1.0", "bbob-biobj_f67_i08_d02 1.0", "bbob-biobj_f67_i08_d03 1.0", "bbob-biobj_f67_i08_d05 1.0", "bbob-biobj_f67_i08_d10 1.0", "bbob-biobj_f67_i08_d20 1.0", "bbob-biobj_f67_i08_d40 1.0", "bbob-biobj_f67_i09_d02 1.0", "bbob-biobj_f67_i09_d03 1.0", "bbob-biobj_f67_i09_d05 1.0", "bbob-biobj_f67_i09_d10 1.0", "bbob-biobj_f67_i09_d20 1.0", "bbob-biobj_f67_i09_d40 1.0", "bbob-biobj_f67_i10_d02 1.0", "bbob-biobj_f67_i10_d03 1.0", "bbob-biobj_f67_i10_d05 1.0", "bbob-biobj_f67_i10_d10 1.0", "bbob-biobj_f67_i10_d20 1.0", "bbob-biobj_f67_i10_d40 1.0", "bbob-biobj_f67_i11_d02 1.0", "bbob-biobj_f67_i11_d03 1.0", "bbob-biobj_f67_i11_d05 1.0", "bbob-biobj_f67_i11_d10 1.0", "bbob-biobj_f67_i11_d20 1.0", "bbob-biobj_f67_i11_d40 1.0", "bbob-biobj_f67_i12_d02 1.0", "bbob-biobj_f67_i12_d03 1.0", "bbob-biobj_f67_i12_d05 1.0", "bbob-biobj_f67_i12_d10 1.0", "bbob-biobj_f67_i12_d20 1.0", "bbob-biobj_f67_i12_d40 1.0", "bbob-biobj_f67_i13_d02 1.0", "bbob-biobj_f67_i13_d03 1.0", "bbob-biobj_f67_i13_d05 1.0", "bbob-biobj_f67_i13_d10 1.0", "bbob-biobj_f67_i13_d20 1.0", "bbob-biobj_f67_i13_d40 1.0", "bbob-biobj_f67_i14_d02 1.0", "bbob-biobj_f67_i14_d03 1.0", "bbob-biobj_f67_i14_d05 1.0", "bbob-biobj_f67_i14_d10 1.0", "bbob-biobj_f67_i14_d20 1.0", "bbob-biobj_f67_i14_d40 1.0", "bbob-biobj_f67_i15_d02 1.0", "bbob-biobj_f67_i15_d03 1.0", "bbob-biobj_f67_i15_d05 1.0", "bbob-biobj_f67_i15_d10 1.0", "bbob-biobj_f67_i15_d20 1.0", "bbob-biobj_f67_i15_d40 1.0", "bbob-biobj_f68_i01_d02 1.0", "bbob-biobj_f68_i01_d03 1.0", "bbob-biobj_f68_i01_d05 1.0", "bbob-biobj_f68_i01_d10 1.0", "bbob-biobj_f68_i01_d20 1.0", "bbob-biobj_f68_i01_d40 1.0", "bbob-biobj_f68_i02_d02 1.0", "bbob-biobj_f68_i02_d03 1.0", "bbob-biobj_f68_i02_d05 1.0", "bbob-biobj_f68_i02_d10 1.0", "bbob-biobj_f68_i02_d20 1.0", "bbob-biobj_f68_i02_d40 1.0", "bbob-biobj_f68_i03_d02 1.0", "bbob-biobj_f68_i03_d03 1.0", "bbob-biobj_f68_i03_d05 1.0", "bbob-biobj_f68_i03_d10 1.0", "bbob-biobj_f68_i03_d20 1.0", "bbob-biobj_f68_i03_d40 1.0", "bbob-biobj_f68_i04_d02 1.0", "bbob-biobj_f68_i04_d03 1.0", "bbob-biobj_f68_i04_d05 1.0", "bbob-biobj_f68_i04_d10 1.0", "bbob-biobj_f68_i04_d20 1.0", "bbob-biobj_f68_i04_d40 1.0", "bbob-biobj_f68_i05_d02 1.0", "bbob-biobj_f68_i05_d03 1.0", "bbob-biobj_f68_i05_d05 1.0", "bbob-biobj_f68_i05_d10 1.0", "bbob-biobj_f68_i05_d20 1.0", "bbob-biobj_f68_i05_d40 1.0", "bbob-biobj_f68_i06_d02 1.0", "bbob-biobj_f68_i06_d03 1.0", "bbob-biobj_f68_i06_d05 1.0", "bbob-biobj_f68_i06_d10 1.0", "bbob-biobj_f68_i06_d20 1.0", "bbob-biobj_f68_i06_d40 1.0", "bbob-biobj_f68_i07_d02 1.0", "bbob-biobj_f68_i07_d03 1.0", "bbob-biobj_f68_i07_d05 1.0", "bbob-biobj_f68_i07_d10 1.0", "bbob-biobj_f68_i07_d20 1.0", "bbob-biobj_f68_i07_d40 1.0", "bbob-biobj_f68_i08_d02 1.0", "bbob-biobj_f68_i08_d03 1.0", "bbob-biobj_f68_i08_d05 1.0", "bbob-biobj_f68_i08_d10 1.0", "bbob-biobj_f68_i08_d20 1.0", "bbob-biobj_f68_i08_d40 1.0", "bbob-biobj_f68_i09_d02 1.0", "bbob-biobj_f68_i09_d03 1.0", "bbob-biobj_f68_i09_d05 1.0", "bbob-biobj_f68_i09_d10 1.0", "bbob-biobj_f68_i09_d20 1.0", "bbob-biobj_f68_i09_d40 1.0", "bbob-biobj_f68_i10_d02 1.0", "bbob-biobj_f68_i10_d03 1.0", "bbob-biobj_f68_i10_d05 1.0", "bbob-biobj_f68_i10_d10 1.0", "bbob-biobj_f68_i10_d20 1.0", "bbob-biobj_f68_i10_d40 1.0", "bbob-biobj_f68_i11_d02 1.0", "bbob-biobj_f68_i11_d03 1.0", "bbob-biobj_f68_i11_d05 1.0", "bbob-biobj_f68_i11_d10 1.0", "bbob-biobj_f68_i11_d20 1.0", "bbob-biobj_f68_i11_d40 1.0", "bbob-biobj_f68_i12_d02 1.0", "bbob-biobj_f68_i12_d03 1.0", "bbob-biobj_f68_i12_d05 1.0", "bbob-biobj_f68_i12_d10 1.0", "bbob-biobj_f68_i12_d20 1.0", "bbob-biobj_f68_i12_d40 1.0", "bbob-biobj_f68_i13_d02 1.0", "bbob-biobj_f68_i13_d03 1.0", "bbob-biobj_f68_i13_d05 1.0", "bbob-biobj_f68_i13_d10 1.0", "bbob-biobj_f68_i13_d20 1.0", "bbob-biobj_f68_i13_d40 1.0", "bbob-biobj_f68_i14_d02 1.0", "bbob-biobj_f68_i14_d03 1.0", "bbob-biobj_f68_i14_d05 1.0", "bbob-biobj_f68_i14_d10 1.0", "bbob-biobj_f68_i14_d20 1.0", "bbob-biobj_f68_i14_d40 1.0", "bbob-biobj_f68_i15_d02 1.0", "bbob-biobj_f68_i15_d03 1.0", "bbob-biobj_f68_i15_d05 1.0", "bbob-biobj_f68_i15_d10 1.0", "bbob-biobj_f68_i15_d20 1.0", "bbob-biobj_f68_i15_d40 1.0", "bbob-biobj_f69_i01_d02 1.0", "bbob-biobj_f69_i01_d03 1.0", "bbob-biobj_f69_i01_d05 1.0", "bbob-biobj_f69_i01_d10 1.0", "bbob-biobj_f69_i01_d20 1.0", "bbob-biobj_f69_i01_d40 1.0", "bbob-biobj_f69_i02_d02 1.0", "bbob-biobj_f69_i02_d03 1.0", "bbob-biobj_f69_i02_d05 1.0", "bbob-biobj_f69_i02_d10 1.0", "bbob-biobj_f69_i02_d20 1.0", "bbob-biobj_f69_i02_d40 1.0", "bbob-biobj_f69_i03_d02 1.0", "bbob-biobj_f69_i03_d03 1.0", "bbob-biobj_f69_i03_d05 1.0", "bbob-biobj_f69_i03_d10 1.0", "bbob-biobj_f69_i03_d20 1.0", "bbob-biobj_f69_i03_d40 1.0", "bbob-biobj_f69_i04_d02 1.0", "bbob-biobj_f69_i04_d03 1.0", "bbob-biobj_f69_i04_d05 1.0", "bbob-biobj_f69_i04_d10 1.0", "bbob-biobj_f69_i04_d20 1.0", "bbob-biobj_f69_i04_d40 1.0", "bbob-biobj_f69_i05_d02 1.0", "bbob-biobj_f69_i05_d03 1.0", "bbob-biobj_f69_i05_d05 1.0", "bbob-biobj_f69_i05_d10 1.0", "bbob-biobj_f69_i05_d20 1.0", "bbob-biobj_f69_i05_d40 1.0", "bbob-biobj_f69_i06_d02 1.0", "bbob-biobj_f69_i06_d03 1.0", "bbob-biobj_f69_i06_d05 1.0", "bbob-biobj_f69_i06_d10 1.0", "bbob-biobj_f69_i06_d20 1.0", "bbob-biobj_f69_i06_d40 1.0", "bbob-biobj_f69_i07_d02 1.0", "bbob-biobj_f69_i07_d03 1.0", "bbob-biobj_f69_i07_d05 1.0", "bbob-biobj_f69_i07_d10 1.0", "bbob-biobj_f69_i07_d20 1.0", "bbob-biobj_f69_i07_d40 1.0", "bbob-biobj_f69_i08_d02 1.0", "bbob-biobj_f69_i08_d03 1.0", "bbob-biobj_f69_i08_d05 1.0", "bbob-biobj_f69_i08_d10 1.0", "bbob-biobj_f69_i08_d20 1.0", "bbob-biobj_f69_i08_d40 1.0", "bbob-biobj_f69_i09_d02 1.0", "bbob-biobj_f69_i09_d03 1.0", "bbob-biobj_f69_i09_d05 1.0", "bbob-biobj_f69_i09_d10 1.0", "bbob-biobj_f69_i09_d20 1.0", "bbob-biobj_f69_i09_d40 1.0", "bbob-biobj_f69_i10_d02 1.0", "bbob-biobj_f69_i10_d03 1.0", "bbob-biobj_f69_i10_d05 1.0", "bbob-biobj_f69_i10_d10 1.0", "bbob-biobj_f69_i10_d20 1.0", "bbob-biobj_f69_i10_d40 1.0", "bbob-biobj_f69_i11_d02 1.0", "bbob-biobj_f69_i11_d03 1.0", "bbob-biobj_f69_i11_d05 1.0", "bbob-biobj_f69_i11_d10 1.0", "bbob-biobj_f69_i11_d20 1.0", "bbob-biobj_f69_i11_d40 1.0", "bbob-biobj_f69_i12_d02 1.0", "bbob-biobj_f69_i12_d03 1.0", "bbob-biobj_f69_i12_d05 1.0", "bbob-biobj_f69_i12_d10 1.0", "bbob-biobj_f69_i12_d20 1.0", "bbob-biobj_f69_i12_d40 1.0", "bbob-biobj_f69_i13_d02 1.0", "bbob-biobj_f69_i13_d03 1.0", "bbob-biobj_f69_i13_d05 1.0", "bbob-biobj_f69_i13_d10 1.0", "bbob-biobj_f69_i13_d20 1.0", "bbob-biobj_f69_i13_d40 1.0", "bbob-biobj_f69_i14_d02 1.0", "bbob-biobj_f69_i14_d03 1.0", "bbob-biobj_f69_i14_d05 1.0", "bbob-biobj_f69_i14_d10 1.0", "bbob-biobj_f69_i14_d20 1.0", "bbob-biobj_f69_i14_d40 1.0", "bbob-biobj_f69_i15_d02 1.0", "bbob-biobj_f69_i15_d03 1.0", "bbob-biobj_f69_i15_d05 1.0", "bbob-biobj_f69_i15_d10 1.0", "bbob-biobj_f69_i15_d20 1.0", "bbob-biobj_f69_i15_d40 1.0", "bbob-biobj_f70_i01_d02 1.0", "bbob-biobj_f70_i01_d03 1.0", "bbob-biobj_f70_i01_d05 1.0", "bbob-biobj_f70_i01_d10 1.0", "bbob-biobj_f70_i01_d20 1.0", "bbob-biobj_f70_i01_d40 1.0", "bbob-biobj_f70_i02_d02 1.0", "bbob-biobj_f70_i02_d03 1.0", "bbob-biobj_f70_i02_d05 1.0", "bbob-biobj_f70_i02_d10 1.0", "bbob-biobj_f70_i02_d20 1.0", "bbob-biobj_f70_i02_d40 1.0", "bbob-biobj_f70_i03_d02 1.0", "bbob-biobj_f70_i03_d03 1.0", "bbob-biobj_f70_i03_d05 1.0", "bbob-biobj_f70_i03_d10 1.0", "bbob-biobj_f70_i03_d20 1.0", "bbob-biobj_f70_i03_d40 1.0", "bbob-biobj_f70_i04_d02 1.0", "bbob-biobj_f70_i04_d03 1.0", "bbob-biobj_f70_i04_d05 1.0", "bbob-biobj_f70_i04_d10 1.0", "bbob-biobj_f70_i04_d20 1.0", "bbob-biobj_f70_i04_d40 1.0", "bbob-biobj_f70_i05_d02 1.0", "bbob-biobj_f70_i05_d03 1.0", "bbob-biobj_f70_i05_d05 1.0", "bbob-biobj_f70_i05_d10 1.0", "bbob-biobj_f70_i05_d20 1.0", "bbob-biobj_f70_i05_d40 1.0", "bbob-biobj_f70_i06_d02 1.0", "bbob-biobj_f70_i06_d03 1.0", "bbob-biobj_f70_i06_d05 1.0", "bbob-biobj_f70_i06_d10 1.0", "bbob-biobj_f70_i06_d20 1.0", "bbob-biobj_f70_i06_d40 1.0", "bbob-biobj_f70_i07_d02 1.0", "bbob-biobj_f70_i07_d03 1.0", "bbob-biobj_f70_i07_d05 1.0", "bbob-biobj_f70_i07_d10 1.0", "bbob-biobj_f70_i07_d20 1.0", "bbob-biobj_f70_i07_d40 1.0", "bbob-biobj_f70_i08_d02 1.0", "bbob-biobj_f70_i08_d03 1.0", "bbob-biobj_f70_i08_d05 1.0", "bbob-biobj_f70_i08_d10 1.0", "bbob-biobj_f70_i08_d20 1.0", "bbob-biobj_f70_i08_d40 1.0", "bbob-biobj_f70_i09_d02 1.0", "bbob-biobj_f70_i09_d03 1.0", "bbob-biobj_f70_i09_d05 1.0", "bbob-biobj_f70_i09_d10 1.0", "bbob-biobj_f70_i09_d20 1.0", "bbob-biobj_f70_i09_d40 1.0", "bbob-biobj_f70_i10_d02 1.0", "bbob-biobj_f70_i10_d03 1.0", "bbob-biobj_f70_i10_d05 1.0", "bbob-biobj_f70_i10_d10 1.0", "bbob-biobj_f70_i10_d20 1.0", "bbob-biobj_f70_i10_d40 1.0", "bbob-biobj_f70_i11_d02 1.0", "bbob-biobj_f70_i11_d03 1.0", "bbob-biobj_f70_i11_d05 1.0", "bbob-biobj_f70_i11_d10 1.0", "bbob-biobj_f70_i11_d20 1.0", "bbob-biobj_f70_i11_d40 1.0", "bbob-biobj_f70_i12_d02 1.0", "bbob-biobj_f70_i12_d03 1.0", "bbob-biobj_f70_i12_d05 1.0", "bbob-biobj_f70_i12_d10 1.0", "bbob-biobj_f70_i12_d20 1.0", "bbob-biobj_f70_i12_d40 1.0", "bbob-biobj_f70_i13_d02 1.0", "bbob-biobj_f70_i13_d03 1.0", "bbob-biobj_f70_i13_d05 1.0", "bbob-biobj_f70_i13_d10 1.0", "bbob-biobj_f70_i13_d20 1.0", "bbob-biobj_f70_i13_d40 1.0", "bbob-biobj_f70_i14_d02 1.0", "bbob-biobj_f70_i14_d03 1.0", "bbob-biobj_f70_i14_d05 1.0", "bbob-biobj_f70_i14_d10 1.0", "bbob-biobj_f70_i14_d20 1.0", "bbob-biobj_f70_i14_d40 1.0", "bbob-biobj_f70_i15_d02 1.0", "bbob-biobj_f70_i15_d03 1.0", "bbob-biobj_f70_i15_d05 1.0", "bbob-biobj_f70_i15_d10 1.0", "bbob-biobj_f70_i15_d20 1.0", "bbob-biobj_f70_i15_d40 1.0", "bbob-biobj_f71_i01_d02 1.0", "bbob-biobj_f71_i01_d03 1.0", "bbob-biobj_f71_i01_d05 1.0", "bbob-biobj_f71_i01_d10 1.0", "bbob-biobj_f71_i01_d20 1.0", "bbob-biobj_f71_i01_d40 1.0", "bbob-biobj_f71_i02_d02 1.0", "bbob-biobj_f71_i02_d03 1.0", "bbob-biobj_f71_i02_d05 1.0", "bbob-biobj_f71_i02_d10 1.0", "bbob-biobj_f71_i02_d20 1.0", "bbob-biobj_f71_i02_d40 1.0", "bbob-biobj_f71_i03_d02 1.0", "bbob-biobj_f71_i03_d03 1.0", "bbob-biobj_f71_i03_d05 1.0", "bbob-biobj_f71_i03_d10 1.0", "bbob-biobj_f71_i03_d20 1.0", "bbob-biobj_f71_i03_d40 1.0", "bbob-biobj_f71_i04_d02 1.0", "bbob-biobj_f71_i04_d03 1.0", "bbob-biobj_f71_i04_d05 1.0", "bbob-biobj_f71_i04_d10 1.0", "bbob-biobj_f71_i04_d20 1.0", "bbob-biobj_f71_i04_d40 1.0", "bbob-biobj_f71_i05_d02 1.0", "bbob-biobj_f71_i05_d03 1.0", "bbob-biobj_f71_i05_d05 1.0", "bbob-biobj_f71_i05_d10 1.0", "bbob-biobj_f71_i05_d20 1.0", "bbob-biobj_f71_i05_d40 1.0", "bbob-biobj_f71_i06_d02 1.0", "bbob-biobj_f71_i06_d03 1.0", "bbob-biobj_f71_i06_d05 1.0", "bbob-biobj_f71_i06_d10 1.0", "bbob-biobj_f71_i06_d20 1.0", "bbob-biobj_f71_i06_d40 1.0", "bbob-biobj_f71_i07_d02 1.0", "bbob-biobj_f71_i07_d03 1.0", "bbob-biobj_f71_i07_d05 1.0", "bbob-biobj_f71_i07_d10 1.0", "bbob-biobj_f71_i07_d20 1.0", "bbob-biobj_f71_i07_d40 1.0", "bbob-biobj_f71_i08_d02 1.0", "bbob-biobj_f71_i08_d03 1.0", "bbob-biobj_f71_i08_d05 1.0", "bbob-biobj_f71_i08_d10 1.0", "bbob-biobj_f71_i08_d20 1.0", "bbob-biobj_f71_i08_d40 1.0", "bbob-biobj_f71_i09_d02 1.0", "bbob-biobj_f71_i09_d03 1.0", "bbob-biobj_f71_i09_d05 1.0", "bbob-biobj_f71_i09_d10 1.0", "bbob-biobj_f71_i09_d20 1.0", "bbob-biobj_f71_i09_d40 1.0", "bbob-biobj_f71_i10_d02 1.0", "bbob-biobj_f71_i10_d03 1.0", "bbob-biobj_f71_i10_d05 1.0", "bbob-biobj_f71_i10_d10 1.0", "bbob-biobj_f71_i10_d20 1.0", "bbob-biobj_f71_i10_d40 1.0", "bbob-biobj_f71_i11_d02 1.0", "bbob-biobj_f71_i11_d03 1.0", "bbob-biobj_f71_i11_d05 1.0", "bbob-biobj_f71_i11_d10 1.0", "bbob-biobj_f71_i11_d20 1.0", "bbob-biobj_f71_i11_d40 1.0", "bbob-biobj_f71_i12_d02 1.0", "bbob-biobj_f71_i12_d03 1.0", "bbob-biobj_f71_i12_d05 1.0", "bbob-biobj_f71_i12_d10 1.0", "bbob-biobj_f71_i12_d20 1.0", "bbob-biobj_f71_i12_d40 1.0", "bbob-biobj_f71_i13_d02 1.0", "bbob-biobj_f71_i13_d03 1.0", "bbob-biobj_f71_i13_d05 1.0", "bbob-biobj_f71_i13_d10 1.0", "bbob-biobj_f71_i13_d20 1.0", "bbob-biobj_f71_i13_d40 1.0", "bbob-biobj_f71_i14_d02 1.0", "bbob-biobj_f71_i14_d03 1.0", "bbob-biobj_f71_i14_d05 1.0", "bbob-biobj_f71_i14_d10 1.0", "bbob-biobj_f71_i14_d20 1.0", "bbob-biobj_f71_i14_d40 1.0", "bbob-biobj_f71_i15_d02 1.0", "bbob-biobj_f71_i15_d03 1.0", "bbob-biobj_f71_i15_d05 1.0", "bbob-biobj_f71_i15_d10 1.0", "bbob-biobj_f71_i15_d20 1.0", "bbob-biobj_f71_i15_d40 1.0", "bbob-biobj_f72_i01_d02 1.0", "bbob-biobj_f72_i01_d03 1.0", "bbob-biobj_f72_i01_d05 1.0", "bbob-biobj_f72_i01_d10 1.0", "bbob-biobj_f72_i01_d20 1.0", "bbob-biobj_f72_i01_d40 1.0", "bbob-biobj_f72_i02_d02 1.0", "bbob-biobj_f72_i02_d03 1.0", "bbob-biobj_f72_i02_d05 1.0", "bbob-biobj_f72_i02_d10 1.0", "bbob-biobj_f72_i02_d20 1.0", "bbob-biobj_f72_i02_d40 1.0", "bbob-biobj_f72_i03_d02 1.0", "bbob-biobj_f72_i03_d03 1.0", "bbob-biobj_f72_i03_d05 1.0", "bbob-biobj_f72_i03_d10 1.0", "bbob-biobj_f72_i03_d20 1.0", "bbob-biobj_f72_i03_d40 1.0", "bbob-biobj_f72_i04_d02 1.0", "bbob-biobj_f72_i04_d03 1.0", "bbob-biobj_f72_i04_d05 1.0", "bbob-biobj_f72_i04_d10 1.0", "bbob-biobj_f72_i04_d20 1.0", "bbob-biobj_f72_i04_d40 1.0", "bbob-biobj_f72_i05_d02 1.0", "bbob-biobj_f72_i05_d03 1.0", "bbob-biobj_f72_i05_d05 1.0", "bbob-biobj_f72_i05_d10 1.0", "bbob-biobj_f72_i05_d20 1.0", "bbob-biobj_f72_i05_d40 1.0", "bbob-biobj_f72_i06_d02 1.0", "bbob-biobj_f72_i06_d03 1.0", "bbob-biobj_f72_i06_d05 1.0", "bbob-biobj_f72_i06_d10 1.0", "bbob-biobj_f72_i06_d20 1.0", "bbob-biobj_f72_i06_d40 1.0", "bbob-biobj_f72_i07_d02 1.0", "bbob-biobj_f72_i07_d03 1.0", "bbob-biobj_f72_i07_d05 1.0", "bbob-biobj_f72_i07_d10 1.0", "bbob-biobj_f72_i07_d20 1.0", "bbob-biobj_f72_i07_d40 1.0", "bbob-biobj_f72_i08_d02 1.0", "bbob-biobj_f72_i08_d03 1.0", "bbob-biobj_f72_i08_d05 1.0", "bbob-biobj_f72_i08_d10 1.0", "bbob-biobj_f72_i08_d20 1.0", "bbob-biobj_f72_i08_d40 1.0", "bbob-biobj_f72_i09_d02 1.0", "bbob-biobj_f72_i09_d03 1.0", "bbob-biobj_f72_i09_d05 1.0", "bbob-biobj_f72_i09_d10 1.0", "bbob-biobj_f72_i09_d20 1.0", "bbob-biobj_f72_i09_d40 1.0", "bbob-biobj_f72_i10_d02 1.0", "bbob-biobj_f72_i10_d03 1.0", "bbob-biobj_f72_i10_d05 1.0", "bbob-biobj_f72_i10_d10 1.0", "bbob-biobj_f72_i10_d20 1.0", "bbob-biobj_f72_i10_d40 1.0", "bbob-biobj_f72_i11_d02 1.0", "bbob-biobj_f72_i11_d03 1.0", "bbob-biobj_f72_i11_d05 1.0", "bbob-biobj_f72_i11_d10 1.0", "bbob-biobj_f72_i11_d20 1.0", "bbob-biobj_f72_i11_d40 1.0", "bbob-biobj_f72_i12_d02 1.0", "bbob-biobj_f72_i12_d03 1.0", "bbob-biobj_f72_i12_d05 1.0", "bbob-biobj_f72_i12_d10 1.0", "bbob-biobj_f72_i12_d20 1.0", "bbob-biobj_f72_i12_d40 1.0", "bbob-biobj_f72_i13_d02 1.0", "bbob-biobj_f72_i13_d03 1.0", "bbob-biobj_f72_i13_d05 1.0", "bbob-biobj_f72_i13_d10 1.0", "bbob-biobj_f72_i13_d20 1.0", "bbob-biobj_f72_i13_d40 1.0", "bbob-biobj_f72_i14_d02 1.0", "bbob-biobj_f72_i14_d03 1.0", "bbob-biobj_f72_i14_d05 1.0", "bbob-biobj_f72_i14_d10 1.0", "bbob-biobj_f72_i14_d20 1.0", "bbob-biobj_f72_i14_d40 1.0", "bbob-biobj_f72_i15_d02 1.0", "bbob-biobj_f72_i15_d03 1.0", "bbob-biobj_f72_i15_d05 1.0", "bbob-biobj_f72_i15_d10 1.0", "bbob-biobj_f72_i15_d20 1.0", "bbob-biobj_f72_i15_d40 1.0", "bbob-biobj_f73_i01_d02 1.0", "bbob-biobj_f73_i01_d03 1.0", "bbob-biobj_f73_i01_d05 1.0", "bbob-biobj_f73_i01_d10 1.0", "bbob-biobj_f73_i01_d20 1.0", "bbob-biobj_f73_i01_d40 1.0", "bbob-biobj_f73_i02_d02 1.0", "bbob-biobj_f73_i02_d03 1.0", "bbob-biobj_f73_i02_d05 1.0", "bbob-biobj_f73_i02_d10 1.0", "bbob-biobj_f73_i02_d20 1.0", "bbob-biobj_f73_i02_d40 1.0", "bbob-biobj_f73_i03_d02 1.0", "bbob-biobj_f73_i03_d03 1.0", "bbob-biobj_f73_i03_d05 1.0", "bbob-biobj_f73_i03_d10 1.0", "bbob-biobj_f73_i03_d20 1.0", "bbob-biobj_f73_i03_d40 1.0", "bbob-biobj_f73_i04_d02 1.0", "bbob-biobj_f73_i04_d03 1.0", "bbob-biobj_f73_i04_d05 1.0", "bbob-biobj_f73_i04_d10 1.0", "bbob-biobj_f73_i04_d20 1.0", "bbob-biobj_f73_i04_d40 1.0", "bbob-biobj_f73_i05_d02 1.0", "bbob-biobj_f73_i05_d03 1.0", "bbob-biobj_f73_i05_d05 1.0", "bbob-biobj_f73_i05_d10 1.0", "bbob-biobj_f73_i05_d20 1.0", "bbob-biobj_f73_i05_d40 1.0", "bbob-biobj_f73_i06_d02 1.0", "bbob-biobj_f73_i06_d03 1.0", "bbob-biobj_f73_i06_d05 1.0", "bbob-biobj_f73_i06_d10 1.0", "bbob-biobj_f73_i06_d20 1.0", "bbob-biobj_f73_i06_d40 1.0", "bbob-biobj_f73_i07_d02 1.0", "bbob-biobj_f73_i07_d03 1.0", "bbob-biobj_f73_i07_d05 1.0", "bbob-biobj_f73_i07_d10 1.0", "bbob-biobj_f73_i07_d20 1.0", "bbob-biobj_f73_i07_d40 1.0", "bbob-biobj_f73_i08_d02 1.0", "bbob-biobj_f73_i08_d03 1.0", "bbob-biobj_f73_i08_d05 1.0", "bbob-biobj_f73_i08_d10 1.0", "bbob-biobj_f73_i08_d20 1.0", "bbob-biobj_f73_i08_d40 1.0", "bbob-biobj_f73_i09_d02 1.0", "bbob-biobj_f73_i09_d03 1.0", "bbob-biobj_f73_i09_d05 1.0", "bbob-biobj_f73_i09_d10 1.0", "bbob-biobj_f73_i09_d20 1.0", "bbob-biobj_f73_i09_d40 1.0", "bbob-biobj_f73_i10_d02 1.0", "bbob-biobj_f73_i10_d03 1.0", "bbob-biobj_f73_i10_d05 1.0", "bbob-biobj_f73_i10_d10 1.0", "bbob-biobj_f73_i10_d20 1.0", "bbob-biobj_f73_i10_d40 1.0", "bbob-biobj_f73_i11_d02 1.0", "bbob-biobj_f73_i11_d03 1.0", "bbob-biobj_f73_i11_d05 1.0", "bbob-biobj_f73_i11_d10 1.0", "bbob-biobj_f73_i11_d20 1.0", "bbob-biobj_f73_i11_d40 1.0", "bbob-biobj_f73_i12_d02 1.0", "bbob-biobj_f73_i12_d03 1.0", "bbob-biobj_f73_i12_d05 1.0", "bbob-biobj_f73_i12_d10 1.0", "bbob-biobj_f73_i12_d20 1.0", "bbob-biobj_f73_i12_d40 1.0", "bbob-biobj_f73_i13_d02 1.0", "bbob-biobj_f73_i13_d03 1.0", "bbob-biobj_f73_i13_d05 1.0", "bbob-biobj_f73_i13_d10 1.0", "bbob-biobj_f73_i13_d20 1.0", "bbob-biobj_f73_i13_d40 1.0", "bbob-biobj_f73_i14_d02 1.0", "bbob-biobj_f73_i14_d03 1.0", "bbob-biobj_f73_i14_d05 1.0", "bbob-biobj_f73_i14_d10 1.0", "bbob-biobj_f73_i14_d20 1.0", "bbob-biobj_f73_i14_d40 1.0", "bbob-biobj_f73_i15_d02 1.0", "bbob-biobj_f73_i15_d03 1.0", "bbob-biobj_f73_i15_d05 1.0", "bbob-biobj_f73_i15_d10 1.0", "bbob-biobj_f73_i15_d20 1.0", "bbob-biobj_f73_i15_d40 1.0", "bbob-biobj_f74_i01_d02 1.0", "bbob-biobj_f74_i01_d03 1.0", "bbob-biobj_f74_i01_d05 1.0", "bbob-biobj_f74_i01_d10 1.0", "bbob-biobj_f74_i01_d20 1.0", "bbob-biobj_f74_i01_d40 1.0", "bbob-biobj_f74_i02_d02 1.0", "bbob-biobj_f74_i02_d03 1.0", "bbob-biobj_f74_i02_d05 1.0", "bbob-biobj_f74_i02_d10 1.0", "bbob-biobj_f74_i02_d20 1.0", "bbob-biobj_f74_i02_d40 1.0", "bbob-biobj_f74_i03_d02 1.0", "bbob-biobj_f74_i03_d03 1.0", "bbob-biobj_f74_i03_d05 1.0", "bbob-biobj_f74_i03_d10 1.0", "bbob-biobj_f74_i03_d20 1.0", "bbob-biobj_f74_i03_d40 1.0", "bbob-biobj_f74_i04_d02 1.0", "bbob-biobj_f74_i04_d03 1.0", "bbob-biobj_f74_i04_d05 1.0", "bbob-biobj_f74_i04_d10 1.0", "bbob-biobj_f74_i04_d20 1.0", "bbob-biobj_f74_i04_d40 1.0", "bbob-biobj_f74_i05_d02 1.0", "bbob-biobj_f74_i05_d03 1.0", "bbob-biobj_f74_i05_d05 1.0", "bbob-biobj_f74_i05_d10 1.0", "bbob-biobj_f74_i05_d20 1.0", "bbob-biobj_f74_i05_d40 1.0", "bbob-biobj_f74_i06_d02 1.0", "bbob-biobj_f74_i06_d03 1.0", "bbob-biobj_f74_i06_d05 1.0", "bbob-biobj_f74_i06_d10 1.0", "bbob-biobj_f74_i06_d20 1.0", "bbob-biobj_f74_i06_d40 1.0", "bbob-biobj_f74_i07_d02 1.0", "bbob-biobj_f74_i07_d03 1.0", "bbob-biobj_f74_i07_d05 1.0", "bbob-biobj_f74_i07_d10 1.0", "bbob-biobj_f74_i07_d20 1.0", "bbob-biobj_f74_i07_d40 1.0", "bbob-biobj_f74_i08_d02 1.0", "bbob-biobj_f74_i08_d03 1.0", "bbob-biobj_f74_i08_d05 1.0", "bbob-biobj_f74_i08_d10 1.0", "bbob-biobj_f74_i08_d20 1.0", "bbob-biobj_f74_i08_d40 1.0", "bbob-biobj_f74_i09_d02 1.0", "bbob-biobj_f74_i09_d03 1.0", "bbob-biobj_f74_i09_d05 1.0", "bbob-biobj_f74_i09_d10 1.0", "bbob-biobj_f74_i09_d20 1.0", "bbob-biobj_f74_i09_d40 1.0", "bbob-biobj_f74_i10_d02 1.0", "bbob-biobj_f74_i10_d03 1.0", "bbob-biobj_f74_i10_d05 1.0", "bbob-biobj_f74_i10_d10 1.0", "bbob-biobj_f74_i10_d20 1.0", "bbob-biobj_f74_i10_d40 1.0", "bbob-biobj_f74_i11_d02 1.0", "bbob-biobj_f74_i11_d03 1.0", "bbob-biobj_f74_i11_d05 1.0", "bbob-biobj_f74_i11_d10 1.0", "bbob-biobj_f74_i11_d20 1.0", "bbob-biobj_f74_i11_d40 1.0", "bbob-biobj_f74_i12_d02 1.0", "bbob-biobj_f74_i12_d03 1.0", "bbob-biobj_f74_i12_d05 1.0", "bbob-biobj_f74_i12_d10 1.0", "bbob-biobj_f74_i12_d20 1.0", "bbob-biobj_f74_i12_d40 1.0", "bbob-biobj_f74_i13_d02 1.0", "bbob-biobj_f74_i13_d03 1.0", "bbob-biobj_f74_i13_d05 1.0", "bbob-biobj_f74_i13_d10 1.0", "bbob-biobj_f74_i13_d20 1.0", "bbob-biobj_f74_i13_d40 1.0", "bbob-biobj_f74_i14_d02 1.0", "bbob-biobj_f74_i14_d03 1.0", "bbob-biobj_f74_i14_d05 1.0", "bbob-biobj_f74_i14_d10 1.0", "bbob-biobj_f74_i14_d20 1.0", "bbob-biobj_f74_i14_d40 1.0", "bbob-biobj_f74_i15_d02 1.0", "bbob-biobj_f74_i15_d03 1.0", "bbob-biobj_f74_i15_d05 1.0", "bbob-biobj_f74_i15_d10 1.0", "bbob-biobj_f74_i15_d20 1.0", "bbob-biobj_f74_i15_d40 1.0", "bbob-biobj_f75_i01_d02 1.0", "bbob-biobj_f75_i01_d03 1.0", "bbob-biobj_f75_i01_d05 1.0", "bbob-biobj_f75_i01_d10 1.0", "bbob-biobj_f75_i01_d20 1.0", "bbob-biobj_f75_i01_d40 1.0", "bbob-biobj_f75_i02_d02 1.0", "bbob-biobj_f75_i02_d03 1.0", "bbob-biobj_f75_i02_d05 1.0", "bbob-biobj_f75_i02_d10 1.0", "bbob-biobj_f75_i02_d20 1.0", "bbob-biobj_f75_i02_d40 1.0", "bbob-biobj_f75_i03_d02 1.0", "bbob-biobj_f75_i03_d03 1.0", "bbob-biobj_f75_i03_d05 1.0", "bbob-biobj_f75_i03_d10 1.0", "bbob-biobj_f75_i03_d20 1.0", "bbob-biobj_f75_i03_d40 1.0", "bbob-biobj_f75_i04_d02 1.0", "bbob-biobj_f75_i04_d03 1.0", "bbob-biobj_f75_i04_d05 1.0", "bbob-biobj_f75_i04_d10 1.0", "bbob-biobj_f75_i04_d20 1.0", "bbob-biobj_f75_i04_d40 1.0", "bbob-biobj_f75_i05_d02 1.0", "bbob-biobj_f75_i05_d03 1.0", "bbob-biobj_f75_i05_d05 1.0", "bbob-biobj_f75_i05_d10 1.0", "bbob-biobj_f75_i05_d20 1.0", "bbob-biobj_f75_i05_d40 1.0", "bbob-biobj_f75_i06_d02 1.0", "bbob-biobj_f75_i06_d03 1.0", "bbob-biobj_f75_i06_d05 1.0", "bbob-biobj_f75_i06_d10 1.0", "bbob-biobj_f75_i06_d20 1.0", "bbob-biobj_f75_i06_d40 1.0", "bbob-biobj_f75_i07_d02 1.0", "bbob-biobj_f75_i07_d03 1.0", "bbob-biobj_f75_i07_d05 1.0", "bbob-biobj_f75_i07_d10 1.0", "bbob-biobj_f75_i07_d20 1.0", "bbob-biobj_f75_i07_d40 1.0", "bbob-biobj_f75_i08_d02 1.0", "bbob-biobj_f75_i08_d03 1.0", "bbob-biobj_f75_i08_d05 1.0", "bbob-biobj_f75_i08_d10 1.0", "bbob-biobj_f75_i08_d20 1.0", "bbob-biobj_f75_i08_d40 1.0", "bbob-biobj_f75_i09_d02 1.0", "bbob-biobj_f75_i09_d03 1.0", "bbob-biobj_f75_i09_d05 1.0", "bbob-biobj_f75_i09_d10 1.0", "bbob-biobj_f75_i09_d20 1.0", "bbob-biobj_f75_i09_d40 1.0", "bbob-biobj_f75_i10_d02 1.0", "bbob-biobj_f75_i10_d03 1.0", "bbob-biobj_f75_i10_d05 1.0", "bbob-biobj_f75_i10_d10 1.0", "bbob-biobj_f75_i10_d20 1.0", "bbob-biobj_f75_i10_d40 1.0", "bbob-biobj_f75_i11_d02 1.0", "bbob-biobj_f75_i11_d03 1.0", "bbob-biobj_f75_i11_d05 1.0", "bbob-biobj_f75_i11_d10 1.0", "bbob-biobj_f75_i11_d20 1.0", "bbob-biobj_f75_i11_d40 1.0", "bbob-biobj_f75_i12_d02 1.0", "bbob-biobj_f75_i12_d03 1.0", "bbob-biobj_f75_i12_d05 1.0", "bbob-biobj_f75_i12_d10 1.0", "bbob-biobj_f75_i12_d20 1.0", "bbob-biobj_f75_i12_d40 1.0", "bbob-biobj_f75_i13_d02 1.0", "bbob-biobj_f75_i13_d03 1.0", "bbob-biobj_f75_i13_d05 1.0", "bbob-biobj_f75_i13_d10 1.0", "bbob-biobj_f75_i13_d20 1.0", "bbob-biobj_f75_i13_d40 1.0", "bbob-biobj_f75_i14_d02 1.0", "bbob-biobj_f75_i14_d03 1.0", "bbob-biobj_f75_i14_d05 1.0", "bbob-biobj_f75_i14_d10 1.0", "bbob-biobj_f75_i14_d20 1.0", "bbob-biobj_f75_i14_d40 1.0", "bbob-biobj_f75_i15_d02 1.0", "bbob-biobj_f75_i15_d03 1.0", "bbob-biobj_f75_i15_d05 1.0", "bbob-biobj_f75_i15_d10 1.0", "bbob-biobj_f75_i15_d20 1.0", "bbob-biobj_f75_i15_d40 1.0", "bbob-biobj_f76_i01_d02 1.0", "bbob-biobj_f76_i01_d03 1.0", "bbob-biobj_f76_i01_d05 1.0", "bbob-biobj_f76_i01_d10 1.0", "bbob-biobj_f76_i01_d20 1.0", "bbob-biobj_f76_i01_d40 1.0", "bbob-biobj_f76_i02_d02 1.0", "bbob-biobj_f76_i02_d03 1.0", "bbob-biobj_f76_i02_d05 1.0", "bbob-biobj_f76_i02_d10 1.0", "bbob-biobj_f76_i02_d20 1.0", "bbob-biobj_f76_i02_d40 1.0", "bbob-biobj_f76_i03_d02 1.0", "bbob-biobj_f76_i03_d03 1.0", "bbob-biobj_f76_i03_d05 1.0", "bbob-biobj_f76_i03_d10 1.0", "bbob-biobj_f76_i03_d20 1.0", "bbob-biobj_f76_i03_d40 1.0", "bbob-biobj_f76_i04_d02 1.0", "bbob-biobj_f76_i04_d03 1.0", "bbob-biobj_f76_i04_d05 1.0", "bbob-biobj_f76_i04_d10 1.0", "bbob-biobj_f76_i04_d20 1.0", "bbob-biobj_f76_i04_d40 1.0", "bbob-biobj_f76_i05_d02 1.0", "bbob-biobj_f76_i05_d03 1.0", "bbob-biobj_f76_i05_d05 1.0", "bbob-biobj_f76_i05_d10 1.0", "bbob-biobj_f76_i05_d20 1.0", "bbob-biobj_f76_i05_d40 1.0", "bbob-biobj_f76_i06_d02 1.0", "bbob-biobj_f76_i06_d03 1.0", "bbob-biobj_f76_i06_d05 1.0", "bbob-biobj_f76_i06_d10 1.0", "bbob-biobj_f76_i06_d20 1.0", "bbob-biobj_f76_i06_d40 1.0", "bbob-biobj_f76_i07_d02 1.0", "bbob-biobj_f76_i07_d03 1.0", "bbob-biobj_f76_i07_d05 1.0", "bbob-biobj_f76_i07_d10 1.0", "bbob-biobj_f76_i07_d20 1.0", "bbob-biobj_f76_i07_d40 1.0", "bbob-biobj_f76_i08_d02 1.0", "bbob-biobj_f76_i08_d03 1.0", "bbob-biobj_f76_i08_d05 1.0", "bbob-biobj_f76_i08_d10 1.0", "bbob-biobj_f76_i08_d20 1.0", "bbob-biobj_f76_i08_d40 1.0", "bbob-biobj_f76_i09_d02 1.0", "bbob-biobj_f76_i09_d03 1.0", "bbob-biobj_f76_i09_d05 1.0", "bbob-biobj_f76_i09_d10 1.0", "bbob-biobj_f76_i09_d20 1.0", "bbob-biobj_f76_i09_d40 1.0", "bbob-biobj_f76_i10_d02 1.0", "bbob-biobj_f76_i10_d03 1.0", "bbob-biobj_f76_i10_d05 1.0", "bbob-biobj_f76_i10_d10 1.0", "bbob-biobj_f76_i10_d20 1.0", "bbob-biobj_f76_i10_d40 1.0", "bbob-biobj_f76_i11_d02 1.0", "bbob-biobj_f76_i11_d03 1.0", "bbob-biobj_f76_i11_d05 1.0", "bbob-biobj_f76_i11_d10 1.0", "bbob-biobj_f76_i11_d20 1.0", "bbob-biobj_f76_i11_d40 1.0", "bbob-biobj_f76_i12_d02 1.0", "bbob-biobj_f76_i12_d03 1.0", "bbob-biobj_f76_i12_d05 1.0", "bbob-biobj_f76_i12_d10 1.0", "bbob-biobj_f76_i12_d20 1.0", "bbob-biobj_f76_i12_d40 1.0", "bbob-biobj_f76_i13_d02 1.0", "bbob-biobj_f76_i13_d03 1.0", "bbob-biobj_f76_i13_d05 1.0", "bbob-biobj_f76_i13_d10 1.0", "bbob-biobj_f76_i13_d20 1.0", "bbob-biobj_f76_i13_d40 1.0", "bbob-biobj_f76_i14_d02 1.0", "bbob-biobj_f76_i14_d03 1.0", "bbob-biobj_f76_i14_d05 1.0", "bbob-biobj_f76_i14_d10 1.0", "bbob-biobj_f76_i14_d20 1.0", "bbob-biobj_f76_i14_d40 1.0", "bbob-biobj_f76_i15_d02 1.0", "bbob-biobj_f76_i15_d03 1.0", "bbob-biobj_f76_i15_d05 1.0", "bbob-biobj_f76_i15_d10 1.0", "bbob-biobj_f76_i15_d20 1.0", "bbob-biobj_f76_i15_d40 1.0", "bbob-biobj_f77_i01_d02 1.0", "bbob-biobj_f77_i01_d03 1.0", "bbob-biobj_f77_i01_d05 1.0", "bbob-biobj_f77_i01_d10 1.0", "bbob-biobj_f77_i01_d20 1.0", "bbob-biobj_f77_i01_d40 1.0", "bbob-biobj_f77_i02_d02 1.0", "bbob-biobj_f77_i02_d03 1.0", "bbob-biobj_f77_i02_d05 1.0", "bbob-biobj_f77_i02_d10 1.0", "bbob-biobj_f77_i02_d20 1.0", "bbob-biobj_f77_i02_d40 1.0", "bbob-biobj_f77_i03_d02 1.0", "bbob-biobj_f77_i03_d03 1.0", "bbob-biobj_f77_i03_d05 1.0", "bbob-biobj_f77_i03_d10 1.0", "bbob-biobj_f77_i03_d20 1.0", "bbob-biobj_f77_i03_d40 1.0", "bbob-biobj_f77_i04_d02 1.0", "bbob-biobj_f77_i04_d03 1.0", "bbob-biobj_f77_i04_d05 1.0", "bbob-biobj_f77_i04_d10 1.0", "bbob-biobj_f77_i04_d20 1.0", "bbob-biobj_f77_i04_d40 1.0", "bbob-biobj_f77_i05_d02 1.0", "bbob-biobj_f77_i05_d03 1.0", "bbob-biobj_f77_i05_d05 1.0", "bbob-biobj_f77_i05_d10 1.0", "bbob-biobj_f77_i05_d20 1.0", "bbob-biobj_f77_i05_d40 1.0", "bbob-biobj_f77_i06_d02 1.0", "bbob-biobj_f77_i06_d03 1.0", "bbob-biobj_f77_i06_d05 1.0", "bbob-biobj_f77_i06_d10 1.0", "bbob-biobj_f77_i06_d20 1.0", "bbob-biobj_f77_i06_d40 1.0", "bbob-biobj_f77_i07_d02 1.0", "bbob-biobj_f77_i07_d03 1.0", "bbob-biobj_f77_i07_d05 1.0", "bbob-biobj_f77_i07_d10 1.0", "bbob-biobj_f77_i07_d20 1.0", "bbob-biobj_f77_i07_d40 1.0", "bbob-biobj_f77_i08_d02 1.0", "bbob-biobj_f77_i08_d03 1.0", "bbob-biobj_f77_i08_d05 1.0", "bbob-biobj_f77_i08_d10 1.0", "bbob-biobj_f77_i08_d20 1.0", "bbob-biobj_f77_i08_d40 1.0", "bbob-biobj_f77_i09_d02 1.0", "bbob-biobj_f77_i09_d03 1.0", "bbob-biobj_f77_i09_d05 1.0", "bbob-biobj_f77_i09_d10 1.0", "bbob-biobj_f77_i09_d20 1.0", "bbob-biobj_f77_i09_d40 1.0", "bbob-biobj_f77_i10_d02 1.0", "bbob-biobj_f77_i10_d03 1.0", "bbob-biobj_f77_i10_d05 1.0", "bbob-biobj_f77_i10_d10 1.0", "bbob-biobj_f77_i10_d20 1.0", "bbob-biobj_f77_i10_d40 1.0", "bbob-biobj_f77_i11_d02 1.0", "bbob-biobj_f77_i11_d03 1.0", "bbob-biobj_f77_i11_d05 1.0", "bbob-biobj_f77_i11_d10 1.0", "bbob-biobj_f77_i11_d20 1.0", "bbob-biobj_f77_i11_d40 1.0", "bbob-biobj_f77_i12_d02 1.0", "bbob-biobj_f77_i12_d03 1.0", "bbob-biobj_f77_i12_d05 1.0", "bbob-biobj_f77_i12_d10 1.0", "bbob-biobj_f77_i12_d20 1.0", "bbob-biobj_f77_i12_d40 1.0", "bbob-biobj_f77_i13_d02 1.0", "bbob-biobj_f77_i13_d03 1.0", "bbob-biobj_f77_i13_d05 1.0", "bbob-biobj_f77_i13_d10 1.0", "bbob-biobj_f77_i13_d20 1.0", "bbob-biobj_f77_i13_d40 1.0", "bbob-biobj_f77_i14_d02 1.0", "bbob-biobj_f77_i14_d03 1.0", "bbob-biobj_f77_i14_d05 1.0", "bbob-biobj_f77_i14_d10 1.0", "bbob-biobj_f77_i14_d20 1.0", "bbob-biobj_f77_i14_d40 1.0", "bbob-biobj_f77_i15_d02 1.0", "bbob-biobj_f77_i15_d03 1.0", "bbob-biobj_f77_i15_d05 1.0", "bbob-biobj_f77_i15_d10 1.0", "bbob-biobj_f77_i15_d20 1.0", "bbob-biobj_f77_i15_d40 1.0", "bbob-biobj_f78_i01_d02 1.0", "bbob-biobj_f78_i01_d03 1.0", "bbob-biobj_f78_i01_d05 1.0", "bbob-biobj_f78_i01_d10 1.0", "bbob-biobj_f78_i01_d20 1.0", "bbob-biobj_f78_i01_d40 1.0", "bbob-biobj_f78_i02_d02 1.0", "bbob-biobj_f78_i02_d03 1.0", "bbob-biobj_f78_i02_d05 1.0", "bbob-biobj_f78_i02_d10 1.0", "bbob-biobj_f78_i02_d20 1.0", "bbob-biobj_f78_i02_d40 1.0", "bbob-biobj_f78_i03_d02 1.0", "bbob-biobj_f78_i03_d03 1.0", "bbob-biobj_f78_i03_d05 1.0", "bbob-biobj_f78_i03_d10 1.0", "bbob-biobj_f78_i03_d20 1.0", "bbob-biobj_f78_i03_d40 1.0", "bbob-biobj_f78_i04_d02 1.0", "bbob-biobj_f78_i04_d03 1.0", "bbob-biobj_f78_i04_d05 1.0", "bbob-biobj_f78_i04_d10 1.0", "bbob-biobj_f78_i04_d20 1.0", "bbob-biobj_f78_i04_d40 1.0", "bbob-biobj_f78_i05_d02 1.0", "bbob-biobj_f78_i05_d03 1.0", "bbob-biobj_f78_i05_d05 1.0", "bbob-biobj_f78_i05_d10 1.0", "bbob-biobj_f78_i05_d20 1.0", "bbob-biobj_f78_i05_d40 1.0", "bbob-biobj_f78_i06_d02 1.0", "bbob-biobj_f78_i06_d03 1.0", "bbob-biobj_f78_i06_d05 1.0", "bbob-biobj_f78_i06_d10 1.0", "bbob-biobj_f78_i06_d20 1.0", "bbob-biobj_f78_i06_d40 1.0", "bbob-biobj_f78_i07_d02 1.0", "bbob-biobj_f78_i07_d03 1.0", "bbob-biobj_f78_i07_d05 1.0", "bbob-biobj_f78_i07_d10 1.0", "bbob-biobj_f78_i07_d20 1.0", "bbob-biobj_f78_i07_d40 1.0", "bbob-biobj_f78_i08_d02 1.0", "bbob-biobj_f78_i08_d03 1.0", "bbob-biobj_f78_i08_d05 1.0", "bbob-biobj_f78_i08_d10 1.0", "bbob-biobj_f78_i08_d20 1.0", "bbob-biobj_f78_i08_d40 1.0", "bbob-biobj_f78_i09_d02 1.0", "bbob-biobj_f78_i09_d03 1.0", "bbob-biobj_f78_i09_d05 1.0", "bbob-biobj_f78_i09_d10 1.0", "bbob-biobj_f78_i09_d20 1.0", "bbob-biobj_f78_i09_d40 1.0", "bbob-biobj_f78_i10_d02 1.0", "bbob-biobj_f78_i10_d03 1.0", "bbob-biobj_f78_i10_d05 1.0", "bbob-biobj_f78_i10_d10 1.0", "bbob-biobj_f78_i10_d20 1.0", "bbob-biobj_f78_i10_d40 1.0", "bbob-biobj_f78_i11_d02 1.0", "bbob-biobj_f78_i11_d03 1.0", "bbob-biobj_f78_i11_d05 1.0", "bbob-biobj_f78_i11_d10 1.0", "bbob-biobj_f78_i11_d20 1.0", "bbob-biobj_f78_i11_d40 1.0", "bbob-biobj_f78_i12_d02 1.0", "bbob-biobj_f78_i12_d03 1.0", "bbob-biobj_f78_i12_d05 1.0", "bbob-biobj_f78_i12_d10 1.0", "bbob-biobj_f78_i12_d20 1.0", "bbob-biobj_f78_i12_d40 1.0", "bbob-biobj_f78_i13_d02 1.0", "bbob-biobj_f78_i13_d03 1.0", "bbob-biobj_f78_i13_d05 1.0", "bbob-biobj_f78_i13_d10 1.0", "bbob-biobj_f78_i13_d20 1.0", "bbob-biobj_f78_i13_d40 1.0", "bbob-biobj_f78_i14_d02 1.0", "bbob-biobj_f78_i14_d03 1.0", "bbob-biobj_f78_i14_d05 1.0", "bbob-biobj_f78_i14_d10 1.0", "bbob-biobj_f78_i14_d20 1.0", "bbob-biobj_f78_i14_d40 1.0", "bbob-biobj_f78_i15_d02 1.0", "bbob-biobj_f78_i15_d03 1.0", "bbob-biobj_f78_i15_d05 1.0", "bbob-biobj_f78_i15_d10 1.0", "bbob-biobj_f78_i15_d20 1.0", "bbob-biobj_f78_i15_d40 1.0", "bbob-biobj_f79_i01_d02 1.0", "bbob-biobj_f79_i01_d03 1.0", "bbob-biobj_f79_i01_d05 1.0", "bbob-biobj_f79_i01_d10 1.0", "bbob-biobj_f79_i01_d20 1.0", "bbob-biobj_f79_i01_d40 1.0", "bbob-biobj_f79_i02_d02 1.0", "bbob-biobj_f79_i02_d03 1.0", "bbob-biobj_f79_i02_d05 1.0", "bbob-biobj_f79_i02_d10 1.0", "bbob-biobj_f79_i02_d20 1.0", "bbob-biobj_f79_i02_d40 1.0", "bbob-biobj_f79_i03_d02 1.0", "bbob-biobj_f79_i03_d03 1.0", "bbob-biobj_f79_i03_d05 1.0", "bbob-biobj_f79_i03_d10 1.0", "bbob-biobj_f79_i03_d20 1.0", "bbob-biobj_f79_i03_d40 1.0", "bbob-biobj_f79_i04_d02 1.0", "bbob-biobj_f79_i04_d03 1.0", "bbob-biobj_f79_i04_d05 1.0", "bbob-biobj_f79_i04_d10 1.0", "bbob-biobj_f79_i04_d20 1.0", "bbob-biobj_f79_i04_d40 1.0", "bbob-biobj_f79_i05_d02 1.0", "bbob-biobj_f79_i05_d03 1.0", "bbob-biobj_f79_i05_d05 1.0", "bbob-biobj_f79_i05_d10 1.0", "bbob-biobj_f79_i05_d20 1.0", "bbob-biobj_f79_i05_d40 1.0", "bbob-biobj_f79_i06_d02 1.0", "bbob-biobj_f79_i06_d03 1.0", "bbob-biobj_f79_i06_d05 1.0", "bbob-biobj_f79_i06_d10 1.0", "bbob-biobj_f79_i06_d20 1.0", "bbob-biobj_f79_i06_d40 1.0", "bbob-biobj_f79_i07_d02 1.0", "bbob-biobj_f79_i07_d03 1.0", "bbob-biobj_f79_i07_d05 1.0", "bbob-biobj_f79_i07_d10 1.0", "bbob-biobj_f79_i07_d20 1.0", "bbob-biobj_f79_i07_d40 1.0", "bbob-biobj_f79_i08_d02 1.0", "bbob-biobj_f79_i08_d03 1.0", "bbob-biobj_f79_i08_d05 1.0", "bbob-biobj_f79_i08_d10 1.0", "bbob-biobj_f79_i08_d20 1.0", "bbob-biobj_f79_i08_d40 1.0", "bbob-biobj_f79_i09_d02 1.0", "bbob-biobj_f79_i09_d03 1.0", "bbob-biobj_f79_i09_d05 1.0", "bbob-biobj_f79_i09_d10 1.0", "bbob-biobj_f79_i09_d20 1.0", "bbob-biobj_f79_i09_d40 1.0", "bbob-biobj_f79_i10_d02 1.0", "bbob-biobj_f79_i10_d03 1.0", "bbob-biobj_f79_i10_d05 1.0", "bbob-biobj_f79_i10_d10 1.0", "bbob-biobj_f79_i10_d20 1.0", "bbob-biobj_f79_i10_d40 1.0", "bbob-biobj_f79_i11_d02 1.0", "bbob-biobj_f79_i11_d03 1.0", "bbob-biobj_f79_i11_d05 1.0", "bbob-biobj_f79_i11_d10 1.0", "bbob-biobj_f79_i11_d20 1.0", "bbob-biobj_f79_i11_d40 1.0", "bbob-biobj_f79_i12_d02 1.0", "bbob-biobj_f79_i12_d03 1.0", "bbob-biobj_f79_i12_d05 1.0", "bbob-biobj_f79_i12_d10 1.0", "bbob-biobj_f79_i12_d20 1.0", "bbob-biobj_f79_i12_d40 1.0", "bbob-biobj_f79_i13_d02 1.0", "bbob-biobj_f79_i13_d03 1.0", "bbob-biobj_f79_i13_d05 1.0", "bbob-biobj_f79_i13_d10 1.0", "bbob-biobj_f79_i13_d20 1.0", "bbob-biobj_f79_i13_d40 1.0", "bbob-biobj_f79_i14_d02 1.0", "bbob-biobj_f79_i14_d03 1.0", "bbob-biobj_f79_i14_d05 1.0", "bbob-biobj_f79_i14_d10 1.0", "bbob-biobj_f79_i14_d20 1.0", "bbob-biobj_f79_i14_d40 1.0", "bbob-biobj_f79_i15_d02 1.0", "bbob-biobj_f79_i15_d03 1.0", "bbob-biobj_f79_i15_d05 1.0", "bbob-biobj_f79_i15_d10 1.0", "bbob-biobj_f79_i15_d20 1.0", "bbob-biobj_f79_i15_d40 1.0", "bbob-biobj_f80_i01_d02 1.0", "bbob-biobj_f80_i01_d03 1.0", "bbob-biobj_f80_i01_d05 1.0", "bbob-biobj_f80_i01_d10 1.0", "bbob-biobj_f80_i01_d20 1.0", "bbob-biobj_f80_i01_d40 1.0", "bbob-biobj_f80_i02_d02 1.0", "bbob-biobj_f80_i02_d03 1.0", "bbob-biobj_f80_i02_d05 1.0", "bbob-biobj_f80_i02_d10 1.0", "bbob-biobj_f80_i02_d20 1.0", "bbob-biobj_f80_i02_d40 1.0", "bbob-biobj_f80_i03_d02 1.0", "bbob-biobj_f80_i03_d03 1.0", "bbob-biobj_f80_i03_d05 1.0", "bbob-biobj_f80_i03_d10 1.0", "bbob-biobj_f80_i03_d20 1.0", "bbob-biobj_f80_i03_d40 1.0", "bbob-biobj_f80_i04_d02 1.0", "bbob-biobj_f80_i04_d03 1.0", "bbob-biobj_f80_i04_d05 1.0", "bbob-biobj_f80_i04_d10 1.0", "bbob-biobj_f80_i04_d20 1.0", "bbob-biobj_f80_i04_d40 1.0", "bbob-biobj_f80_i05_d02 1.0", "bbob-biobj_f80_i05_d03 1.0", "bbob-biobj_f80_i05_d05 1.0", "bbob-biobj_f80_i05_d10 1.0", "bbob-biobj_f80_i05_d20 1.0", "bbob-biobj_f80_i05_d40 1.0", "bbob-biobj_f80_i06_d02 1.0", "bbob-biobj_f80_i06_d03 1.0", "bbob-biobj_f80_i06_d05 1.0", "bbob-biobj_f80_i06_d10 1.0", "bbob-biobj_f80_i06_d20 1.0", "bbob-biobj_f80_i06_d40 1.0", "bbob-biobj_f80_i07_d02 1.0", "bbob-biobj_f80_i07_d03 1.0", "bbob-biobj_f80_i07_d05 1.0", "bbob-biobj_f80_i07_d10 1.0", "bbob-biobj_f80_i07_d20 1.0", "bbob-biobj_f80_i07_d40 1.0", "bbob-biobj_f80_i08_d02 1.0", "bbob-biobj_f80_i08_d03 1.0", "bbob-biobj_f80_i08_d05 1.0", "bbob-biobj_f80_i08_d10 1.0", "bbob-biobj_f80_i08_d20 1.0", "bbob-biobj_f80_i08_d40 1.0", "bbob-biobj_f80_i09_d02 1.0", "bbob-biobj_f80_i09_d03 1.0", "bbob-biobj_f80_i09_d05 1.0", "bbob-biobj_f80_i09_d10 1.0", "bbob-biobj_f80_i09_d20 1.0", "bbob-biobj_f80_i09_d40 1.0", "bbob-biobj_f80_i10_d02 1.0", "bbob-biobj_f80_i10_d03 1.0", "bbob-biobj_f80_i10_d05 1.0", "bbob-biobj_f80_i10_d10 1.0", "bbob-biobj_f80_i10_d20 1.0", "bbob-biobj_f80_i10_d40 1.0", "bbob-biobj_f80_i11_d02 1.0", "bbob-biobj_f80_i11_d03 1.0", "bbob-biobj_f80_i11_d05 1.0", "bbob-biobj_f80_i11_d10 1.0", "bbob-biobj_f80_i11_d20 1.0", "bbob-biobj_f80_i11_d40 1.0", "bbob-biobj_f80_i12_d02 1.0", "bbob-biobj_f80_i12_d03 1.0", "bbob-biobj_f80_i12_d05 1.0", "bbob-biobj_f80_i12_d10 1.0", "bbob-biobj_f80_i12_d20 1.0", "bbob-biobj_f80_i12_d40 1.0", "bbob-biobj_f80_i13_d02 1.0", "bbob-biobj_f80_i13_d03 1.0", "bbob-biobj_f80_i13_d05 1.0", "bbob-biobj_f80_i13_d10 1.0", "bbob-biobj_f80_i13_d20 1.0", "bbob-biobj_f80_i13_d40 1.0", "bbob-biobj_f80_i14_d02 1.0", "bbob-biobj_f80_i14_d03 1.0", "bbob-biobj_f80_i14_d05 1.0", "bbob-biobj_f80_i14_d10 1.0", "bbob-biobj_f80_i14_d20 1.0", "bbob-biobj_f80_i14_d40 1.0", "bbob-biobj_f80_i15_d02 1.0", "bbob-biobj_f80_i15_d03 1.0", "bbob-biobj_f80_i15_d05 1.0", "bbob-biobj_f80_i15_d10 1.0", "bbob-biobj_f80_i15_d20 1.0", "bbob-biobj_f80_i15_d40 1.0", "bbob-biobj_f81_i01_d02 1.0", "bbob-biobj_f81_i01_d03 1.0", "bbob-biobj_f81_i01_d05 1.0", "bbob-biobj_f81_i01_d10 1.0", "bbob-biobj_f81_i01_d20 1.0", "bbob-biobj_f81_i01_d40 1.0", "bbob-biobj_f81_i02_d02 1.0", "bbob-biobj_f81_i02_d03 1.0", "bbob-biobj_f81_i02_d05 1.0", "bbob-biobj_f81_i02_d10 1.0", "bbob-biobj_f81_i02_d20 1.0", "bbob-biobj_f81_i02_d40 1.0", "bbob-biobj_f81_i03_d02 1.0", "bbob-biobj_f81_i03_d03 1.0", "bbob-biobj_f81_i03_d05 1.0", "bbob-biobj_f81_i03_d10 1.0", "bbob-biobj_f81_i03_d20 1.0", "bbob-biobj_f81_i03_d40 1.0", "bbob-biobj_f81_i04_d02 1.0", "bbob-biobj_f81_i04_d03 1.0", "bbob-biobj_f81_i04_d05 1.0", "bbob-biobj_f81_i04_d10 1.0", "bbob-biobj_f81_i04_d20 1.0", "bbob-biobj_f81_i04_d40 1.0", "bbob-biobj_f81_i05_d02 1.0", "bbob-biobj_f81_i05_d03 1.0", "bbob-biobj_f81_i05_d05 1.0", "bbob-biobj_f81_i05_d10 1.0", "bbob-biobj_f81_i05_d20 1.0", "bbob-biobj_f81_i05_d40 1.0", "bbob-biobj_f81_i06_d02 1.0", "bbob-biobj_f81_i06_d03 1.0", "bbob-biobj_f81_i06_d05 1.0", "bbob-biobj_f81_i06_d10 1.0", "bbob-biobj_f81_i06_d20 1.0", "bbob-biobj_f81_i06_d40 1.0", "bbob-biobj_f81_i07_d02 1.0", "bbob-biobj_f81_i07_d03 1.0", "bbob-biobj_f81_i07_d05 1.0", "bbob-biobj_f81_i07_d10 1.0", "bbob-biobj_f81_i07_d20 1.0", "bbob-biobj_f81_i07_d40 1.0", "bbob-biobj_f81_i08_d02 1.0", "bbob-biobj_f81_i08_d03 1.0", "bbob-biobj_f81_i08_d05 1.0", "bbob-biobj_f81_i08_d10 1.0", "bbob-biobj_f81_i08_d20 1.0", "bbob-biobj_f81_i08_d40 1.0", "bbob-biobj_f81_i09_d02 1.0", "bbob-biobj_f81_i09_d03 1.0", "bbob-biobj_f81_i09_d05 1.0", "bbob-biobj_f81_i09_d10 1.0", "bbob-biobj_f81_i09_d20 1.0", "bbob-biobj_f81_i09_d40 1.0", "bbob-biobj_f81_i10_d02 1.0", "bbob-biobj_f81_i10_d03 1.0", "bbob-biobj_f81_i10_d05 1.0", "bbob-biobj_f81_i10_d10 1.0", "bbob-biobj_f81_i10_d20 1.0", "bbob-biobj_f81_i10_d40 1.0", "bbob-biobj_f81_i11_d02 1.0", "bbob-biobj_f81_i11_d03 1.0", "bbob-biobj_f81_i11_d05 1.0", "bbob-biobj_f81_i11_d10 1.0", "bbob-biobj_f81_i11_d20 1.0", "bbob-biobj_f81_i11_d40 1.0", "bbob-biobj_f81_i12_d02 1.0", "bbob-biobj_f81_i12_d03 1.0", "bbob-biobj_f81_i12_d05 1.0", "bbob-biobj_f81_i12_d10 1.0", "bbob-biobj_f81_i12_d20 1.0", "bbob-biobj_f81_i12_d40 1.0", "bbob-biobj_f81_i13_d02 1.0", "bbob-biobj_f81_i13_d03 1.0", "bbob-biobj_f81_i13_d05 1.0", "bbob-biobj_f81_i13_d10 1.0", "bbob-biobj_f81_i13_d20 1.0", "bbob-biobj_f81_i13_d40 1.0", "bbob-biobj_f81_i14_d02 1.0", "bbob-biobj_f81_i14_d03 1.0", "bbob-biobj_f81_i14_d05 1.0", "bbob-biobj_f81_i14_d10 1.0", "bbob-biobj_f81_i14_d20 1.0", "bbob-biobj_f81_i14_d40 1.0", "bbob-biobj_f81_i15_d02 1.0", "bbob-biobj_f81_i15_d03 1.0", "bbob-biobj_f81_i15_d05 1.0", "bbob-biobj_f81_i15_d10 1.0", "bbob-biobj_f81_i15_d20 1.0", "bbob-biobj_f81_i15_d40 1.0", "bbob-biobj_f82_i01_d02 1.0", "bbob-biobj_f82_i01_d03 1.0", "bbob-biobj_f82_i01_d05 1.0", "bbob-biobj_f82_i01_d10 1.0", "bbob-biobj_f82_i01_d20 1.0", "bbob-biobj_f82_i01_d40 1.0", "bbob-biobj_f82_i02_d02 1.0", "bbob-biobj_f82_i02_d03 1.0", "bbob-biobj_f82_i02_d05 1.0", "bbob-biobj_f82_i02_d10 1.0", "bbob-biobj_f82_i02_d20 1.0", "bbob-biobj_f82_i02_d40 1.0", "bbob-biobj_f82_i03_d02 1.0", "bbob-biobj_f82_i03_d03 1.0", "bbob-biobj_f82_i03_d05 1.0", "bbob-biobj_f82_i03_d10 1.0", "bbob-biobj_f82_i03_d20 1.0", "bbob-biobj_f82_i03_d40 1.0", "bbob-biobj_f82_i04_d02 1.0", "bbob-biobj_f82_i04_d03 1.0", "bbob-biobj_f82_i04_d05 1.0", "bbob-biobj_f82_i04_d10 1.0", "bbob-biobj_f82_i04_d20 1.0", "bbob-biobj_f82_i04_d40 1.0", "bbob-biobj_f82_i05_d02 1.0", "bbob-biobj_f82_i05_d03 1.0", "bbob-biobj_f82_i05_d05 1.0", "bbob-biobj_f82_i05_d10 1.0", "bbob-biobj_f82_i05_d20 1.0", "bbob-biobj_f82_i05_d40 1.0", "bbob-biobj_f82_i06_d02 1.0", "bbob-biobj_f82_i06_d03 1.0", "bbob-biobj_f82_i06_d05 1.0", "bbob-biobj_f82_i06_d10 1.0", "bbob-biobj_f82_i06_d20 1.0", "bbob-biobj_f82_i06_d40 1.0", "bbob-biobj_f82_i07_d02 1.0", "bbob-biobj_f82_i07_d03 1.0", "bbob-biobj_f82_i07_d05 1.0", "bbob-biobj_f82_i07_d10 1.0", "bbob-biobj_f82_i07_d20 1.0", "bbob-biobj_f82_i07_d40 1.0", "bbob-biobj_f82_i08_d02 1.0", "bbob-biobj_f82_i08_d03 1.0", "bbob-biobj_f82_i08_d05 1.0", "bbob-biobj_f82_i08_d10 1.0", "bbob-biobj_f82_i08_d20 1.0", "bbob-biobj_f82_i08_d40 1.0", "bbob-biobj_f82_i09_d02 1.0", "bbob-biobj_f82_i09_d03 1.0", "bbob-biobj_f82_i09_d05 1.0", "bbob-biobj_f82_i09_d10 1.0", "bbob-biobj_f82_i09_d20 1.0", "bbob-biobj_f82_i09_d40 1.0", "bbob-biobj_f82_i10_d02 1.0", "bbob-biobj_f82_i10_d03 1.0", "bbob-biobj_f82_i10_d05 1.0", "bbob-biobj_f82_i10_d10 1.0", "bbob-biobj_f82_i10_d20 1.0", "bbob-biobj_f82_i10_d40 1.0", "bbob-biobj_f82_i11_d02 1.0", "bbob-biobj_f82_i11_d03 1.0", "bbob-biobj_f82_i11_d05 1.0", "bbob-biobj_f82_i11_d10 1.0", "bbob-biobj_f82_i11_d20 1.0", "bbob-biobj_f82_i11_d40 1.0", "bbob-biobj_f82_i12_d02 1.0", "bbob-biobj_f82_i12_d03 1.0", "bbob-biobj_f82_i12_d05 1.0", "bbob-biobj_f82_i12_d10 1.0", "bbob-biobj_f82_i12_d20 1.0", "bbob-biobj_f82_i12_d40 1.0", "bbob-biobj_f82_i13_d02 1.0", "bbob-biobj_f82_i13_d03 1.0", "bbob-biobj_f82_i13_d05 1.0", "bbob-biobj_f82_i13_d10 1.0", "bbob-biobj_f82_i13_d20 1.0", "bbob-biobj_f82_i13_d40 1.0", "bbob-biobj_f82_i14_d02 1.0", "bbob-biobj_f82_i14_d03 1.0", "bbob-biobj_f82_i14_d05 1.0", "bbob-biobj_f82_i14_d10 1.0", "bbob-biobj_f82_i14_d20 1.0", "bbob-biobj_f82_i14_d40 1.0", "bbob-biobj_f82_i15_d02 1.0", "bbob-biobj_f82_i15_d03 1.0", "bbob-biobj_f82_i15_d05 1.0", "bbob-biobj_f82_i15_d10 1.0", "bbob-biobj_f82_i15_d20 1.0", "bbob-biobj_f82_i15_d40 1.0", "bbob-biobj_f83_i01_d02 1.0", "bbob-biobj_f83_i01_d03 1.0", "bbob-biobj_f83_i01_d05 1.0", "bbob-biobj_f83_i01_d10 1.0", "bbob-biobj_f83_i01_d20 1.0", "bbob-biobj_f83_i01_d40 1.0", "bbob-biobj_f83_i02_d02 1.0", "bbob-biobj_f83_i02_d03 1.0", "bbob-biobj_f83_i02_d05 1.0", "bbob-biobj_f83_i02_d10 1.0", "bbob-biobj_f83_i02_d20 1.0", "bbob-biobj_f83_i02_d40 1.0", "bbob-biobj_f83_i03_d02 1.0", "bbob-biobj_f83_i03_d03 1.0", "bbob-biobj_f83_i03_d05 1.0", "bbob-biobj_f83_i03_d10 1.0", "bbob-biobj_f83_i03_d20 1.0", "bbob-biobj_f83_i03_d40 1.0", "bbob-biobj_f83_i04_d02 1.0", "bbob-biobj_f83_i04_d03 1.0", "bbob-biobj_f83_i04_d05 1.0", "bbob-biobj_f83_i04_d10 1.0", "bbob-biobj_f83_i04_d20 1.0", "bbob-biobj_f83_i04_d40 1.0", "bbob-biobj_f83_i05_d02 1.0", "bbob-biobj_f83_i05_d03 1.0", "bbob-biobj_f83_i05_d05 1.0", "bbob-biobj_f83_i05_d10 1.0", "bbob-biobj_f83_i05_d20 1.0", "bbob-biobj_f83_i05_d40 1.0", "bbob-biobj_f83_i06_d02 1.0", "bbob-biobj_f83_i06_d03 1.0", "bbob-biobj_f83_i06_d05 1.0", "bbob-biobj_f83_i06_d10 1.0", "bbob-biobj_f83_i06_d20 1.0", "bbob-biobj_f83_i06_d40 1.0", "bbob-biobj_f83_i07_d02 1.0", "bbob-biobj_f83_i07_d03 1.0", "bbob-biobj_f83_i07_d05 1.0", "bbob-biobj_f83_i07_d10 1.0", "bbob-biobj_f83_i07_d20 1.0", "bbob-biobj_f83_i07_d40 1.0", "bbob-biobj_f83_i08_d02 1.0", "bbob-biobj_f83_i08_d03 1.0", "bbob-biobj_f83_i08_d05 1.0", "bbob-biobj_f83_i08_d10 1.0", "bbob-biobj_f83_i08_d20 1.0", "bbob-biobj_f83_i08_d40 1.0", "bbob-biobj_f83_i09_d02 1.0", "bbob-biobj_f83_i09_d03 1.0", "bbob-biobj_f83_i09_d05 1.0", "bbob-biobj_f83_i09_d10 1.0", "bbob-biobj_f83_i09_d20 1.0", "bbob-biobj_f83_i09_d40 1.0", "bbob-biobj_f83_i10_d02 1.0", "bbob-biobj_f83_i10_d03 1.0", "bbob-biobj_f83_i10_d05 1.0", "bbob-biobj_f83_i10_d10 1.0", "bbob-biobj_f83_i10_d20 1.0", "bbob-biobj_f83_i10_d40 1.0", "bbob-biobj_f83_i11_d02 1.0", "bbob-biobj_f83_i11_d03 1.0", "bbob-biobj_f83_i11_d05 1.0", "bbob-biobj_f83_i11_d10 1.0", "bbob-biobj_f83_i11_d20 1.0", "bbob-biobj_f83_i11_d40 1.0", "bbob-biobj_f83_i12_d02 1.0", "bbob-biobj_f83_i12_d03 1.0", "bbob-biobj_f83_i12_d05 1.0", "bbob-biobj_f83_i12_d10 1.0", "bbob-biobj_f83_i12_d20 1.0", "bbob-biobj_f83_i12_d40 1.0", "bbob-biobj_f83_i13_d02 1.0", "bbob-biobj_f83_i13_d03 1.0", "bbob-biobj_f83_i13_d05 1.0", "bbob-biobj_f83_i13_d10 1.0", "bbob-biobj_f83_i13_d20 1.0", "bbob-biobj_f83_i13_d40 1.0", "bbob-biobj_f83_i14_d02 1.0", "bbob-biobj_f83_i14_d03 1.0", "bbob-biobj_f83_i14_d05 1.0", "bbob-biobj_f83_i14_d10 1.0", "bbob-biobj_f83_i14_d20 1.0", "bbob-biobj_f83_i14_d40 1.0", "bbob-biobj_f83_i15_d02 1.0", "bbob-biobj_f83_i15_d03 1.0", "bbob-biobj_f83_i15_d05 1.0", "bbob-biobj_f83_i15_d10 1.0", "bbob-biobj_f83_i15_d20 1.0", "bbob-biobj_f83_i15_d40 1.0", "bbob-biobj_f84_i01_d02 1.0", "bbob-biobj_f84_i01_d03 1.0", "bbob-biobj_f84_i01_d05 1.0", "bbob-biobj_f84_i01_d10 1.0", "bbob-biobj_f84_i01_d20 1.0", "bbob-biobj_f84_i01_d40 1.0", "bbob-biobj_f84_i02_d02 1.0", "bbob-biobj_f84_i02_d03 1.0", "bbob-biobj_f84_i02_d05 1.0", "bbob-biobj_f84_i02_d10 1.0", "bbob-biobj_f84_i02_d20 1.0", "bbob-biobj_f84_i02_d40 1.0", "bbob-biobj_f84_i03_d02 1.0", "bbob-biobj_f84_i03_d03 1.0", "bbob-biobj_f84_i03_d05 1.0", "bbob-biobj_f84_i03_d10 1.0", "bbob-biobj_f84_i03_d20 1.0", "bbob-biobj_f84_i03_d40 1.0", "bbob-biobj_f84_i04_d02 1.0", "bbob-biobj_f84_i04_d03 1.0", "bbob-biobj_f84_i04_d05 1.0", "bbob-biobj_f84_i04_d10 1.0", "bbob-biobj_f84_i04_d20 1.0", "bbob-biobj_f84_i04_d40 1.0", "bbob-biobj_f84_i05_d02 1.0", "bbob-biobj_f84_i05_d03 1.0", "bbob-biobj_f84_i05_d05 1.0", "bbob-biobj_f84_i05_d10 1.0", "bbob-biobj_f84_i05_d20 1.0", "bbob-biobj_f84_i05_d40 1.0", "bbob-biobj_f84_i06_d02 1.0", "bbob-biobj_f84_i06_d03 1.0", "bbob-biobj_f84_i06_d05 1.0", "bbob-biobj_f84_i06_d10 1.0", "bbob-biobj_f84_i06_d20 1.0", "bbob-biobj_f84_i06_d40 1.0", "bbob-biobj_f84_i07_d02 1.0", "bbob-biobj_f84_i07_d03 1.0", "bbob-biobj_f84_i07_d05 1.0", "bbob-biobj_f84_i07_d10 1.0", "bbob-biobj_f84_i07_d20 1.0", "bbob-biobj_f84_i07_d40 1.0", "bbob-biobj_f84_i08_d02 1.0", "bbob-biobj_f84_i08_d03 1.0", "bbob-biobj_f84_i08_d05 1.0", "bbob-biobj_f84_i08_d10 1.0", "bbob-biobj_f84_i08_d20 1.0", "bbob-biobj_f84_i08_d40 1.0", "bbob-biobj_f84_i09_d02 1.0", "bbob-biobj_f84_i09_d03 1.0", "bbob-biobj_f84_i09_d05 1.0", "bbob-biobj_f84_i09_d10 1.0", "bbob-biobj_f84_i09_d20 1.0", "bbob-biobj_f84_i09_d40 1.0", "bbob-biobj_f84_i10_d02 1.0", "bbob-biobj_f84_i10_d03 1.0", "bbob-biobj_f84_i10_d05 1.0", "bbob-biobj_f84_i10_d10 1.0", "bbob-biobj_f84_i10_d20 1.0", "bbob-biobj_f84_i10_d40 1.0", "bbob-biobj_f84_i11_d02 1.0", "bbob-biobj_f84_i11_d03 1.0", "bbob-biobj_f84_i11_d05 1.0", "bbob-biobj_f84_i11_d10 1.0", "bbob-biobj_f84_i11_d20 1.0", "bbob-biobj_f84_i11_d40 1.0", "bbob-biobj_f84_i12_d02 1.0", "bbob-biobj_f84_i12_d03 1.0", "bbob-biobj_f84_i12_d05 1.0", "bbob-biobj_f84_i12_d10 1.0", "bbob-biobj_f84_i12_d20 1.0", "bbob-biobj_f84_i12_d40 1.0", "bbob-biobj_f84_i13_d02 1.0", "bbob-biobj_f84_i13_d03 1.0", "bbob-biobj_f84_i13_d05 1.0", "bbob-biobj_f84_i13_d10 1.0", "bbob-biobj_f84_i13_d20 1.0", "bbob-biobj_f84_i13_d40 1.0", "bbob-biobj_f84_i14_d02 1.0", "bbob-biobj_f84_i14_d03 1.0", "bbob-biobj_f84_i14_d05 1.0", "bbob-biobj_f84_i14_d10 1.0", "bbob-biobj_f84_i14_d20 1.0", "bbob-biobj_f84_i14_d40 1.0", "bbob-biobj_f84_i15_d02 1.0", "bbob-biobj_f84_i15_d03 1.0", "bbob-biobj_f84_i15_d05 1.0", "bbob-biobj_f84_i15_d10 1.0", "bbob-biobj_f84_i15_d20 1.0", "bbob-biobj_f84_i15_d40 1.0", "bbob-biobj_f85_i01_d02 1.0", "bbob-biobj_f85_i01_d03 1.0", "bbob-biobj_f85_i01_d05 1.0", "bbob-biobj_f85_i01_d10 1.0", "bbob-biobj_f85_i01_d20 1.0", "bbob-biobj_f85_i01_d40 1.0", "bbob-biobj_f85_i02_d02 1.0", "bbob-biobj_f85_i02_d03 1.0", "bbob-biobj_f85_i02_d05 1.0", "bbob-biobj_f85_i02_d10 1.0", "bbob-biobj_f85_i02_d20 1.0", "bbob-biobj_f85_i02_d40 1.0", "bbob-biobj_f85_i03_d02 1.0", "bbob-biobj_f85_i03_d03 1.0", "bbob-biobj_f85_i03_d05 1.0", "bbob-biobj_f85_i03_d10 1.0", "bbob-biobj_f85_i03_d20 1.0", "bbob-biobj_f85_i03_d40 1.0", "bbob-biobj_f85_i04_d02 1.0", "bbob-biobj_f85_i04_d03 1.0", "bbob-biobj_f85_i04_d05 1.0", "bbob-biobj_f85_i04_d10 1.0", "bbob-biobj_f85_i04_d20 1.0", "bbob-biobj_f85_i04_d40 1.0", "bbob-biobj_f85_i05_d02 1.0", "bbob-biobj_f85_i05_d03 1.0", "bbob-biobj_f85_i05_d05 1.0", "bbob-biobj_f85_i05_d10 1.0", "bbob-biobj_f85_i05_d20 1.0", "bbob-biobj_f85_i05_d40 1.0", "bbob-biobj_f85_i06_d02 1.0", "bbob-biobj_f85_i06_d03 1.0", "bbob-biobj_f85_i06_d05 1.0", "bbob-biobj_f85_i06_d10 1.0", "bbob-biobj_f85_i06_d20 1.0", "bbob-biobj_f85_i06_d40 1.0", "bbob-biobj_f85_i07_d02 1.0", "bbob-biobj_f85_i07_d03 1.0", "bbob-biobj_f85_i07_d05 1.0", "bbob-biobj_f85_i07_d10 1.0", "bbob-biobj_f85_i07_d20 1.0", "bbob-biobj_f85_i07_d40 1.0", "bbob-biobj_f85_i08_d02 1.0", "bbob-biobj_f85_i08_d03 1.0", "bbob-biobj_f85_i08_d05 1.0", "bbob-biobj_f85_i08_d10 1.0", "bbob-biobj_f85_i08_d20 1.0", "bbob-biobj_f85_i08_d40 1.0", "bbob-biobj_f85_i09_d02 1.0", "bbob-biobj_f85_i09_d03 1.0", "bbob-biobj_f85_i09_d05 1.0", "bbob-biobj_f85_i09_d10 1.0", "bbob-biobj_f85_i09_d20 1.0", "bbob-biobj_f85_i09_d40 1.0", "bbob-biobj_f85_i10_d02 1.0", "bbob-biobj_f85_i10_d03 1.0", "bbob-biobj_f85_i10_d05 1.0", "bbob-biobj_f85_i10_d10 1.0", "bbob-biobj_f85_i10_d20 1.0", "bbob-biobj_f85_i10_d40 1.0", "bbob-biobj_f85_i11_d02 1.0", "bbob-biobj_f85_i11_d03 1.0", "bbob-biobj_f85_i11_d05 1.0", "bbob-biobj_f85_i11_d10 1.0", "bbob-biobj_f85_i11_d20 1.0", "bbob-biobj_f85_i11_d40 1.0", "bbob-biobj_f85_i12_d02 1.0", "bbob-biobj_f85_i12_d03 1.0", "bbob-biobj_f85_i12_d05 1.0", "bbob-biobj_f85_i12_d10 1.0", "bbob-biobj_f85_i12_d20 1.0", "bbob-biobj_f85_i12_d40 1.0", "bbob-biobj_f85_i13_d02 1.0", "bbob-biobj_f85_i13_d03 1.0", "bbob-biobj_f85_i13_d05 1.0", "bbob-biobj_f85_i13_d10 1.0", "bbob-biobj_f85_i13_d20 1.0", "bbob-biobj_f85_i13_d40 1.0", "bbob-biobj_f85_i14_d02 1.0", "bbob-biobj_f85_i14_d03 1.0", "bbob-biobj_f85_i14_d05 1.0", "bbob-biobj_f85_i14_d10 1.0", "bbob-biobj_f85_i14_d20 1.0", "bbob-biobj_f85_i14_d40 1.0", "bbob-biobj_f85_i15_d02 1.0", "bbob-biobj_f85_i15_d03 1.0", "bbob-biobj_f85_i15_d05 1.0", "bbob-biobj_f85_i15_d10 1.0", "bbob-biobj_f85_i15_d20 1.0", "bbob-biobj_f85_i15_d40 1.0", "bbob-biobj_f86_i01_d02 1.0", "bbob-biobj_f86_i01_d03 1.0", "bbob-biobj_f86_i01_d05 1.0", "bbob-biobj_f86_i01_d10 1.0", "bbob-biobj_f86_i01_d20 1.0", "bbob-biobj_f86_i01_d40 1.0", "bbob-biobj_f86_i02_d02 1.0", "bbob-biobj_f86_i02_d03 1.0", "bbob-biobj_f86_i02_d05 1.0", "bbob-biobj_f86_i02_d10 1.0", "bbob-biobj_f86_i02_d20 1.0", "bbob-biobj_f86_i02_d40 1.0", "bbob-biobj_f86_i03_d02 1.0", "bbob-biobj_f86_i03_d03 1.0", "bbob-biobj_f86_i03_d05 1.0", "bbob-biobj_f86_i03_d10 1.0", "bbob-biobj_f86_i03_d20 1.0", "bbob-biobj_f86_i03_d40 1.0", "bbob-biobj_f86_i04_d02 1.0", "bbob-biobj_f86_i04_d03 1.0", "bbob-biobj_f86_i04_d05 1.0", "bbob-biobj_f86_i04_d10 1.0", "bbob-biobj_f86_i04_d20 1.0", "bbob-biobj_f86_i04_d40 1.0", "bbob-biobj_f86_i05_d02 1.0", "bbob-biobj_f86_i05_d03 1.0", "bbob-biobj_f86_i05_d05 1.0", "bbob-biobj_f86_i05_d10 1.0", "bbob-biobj_f86_i05_d20 1.0", "bbob-biobj_f86_i05_d40 1.0", "bbob-biobj_f86_i06_d02 1.0", "bbob-biobj_f86_i06_d03 1.0", "bbob-biobj_f86_i06_d05 1.0", "bbob-biobj_f86_i06_d10 1.0", "bbob-biobj_f86_i06_d20 1.0", "bbob-biobj_f86_i06_d40 1.0", "bbob-biobj_f86_i07_d02 1.0", "bbob-biobj_f86_i07_d03 1.0", "bbob-biobj_f86_i07_d05 1.0", "bbob-biobj_f86_i07_d10 1.0", "bbob-biobj_f86_i07_d20 1.0", "bbob-biobj_f86_i07_d40 1.0", "bbob-biobj_f86_i08_d02 1.0", "bbob-biobj_f86_i08_d03 1.0", "bbob-biobj_f86_i08_d05 1.0", "bbob-biobj_f86_i08_d10 1.0", "bbob-biobj_f86_i08_d20 1.0", "bbob-biobj_f86_i08_d40 1.0", "bbob-biobj_f86_i09_d02 1.0", "bbob-biobj_f86_i09_d03 1.0", "bbob-biobj_f86_i09_d05 1.0", "bbob-biobj_f86_i09_d10 1.0", "bbob-biobj_f86_i09_d20 1.0", "bbob-biobj_f86_i09_d40 1.0", "bbob-biobj_f86_i10_d02 1.0", "bbob-biobj_f86_i10_d03 1.0", "bbob-biobj_f86_i10_d05 1.0", "bbob-biobj_f86_i10_d10 1.0", "bbob-biobj_f86_i10_d20 1.0", "bbob-biobj_f86_i10_d40 1.0", "bbob-biobj_f86_i11_d02 1.0", "bbob-biobj_f86_i11_d03 1.0", "bbob-biobj_f86_i11_d05 1.0", "bbob-biobj_f86_i11_d10 1.0", "bbob-biobj_f86_i11_d20 1.0", "bbob-biobj_f86_i11_d40 1.0", "bbob-biobj_f86_i12_d02 1.0", "bbob-biobj_f86_i12_d03 1.0", "bbob-biobj_f86_i12_d05 1.0", "bbob-biobj_f86_i12_d10 1.0", "bbob-biobj_f86_i12_d20 1.0", "bbob-biobj_f86_i12_d40 1.0", "bbob-biobj_f86_i13_d02 1.0", "bbob-biobj_f86_i13_d03 1.0", "bbob-biobj_f86_i13_d05 1.0", "bbob-biobj_f86_i13_d10 1.0", "bbob-biobj_f86_i13_d20 1.0", "bbob-biobj_f86_i13_d40 1.0", "bbob-biobj_f86_i14_d02 1.0", "bbob-biobj_f86_i14_d03 1.0", "bbob-biobj_f86_i14_d05 1.0", "bbob-biobj_f86_i14_d10 1.0", "bbob-biobj_f86_i14_d20 1.0", "bbob-biobj_f86_i14_d40 1.0", "bbob-biobj_f86_i15_d02 1.0", "bbob-biobj_f86_i15_d03 1.0", "bbob-biobj_f86_i15_d05 1.0", "bbob-biobj_f86_i15_d10 1.0", "bbob-biobj_f86_i15_d20 1.0", "bbob-biobj_f86_i15_d40 1.0", "bbob-biobj_f87_i01_d02 1.0", "bbob-biobj_f87_i01_d03 1.0", "bbob-biobj_f87_i01_d05 1.0", "bbob-biobj_f87_i01_d10 1.0", "bbob-biobj_f87_i01_d20 1.0", "bbob-biobj_f87_i01_d40 1.0", "bbob-biobj_f87_i02_d02 1.0", "bbob-biobj_f87_i02_d03 1.0", "bbob-biobj_f87_i02_d05 1.0", "bbob-biobj_f87_i02_d10 1.0", "bbob-biobj_f87_i02_d20 1.0", "bbob-biobj_f87_i02_d40 1.0", "bbob-biobj_f87_i03_d02 1.0", "bbob-biobj_f87_i03_d03 1.0", "bbob-biobj_f87_i03_d05 1.0", "bbob-biobj_f87_i03_d10 1.0", "bbob-biobj_f87_i03_d20 1.0", "bbob-biobj_f87_i03_d40 1.0", "bbob-biobj_f87_i04_d02 1.0", "bbob-biobj_f87_i04_d03 1.0", "bbob-biobj_f87_i04_d05 1.0", "bbob-biobj_f87_i04_d10 1.0", "bbob-biobj_f87_i04_d20 1.0", "bbob-biobj_f87_i04_d40 1.0", "bbob-biobj_f87_i05_d02 1.0", "bbob-biobj_f87_i05_d03 1.0", "bbob-biobj_f87_i05_d05 1.0", "bbob-biobj_f87_i05_d10 1.0", "bbob-biobj_f87_i05_d20 1.0", "bbob-biobj_f87_i05_d40 1.0", "bbob-biobj_f87_i06_d02 1.0", "bbob-biobj_f87_i06_d03 1.0", "bbob-biobj_f87_i06_d05 1.0", "bbob-biobj_f87_i06_d10 1.0", "bbob-biobj_f87_i06_d20 1.0", "bbob-biobj_f87_i06_d40 1.0", "bbob-biobj_f87_i07_d02 1.0", "bbob-biobj_f87_i07_d03 1.0", "bbob-biobj_f87_i07_d05 1.0", "bbob-biobj_f87_i07_d10 1.0", "bbob-biobj_f87_i07_d20 1.0", "bbob-biobj_f87_i07_d40 1.0", "bbob-biobj_f87_i08_d02 1.0", "bbob-biobj_f87_i08_d03 1.0", "bbob-biobj_f87_i08_d05 1.0", "bbob-biobj_f87_i08_d10 1.0", "bbob-biobj_f87_i08_d20 1.0", "bbob-biobj_f87_i08_d40 1.0", "bbob-biobj_f87_i09_d02 1.0", "bbob-biobj_f87_i09_d03 1.0", "bbob-biobj_f87_i09_d05 1.0", "bbob-biobj_f87_i09_d10 1.0", "bbob-biobj_f87_i09_d20 1.0", "bbob-biobj_f87_i09_d40 1.0", "bbob-biobj_f87_i10_d02 1.0", "bbob-biobj_f87_i10_d03 1.0", "bbob-biobj_f87_i10_d05 1.0", "bbob-biobj_f87_i10_d10 1.0", "bbob-biobj_f87_i10_d20 1.0", "bbob-biobj_f87_i10_d40 1.0", "bbob-biobj_f87_i11_d02 1.0", "bbob-biobj_f87_i11_d03 1.0", "bbob-biobj_f87_i11_d05 1.0", "bbob-biobj_f87_i11_d10 1.0", "bbob-biobj_f87_i11_d20 1.0", "bbob-biobj_f87_i11_d40 1.0", "bbob-biobj_f87_i12_d02 1.0", "bbob-biobj_f87_i12_d03 1.0", "bbob-biobj_f87_i12_d05 1.0", "bbob-biobj_f87_i12_d10 1.0", "bbob-biobj_f87_i12_d20 1.0", "bbob-biobj_f87_i12_d40 1.0", "bbob-biobj_f87_i13_d02 1.0", "bbob-biobj_f87_i13_d03 1.0", "bbob-biobj_f87_i13_d05 1.0", "bbob-biobj_f87_i13_d10 1.0", "bbob-biobj_f87_i13_d20 1.0", "bbob-biobj_f87_i13_d40 1.0", "bbob-biobj_f87_i14_d02 1.0", "bbob-biobj_f87_i14_d03 1.0", "bbob-biobj_f87_i14_d05 1.0", "bbob-biobj_f87_i14_d10 1.0", "bbob-biobj_f87_i14_d20 1.0", "bbob-biobj_f87_i14_d40 1.0", "bbob-biobj_f87_i15_d02 1.0", "bbob-biobj_f87_i15_d03 1.0", "bbob-biobj_f87_i15_d05 1.0", "bbob-biobj_f87_i15_d10 1.0", "bbob-biobj_f87_i15_d20 1.0", "bbob-biobj_f87_i15_d40 1.0", "bbob-biobj_f88_i01_d02 1.0", "bbob-biobj_f88_i01_d03 1.0", "bbob-biobj_f88_i01_d05 1.0", "bbob-biobj_f88_i01_d10 1.0", "bbob-biobj_f88_i01_d20 1.0", "bbob-biobj_f88_i01_d40 1.0", "bbob-biobj_f88_i02_d02 1.0", "bbob-biobj_f88_i02_d03 1.0", "bbob-biobj_f88_i02_d05 1.0", "bbob-biobj_f88_i02_d10 1.0", "bbob-biobj_f88_i02_d20 1.0", "bbob-biobj_f88_i02_d40 1.0", "bbob-biobj_f88_i03_d02 1.0", "bbob-biobj_f88_i03_d03 1.0", "bbob-biobj_f88_i03_d05 1.0", "bbob-biobj_f88_i03_d10 1.0", "bbob-biobj_f88_i03_d20 1.0", "bbob-biobj_f88_i03_d40 1.0", "bbob-biobj_f88_i04_d02 1.0", "bbob-biobj_f88_i04_d03 1.0", "bbob-biobj_f88_i04_d05 1.0", "bbob-biobj_f88_i04_d10 1.0", "bbob-biobj_f88_i04_d20 1.0", "bbob-biobj_f88_i04_d40 1.0", "bbob-biobj_f88_i05_d02 1.0", "bbob-biobj_f88_i05_d03 1.0", "bbob-biobj_f88_i05_d05 1.0", "bbob-biobj_f88_i05_d10 1.0", "bbob-biobj_f88_i05_d20 1.0", "bbob-biobj_f88_i05_d40 1.0", "bbob-biobj_f88_i06_d02 1.0", "bbob-biobj_f88_i06_d03 1.0", "bbob-biobj_f88_i06_d05 1.0", "bbob-biobj_f88_i06_d10 1.0", "bbob-biobj_f88_i06_d20 1.0", "bbob-biobj_f88_i06_d40 1.0", "bbob-biobj_f88_i07_d02 1.0", "bbob-biobj_f88_i07_d03 1.0", "bbob-biobj_f88_i07_d05 1.0", "bbob-biobj_f88_i07_d10 1.0", "bbob-biobj_f88_i07_d20 1.0", "bbob-biobj_f88_i07_d40 1.0", "bbob-biobj_f88_i08_d02 1.0", "bbob-biobj_f88_i08_d03 1.0", "bbob-biobj_f88_i08_d05 1.0", "bbob-biobj_f88_i08_d10 1.0", "bbob-biobj_f88_i08_d20 1.0", "bbob-biobj_f88_i08_d40 1.0", "bbob-biobj_f88_i09_d02 1.0", "bbob-biobj_f88_i09_d03 1.0", "bbob-biobj_f88_i09_d05 1.0", "bbob-biobj_f88_i09_d10 1.0", "bbob-biobj_f88_i09_d20 1.0", "bbob-biobj_f88_i09_d40 1.0", "bbob-biobj_f88_i10_d02 1.0", "bbob-biobj_f88_i10_d03 1.0", "bbob-biobj_f88_i10_d05 1.0", "bbob-biobj_f88_i10_d10 1.0", "bbob-biobj_f88_i10_d20 1.0", "bbob-biobj_f88_i10_d40 1.0", "bbob-biobj_f88_i11_d02 1.0", "bbob-biobj_f88_i11_d03 1.0", "bbob-biobj_f88_i11_d05 1.0", "bbob-biobj_f88_i11_d10 1.0", "bbob-biobj_f88_i11_d20 1.0", "bbob-biobj_f88_i11_d40 1.0", "bbob-biobj_f88_i12_d02 1.0", "bbob-biobj_f88_i12_d03 1.0", "bbob-biobj_f88_i12_d05 1.0", "bbob-biobj_f88_i12_d10 1.0", "bbob-biobj_f88_i12_d20 1.0", "bbob-biobj_f88_i12_d40 1.0", "bbob-biobj_f88_i13_d02 1.0", "bbob-biobj_f88_i13_d03 1.0", "bbob-biobj_f88_i13_d05 1.0", "bbob-biobj_f88_i13_d10 1.0", "bbob-biobj_f88_i13_d20 1.0", "bbob-biobj_f88_i13_d40 1.0", "bbob-biobj_f88_i14_d02 1.0", "bbob-biobj_f88_i14_d03 1.0", "bbob-biobj_f88_i14_d05 1.0", "bbob-biobj_f88_i14_d10 1.0", "bbob-biobj_f88_i14_d20 1.0", "bbob-biobj_f88_i14_d40 1.0", "bbob-biobj_f88_i15_d02 1.0", "bbob-biobj_f88_i15_d03 1.0", "bbob-biobj_f88_i15_d05 1.0", "bbob-biobj_f88_i15_d10 1.0", "bbob-biobj_f88_i15_d20 1.0", "bbob-biobj_f88_i15_d40 1.0", "bbob-biobj_f89_i01_d02 1.0", "bbob-biobj_f89_i01_d03 1.0", "bbob-biobj_f89_i01_d05 1.0", "bbob-biobj_f89_i01_d10 1.0", "bbob-biobj_f89_i01_d20 1.0", "bbob-biobj_f89_i01_d40 1.0", "bbob-biobj_f89_i02_d02 1.0", "bbob-biobj_f89_i02_d03 1.0", "bbob-biobj_f89_i02_d05 1.0", "bbob-biobj_f89_i02_d10 1.0", "bbob-biobj_f89_i02_d20 1.0", "bbob-biobj_f89_i02_d40 1.0", "bbob-biobj_f89_i03_d02 1.0", "bbob-biobj_f89_i03_d03 1.0", "bbob-biobj_f89_i03_d05 1.0", "bbob-biobj_f89_i03_d10 1.0", "bbob-biobj_f89_i03_d20 1.0", "bbob-biobj_f89_i03_d40 1.0", "bbob-biobj_f89_i04_d02 1.0", "bbob-biobj_f89_i04_d03 1.0", "bbob-biobj_f89_i04_d05 1.0", "bbob-biobj_f89_i04_d10 1.0", "bbob-biobj_f89_i04_d20 1.0", "bbob-biobj_f89_i04_d40 1.0", "bbob-biobj_f89_i05_d02 1.0", "bbob-biobj_f89_i05_d03 1.0", "bbob-biobj_f89_i05_d05 1.0", "bbob-biobj_f89_i05_d10 1.0", "bbob-biobj_f89_i05_d20 1.0", "bbob-biobj_f89_i05_d40 1.0", "bbob-biobj_f89_i06_d02 1.0", "bbob-biobj_f89_i06_d03 1.0", "bbob-biobj_f89_i06_d05 1.0", "bbob-biobj_f89_i06_d10 1.0", "bbob-biobj_f89_i06_d20 1.0", "bbob-biobj_f89_i06_d40 1.0", "bbob-biobj_f89_i07_d02 1.0", "bbob-biobj_f89_i07_d03 1.0", "bbob-biobj_f89_i07_d05 1.0", "bbob-biobj_f89_i07_d10 1.0", "bbob-biobj_f89_i07_d20 1.0", "bbob-biobj_f89_i07_d40 1.0", "bbob-biobj_f89_i08_d02 1.0", "bbob-biobj_f89_i08_d03 1.0", "bbob-biobj_f89_i08_d05 1.0", "bbob-biobj_f89_i08_d10 1.0", "bbob-biobj_f89_i08_d20 1.0", "bbob-biobj_f89_i08_d40 1.0", "bbob-biobj_f89_i09_d02 1.0", "bbob-biobj_f89_i09_d03 1.0", "bbob-biobj_f89_i09_d05 1.0", "bbob-biobj_f89_i09_d10 1.0", "bbob-biobj_f89_i09_d20 1.0", "bbob-biobj_f89_i09_d40 1.0", "bbob-biobj_f89_i10_d02 1.0", "bbob-biobj_f89_i10_d03 1.0", "bbob-biobj_f89_i10_d05 1.0", "bbob-biobj_f89_i10_d10 1.0", "bbob-biobj_f89_i10_d20 1.0", "bbob-biobj_f89_i10_d40 1.0", "bbob-biobj_f89_i11_d02 1.0", "bbob-biobj_f89_i11_d03 1.0", "bbob-biobj_f89_i11_d05 1.0", "bbob-biobj_f89_i11_d10 1.0", "bbob-biobj_f89_i11_d20 1.0", "bbob-biobj_f89_i11_d40 1.0", "bbob-biobj_f89_i12_d02 1.0", "bbob-biobj_f89_i12_d03 1.0", "bbob-biobj_f89_i12_d05 1.0", "bbob-biobj_f89_i12_d10 1.0", "bbob-biobj_f89_i12_d20 1.0", "bbob-biobj_f89_i12_d40 1.0", "bbob-biobj_f89_i13_d02 1.0", "bbob-biobj_f89_i13_d03 1.0", "bbob-biobj_f89_i13_d05 1.0", "bbob-biobj_f89_i13_d10 1.0", "bbob-biobj_f89_i13_d20 1.0", "bbob-biobj_f89_i13_d40 1.0", "bbob-biobj_f89_i14_d02 1.0", "bbob-biobj_f89_i14_d03 1.0", "bbob-biobj_f89_i14_d05 1.0", "bbob-biobj_f89_i14_d10 1.0", "bbob-biobj_f89_i14_d20 1.0", "bbob-biobj_f89_i14_d40 1.0", "bbob-biobj_f89_i15_d02 1.0", "bbob-biobj_f89_i15_d03 1.0", "bbob-biobj_f89_i15_d05 1.0", "bbob-biobj_f89_i15_d10 1.0", "bbob-biobj_f89_i15_d20 1.0", "bbob-biobj_f89_i15_d40 1.0", "bbob-biobj_f90_i01_d02 1.0", "bbob-biobj_f90_i01_d03 1.0", "bbob-biobj_f90_i01_d05 1.0", "bbob-biobj_f90_i01_d10 1.0", "bbob-biobj_f90_i01_d20 1.0", "bbob-biobj_f90_i01_d40 1.0", "bbob-biobj_f90_i02_d02 1.0", "bbob-biobj_f90_i02_d03 1.0", "bbob-biobj_f90_i02_d05 1.0", "bbob-biobj_f90_i02_d10 1.0", "bbob-biobj_f90_i02_d20 1.0", "bbob-biobj_f90_i02_d40 1.0", "bbob-biobj_f90_i03_d02 1.0", "bbob-biobj_f90_i03_d03 1.0", "bbob-biobj_f90_i03_d05 1.0", "bbob-biobj_f90_i03_d10 1.0", "bbob-biobj_f90_i03_d20 1.0", "bbob-biobj_f90_i03_d40 1.0", "bbob-biobj_f90_i04_d02 1.0", "bbob-biobj_f90_i04_d03 1.0", "bbob-biobj_f90_i04_d05 1.0", "bbob-biobj_f90_i04_d10 1.0", "bbob-biobj_f90_i04_d20 1.0", "bbob-biobj_f90_i04_d40 1.0", "bbob-biobj_f90_i05_d02 1.0", "bbob-biobj_f90_i05_d03 1.0", "bbob-biobj_f90_i05_d05 1.0", "bbob-biobj_f90_i05_d10 1.0", "bbob-biobj_f90_i05_d20 1.0", "bbob-biobj_f90_i05_d40 1.0", "bbob-biobj_f90_i06_d02 1.0", "bbob-biobj_f90_i06_d03 1.0", "bbob-biobj_f90_i06_d05 1.0", "bbob-biobj_f90_i06_d10 1.0", "bbob-biobj_f90_i06_d20 1.0", "bbob-biobj_f90_i06_d40 1.0", "bbob-biobj_f90_i07_d02 1.0", "bbob-biobj_f90_i07_d03 1.0", "bbob-biobj_f90_i07_d05 1.0", "bbob-biobj_f90_i07_d10 1.0", "bbob-biobj_f90_i07_d20 1.0", "bbob-biobj_f90_i07_d40 1.0", "bbob-biobj_f90_i08_d02 1.0", "bbob-biobj_f90_i08_d03 1.0", "bbob-biobj_f90_i08_d05 1.0", "bbob-biobj_f90_i08_d10 1.0", "bbob-biobj_f90_i08_d20 1.0", "bbob-biobj_f90_i08_d40 1.0", "bbob-biobj_f90_i09_d02 1.0", "bbob-biobj_f90_i09_d03 1.0", "bbob-biobj_f90_i09_d05 1.0", "bbob-biobj_f90_i09_d10 1.0", "bbob-biobj_f90_i09_d20 1.0", "bbob-biobj_f90_i09_d40 1.0", "bbob-biobj_f90_i10_d02 1.0", "bbob-biobj_f90_i10_d03 1.0", "bbob-biobj_f90_i10_d05 1.0", "bbob-biobj_f90_i10_d10 1.0", "bbob-biobj_f90_i10_d20 1.0", "bbob-biobj_f90_i10_d40 1.0", "bbob-biobj_f90_i11_d02 1.0", "bbob-biobj_f90_i11_d03 1.0", "bbob-biobj_f90_i11_d05 1.0", "bbob-biobj_f90_i11_d10 1.0", "bbob-biobj_f90_i11_d20 1.0", "bbob-biobj_f90_i11_d40 1.0", "bbob-biobj_f90_i12_d02 1.0", "bbob-biobj_f90_i12_d03 1.0", "bbob-biobj_f90_i12_d05 1.0", "bbob-biobj_f90_i12_d10 1.0", "bbob-biobj_f90_i12_d20 1.0", "bbob-biobj_f90_i12_d40 1.0", "bbob-biobj_f90_i13_d02 1.0", "bbob-biobj_f90_i13_d03 1.0", "bbob-biobj_f90_i13_d05 1.0", "bbob-biobj_f90_i13_d10 1.0", "bbob-biobj_f90_i13_d20 1.0", "bbob-biobj_f90_i13_d40 1.0", "bbob-biobj_f90_i14_d02 1.0", "bbob-biobj_f90_i14_d03 1.0", "bbob-biobj_f90_i14_d05 1.0", "bbob-biobj_f90_i14_d10 1.0", "bbob-biobj_f90_i14_d20 1.0", "bbob-biobj_f90_i14_d40 1.0", "bbob-biobj_f90_i15_d02 1.0", "bbob-biobj_f90_i15_d03 1.0", "bbob-biobj_f90_i15_d05 1.0", "bbob-biobj_f90_i15_d10 1.0", "bbob-biobj_f90_i15_d20 1.0", "bbob-biobj_f90_i15_d40 1.0", "bbob-biobj_f91_i01_d02 1.0", "bbob-biobj_f91_i01_d03 1.0", "bbob-biobj_f91_i01_d05 1.0", "bbob-biobj_f91_i01_d10 1.0", "bbob-biobj_f91_i01_d20 1.0", "bbob-biobj_f91_i01_d40 1.0", "bbob-biobj_f91_i02_d02 1.0", "bbob-biobj_f91_i02_d03 1.0", "bbob-biobj_f91_i02_d05 1.0", "bbob-biobj_f91_i02_d10 1.0", "bbob-biobj_f91_i02_d20 1.0", "bbob-biobj_f91_i02_d40 1.0", "bbob-biobj_f91_i03_d02 1.0", "bbob-biobj_f91_i03_d03 1.0", "bbob-biobj_f91_i03_d05 1.0", "bbob-biobj_f91_i03_d10 1.0", "bbob-biobj_f91_i03_d20 1.0", "bbob-biobj_f91_i03_d40 1.0", "bbob-biobj_f91_i04_d02 1.0", "bbob-biobj_f91_i04_d03 1.0", "bbob-biobj_f91_i04_d05 1.0", "bbob-biobj_f91_i04_d10 1.0", "bbob-biobj_f91_i04_d20 1.0", "bbob-biobj_f91_i04_d40 1.0", "bbob-biobj_f91_i05_d02 1.0", "bbob-biobj_f91_i05_d03 1.0", "bbob-biobj_f91_i05_d05 1.0", "bbob-biobj_f91_i05_d10 1.0", "bbob-biobj_f91_i05_d20 1.0", "bbob-biobj_f91_i05_d40 1.0", "bbob-biobj_f91_i06_d02 1.0", "bbob-biobj_f91_i06_d03 1.0", "bbob-biobj_f91_i06_d05 1.0", "bbob-biobj_f91_i06_d10 1.0", "bbob-biobj_f91_i06_d20 1.0", "bbob-biobj_f91_i06_d40 1.0", "bbob-biobj_f91_i07_d02 1.0", "bbob-biobj_f91_i07_d03 1.0", "bbob-biobj_f91_i07_d05 1.0", "bbob-biobj_f91_i07_d10 1.0", "bbob-biobj_f91_i07_d20 1.0", "bbob-biobj_f91_i07_d40 1.0", "bbob-biobj_f91_i08_d02 1.0", "bbob-biobj_f91_i08_d03 1.0", "bbob-biobj_f91_i08_d05 1.0", "bbob-biobj_f91_i08_d10 1.0", "bbob-biobj_f91_i08_d20 1.0", "bbob-biobj_f91_i08_d40 1.0", "bbob-biobj_f91_i09_d02 1.0", "bbob-biobj_f91_i09_d03 1.0", "bbob-biobj_f91_i09_d05 1.0", "bbob-biobj_f91_i09_d10 1.0", "bbob-biobj_f91_i09_d20 1.0", "bbob-biobj_f91_i09_d40 1.0", "bbob-biobj_f91_i10_d02 1.0", "bbob-biobj_f91_i10_d03 1.0", "bbob-biobj_f91_i10_d05 1.0", "bbob-biobj_f91_i10_d10 1.0", "bbob-biobj_f91_i10_d20 1.0", "bbob-biobj_f91_i10_d40 1.0", "bbob-biobj_f91_i11_d02 1.0", "bbob-biobj_f91_i11_d03 1.0", "bbob-biobj_f91_i11_d05 1.0", "bbob-biobj_f91_i11_d10 1.0", "bbob-biobj_f91_i11_d20 1.0", "bbob-biobj_f91_i11_d40 1.0", "bbob-biobj_f91_i12_d02 1.0", "bbob-biobj_f91_i12_d03 1.0", "bbob-biobj_f91_i12_d05 1.0", "bbob-biobj_f91_i12_d10 1.0", "bbob-biobj_f91_i12_d20 1.0", "bbob-biobj_f91_i12_d40 1.0", "bbob-biobj_f91_i13_d02 1.0", "bbob-biobj_f91_i13_d03 1.0", "bbob-biobj_f91_i13_d05 1.0", "bbob-biobj_f91_i13_d10 1.0", "bbob-biobj_f91_i13_d20 1.0", "bbob-biobj_f91_i13_d40 1.0", "bbob-biobj_f91_i14_d02 1.0", "bbob-biobj_f91_i14_d03 1.0", "bbob-biobj_f91_i14_d05 1.0", "bbob-biobj_f91_i14_d10 1.0", "bbob-biobj_f91_i14_d20 1.0", "bbob-biobj_f91_i14_d40 1.0", "bbob-biobj_f91_i15_d02 1.0", "bbob-biobj_f91_i15_d03 1.0", "bbob-biobj_f91_i15_d05 1.0", "bbob-biobj_f91_i15_d10 1.0", "bbob-biobj_f91_i15_d20 1.0", "bbob-biobj_f91_i15_d40 1.0", "bbob-biobj_f92_i01_d02 1.0", "bbob-biobj_f92_i01_d03 1.0", "bbob-biobj_f92_i01_d05 1.0", "bbob-biobj_f92_i01_d10 1.0", "bbob-biobj_f92_i01_d20 1.0", "bbob-biobj_f92_i01_d40 1.0", "bbob-biobj_f92_i02_d02 1.0", "bbob-biobj_f92_i02_d03 1.0", "bbob-biobj_f92_i02_d05 1.0", "bbob-biobj_f92_i02_d10 1.0", "bbob-biobj_f92_i02_d20 1.0", "bbob-biobj_f92_i02_d40 1.0", "bbob-biobj_f92_i03_d02 1.0", "bbob-biobj_f92_i03_d03 1.0", "bbob-biobj_f92_i03_d05 1.0", "bbob-biobj_f92_i03_d10 1.0", "bbob-biobj_f92_i03_d20 1.0", "bbob-biobj_f92_i03_d40 1.0", "bbob-biobj_f92_i04_d02 1.0", "bbob-biobj_f92_i04_d03 1.0", "bbob-biobj_f92_i04_d05 1.0", "bbob-biobj_f92_i04_d10 1.0", "bbob-biobj_f92_i04_d20 1.0", "bbob-biobj_f92_i04_d40 1.0", "bbob-biobj_f92_i05_d02 1.0", "bbob-biobj_f92_i05_d03 1.0", "bbob-biobj_f92_i05_d05 1.0", "bbob-biobj_f92_i05_d10 1.0", "bbob-biobj_f92_i05_d20 1.0", "bbob-biobj_f92_i05_d40 1.0", "bbob-biobj_f92_i06_d02 1.0", "bbob-biobj_f92_i06_d03 1.0", "bbob-biobj_f92_i06_d05 1.0", "bbob-biobj_f92_i06_d10 1.0", "bbob-biobj_f92_i06_d20 1.0", "bbob-biobj_f92_i06_d40 1.0", "bbob-biobj_f92_i07_d02 1.0", "bbob-biobj_f92_i07_d03 1.0", "bbob-biobj_f92_i07_d05 1.0", "bbob-biobj_f92_i07_d10 1.0", "bbob-biobj_f92_i07_d20 1.0", "bbob-biobj_f92_i07_d40 1.0", "bbob-biobj_f92_i08_d02 1.0", "bbob-biobj_f92_i08_d03 1.0", "bbob-biobj_f92_i08_d05 1.0", "bbob-biobj_f92_i08_d10 1.0", "bbob-biobj_f92_i08_d20 1.0", "bbob-biobj_f92_i08_d40 1.0", "bbob-biobj_f92_i09_d02 1.0", "bbob-biobj_f92_i09_d03 1.0", "bbob-biobj_f92_i09_d05 1.0", "bbob-biobj_f92_i09_d10 1.0", "bbob-biobj_f92_i09_d20 1.0", "bbob-biobj_f92_i09_d40 1.0", "bbob-biobj_f92_i10_d02 1.0", "bbob-biobj_f92_i10_d03 1.0", "bbob-biobj_f92_i10_d05 1.0", "bbob-biobj_f92_i10_d10 1.0", "bbob-biobj_f92_i10_d20 1.0", "bbob-biobj_f92_i10_d40 1.0", "bbob-biobj_f92_i11_d02 1.0", "bbob-biobj_f92_i11_d03 1.0", "bbob-biobj_f92_i11_d05 1.0", "bbob-biobj_f92_i11_d10 1.0", "bbob-biobj_f92_i11_d20 1.0", "bbob-biobj_f92_i11_d40 1.0", "bbob-biobj_f92_i12_d02 1.0", "bbob-biobj_f92_i12_d03 1.0", "bbob-biobj_f92_i12_d05 1.0", "bbob-biobj_f92_i12_d10 1.0", "bbob-biobj_f92_i12_d20 1.0", "bbob-biobj_f92_i12_d40 1.0", "bbob-biobj_f92_i13_d02 1.0", "bbob-biobj_f92_i13_d03 1.0", "bbob-biobj_f92_i13_d05 1.0", "bbob-biobj_f92_i13_d10 1.0", "bbob-biobj_f92_i13_d20 1.0", "bbob-biobj_f92_i13_d40 1.0", "bbob-biobj_f92_i14_d02 1.0", "bbob-biobj_f92_i14_d03 1.0", "bbob-biobj_f92_i14_d05 1.0", "bbob-biobj_f92_i14_d10 1.0", "bbob-biobj_f92_i14_d20 1.0", "bbob-biobj_f92_i14_d40 1.0", "bbob-biobj_f92_i15_d02 1.0", "bbob-biobj_f92_i15_d03 1.0", "bbob-biobj_f92_i15_d05 1.0", "bbob-biobj_f92_i15_d10 1.0", "bbob-biobj_f92_i15_d20 1.0", "bbob-biobj_f92_i15_d40 1.0" }; #line 15 "code-experiments/src/suite_biobj_utilities.c" #line 1 "code-experiments/src/suite_biobj_mixint_best_values_hyp.c" /** * @file suite_biobj_mixint_best_values_hyp.c * * @brief The best known hypervolume values for the bbob-biobj-mixint suite problems. * * @note TODO: Update the values (curently, they are all set to 1.0) * * @note Because this file is used for automatically retrieving the existing best hypervolume values for * pre-processing purposes, its formatting should not be altered. This means that there must be exactly one * string per line, the first string appearing on the next line after "static const char..." (no comments * allowed in between). Nothing should be placed on the last line (line with };). */ static const char *suite_biobj_mixint_best_values_hyp[] = { "bbob-biobj-mixint_f001_i01_d005 1.0", "bbob-biobj-mixint_f001_i01_d010 1.0", "bbob-biobj-mixint_f001_i01_d020 1.0", "bbob-biobj-mixint_f001_i01_d040 1.0", "bbob-biobj-mixint_f001_i01_d080 1.0", "bbob-biobj-mixint_f001_i01_d160 1.0", "bbob-biobj-mixint_f001_i02_d005 1.0", "bbob-biobj-mixint_f001_i02_d010 1.0", "bbob-biobj-mixint_f001_i02_d020 1.0", "bbob-biobj-mixint_f001_i02_d040 1.0", "bbob-biobj-mixint_f001_i02_d080 1.0", "bbob-biobj-mixint_f001_i02_d160 1.0", "bbob-biobj-mixint_f001_i03_d005 1.0", "bbob-biobj-mixint_f001_i03_d010 1.0", "bbob-biobj-mixint_f001_i03_d020 1.0", "bbob-biobj-mixint_f001_i03_d040 1.0", "bbob-biobj-mixint_f001_i03_d080 1.0", "bbob-biobj-mixint_f001_i03_d160 1.0", "bbob-biobj-mixint_f001_i04_d005 1.0", "bbob-biobj-mixint_f001_i04_d010 1.0", "bbob-biobj-mixint_f001_i04_d020 1.0", "bbob-biobj-mixint_f001_i04_d040 1.0", "bbob-biobj-mixint_f001_i04_d080 1.0", "bbob-biobj-mixint_f001_i04_d160 1.0", "bbob-biobj-mixint_f001_i05_d005 1.0", "bbob-biobj-mixint_f001_i05_d010 1.0", "bbob-biobj-mixint_f001_i05_d020 1.0", "bbob-biobj-mixint_f001_i05_d040 1.0", "bbob-biobj-mixint_f001_i05_d080 1.0", "bbob-biobj-mixint_f001_i05_d160 1.0", "bbob-biobj-mixint_f001_i06_d005 1.0", "bbob-biobj-mixint_f001_i06_d010 1.0", "bbob-biobj-mixint_f001_i06_d020 1.0", "bbob-biobj-mixint_f001_i06_d040 1.0", "bbob-biobj-mixint_f001_i06_d080 1.0", "bbob-biobj-mixint_f001_i06_d160 1.0", "bbob-biobj-mixint_f001_i07_d005 1.0", "bbob-biobj-mixint_f001_i07_d010 1.0", "bbob-biobj-mixint_f001_i07_d020 1.0", "bbob-biobj-mixint_f001_i07_d040 1.0", "bbob-biobj-mixint_f001_i07_d080 1.0", "bbob-biobj-mixint_f001_i07_d160 1.0", "bbob-biobj-mixint_f001_i08_d005 1.0", "bbob-biobj-mixint_f001_i08_d010 1.0", "bbob-biobj-mixint_f001_i08_d020 1.0", "bbob-biobj-mixint_f001_i08_d040 1.0", "bbob-biobj-mixint_f001_i08_d080 1.0", "bbob-biobj-mixint_f001_i08_d160 1.0", "bbob-biobj-mixint_f001_i09_d005 1.0", "bbob-biobj-mixint_f001_i09_d010 1.0", "bbob-biobj-mixint_f001_i09_d020 1.0", "bbob-biobj-mixint_f001_i09_d040 1.0", "bbob-biobj-mixint_f001_i09_d080 1.0", "bbob-biobj-mixint_f001_i09_d160 1.0", "bbob-biobj-mixint_f001_i10_d005 1.0", "bbob-biobj-mixint_f001_i10_d010 1.0", "bbob-biobj-mixint_f001_i10_d020 1.0", "bbob-biobj-mixint_f001_i10_d040 1.0", "bbob-biobj-mixint_f001_i10_d080 1.0", "bbob-biobj-mixint_f001_i10_d160 1.0", "bbob-biobj-mixint_f001_i11_d005 1.0", "bbob-biobj-mixint_f001_i11_d010 1.0", "bbob-biobj-mixint_f001_i11_d020 1.0", "bbob-biobj-mixint_f001_i11_d040 1.0", "bbob-biobj-mixint_f001_i11_d080 1.0", "bbob-biobj-mixint_f001_i11_d160 1.0", "bbob-biobj-mixint_f001_i12_d005 1.0", "bbob-biobj-mixint_f001_i12_d010 1.0", "bbob-biobj-mixint_f001_i12_d020 1.0", "bbob-biobj-mixint_f001_i12_d040 1.0", "bbob-biobj-mixint_f001_i12_d080 1.0", "bbob-biobj-mixint_f001_i12_d160 1.0", "bbob-biobj-mixint_f001_i13_d005 1.0", "bbob-biobj-mixint_f001_i13_d010 1.0", "bbob-biobj-mixint_f001_i13_d020 1.0", "bbob-biobj-mixint_f001_i13_d040 1.0", "bbob-biobj-mixint_f001_i13_d080 1.0", "bbob-biobj-mixint_f001_i13_d160 1.0", "bbob-biobj-mixint_f001_i14_d005 1.0", "bbob-biobj-mixint_f001_i14_d010 1.0", "bbob-biobj-mixint_f001_i14_d020 1.0", "bbob-biobj-mixint_f001_i14_d040 1.0", "bbob-biobj-mixint_f001_i14_d080 1.0", "bbob-biobj-mixint_f001_i14_d160 1.0", "bbob-biobj-mixint_f001_i15_d005 1.0", "bbob-biobj-mixint_f001_i15_d010 1.0", "bbob-biobj-mixint_f001_i15_d020 1.0", "bbob-biobj-mixint_f001_i15_d040 1.0", "bbob-biobj-mixint_f001_i15_d080 1.0", "bbob-biobj-mixint_f001_i15_d160 1.0", "bbob-biobj-mixint_f002_i01_d005 1.0", "bbob-biobj-mixint_f002_i01_d010 1.0", "bbob-biobj-mixint_f002_i01_d020 1.0", "bbob-biobj-mixint_f002_i01_d040 1.0", "bbob-biobj-mixint_f002_i01_d080 1.0", "bbob-biobj-mixint_f002_i01_d160 1.0", "bbob-biobj-mixint_f002_i02_d005 1.0", "bbob-biobj-mixint_f002_i02_d010 1.0", "bbob-biobj-mixint_f002_i02_d020 1.0", "bbob-biobj-mixint_f002_i02_d040 1.0", "bbob-biobj-mixint_f002_i02_d080 1.0", "bbob-biobj-mixint_f002_i02_d160 1.0", "bbob-biobj-mixint_f002_i03_d005 1.0", "bbob-biobj-mixint_f002_i03_d010 1.0", "bbob-biobj-mixint_f002_i03_d020 1.0", "bbob-biobj-mixint_f002_i03_d040 1.0", "bbob-biobj-mixint_f002_i03_d080 1.0", "bbob-biobj-mixint_f002_i03_d160 1.0", "bbob-biobj-mixint_f002_i04_d005 1.0", "bbob-biobj-mixint_f002_i04_d010 1.0", "bbob-biobj-mixint_f002_i04_d020 1.0", "bbob-biobj-mixint_f002_i04_d040 1.0", "bbob-biobj-mixint_f002_i04_d080 1.0", "bbob-biobj-mixint_f002_i04_d160 1.0", "bbob-biobj-mixint_f002_i05_d005 1.0", "bbob-biobj-mixint_f002_i05_d010 1.0", "bbob-biobj-mixint_f002_i05_d020 1.0", "bbob-biobj-mixint_f002_i05_d040 1.0", "bbob-biobj-mixint_f002_i05_d080 1.0", "bbob-biobj-mixint_f002_i05_d160 1.0", "bbob-biobj-mixint_f002_i06_d005 1.0", "bbob-biobj-mixint_f002_i06_d010 1.0", "bbob-biobj-mixint_f002_i06_d020 1.0", "bbob-biobj-mixint_f002_i06_d040 1.0", "bbob-biobj-mixint_f002_i06_d080 1.0", "bbob-biobj-mixint_f002_i06_d160 1.0", "bbob-biobj-mixint_f002_i07_d005 1.0", "bbob-biobj-mixint_f002_i07_d010 1.0", "bbob-biobj-mixint_f002_i07_d020 1.0", "bbob-biobj-mixint_f002_i07_d040 1.0", "bbob-biobj-mixint_f002_i07_d080 1.0", "bbob-biobj-mixint_f002_i07_d160 1.0", "bbob-biobj-mixint_f002_i08_d005 1.0", "bbob-biobj-mixint_f002_i08_d010 1.0", "bbob-biobj-mixint_f002_i08_d020 1.0", "bbob-biobj-mixint_f002_i08_d040 1.0", "bbob-biobj-mixint_f002_i08_d080 1.0", "bbob-biobj-mixint_f002_i08_d160 1.0", "bbob-biobj-mixint_f002_i09_d005 1.0", "bbob-biobj-mixint_f002_i09_d010 1.0", "bbob-biobj-mixint_f002_i09_d020 1.0", "bbob-biobj-mixint_f002_i09_d040 1.0", "bbob-biobj-mixint_f002_i09_d080 1.0", "bbob-biobj-mixint_f002_i09_d160 1.0", "bbob-biobj-mixint_f002_i10_d005 1.0", "bbob-biobj-mixint_f002_i10_d010 1.0", "bbob-biobj-mixint_f002_i10_d020 1.0", "bbob-biobj-mixint_f002_i10_d040 1.0", "bbob-biobj-mixint_f002_i10_d080 1.0", "bbob-biobj-mixint_f002_i10_d160 1.0", "bbob-biobj-mixint_f002_i11_d005 1.0", "bbob-biobj-mixint_f002_i11_d010 1.0", "bbob-biobj-mixint_f002_i11_d020 1.0", "bbob-biobj-mixint_f002_i11_d040 1.0", "bbob-biobj-mixint_f002_i11_d080 1.0", "bbob-biobj-mixint_f002_i11_d160 1.0", "bbob-biobj-mixint_f002_i12_d005 1.0", "bbob-biobj-mixint_f002_i12_d010 1.0", "bbob-biobj-mixint_f002_i12_d020 1.0", "bbob-biobj-mixint_f002_i12_d040 1.0", "bbob-biobj-mixint_f002_i12_d080 1.0", "bbob-biobj-mixint_f002_i12_d160 1.0", "bbob-biobj-mixint_f002_i13_d005 1.0", "bbob-biobj-mixint_f002_i13_d010 1.0", "bbob-biobj-mixint_f002_i13_d020 1.0", "bbob-biobj-mixint_f002_i13_d040 1.0", "bbob-biobj-mixint_f002_i13_d080 1.0", "bbob-biobj-mixint_f002_i13_d160 1.0", "bbob-biobj-mixint_f002_i14_d005 1.0", "bbob-biobj-mixint_f002_i14_d010 1.0", "bbob-biobj-mixint_f002_i14_d020 1.0", "bbob-biobj-mixint_f002_i14_d040 1.0", "bbob-biobj-mixint_f002_i14_d080 1.0", "bbob-biobj-mixint_f002_i14_d160 1.0", "bbob-biobj-mixint_f002_i15_d005 1.0", "bbob-biobj-mixint_f002_i15_d010 1.0", "bbob-biobj-mixint_f002_i15_d020 1.0", "bbob-biobj-mixint_f002_i15_d040 1.0", "bbob-biobj-mixint_f002_i15_d080 1.0", "bbob-biobj-mixint_f002_i15_d160 1.0", "bbob-biobj-mixint_f003_i01_d005 1.0", "bbob-biobj-mixint_f003_i01_d010 1.0", "bbob-biobj-mixint_f003_i01_d020 1.0", "bbob-biobj-mixint_f003_i01_d040 1.0", "bbob-biobj-mixint_f003_i01_d080 1.0", "bbob-biobj-mixint_f003_i01_d160 1.0", "bbob-biobj-mixint_f003_i02_d005 1.0", "bbob-biobj-mixint_f003_i02_d010 1.0", "bbob-biobj-mixint_f003_i02_d020 1.0", "bbob-biobj-mixint_f003_i02_d040 1.0", "bbob-biobj-mixint_f003_i02_d080 1.0", "bbob-biobj-mixint_f003_i02_d160 1.0", "bbob-biobj-mixint_f003_i03_d005 1.0", "bbob-biobj-mixint_f003_i03_d010 1.0", "bbob-biobj-mixint_f003_i03_d020 1.0", "bbob-biobj-mixint_f003_i03_d040 1.0", "bbob-biobj-mixint_f003_i03_d080 1.0", "bbob-biobj-mixint_f003_i03_d160 1.0", "bbob-biobj-mixint_f003_i04_d005 1.0", "bbob-biobj-mixint_f003_i04_d010 1.0", "bbob-biobj-mixint_f003_i04_d020 1.0", "bbob-biobj-mixint_f003_i04_d040 1.0", "bbob-biobj-mixint_f003_i04_d080 1.0", "bbob-biobj-mixint_f003_i04_d160 1.0", "bbob-biobj-mixint_f003_i05_d005 1.0", "bbob-biobj-mixint_f003_i05_d010 1.0", "bbob-biobj-mixint_f003_i05_d020 1.0", "bbob-biobj-mixint_f003_i05_d040 1.0", "bbob-biobj-mixint_f003_i05_d080 1.0", "bbob-biobj-mixint_f003_i05_d160 1.0", "bbob-biobj-mixint_f003_i06_d005 1.0", "bbob-biobj-mixint_f003_i06_d010 1.0", "bbob-biobj-mixint_f003_i06_d020 1.0", "bbob-biobj-mixint_f003_i06_d040 1.0", "bbob-biobj-mixint_f003_i06_d080 1.0", "bbob-biobj-mixint_f003_i06_d160 1.0", "bbob-biobj-mixint_f003_i07_d005 1.0", "bbob-biobj-mixint_f003_i07_d010 1.0", "bbob-biobj-mixint_f003_i07_d020 1.0", "bbob-biobj-mixint_f003_i07_d040 1.0", "bbob-biobj-mixint_f003_i07_d080 1.0", "bbob-biobj-mixint_f003_i07_d160 1.0", "bbob-biobj-mixint_f003_i08_d005 1.0", "bbob-biobj-mixint_f003_i08_d010 1.0", "bbob-biobj-mixint_f003_i08_d020 1.0", "bbob-biobj-mixint_f003_i08_d040 1.0", "bbob-biobj-mixint_f003_i08_d080 1.0", "bbob-biobj-mixint_f003_i08_d160 1.0", "bbob-biobj-mixint_f003_i09_d005 1.0", "bbob-biobj-mixint_f003_i09_d010 1.0", "bbob-biobj-mixint_f003_i09_d020 1.0", "bbob-biobj-mixint_f003_i09_d040 1.0", "bbob-biobj-mixint_f003_i09_d080 1.0", "bbob-biobj-mixint_f003_i09_d160 1.0", "bbob-biobj-mixint_f003_i10_d005 1.0", "bbob-biobj-mixint_f003_i10_d010 1.0", "bbob-biobj-mixint_f003_i10_d020 1.0", "bbob-biobj-mixint_f003_i10_d040 1.0", "bbob-biobj-mixint_f003_i10_d080 1.0", "bbob-biobj-mixint_f003_i10_d160 1.0", "bbob-biobj-mixint_f003_i11_d005 1.0", "bbob-biobj-mixint_f003_i11_d010 1.0", "bbob-biobj-mixint_f003_i11_d020 1.0", "bbob-biobj-mixint_f003_i11_d040 1.0", "bbob-biobj-mixint_f003_i11_d080 1.0", "bbob-biobj-mixint_f003_i11_d160 1.0", "bbob-biobj-mixint_f003_i12_d005 1.0", "bbob-biobj-mixint_f003_i12_d010 1.0", "bbob-biobj-mixint_f003_i12_d020 1.0", "bbob-biobj-mixint_f003_i12_d040 1.0", "bbob-biobj-mixint_f003_i12_d080 1.0", "bbob-biobj-mixint_f003_i12_d160 1.0", "bbob-biobj-mixint_f003_i13_d005 1.0", "bbob-biobj-mixint_f003_i13_d010 1.0", "bbob-biobj-mixint_f003_i13_d020 1.0", "bbob-biobj-mixint_f003_i13_d040 1.0", "bbob-biobj-mixint_f003_i13_d080 1.0", "bbob-biobj-mixint_f003_i13_d160 1.0", "bbob-biobj-mixint_f003_i14_d005 1.0", "bbob-biobj-mixint_f003_i14_d010 1.0", "bbob-biobj-mixint_f003_i14_d020 1.0", "bbob-biobj-mixint_f003_i14_d040 1.0", "bbob-biobj-mixint_f003_i14_d080 1.0", "bbob-biobj-mixint_f003_i14_d160 1.0", "bbob-biobj-mixint_f003_i15_d005 1.0", "bbob-biobj-mixint_f003_i15_d010 1.0", "bbob-biobj-mixint_f003_i15_d020 1.0", "bbob-biobj-mixint_f003_i15_d040 1.0", "bbob-biobj-mixint_f003_i15_d080 1.0", "bbob-biobj-mixint_f003_i15_d160 1.0", "bbob-biobj-mixint_f004_i01_d005 1.0", "bbob-biobj-mixint_f004_i01_d010 1.0", "bbob-biobj-mixint_f004_i01_d020 1.0", "bbob-biobj-mixint_f004_i01_d040 1.0", "bbob-biobj-mixint_f004_i01_d080 1.0", "bbob-biobj-mixint_f004_i01_d160 1.0", "bbob-biobj-mixint_f004_i02_d005 1.0", "bbob-biobj-mixint_f004_i02_d010 1.0", "bbob-biobj-mixint_f004_i02_d020 1.0", "bbob-biobj-mixint_f004_i02_d040 1.0", "bbob-biobj-mixint_f004_i02_d080 1.0", "bbob-biobj-mixint_f004_i02_d160 1.0", "bbob-biobj-mixint_f004_i03_d005 1.0", "bbob-biobj-mixint_f004_i03_d010 1.0", "bbob-biobj-mixint_f004_i03_d020 1.0", "bbob-biobj-mixint_f004_i03_d040 1.0", "bbob-biobj-mixint_f004_i03_d080 1.0", "bbob-biobj-mixint_f004_i03_d160 1.0", "bbob-biobj-mixint_f004_i04_d005 1.0", "bbob-biobj-mixint_f004_i04_d010 1.0", "bbob-biobj-mixint_f004_i04_d020 1.0", "bbob-biobj-mixint_f004_i04_d040 1.0", "bbob-biobj-mixint_f004_i04_d080 1.0", "bbob-biobj-mixint_f004_i04_d160 1.0", "bbob-biobj-mixint_f004_i05_d005 1.0", "bbob-biobj-mixint_f004_i05_d010 1.0", "bbob-biobj-mixint_f004_i05_d020 1.0", "bbob-biobj-mixint_f004_i05_d040 1.0", "bbob-biobj-mixint_f004_i05_d080 1.0", "bbob-biobj-mixint_f004_i05_d160 1.0", "bbob-biobj-mixint_f004_i06_d005 1.0", "bbob-biobj-mixint_f004_i06_d010 1.0", "bbob-biobj-mixint_f004_i06_d020 1.0", "bbob-biobj-mixint_f004_i06_d040 1.0", "bbob-biobj-mixint_f004_i06_d080 1.0", "bbob-biobj-mixint_f004_i06_d160 1.0", "bbob-biobj-mixint_f004_i07_d005 1.0", "bbob-biobj-mixint_f004_i07_d010 1.0", "bbob-biobj-mixint_f004_i07_d020 1.0", "bbob-biobj-mixint_f004_i07_d040 1.0", "bbob-biobj-mixint_f004_i07_d080 1.0", "bbob-biobj-mixint_f004_i07_d160 1.0", "bbob-biobj-mixint_f004_i08_d005 1.0", "bbob-biobj-mixint_f004_i08_d010 1.0", "bbob-biobj-mixint_f004_i08_d020 1.0", "bbob-biobj-mixint_f004_i08_d040 1.0", "bbob-biobj-mixint_f004_i08_d080 1.0", "bbob-biobj-mixint_f004_i08_d160 1.0", "bbob-biobj-mixint_f004_i09_d005 1.0", "bbob-biobj-mixint_f004_i09_d010 1.0", "bbob-biobj-mixint_f004_i09_d020 1.0", "bbob-biobj-mixint_f004_i09_d040 1.0", "bbob-biobj-mixint_f004_i09_d080 1.0", "bbob-biobj-mixint_f004_i09_d160 1.0", "bbob-biobj-mixint_f004_i10_d005 1.0", "bbob-biobj-mixint_f004_i10_d010 1.0", "bbob-biobj-mixint_f004_i10_d020 1.0", "bbob-biobj-mixint_f004_i10_d040 1.0", "bbob-biobj-mixint_f004_i10_d080 1.0", "bbob-biobj-mixint_f004_i10_d160 1.0", "bbob-biobj-mixint_f004_i11_d005 1.0", "bbob-biobj-mixint_f004_i11_d010 1.0", "bbob-biobj-mixint_f004_i11_d020 1.0", "bbob-biobj-mixint_f004_i11_d040 1.0", "bbob-biobj-mixint_f004_i11_d080 1.0", "bbob-biobj-mixint_f004_i11_d160 1.0", "bbob-biobj-mixint_f004_i12_d005 1.0", "bbob-biobj-mixint_f004_i12_d010 1.0", "bbob-biobj-mixint_f004_i12_d020 1.0", "bbob-biobj-mixint_f004_i12_d040 1.0", "bbob-biobj-mixint_f004_i12_d080 1.0", "bbob-biobj-mixint_f004_i12_d160 1.0", "bbob-biobj-mixint_f004_i13_d005 1.0", "bbob-biobj-mixint_f004_i13_d010 1.0", "bbob-biobj-mixint_f004_i13_d020 1.0", "bbob-biobj-mixint_f004_i13_d040 1.0", "bbob-biobj-mixint_f004_i13_d080 1.0", "bbob-biobj-mixint_f004_i13_d160 1.0", "bbob-biobj-mixint_f004_i14_d005 1.0", "bbob-biobj-mixint_f004_i14_d010 1.0", "bbob-biobj-mixint_f004_i14_d020 1.0", "bbob-biobj-mixint_f004_i14_d040 1.0", "bbob-biobj-mixint_f004_i14_d080 1.0", "bbob-biobj-mixint_f004_i14_d160 1.0", "bbob-biobj-mixint_f004_i15_d005 1.0", "bbob-biobj-mixint_f004_i15_d010 1.0", "bbob-biobj-mixint_f004_i15_d020 1.0", "bbob-biobj-mixint_f004_i15_d040 1.0", "bbob-biobj-mixint_f004_i15_d080 1.0", "bbob-biobj-mixint_f004_i15_d160 1.0", "bbob-biobj-mixint_f005_i01_d005 1.0", "bbob-biobj-mixint_f005_i01_d010 1.0", "bbob-biobj-mixint_f005_i01_d020 1.0", "bbob-biobj-mixint_f005_i01_d040 1.0", "bbob-biobj-mixint_f005_i01_d080 1.0", "bbob-biobj-mixint_f005_i01_d160 1.0", "bbob-biobj-mixint_f005_i02_d005 1.0", "bbob-biobj-mixint_f005_i02_d010 1.0", "bbob-biobj-mixint_f005_i02_d020 1.0", "bbob-biobj-mixint_f005_i02_d040 1.0", "bbob-biobj-mixint_f005_i02_d080 1.0", "bbob-biobj-mixint_f005_i02_d160 1.0", "bbob-biobj-mixint_f005_i03_d005 1.0", "bbob-biobj-mixint_f005_i03_d010 1.0", "bbob-biobj-mixint_f005_i03_d020 1.0", "bbob-biobj-mixint_f005_i03_d040 1.0", "bbob-biobj-mixint_f005_i03_d080 1.0", "bbob-biobj-mixint_f005_i03_d160 1.0", "bbob-biobj-mixint_f005_i04_d005 1.0", "bbob-biobj-mixint_f005_i04_d010 1.0", "bbob-biobj-mixint_f005_i04_d020 1.0", "bbob-biobj-mixint_f005_i04_d040 1.0", "bbob-biobj-mixint_f005_i04_d080 1.0", "bbob-biobj-mixint_f005_i04_d160 1.0", "bbob-biobj-mixint_f005_i05_d005 1.0", "bbob-biobj-mixint_f005_i05_d010 1.0", "bbob-biobj-mixint_f005_i05_d020 1.0", "bbob-biobj-mixint_f005_i05_d040 1.0", "bbob-biobj-mixint_f005_i05_d080 1.0", "bbob-biobj-mixint_f005_i05_d160 1.0", "bbob-biobj-mixint_f005_i06_d005 1.0", "bbob-biobj-mixint_f005_i06_d010 1.0", "bbob-biobj-mixint_f005_i06_d020 1.0", "bbob-biobj-mixint_f005_i06_d040 1.0", "bbob-biobj-mixint_f005_i06_d080 1.0", "bbob-biobj-mixint_f005_i06_d160 1.0", "bbob-biobj-mixint_f005_i07_d005 1.0", "bbob-biobj-mixint_f005_i07_d010 1.0", "bbob-biobj-mixint_f005_i07_d020 1.0", "bbob-biobj-mixint_f005_i07_d040 1.0", "bbob-biobj-mixint_f005_i07_d080 1.0", "bbob-biobj-mixint_f005_i07_d160 1.0", "bbob-biobj-mixint_f005_i08_d005 1.0", "bbob-biobj-mixint_f005_i08_d010 1.0", "bbob-biobj-mixint_f005_i08_d020 1.0", "bbob-biobj-mixint_f005_i08_d040 1.0", "bbob-biobj-mixint_f005_i08_d080 1.0", "bbob-biobj-mixint_f005_i08_d160 1.0", "bbob-biobj-mixint_f005_i09_d005 1.0", "bbob-biobj-mixint_f005_i09_d010 1.0", "bbob-biobj-mixint_f005_i09_d020 1.0", "bbob-biobj-mixint_f005_i09_d040 1.0", "bbob-biobj-mixint_f005_i09_d080 1.0", "bbob-biobj-mixint_f005_i09_d160 1.0", "bbob-biobj-mixint_f005_i10_d005 1.0", "bbob-biobj-mixint_f005_i10_d010 1.0", "bbob-biobj-mixint_f005_i10_d020 1.0", "bbob-biobj-mixint_f005_i10_d040 1.0", "bbob-biobj-mixint_f005_i10_d080 1.0", "bbob-biobj-mixint_f005_i10_d160 1.0", "bbob-biobj-mixint_f005_i11_d005 1.0", "bbob-biobj-mixint_f005_i11_d010 1.0", "bbob-biobj-mixint_f005_i11_d020 1.0", "bbob-biobj-mixint_f005_i11_d040 1.0", "bbob-biobj-mixint_f005_i11_d080 1.0", "bbob-biobj-mixint_f005_i11_d160 1.0", "bbob-biobj-mixint_f005_i12_d005 1.0", "bbob-biobj-mixint_f005_i12_d010 1.0", "bbob-biobj-mixint_f005_i12_d020 1.0", "bbob-biobj-mixint_f005_i12_d040 1.0", "bbob-biobj-mixint_f005_i12_d080 1.0", "bbob-biobj-mixint_f005_i12_d160 1.0", "bbob-biobj-mixint_f005_i13_d005 1.0", "bbob-biobj-mixint_f005_i13_d010 1.0", "bbob-biobj-mixint_f005_i13_d020 1.0", "bbob-biobj-mixint_f005_i13_d040 1.0", "bbob-biobj-mixint_f005_i13_d080 1.0", "bbob-biobj-mixint_f005_i13_d160 1.0", "bbob-biobj-mixint_f005_i14_d005 1.0", "bbob-biobj-mixint_f005_i14_d010 1.0", "bbob-biobj-mixint_f005_i14_d020 1.0", "bbob-biobj-mixint_f005_i14_d040 1.0", "bbob-biobj-mixint_f005_i14_d080 1.0", "bbob-biobj-mixint_f005_i14_d160 1.0", "bbob-biobj-mixint_f005_i15_d005 1.0", "bbob-biobj-mixint_f005_i15_d010 1.0", "bbob-biobj-mixint_f005_i15_d020 1.0", "bbob-biobj-mixint_f005_i15_d040 1.0", "bbob-biobj-mixint_f005_i15_d080 1.0", "bbob-biobj-mixint_f005_i15_d160 1.0", "bbob-biobj-mixint_f006_i01_d005 1.0", "bbob-biobj-mixint_f006_i01_d010 1.0", "bbob-biobj-mixint_f006_i01_d020 1.0", "bbob-biobj-mixint_f006_i01_d040 1.0", "bbob-biobj-mixint_f006_i01_d080 1.0", "bbob-biobj-mixint_f006_i01_d160 1.0", "bbob-biobj-mixint_f006_i02_d005 1.0", "bbob-biobj-mixint_f006_i02_d010 1.0", "bbob-biobj-mixint_f006_i02_d020 1.0", "bbob-biobj-mixint_f006_i02_d040 1.0", "bbob-biobj-mixint_f006_i02_d080 1.0", "bbob-biobj-mixint_f006_i02_d160 1.0", "bbob-biobj-mixint_f006_i03_d005 1.0", "bbob-biobj-mixint_f006_i03_d010 1.0", "bbob-biobj-mixint_f006_i03_d020 1.0", "bbob-biobj-mixint_f006_i03_d040 1.0", "bbob-biobj-mixint_f006_i03_d080 1.0", "bbob-biobj-mixint_f006_i03_d160 1.0", "bbob-biobj-mixint_f006_i04_d005 1.0", "bbob-biobj-mixint_f006_i04_d010 1.0", "bbob-biobj-mixint_f006_i04_d020 1.0", "bbob-biobj-mixint_f006_i04_d040 1.0", "bbob-biobj-mixint_f006_i04_d080 1.0", "bbob-biobj-mixint_f006_i04_d160 1.0", "bbob-biobj-mixint_f006_i05_d005 1.0", "bbob-biobj-mixint_f006_i05_d010 1.0", "bbob-biobj-mixint_f006_i05_d020 1.0", "bbob-biobj-mixint_f006_i05_d040 1.0", "bbob-biobj-mixint_f006_i05_d080 1.0", "bbob-biobj-mixint_f006_i05_d160 1.0", "bbob-biobj-mixint_f006_i06_d005 1.0", "bbob-biobj-mixint_f006_i06_d010 1.0", "bbob-biobj-mixint_f006_i06_d020 1.0", "bbob-biobj-mixint_f006_i06_d040 1.0", "bbob-biobj-mixint_f006_i06_d080 1.0", "bbob-biobj-mixint_f006_i06_d160 1.0", "bbob-biobj-mixint_f006_i07_d005 1.0", "bbob-biobj-mixint_f006_i07_d010 1.0", "bbob-biobj-mixint_f006_i07_d020 1.0", "bbob-biobj-mixint_f006_i07_d040 1.0", "bbob-biobj-mixint_f006_i07_d080 1.0", "bbob-biobj-mixint_f006_i07_d160 1.0", "bbob-biobj-mixint_f006_i08_d005 1.0", "bbob-biobj-mixint_f006_i08_d010 1.0", "bbob-biobj-mixint_f006_i08_d020 1.0", "bbob-biobj-mixint_f006_i08_d040 1.0", "bbob-biobj-mixint_f006_i08_d080 1.0", "bbob-biobj-mixint_f006_i08_d160 1.0", "bbob-biobj-mixint_f006_i09_d005 1.0", "bbob-biobj-mixint_f006_i09_d010 1.0", "bbob-biobj-mixint_f006_i09_d020 1.0", "bbob-biobj-mixint_f006_i09_d040 1.0", "bbob-biobj-mixint_f006_i09_d080 1.0", "bbob-biobj-mixint_f006_i09_d160 1.0", "bbob-biobj-mixint_f006_i10_d005 1.0", "bbob-biobj-mixint_f006_i10_d010 1.0", "bbob-biobj-mixint_f006_i10_d020 1.0", "bbob-biobj-mixint_f006_i10_d040 1.0", "bbob-biobj-mixint_f006_i10_d080 1.0", "bbob-biobj-mixint_f006_i10_d160 1.0", "bbob-biobj-mixint_f006_i11_d005 1.0", "bbob-biobj-mixint_f006_i11_d010 1.0", "bbob-biobj-mixint_f006_i11_d020 1.0", "bbob-biobj-mixint_f006_i11_d040 1.0", "bbob-biobj-mixint_f006_i11_d080 1.0", "bbob-biobj-mixint_f006_i11_d160 1.0", "bbob-biobj-mixint_f006_i12_d005 1.0", "bbob-biobj-mixint_f006_i12_d010 1.0", "bbob-biobj-mixint_f006_i12_d020 1.0", "bbob-biobj-mixint_f006_i12_d040 1.0", "bbob-biobj-mixint_f006_i12_d080 1.0", "bbob-biobj-mixint_f006_i12_d160 1.0", "bbob-biobj-mixint_f006_i13_d005 1.0", "bbob-biobj-mixint_f006_i13_d010 1.0", "bbob-biobj-mixint_f006_i13_d020 1.0", "bbob-biobj-mixint_f006_i13_d040 1.0", "bbob-biobj-mixint_f006_i13_d080 1.0", "bbob-biobj-mixint_f006_i13_d160 1.0", "bbob-biobj-mixint_f006_i14_d005 1.0", "bbob-biobj-mixint_f006_i14_d010 1.0", "bbob-biobj-mixint_f006_i14_d020 1.0", "bbob-biobj-mixint_f006_i14_d040 1.0", "bbob-biobj-mixint_f006_i14_d080 1.0", "bbob-biobj-mixint_f006_i14_d160 1.0", "bbob-biobj-mixint_f006_i15_d005 1.0", "bbob-biobj-mixint_f006_i15_d010 1.0", "bbob-biobj-mixint_f006_i15_d020 1.0", "bbob-biobj-mixint_f006_i15_d040 1.0", "bbob-biobj-mixint_f006_i15_d080 1.0", "bbob-biobj-mixint_f006_i15_d160 1.0", "bbob-biobj-mixint_f007_i01_d005 1.0", "bbob-biobj-mixint_f007_i01_d010 1.0", "bbob-biobj-mixint_f007_i01_d020 1.0", "bbob-biobj-mixint_f007_i01_d040 1.0", "bbob-biobj-mixint_f007_i01_d080 1.0", "bbob-biobj-mixint_f007_i01_d160 1.0", "bbob-biobj-mixint_f007_i02_d005 1.0", "bbob-biobj-mixint_f007_i02_d010 1.0", "bbob-biobj-mixint_f007_i02_d020 1.0", "bbob-biobj-mixint_f007_i02_d040 1.0", "bbob-biobj-mixint_f007_i02_d080 1.0", "bbob-biobj-mixint_f007_i02_d160 1.0", "bbob-biobj-mixint_f007_i03_d005 1.0", "bbob-biobj-mixint_f007_i03_d010 1.0", "bbob-biobj-mixint_f007_i03_d020 1.0", "bbob-biobj-mixint_f007_i03_d040 1.0", "bbob-biobj-mixint_f007_i03_d080 1.0", "bbob-biobj-mixint_f007_i03_d160 1.0", "bbob-biobj-mixint_f007_i04_d005 1.0", "bbob-biobj-mixint_f007_i04_d010 1.0", "bbob-biobj-mixint_f007_i04_d020 1.0", "bbob-biobj-mixint_f007_i04_d040 1.0", "bbob-biobj-mixint_f007_i04_d080 1.0", "bbob-biobj-mixint_f007_i04_d160 1.0", "bbob-biobj-mixint_f007_i05_d005 1.0", "bbob-biobj-mixint_f007_i05_d010 1.0", "bbob-biobj-mixint_f007_i05_d020 1.0", "bbob-biobj-mixint_f007_i05_d040 1.0", "bbob-biobj-mixint_f007_i05_d080 1.0", "bbob-biobj-mixint_f007_i05_d160 1.0", "bbob-biobj-mixint_f007_i06_d005 1.0", "bbob-biobj-mixint_f007_i06_d010 1.0", "bbob-biobj-mixint_f007_i06_d020 1.0", "bbob-biobj-mixint_f007_i06_d040 1.0", "bbob-biobj-mixint_f007_i06_d080 1.0", "bbob-biobj-mixint_f007_i06_d160 1.0", "bbob-biobj-mixint_f007_i07_d005 1.0", "bbob-biobj-mixint_f007_i07_d010 1.0", "bbob-biobj-mixint_f007_i07_d020 1.0", "bbob-biobj-mixint_f007_i07_d040 1.0", "bbob-biobj-mixint_f007_i07_d080 1.0", "bbob-biobj-mixint_f007_i07_d160 1.0", "bbob-biobj-mixint_f007_i08_d005 1.0", "bbob-biobj-mixint_f007_i08_d010 1.0", "bbob-biobj-mixint_f007_i08_d020 1.0", "bbob-biobj-mixint_f007_i08_d040 1.0", "bbob-biobj-mixint_f007_i08_d080 1.0", "bbob-biobj-mixint_f007_i08_d160 1.0", "bbob-biobj-mixint_f007_i09_d005 1.0", "bbob-biobj-mixint_f007_i09_d010 1.0", "bbob-biobj-mixint_f007_i09_d020 1.0", "bbob-biobj-mixint_f007_i09_d040 1.0", "bbob-biobj-mixint_f007_i09_d080 1.0", "bbob-biobj-mixint_f007_i09_d160 1.0", "bbob-biobj-mixint_f007_i10_d005 1.0", "bbob-biobj-mixint_f007_i10_d010 1.0", "bbob-biobj-mixint_f007_i10_d020 1.0", "bbob-biobj-mixint_f007_i10_d040 1.0", "bbob-biobj-mixint_f007_i10_d080 1.0", "bbob-biobj-mixint_f007_i10_d160 1.0", "bbob-biobj-mixint_f007_i11_d005 1.0", "bbob-biobj-mixint_f007_i11_d010 1.0", "bbob-biobj-mixint_f007_i11_d020 1.0", "bbob-biobj-mixint_f007_i11_d040 1.0", "bbob-biobj-mixint_f007_i11_d080 1.0", "bbob-biobj-mixint_f007_i11_d160 1.0", "bbob-biobj-mixint_f007_i12_d005 1.0", "bbob-biobj-mixint_f007_i12_d010 1.0", "bbob-biobj-mixint_f007_i12_d020 1.0", "bbob-biobj-mixint_f007_i12_d040 1.0", "bbob-biobj-mixint_f007_i12_d080 1.0", "bbob-biobj-mixint_f007_i12_d160 1.0", "bbob-biobj-mixint_f007_i13_d005 1.0", "bbob-biobj-mixint_f007_i13_d010 1.0", "bbob-biobj-mixint_f007_i13_d020 1.0", "bbob-biobj-mixint_f007_i13_d040 1.0", "bbob-biobj-mixint_f007_i13_d080 1.0", "bbob-biobj-mixint_f007_i13_d160 1.0", "bbob-biobj-mixint_f007_i14_d005 1.0", "bbob-biobj-mixint_f007_i14_d010 1.0", "bbob-biobj-mixint_f007_i14_d020 1.0", "bbob-biobj-mixint_f007_i14_d040 1.0", "bbob-biobj-mixint_f007_i14_d080 1.0", "bbob-biobj-mixint_f007_i14_d160 1.0", "bbob-biobj-mixint_f007_i15_d005 1.0", "bbob-biobj-mixint_f007_i15_d010 1.0", "bbob-biobj-mixint_f007_i15_d020 1.0", "bbob-biobj-mixint_f007_i15_d040 1.0", "bbob-biobj-mixint_f007_i15_d080 1.0", "bbob-biobj-mixint_f007_i15_d160 1.0", "bbob-biobj-mixint_f008_i01_d005 1.0", "bbob-biobj-mixint_f008_i01_d010 1.0", "bbob-biobj-mixint_f008_i01_d020 1.0", "bbob-biobj-mixint_f008_i01_d040 1.0", "bbob-biobj-mixint_f008_i01_d080 1.0", "bbob-biobj-mixint_f008_i01_d160 1.0", "bbob-biobj-mixint_f008_i02_d005 1.0", "bbob-biobj-mixint_f008_i02_d010 1.0", "bbob-biobj-mixint_f008_i02_d020 1.0", "bbob-biobj-mixint_f008_i02_d040 1.0", "bbob-biobj-mixint_f008_i02_d080 1.0", "bbob-biobj-mixint_f008_i02_d160 1.0", "bbob-biobj-mixint_f008_i03_d005 1.0", "bbob-biobj-mixint_f008_i03_d010 1.0", "bbob-biobj-mixint_f008_i03_d020 1.0", "bbob-biobj-mixint_f008_i03_d040 1.0", "bbob-biobj-mixint_f008_i03_d080 1.0", "bbob-biobj-mixint_f008_i03_d160 1.0", "bbob-biobj-mixint_f008_i04_d005 1.0", "bbob-biobj-mixint_f008_i04_d010 1.0", "bbob-biobj-mixint_f008_i04_d020 1.0", "bbob-biobj-mixint_f008_i04_d040 1.0", "bbob-biobj-mixint_f008_i04_d080 1.0", "bbob-biobj-mixint_f008_i04_d160 1.0", "bbob-biobj-mixint_f008_i05_d005 1.0", "bbob-biobj-mixint_f008_i05_d010 1.0", "bbob-biobj-mixint_f008_i05_d020 1.0", "bbob-biobj-mixint_f008_i05_d040 1.0", "bbob-biobj-mixint_f008_i05_d080 1.0", "bbob-biobj-mixint_f008_i05_d160 1.0", "bbob-biobj-mixint_f008_i06_d005 1.0", "bbob-biobj-mixint_f008_i06_d010 1.0", "bbob-biobj-mixint_f008_i06_d020 1.0", "bbob-biobj-mixint_f008_i06_d040 1.0", "bbob-biobj-mixint_f008_i06_d080 1.0", "bbob-biobj-mixint_f008_i06_d160 1.0", "bbob-biobj-mixint_f008_i07_d005 1.0", "bbob-biobj-mixint_f008_i07_d010 1.0", "bbob-biobj-mixint_f008_i07_d020 1.0", "bbob-biobj-mixint_f008_i07_d040 1.0", "bbob-biobj-mixint_f008_i07_d080 1.0", "bbob-biobj-mixint_f008_i07_d160 1.0", "bbob-biobj-mixint_f008_i08_d005 1.0", "bbob-biobj-mixint_f008_i08_d010 1.0", "bbob-biobj-mixint_f008_i08_d020 1.0", "bbob-biobj-mixint_f008_i08_d040 1.0", "bbob-biobj-mixint_f008_i08_d080 1.0", "bbob-biobj-mixint_f008_i08_d160 1.0", "bbob-biobj-mixint_f008_i09_d005 1.0", "bbob-biobj-mixint_f008_i09_d010 1.0", "bbob-biobj-mixint_f008_i09_d020 1.0", "bbob-biobj-mixint_f008_i09_d040 1.0", "bbob-biobj-mixint_f008_i09_d080 1.0", "bbob-biobj-mixint_f008_i09_d160 1.0", "bbob-biobj-mixint_f008_i10_d005 1.0", "bbob-biobj-mixint_f008_i10_d010 1.0", "bbob-biobj-mixint_f008_i10_d020 1.0", "bbob-biobj-mixint_f008_i10_d040 1.0", "bbob-biobj-mixint_f008_i10_d080 1.0", "bbob-biobj-mixint_f008_i10_d160 1.0", "bbob-biobj-mixint_f008_i11_d005 1.0", "bbob-biobj-mixint_f008_i11_d010 1.0", "bbob-biobj-mixint_f008_i11_d020 1.0", "bbob-biobj-mixint_f008_i11_d040 1.0", "bbob-biobj-mixint_f008_i11_d080 1.0", "bbob-biobj-mixint_f008_i11_d160 1.0", "bbob-biobj-mixint_f008_i12_d005 1.0", "bbob-biobj-mixint_f008_i12_d010 1.0", "bbob-biobj-mixint_f008_i12_d020 1.0", "bbob-biobj-mixint_f008_i12_d040 1.0", "bbob-biobj-mixint_f008_i12_d080 1.0", "bbob-biobj-mixint_f008_i12_d160 1.0", "bbob-biobj-mixint_f008_i13_d005 1.0", "bbob-biobj-mixint_f008_i13_d010 1.0", "bbob-biobj-mixint_f008_i13_d020 1.0", "bbob-biobj-mixint_f008_i13_d040 1.0", "bbob-biobj-mixint_f008_i13_d080 1.0", "bbob-biobj-mixint_f008_i13_d160 1.0", "bbob-biobj-mixint_f008_i14_d005 1.0", "bbob-biobj-mixint_f008_i14_d010 1.0", "bbob-biobj-mixint_f008_i14_d020 1.0", "bbob-biobj-mixint_f008_i14_d040 1.0", "bbob-biobj-mixint_f008_i14_d080 1.0", "bbob-biobj-mixint_f008_i14_d160 1.0", "bbob-biobj-mixint_f008_i15_d005 1.0", "bbob-biobj-mixint_f008_i15_d010 1.0", "bbob-biobj-mixint_f008_i15_d020 1.0", "bbob-biobj-mixint_f008_i15_d040 1.0", "bbob-biobj-mixint_f008_i15_d080 1.0", "bbob-biobj-mixint_f008_i15_d160 1.0", "bbob-biobj-mixint_f009_i01_d005 1.0", "bbob-biobj-mixint_f009_i01_d010 1.0", "bbob-biobj-mixint_f009_i01_d020 1.0", "bbob-biobj-mixint_f009_i01_d040 1.0", "bbob-biobj-mixint_f009_i01_d080 1.0", "bbob-biobj-mixint_f009_i01_d160 1.0", "bbob-biobj-mixint_f009_i02_d005 1.0", "bbob-biobj-mixint_f009_i02_d010 1.0", "bbob-biobj-mixint_f009_i02_d020 1.0", "bbob-biobj-mixint_f009_i02_d040 1.0", "bbob-biobj-mixint_f009_i02_d080 1.0", "bbob-biobj-mixint_f009_i02_d160 1.0", "bbob-biobj-mixint_f009_i03_d005 1.0", "bbob-biobj-mixint_f009_i03_d010 1.0", "bbob-biobj-mixint_f009_i03_d020 1.0", "bbob-biobj-mixint_f009_i03_d040 1.0", "bbob-biobj-mixint_f009_i03_d080 1.0", "bbob-biobj-mixint_f009_i03_d160 1.0", "bbob-biobj-mixint_f009_i04_d005 1.0", "bbob-biobj-mixint_f009_i04_d010 1.0", "bbob-biobj-mixint_f009_i04_d020 1.0", "bbob-biobj-mixint_f009_i04_d040 1.0", "bbob-biobj-mixint_f009_i04_d080 1.0", "bbob-biobj-mixint_f009_i04_d160 1.0", "bbob-biobj-mixint_f009_i05_d005 1.0", "bbob-biobj-mixint_f009_i05_d010 1.0", "bbob-biobj-mixint_f009_i05_d020 1.0", "bbob-biobj-mixint_f009_i05_d040 1.0", "bbob-biobj-mixint_f009_i05_d080 1.0", "bbob-biobj-mixint_f009_i05_d160 1.0", "bbob-biobj-mixint_f009_i06_d005 1.0", "bbob-biobj-mixint_f009_i06_d010 1.0", "bbob-biobj-mixint_f009_i06_d020 1.0", "bbob-biobj-mixint_f009_i06_d040 1.0", "bbob-biobj-mixint_f009_i06_d080 1.0", "bbob-biobj-mixint_f009_i06_d160 1.0", "bbob-biobj-mixint_f009_i07_d005 1.0", "bbob-biobj-mixint_f009_i07_d010 1.0", "bbob-biobj-mixint_f009_i07_d020 1.0", "bbob-biobj-mixint_f009_i07_d040 1.0", "bbob-biobj-mixint_f009_i07_d080 1.0", "bbob-biobj-mixint_f009_i07_d160 1.0", "bbob-biobj-mixint_f009_i08_d005 1.0", "bbob-biobj-mixint_f009_i08_d010 1.0", "bbob-biobj-mixint_f009_i08_d020 1.0", "bbob-biobj-mixint_f009_i08_d040 1.0", "bbob-biobj-mixint_f009_i08_d080 1.0", "bbob-biobj-mixint_f009_i08_d160 1.0", "bbob-biobj-mixint_f009_i09_d005 1.0", "bbob-biobj-mixint_f009_i09_d010 1.0", "bbob-biobj-mixint_f009_i09_d020 1.0", "bbob-biobj-mixint_f009_i09_d040 1.0", "bbob-biobj-mixint_f009_i09_d080 1.0", "bbob-biobj-mixint_f009_i09_d160 1.0", "bbob-biobj-mixint_f009_i10_d005 1.0", "bbob-biobj-mixint_f009_i10_d010 1.0", "bbob-biobj-mixint_f009_i10_d020 1.0", "bbob-biobj-mixint_f009_i10_d040 1.0", "bbob-biobj-mixint_f009_i10_d080 1.0", "bbob-biobj-mixint_f009_i10_d160 1.0", "bbob-biobj-mixint_f009_i11_d005 1.0", "bbob-biobj-mixint_f009_i11_d010 1.0", "bbob-biobj-mixint_f009_i11_d020 1.0", "bbob-biobj-mixint_f009_i11_d040 1.0", "bbob-biobj-mixint_f009_i11_d080 1.0", "bbob-biobj-mixint_f009_i11_d160 1.0", "bbob-biobj-mixint_f009_i12_d005 1.0", "bbob-biobj-mixint_f009_i12_d010 1.0", "bbob-biobj-mixint_f009_i12_d020 1.0", "bbob-biobj-mixint_f009_i12_d040 1.0", "bbob-biobj-mixint_f009_i12_d080 1.0", "bbob-biobj-mixint_f009_i12_d160 1.0", "bbob-biobj-mixint_f009_i13_d005 1.0", "bbob-biobj-mixint_f009_i13_d010 1.0", "bbob-biobj-mixint_f009_i13_d020 1.0", "bbob-biobj-mixint_f009_i13_d040 1.0", "bbob-biobj-mixint_f009_i13_d080 1.0", "bbob-biobj-mixint_f009_i13_d160 1.0", "bbob-biobj-mixint_f009_i14_d005 1.0", "bbob-biobj-mixint_f009_i14_d010 1.0", "bbob-biobj-mixint_f009_i14_d020 1.0", "bbob-biobj-mixint_f009_i14_d040 1.0", "bbob-biobj-mixint_f009_i14_d080 1.0", "bbob-biobj-mixint_f009_i14_d160 1.0", "bbob-biobj-mixint_f009_i15_d005 1.0", "bbob-biobj-mixint_f009_i15_d010 1.0", "bbob-biobj-mixint_f009_i15_d020 1.0", "bbob-biobj-mixint_f009_i15_d040 1.0", "bbob-biobj-mixint_f009_i15_d080 1.0", "bbob-biobj-mixint_f009_i15_d160 1.0", "bbob-biobj-mixint_f010_i01_d005 1.0", "bbob-biobj-mixint_f010_i01_d010 1.0", "bbob-biobj-mixint_f010_i01_d020 1.0", "bbob-biobj-mixint_f010_i01_d040 1.0", "bbob-biobj-mixint_f010_i01_d080 1.0", "bbob-biobj-mixint_f010_i01_d160 1.0", "bbob-biobj-mixint_f010_i02_d005 1.0", "bbob-biobj-mixint_f010_i02_d010 1.0", "bbob-biobj-mixint_f010_i02_d020 1.0", "bbob-biobj-mixint_f010_i02_d040 1.0", "bbob-biobj-mixint_f010_i02_d080 1.0", "bbob-biobj-mixint_f010_i02_d160 1.0", "bbob-biobj-mixint_f010_i03_d005 1.0", "bbob-biobj-mixint_f010_i03_d010 1.0", "bbob-biobj-mixint_f010_i03_d020 1.0", "bbob-biobj-mixint_f010_i03_d040 1.0", "bbob-biobj-mixint_f010_i03_d080 1.0", "bbob-biobj-mixint_f010_i03_d160 1.0", "bbob-biobj-mixint_f010_i04_d005 1.0", "bbob-biobj-mixint_f010_i04_d010 1.0", "bbob-biobj-mixint_f010_i04_d020 1.0", "bbob-biobj-mixint_f010_i04_d040 1.0", "bbob-biobj-mixint_f010_i04_d080 1.0", "bbob-biobj-mixint_f010_i04_d160 1.0", "bbob-biobj-mixint_f010_i05_d005 1.0", "bbob-biobj-mixint_f010_i05_d010 1.0", "bbob-biobj-mixint_f010_i05_d020 1.0", "bbob-biobj-mixint_f010_i05_d040 1.0", "bbob-biobj-mixint_f010_i05_d080 1.0", "bbob-biobj-mixint_f010_i05_d160 1.0", "bbob-biobj-mixint_f010_i06_d005 1.0", "bbob-biobj-mixint_f010_i06_d010 1.0", "bbob-biobj-mixint_f010_i06_d020 1.0", "bbob-biobj-mixint_f010_i06_d040 1.0", "bbob-biobj-mixint_f010_i06_d080 1.0", "bbob-biobj-mixint_f010_i06_d160 1.0", "bbob-biobj-mixint_f010_i07_d005 1.0", "bbob-biobj-mixint_f010_i07_d010 1.0", "bbob-biobj-mixint_f010_i07_d020 1.0", "bbob-biobj-mixint_f010_i07_d040 1.0", "bbob-biobj-mixint_f010_i07_d080 1.0", "bbob-biobj-mixint_f010_i07_d160 1.0", "bbob-biobj-mixint_f010_i08_d005 1.0", "bbob-biobj-mixint_f010_i08_d010 1.0", "bbob-biobj-mixint_f010_i08_d020 1.0", "bbob-biobj-mixint_f010_i08_d040 1.0", "bbob-biobj-mixint_f010_i08_d080 1.0", "bbob-biobj-mixint_f010_i08_d160 1.0", "bbob-biobj-mixint_f010_i09_d005 1.0", "bbob-biobj-mixint_f010_i09_d010 1.0", "bbob-biobj-mixint_f010_i09_d020 1.0", "bbob-biobj-mixint_f010_i09_d040 1.0", "bbob-biobj-mixint_f010_i09_d080 1.0", "bbob-biobj-mixint_f010_i09_d160 1.0", "bbob-biobj-mixint_f010_i10_d005 1.0", "bbob-biobj-mixint_f010_i10_d010 1.0", "bbob-biobj-mixint_f010_i10_d020 1.0", "bbob-biobj-mixint_f010_i10_d040 1.0", "bbob-biobj-mixint_f010_i10_d080 1.0", "bbob-biobj-mixint_f010_i10_d160 1.0", "bbob-biobj-mixint_f010_i11_d005 1.0", "bbob-biobj-mixint_f010_i11_d010 1.0", "bbob-biobj-mixint_f010_i11_d020 1.0", "bbob-biobj-mixint_f010_i11_d040 1.0", "bbob-biobj-mixint_f010_i11_d080 1.0", "bbob-biobj-mixint_f010_i11_d160 1.0", "bbob-biobj-mixint_f010_i12_d005 1.0", "bbob-biobj-mixint_f010_i12_d010 1.0", "bbob-biobj-mixint_f010_i12_d020 1.0", "bbob-biobj-mixint_f010_i12_d040 1.0", "bbob-biobj-mixint_f010_i12_d080 1.0", "bbob-biobj-mixint_f010_i12_d160 1.0", "bbob-biobj-mixint_f010_i13_d005 1.0", "bbob-biobj-mixint_f010_i13_d010 1.0", "bbob-biobj-mixint_f010_i13_d020 1.0", "bbob-biobj-mixint_f010_i13_d040 1.0", "bbob-biobj-mixint_f010_i13_d080 1.0", "bbob-biobj-mixint_f010_i13_d160 1.0", "bbob-biobj-mixint_f010_i14_d005 1.0", "bbob-biobj-mixint_f010_i14_d010 1.0", "bbob-biobj-mixint_f010_i14_d020 1.0", "bbob-biobj-mixint_f010_i14_d040 1.0", "bbob-biobj-mixint_f010_i14_d080 1.0", "bbob-biobj-mixint_f010_i14_d160 1.0", "bbob-biobj-mixint_f010_i15_d005 1.0", "bbob-biobj-mixint_f010_i15_d010 1.0", "bbob-biobj-mixint_f010_i15_d020 1.0", "bbob-biobj-mixint_f010_i15_d040 1.0", "bbob-biobj-mixint_f010_i15_d080 1.0", "bbob-biobj-mixint_f010_i15_d160 1.0", "bbob-biobj-mixint_f011_i01_d005 1.0", "bbob-biobj-mixint_f011_i01_d010 1.0", "bbob-biobj-mixint_f011_i01_d020 1.0", "bbob-biobj-mixint_f011_i01_d040 1.0", "bbob-biobj-mixint_f011_i01_d080 1.0", "bbob-biobj-mixint_f011_i01_d160 1.0", "bbob-biobj-mixint_f011_i02_d005 1.0", "bbob-biobj-mixint_f011_i02_d010 1.0", "bbob-biobj-mixint_f011_i02_d020 1.0", "bbob-biobj-mixint_f011_i02_d040 1.0", "bbob-biobj-mixint_f011_i02_d080 1.0", "bbob-biobj-mixint_f011_i02_d160 1.0", "bbob-biobj-mixint_f011_i03_d005 1.0", "bbob-biobj-mixint_f011_i03_d010 1.0", "bbob-biobj-mixint_f011_i03_d020 1.0", "bbob-biobj-mixint_f011_i03_d040 1.0", "bbob-biobj-mixint_f011_i03_d080 1.0", "bbob-biobj-mixint_f011_i03_d160 1.0", "bbob-biobj-mixint_f011_i04_d005 1.0", "bbob-biobj-mixint_f011_i04_d010 1.0", "bbob-biobj-mixint_f011_i04_d020 1.0", "bbob-biobj-mixint_f011_i04_d040 1.0", "bbob-biobj-mixint_f011_i04_d080 1.0", "bbob-biobj-mixint_f011_i04_d160 1.0", "bbob-biobj-mixint_f011_i05_d005 1.0", "bbob-biobj-mixint_f011_i05_d010 1.0", "bbob-biobj-mixint_f011_i05_d020 1.0", "bbob-biobj-mixint_f011_i05_d040 1.0", "bbob-biobj-mixint_f011_i05_d080 1.0", "bbob-biobj-mixint_f011_i05_d160 1.0", "bbob-biobj-mixint_f011_i06_d005 1.0", "bbob-biobj-mixint_f011_i06_d010 1.0", "bbob-biobj-mixint_f011_i06_d020 1.0", "bbob-biobj-mixint_f011_i06_d040 1.0", "bbob-biobj-mixint_f011_i06_d080 1.0", "bbob-biobj-mixint_f011_i06_d160 1.0", "bbob-biobj-mixint_f011_i07_d005 1.0", "bbob-biobj-mixint_f011_i07_d010 1.0", "bbob-biobj-mixint_f011_i07_d020 1.0", "bbob-biobj-mixint_f011_i07_d040 1.0", "bbob-biobj-mixint_f011_i07_d080 1.0", "bbob-biobj-mixint_f011_i07_d160 1.0", "bbob-biobj-mixint_f011_i08_d005 1.0", "bbob-biobj-mixint_f011_i08_d010 1.0", "bbob-biobj-mixint_f011_i08_d020 1.0", "bbob-biobj-mixint_f011_i08_d040 1.0", "bbob-biobj-mixint_f011_i08_d080 1.0", "bbob-biobj-mixint_f011_i08_d160 1.0", "bbob-biobj-mixint_f011_i09_d005 1.0", "bbob-biobj-mixint_f011_i09_d010 1.0", "bbob-biobj-mixint_f011_i09_d020 1.0", "bbob-biobj-mixint_f011_i09_d040 1.0", "bbob-biobj-mixint_f011_i09_d080 1.0", "bbob-biobj-mixint_f011_i09_d160 1.0", "bbob-biobj-mixint_f011_i10_d005 1.0", "bbob-biobj-mixint_f011_i10_d010 1.0", "bbob-biobj-mixint_f011_i10_d020 1.0", "bbob-biobj-mixint_f011_i10_d040 1.0", "bbob-biobj-mixint_f011_i10_d080 1.0", "bbob-biobj-mixint_f011_i10_d160 1.0", "bbob-biobj-mixint_f011_i11_d005 1.0", "bbob-biobj-mixint_f011_i11_d010 1.0", "bbob-biobj-mixint_f011_i11_d020 1.0", "bbob-biobj-mixint_f011_i11_d040 1.0", "bbob-biobj-mixint_f011_i11_d080 1.0", "bbob-biobj-mixint_f011_i11_d160 1.0", "bbob-biobj-mixint_f011_i12_d005 1.0", "bbob-biobj-mixint_f011_i12_d010 1.0", "bbob-biobj-mixint_f011_i12_d020 1.0", "bbob-biobj-mixint_f011_i12_d040 1.0", "bbob-biobj-mixint_f011_i12_d080 1.0", "bbob-biobj-mixint_f011_i12_d160 1.0", "bbob-biobj-mixint_f011_i13_d005 1.0", "bbob-biobj-mixint_f011_i13_d010 1.0", "bbob-biobj-mixint_f011_i13_d020 1.0", "bbob-biobj-mixint_f011_i13_d040 1.0", "bbob-biobj-mixint_f011_i13_d080 1.0", "bbob-biobj-mixint_f011_i13_d160 1.0", "bbob-biobj-mixint_f011_i14_d005 1.0", "bbob-biobj-mixint_f011_i14_d010 1.0", "bbob-biobj-mixint_f011_i14_d020 1.0", "bbob-biobj-mixint_f011_i14_d040 1.0", "bbob-biobj-mixint_f011_i14_d080 1.0", "bbob-biobj-mixint_f011_i14_d160 1.0", "bbob-biobj-mixint_f011_i15_d005 1.0", "bbob-biobj-mixint_f011_i15_d010 1.0", "bbob-biobj-mixint_f011_i15_d020 1.0", "bbob-biobj-mixint_f011_i15_d040 1.0", "bbob-biobj-mixint_f011_i15_d080 1.0", "bbob-biobj-mixint_f011_i15_d160 1.0", "bbob-biobj-mixint_f012_i01_d005 1.0", "bbob-biobj-mixint_f012_i01_d010 1.0", "bbob-biobj-mixint_f012_i01_d020 1.0", "bbob-biobj-mixint_f012_i01_d040 1.0", "bbob-biobj-mixint_f012_i01_d080 1.0", "bbob-biobj-mixint_f012_i01_d160 1.0", "bbob-biobj-mixint_f012_i02_d005 1.0", "bbob-biobj-mixint_f012_i02_d010 1.0", "bbob-biobj-mixint_f012_i02_d020 1.0", "bbob-biobj-mixint_f012_i02_d040 1.0", "bbob-biobj-mixint_f012_i02_d080 1.0", "bbob-biobj-mixint_f012_i02_d160 1.0", "bbob-biobj-mixint_f012_i03_d005 1.0", "bbob-biobj-mixint_f012_i03_d010 1.0", "bbob-biobj-mixint_f012_i03_d020 1.0", "bbob-biobj-mixint_f012_i03_d040 1.0", "bbob-biobj-mixint_f012_i03_d080 1.0", "bbob-biobj-mixint_f012_i03_d160 1.0", "bbob-biobj-mixint_f012_i04_d005 1.0", "bbob-biobj-mixint_f012_i04_d010 1.0", "bbob-biobj-mixint_f012_i04_d020 1.0", "bbob-biobj-mixint_f012_i04_d040 1.0", "bbob-biobj-mixint_f012_i04_d080 1.0", "bbob-biobj-mixint_f012_i04_d160 1.0", "bbob-biobj-mixint_f012_i05_d005 1.0", "bbob-biobj-mixint_f012_i05_d010 1.0", "bbob-biobj-mixint_f012_i05_d020 1.0", "bbob-biobj-mixint_f012_i05_d040 1.0", "bbob-biobj-mixint_f012_i05_d080 1.0", "bbob-biobj-mixint_f012_i05_d160 1.0", "bbob-biobj-mixint_f012_i06_d005 1.0", "bbob-biobj-mixint_f012_i06_d010 1.0", "bbob-biobj-mixint_f012_i06_d020 1.0", "bbob-biobj-mixint_f012_i06_d040 1.0", "bbob-biobj-mixint_f012_i06_d080 1.0", "bbob-biobj-mixint_f012_i06_d160 1.0", "bbob-biobj-mixint_f012_i07_d005 1.0", "bbob-biobj-mixint_f012_i07_d010 1.0", "bbob-biobj-mixint_f012_i07_d020 1.0", "bbob-biobj-mixint_f012_i07_d040 1.0", "bbob-biobj-mixint_f012_i07_d080 1.0", "bbob-biobj-mixint_f012_i07_d160 1.0", "bbob-biobj-mixint_f012_i08_d005 1.0", "bbob-biobj-mixint_f012_i08_d010 1.0", "bbob-biobj-mixint_f012_i08_d020 1.0", "bbob-biobj-mixint_f012_i08_d040 1.0", "bbob-biobj-mixint_f012_i08_d080 1.0", "bbob-biobj-mixint_f012_i08_d160 1.0", "bbob-biobj-mixint_f012_i09_d005 1.0", "bbob-biobj-mixint_f012_i09_d010 1.0", "bbob-biobj-mixint_f012_i09_d020 1.0", "bbob-biobj-mixint_f012_i09_d040 1.0", "bbob-biobj-mixint_f012_i09_d080 1.0", "bbob-biobj-mixint_f012_i09_d160 1.0", "bbob-biobj-mixint_f012_i10_d005 1.0", "bbob-biobj-mixint_f012_i10_d010 1.0", "bbob-biobj-mixint_f012_i10_d020 1.0", "bbob-biobj-mixint_f012_i10_d040 1.0", "bbob-biobj-mixint_f012_i10_d080 1.0", "bbob-biobj-mixint_f012_i10_d160 1.0", "bbob-biobj-mixint_f012_i11_d005 1.0", "bbob-biobj-mixint_f012_i11_d010 1.0", "bbob-biobj-mixint_f012_i11_d020 1.0", "bbob-biobj-mixint_f012_i11_d040 1.0", "bbob-biobj-mixint_f012_i11_d080 1.0", "bbob-biobj-mixint_f012_i11_d160 1.0", "bbob-biobj-mixint_f012_i12_d005 1.0", "bbob-biobj-mixint_f012_i12_d010 1.0", "bbob-biobj-mixint_f012_i12_d020 1.0", "bbob-biobj-mixint_f012_i12_d040 1.0", "bbob-biobj-mixint_f012_i12_d080 1.0", "bbob-biobj-mixint_f012_i12_d160 1.0", "bbob-biobj-mixint_f012_i13_d005 1.0", "bbob-biobj-mixint_f012_i13_d010 1.0", "bbob-biobj-mixint_f012_i13_d020 1.0", "bbob-biobj-mixint_f012_i13_d040 1.0", "bbob-biobj-mixint_f012_i13_d080 1.0", "bbob-biobj-mixint_f012_i13_d160 1.0", "bbob-biobj-mixint_f012_i14_d005 1.0", "bbob-biobj-mixint_f012_i14_d010 1.0", "bbob-biobj-mixint_f012_i14_d020 1.0", "bbob-biobj-mixint_f012_i14_d040 1.0", "bbob-biobj-mixint_f012_i14_d080 1.0", "bbob-biobj-mixint_f012_i14_d160 1.0", "bbob-biobj-mixint_f012_i15_d005 1.0", "bbob-biobj-mixint_f012_i15_d010 1.0", "bbob-biobj-mixint_f012_i15_d020 1.0", "bbob-biobj-mixint_f012_i15_d040 1.0", "bbob-biobj-mixint_f012_i15_d080 1.0", "bbob-biobj-mixint_f012_i15_d160 1.0", "bbob-biobj-mixint_f013_i01_d005 1.0", "bbob-biobj-mixint_f013_i01_d010 1.0", "bbob-biobj-mixint_f013_i01_d020 1.0", "bbob-biobj-mixint_f013_i01_d040 1.0", "bbob-biobj-mixint_f013_i01_d080 1.0", "bbob-biobj-mixint_f013_i01_d160 1.0", "bbob-biobj-mixint_f013_i02_d005 1.0", "bbob-biobj-mixint_f013_i02_d010 1.0", "bbob-biobj-mixint_f013_i02_d020 1.0", "bbob-biobj-mixint_f013_i02_d040 1.0", "bbob-biobj-mixint_f013_i02_d080 1.0", "bbob-biobj-mixint_f013_i02_d160 1.0", "bbob-biobj-mixint_f013_i03_d005 1.0", "bbob-biobj-mixint_f013_i03_d010 1.0", "bbob-biobj-mixint_f013_i03_d020 1.0", "bbob-biobj-mixint_f013_i03_d040 1.0", "bbob-biobj-mixint_f013_i03_d080 1.0", "bbob-biobj-mixint_f013_i03_d160 1.0", "bbob-biobj-mixint_f013_i04_d005 1.0", "bbob-biobj-mixint_f013_i04_d010 1.0", "bbob-biobj-mixint_f013_i04_d020 1.0", "bbob-biobj-mixint_f013_i04_d040 1.0", "bbob-biobj-mixint_f013_i04_d080 1.0", "bbob-biobj-mixint_f013_i04_d160 1.0", "bbob-biobj-mixint_f013_i05_d005 1.0", "bbob-biobj-mixint_f013_i05_d010 1.0", "bbob-biobj-mixint_f013_i05_d020 1.0", "bbob-biobj-mixint_f013_i05_d040 1.0", "bbob-biobj-mixint_f013_i05_d080 1.0", "bbob-biobj-mixint_f013_i05_d160 1.0", "bbob-biobj-mixint_f013_i06_d005 1.0", "bbob-biobj-mixint_f013_i06_d010 1.0", "bbob-biobj-mixint_f013_i06_d020 1.0", "bbob-biobj-mixint_f013_i06_d040 1.0", "bbob-biobj-mixint_f013_i06_d080 1.0", "bbob-biobj-mixint_f013_i06_d160 1.0", "bbob-biobj-mixint_f013_i07_d005 1.0", "bbob-biobj-mixint_f013_i07_d010 1.0", "bbob-biobj-mixint_f013_i07_d020 1.0", "bbob-biobj-mixint_f013_i07_d040 1.0", "bbob-biobj-mixint_f013_i07_d080 1.0", "bbob-biobj-mixint_f013_i07_d160 1.0", "bbob-biobj-mixint_f013_i08_d005 1.0", "bbob-biobj-mixint_f013_i08_d010 1.0", "bbob-biobj-mixint_f013_i08_d020 1.0", "bbob-biobj-mixint_f013_i08_d040 1.0", "bbob-biobj-mixint_f013_i08_d080 1.0", "bbob-biobj-mixint_f013_i08_d160 1.0", "bbob-biobj-mixint_f013_i09_d005 1.0", "bbob-biobj-mixint_f013_i09_d010 1.0", "bbob-biobj-mixint_f013_i09_d020 1.0", "bbob-biobj-mixint_f013_i09_d040 1.0", "bbob-biobj-mixint_f013_i09_d080 1.0", "bbob-biobj-mixint_f013_i09_d160 1.0", "bbob-biobj-mixint_f013_i10_d005 1.0", "bbob-biobj-mixint_f013_i10_d010 1.0", "bbob-biobj-mixint_f013_i10_d020 1.0", "bbob-biobj-mixint_f013_i10_d040 1.0", "bbob-biobj-mixint_f013_i10_d080 1.0", "bbob-biobj-mixint_f013_i10_d160 1.0", "bbob-biobj-mixint_f013_i11_d005 1.0", "bbob-biobj-mixint_f013_i11_d010 1.0", "bbob-biobj-mixint_f013_i11_d020 1.0", "bbob-biobj-mixint_f013_i11_d040 1.0", "bbob-biobj-mixint_f013_i11_d080 1.0", "bbob-biobj-mixint_f013_i11_d160 1.0", "bbob-biobj-mixint_f013_i12_d005 1.0", "bbob-biobj-mixint_f013_i12_d010 1.0", "bbob-biobj-mixint_f013_i12_d020 1.0", "bbob-biobj-mixint_f013_i12_d040 1.0", "bbob-biobj-mixint_f013_i12_d080 1.0", "bbob-biobj-mixint_f013_i12_d160 1.0", "bbob-biobj-mixint_f013_i13_d005 1.0", "bbob-biobj-mixint_f013_i13_d010 1.0", "bbob-biobj-mixint_f013_i13_d020 1.0", "bbob-biobj-mixint_f013_i13_d040 1.0", "bbob-biobj-mixint_f013_i13_d080 1.0", "bbob-biobj-mixint_f013_i13_d160 1.0", "bbob-biobj-mixint_f013_i14_d005 1.0", "bbob-biobj-mixint_f013_i14_d010 1.0", "bbob-biobj-mixint_f013_i14_d020 1.0", "bbob-biobj-mixint_f013_i14_d040 1.0", "bbob-biobj-mixint_f013_i14_d080 1.0", "bbob-biobj-mixint_f013_i14_d160 1.0", "bbob-biobj-mixint_f013_i15_d005 1.0", "bbob-biobj-mixint_f013_i15_d010 1.0", "bbob-biobj-mixint_f013_i15_d020 1.0", "bbob-biobj-mixint_f013_i15_d040 1.0", "bbob-biobj-mixint_f013_i15_d080 1.0", "bbob-biobj-mixint_f013_i15_d160 1.0", "bbob-biobj-mixint_f014_i01_d005 1.0", "bbob-biobj-mixint_f014_i01_d010 1.0", "bbob-biobj-mixint_f014_i01_d020 1.0", "bbob-biobj-mixint_f014_i01_d040 1.0", "bbob-biobj-mixint_f014_i01_d080 1.0", "bbob-biobj-mixint_f014_i01_d160 1.0", "bbob-biobj-mixint_f014_i02_d005 1.0", "bbob-biobj-mixint_f014_i02_d010 1.0", "bbob-biobj-mixint_f014_i02_d020 1.0", "bbob-biobj-mixint_f014_i02_d040 1.0", "bbob-biobj-mixint_f014_i02_d080 1.0", "bbob-biobj-mixint_f014_i02_d160 1.0", "bbob-biobj-mixint_f014_i03_d005 1.0", "bbob-biobj-mixint_f014_i03_d010 1.0", "bbob-biobj-mixint_f014_i03_d020 1.0", "bbob-biobj-mixint_f014_i03_d040 1.0", "bbob-biobj-mixint_f014_i03_d080 1.0", "bbob-biobj-mixint_f014_i03_d160 1.0", "bbob-biobj-mixint_f014_i04_d005 1.0", "bbob-biobj-mixint_f014_i04_d010 1.0", "bbob-biobj-mixint_f014_i04_d020 1.0", "bbob-biobj-mixint_f014_i04_d040 1.0", "bbob-biobj-mixint_f014_i04_d080 1.0", "bbob-biobj-mixint_f014_i04_d160 1.0", "bbob-biobj-mixint_f014_i05_d005 1.0", "bbob-biobj-mixint_f014_i05_d010 1.0", "bbob-biobj-mixint_f014_i05_d020 1.0", "bbob-biobj-mixint_f014_i05_d040 1.0", "bbob-biobj-mixint_f014_i05_d080 1.0", "bbob-biobj-mixint_f014_i05_d160 1.0", "bbob-biobj-mixint_f014_i06_d005 1.0", "bbob-biobj-mixint_f014_i06_d010 1.0", "bbob-biobj-mixint_f014_i06_d020 1.0", "bbob-biobj-mixint_f014_i06_d040 1.0", "bbob-biobj-mixint_f014_i06_d080 1.0", "bbob-biobj-mixint_f014_i06_d160 1.0", "bbob-biobj-mixint_f014_i07_d005 1.0", "bbob-biobj-mixint_f014_i07_d010 1.0", "bbob-biobj-mixint_f014_i07_d020 1.0", "bbob-biobj-mixint_f014_i07_d040 1.0", "bbob-biobj-mixint_f014_i07_d080 1.0", "bbob-biobj-mixint_f014_i07_d160 1.0", "bbob-biobj-mixint_f014_i08_d005 1.0", "bbob-biobj-mixint_f014_i08_d010 1.0", "bbob-biobj-mixint_f014_i08_d020 1.0", "bbob-biobj-mixint_f014_i08_d040 1.0", "bbob-biobj-mixint_f014_i08_d080 1.0", "bbob-biobj-mixint_f014_i08_d160 1.0", "bbob-biobj-mixint_f014_i09_d005 1.0", "bbob-biobj-mixint_f014_i09_d010 1.0", "bbob-biobj-mixint_f014_i09_d020 1.0", "bbob-biobj-mixint_f014_i09_d040 1.0", "bbob-biobj-mixint_f014_i09_d080 1.0", "bbob-biobj-mixint_f014_i09_d160 1.0", "bbob-biobj-mixint_f014_i10_d005 1.0", "bbob-biobj-mixint_f014_i10_d010 1.0", "bbob-biobj-mixint_f014_i10_d020 1.0", "bbob-biobj-mixint_f014_i10_d040 1.0", "bbob-biobj-mixint_f014_i10_d080 1.0", "bbob-biobj-mixint_f014_i10_d160 1.0", "bbob-biobj-mixint_f014_i11_d005 1.0", "bbob-biobj-mixint_f014_i11_d010 1.0", "bbob-biobj-mixint_f014_i11_d020 1.0", "bbob-biobj-mixint_f014_i11_d040 1.0", "bbob-biobj-mixint_f014_i11_d080 1.0", "bbob-biobj-mixint_f014_i11_d160 1.0", "bbob-biobj-mixint_f014_i12_d005 1.0", "bbob-biobj-mixint_f014_i12_d010 1.0", "bbob-biobj-mixint_f014_i12_d020 1.0", "bbob-biobj-mixint_f014_i12_d040 1.0", "bbob-biobj-mixint_f014_i12_d080 1.0", "bbob-biobj-mixint_f014_i12_d160 1.0", "bbob-biobj-mixint_f014_i13_d005 1.0", "bbob-biobj-mixint_f014_i13_d010 1.0", "bbob-biobj-mixint_f014_i13_d020 1.0", "bbob-biobj-mixint_f014_i13_d040 1.0", "bbob-biobj-mixint_f014_i13_d080 1.0", "bbob-biobj-mixint_f014_i13_d160 1.0", "bbob-biobj-mixint_f014_i14_d005 1.0", "bbob-biobj-mixint_f014_i14_d010 1.0", "bbob-biobj-mixint_f014_i14_d020 1.0", "bbob-biobj-mixint_f014_i14_d040 1.0", "bbob-biobj-mixint_f014_i14_d080 1.0", "bbob-biobj-mixint_f014_i14_d160 1.0", "bbob-biobj-mixint_f014_i15_d005 1.0", "bbob-biobj-mixint_f014_i15_d010 1.0", "bbob-biobj-mixint_f014_i15_d020 1.0", "bbob-biobj-mixint_f014_i15_d040 1.0", "bbob-biobj-mixint_f014_i15_d080 1.0", "bbob-biobj-mixint_f014_i15_d160 1.0", "bbob-biobj-mixint_f015_i01_d005 1.0", "bbob-biobj-mixint_f015_i01_d010 1.0", "bbob-biobj-mixint_f015_i01_d020 1.0", "bbob-biobj-mixint_f015_i01_d040 1.0", "bbob-biobj-mixint_f015_i01_d080 1.0", "bbob-biobj-mixint_f015_i01_d160 1.0", "bbob-biobj-mixint_f015_i02_d005 1.0", "bbob-biobj-mixint_f015_i02_d010 1.0", "bbob-biobj-mixint_f015_i02_d020 1.0", "bbob-biobj-mixint_f015_i02_d040 1.0", "bbob-biobj-mixint_f015_i02_d080 1.0", "bbob-biobj-mixint_f015_i02_d160 1.0", "bbob-biobj-mixint_f015_i03_d005 1.0", "bbob-biobj-mixint_f015_i03_d010 1.0", "bbob-biobj-mixint_f015_i03_d020 1.0", "bbob-biobj-mixint_f015_i03_d040 1.0", "bbob-biobj-mixint_f015_i03_d080 1.0", "bbob-biobj-mixint_f015_i03_d160 1.0", "bbob-biobj-mixint_f015_i04_d005 1.0", "bbob-biobj-mixint_f015_i04_d010 1.0", "bbob-biobj-mixint_f015_i04_d020 1.0", "bbob-biobj-mixint_f015_i04_d040 1.0", "bbob-biobj-mixint_f015_i04_d080 1.0", "bbob-biobj-mixint_f015_i04_d160 1.0", "bbob-biobj-mixint_f015_i05_d005 1.0", "bbob-biobj-mixint_f015_i05_d010 1.0", "bbob-biobj-mixint_f015_i05_d020 1.0", "bbob-biobj-mixint_f015_i05_d040 1.0", "bbob-biobj-mixint_f015_i05_d080 1.0", "bbob-biobj-mixint_f015_i05_d160 1.0", "bbob-biobj-mixint_f015_i06_d005 1.0", "bbob-biobj-mixint_f015_i06_d010 1.0", "bbob-biobj-mixint_f015_i06_d020 1.0", "bbob-biobj-mixint_f015_i06_d040 1.0", "bbob-biobj-mixint_f015_i06_d080 1.0", "bbob-biobj-mixint_f015_i06_d160 1.0", "bbob-biobj-mixint_f015_i07_d005 1.0", "bbob-biobj-mixint_f015_i07_d010 1.0", "bbob-biobj-mixint_f015_i07_d020 1.0", "bbob-biobj-mixint_f015_i07_d040 1.0", "bbob-biobj-mixint_f015_i07_d080 1.0", "bbob-biobj-mixint_f015_i07_d160 1.0", "bbob-biobj-mixint_f015_i08_d005 1.0", "bbob-biobj-mixint_f015_i08_d010 1.0", "bbob-biobj-mixint_f015_i08_d020 1.0", "bbob-biobj-mixint_f015_i08_d040 1.0", "bbob-biobj-mixint_f015_i08_d080 1.0", "bbob-biobj-mixint_f015_i08_d160 1.0", "bbob-biobj-mixint_f015_i09_d005 1.0", "bbob-biobj-mixint_f015_i09_d010 1.0", "bbob-biobj-mixint_f015_i09_d020 1.0", "bbob-biobj-mixint_f015_i09_d040 1.0", "bbob-biobj-mixint_f015_i09_d080 1.0", "bbob-biobj-mixint_f015_i09_d160 1.0", "bbob-biobj-mixint_f015_i10_d005 1.0", "bbob-biobj-mixint_f015_i10_d010 1.0", "bbob-biobj-mixint_f015_i10_d020 1.0", "bbob-biobj-mixint_f015_i10_d040 1.0", "bbob-biobj-mixint_f015_i10_d080 1.0", "bbob-biobj-mixint_f015_i10_d160 1.0", "bbob-biobj-mixint_f015_i11_d005 1.0", "bbob-biobj-mixint_f015_i11_d010 1.0", "bbob-biobj-mixint_f015_i11_d020 1.0", "bbob-biobj-mixint_f015_i11_d040 1.0", "bbob-biobj-mixint_f015_i11_d080 1.0", "bbob-biobj-mixint_f015_i11_d160 1.0", "bbob-biobj-mixint_f015_i12_d005 1.0", "bbob-biobj-mixint_f015_i12_d010 1.0", "bbob-biobj-mixint_f015_i12_d020 1.0", "bbob-biobj-mixint_f015_i12_d040 1.0", "bbob-biobj-mixint_f015_i12_d080 1.0", "bbob-biobj-mixint_f015_i12_d160 1.0", "bbob-biobj-mixint_f015_i13_d005 1.0", "bbob-biobj-mixint_f015_i13_d010 1.0", "bbob-biobj-mixint_f015_i13_d020 1.0", "bbob-biobj-mixint_f015_i13_d040 1.0", "bbob-biobj-mixint_f015_i13_d080 1.0", "bbob-biobj-mixint_f015_i13_d160 1.0", "bbob-biobj-mixint_f015_i14_d005 1.0", "bbob-biobj-mixint_f015_i14_d010 1.0", "bbob-biobj-mixint_f015_i14_d020 1.0", "bbob-biobj-mixint_f015_i14_d040 1.0", "bbob-biobj-mixint_f015_i14_d080 1.0", "bbob-biobj-mixint_f015_i14_d160 1.0", "bbob-biobj-mixint_f015_i15_d005 1.0", "bbob-biobj-mixint_f015_i15_d010 1.0", "bbob-biobj-mixint_f015_i15_d020 1.0", "bbob-biobj-mixint_f015_i15_d040 1.0", "bbob-biobj-mixint_f015_i15_d080 1.0", "bbob-biobj-mixint_f015_i15_d160 1.0", "bbob-biobj-mixint_f016_i01_d005 1.0", "bbob-biobj-mixint_f016_i01_d010 1.0", "bbob-biobj-mixint_f016_i01_d020 1.0", "bbob-biobj-mixint_f016_i01_d040 1.0", "bbob-biobj-mixint_f016_i01_d080 1.0", "bbob-biobj-mixint_f016_i01_d160 1.0", "bbob-biobj-mixint_f016_i02_d005 1.0", "bbob-biobj-mixint_f016_i02_d010 1.0", "bbob-biobj-mixint_f016_i02_d020 1.0", "bbob-biobj-mixint_f016_i02_d040 1.0", "bbob-biobj-mixint_f016_i02_d080 1.0", "bbob-biobj-mixint_f016_i02_d160 1.0", "bbob-biobj-mixint_f016_i03_d005 1.0", "bbob-biobj-mixint_f016_i03_d010 1.0", "bbob-biobj-mixint_f016_i03_d020 1.0", "bbob-biobj-mixint_f016_i03_d040 1.0", "bbob-biobj-mixint_f016_i03_d080 1.0", "bbob-biobj-mixint_f016_i03_d160 1.0", "bbob-biobj-mixint_f016_i04_d005 1.0", "bbob-biobj-mixint_f016_i04_d010 1.0", "bbob-biobj-mixint_f016_i04_d020 1.0", "bbob-biobj-mixint_f016_i04_d040 1.0", "bbob-biobj-mixint_f016_i04_d080 1.0", "bbob-biobj-mixint_f016_i04_d160 1.0", "bbob-biobj-mixint_f016_i05_d005 1.0", "bbob-biobj-mixint_f016_i05_d010 1.0", "bbob-biobj-mixint_f016_i05_d020 1.0", "bbob-biobj-mixint_f016_i05_d040 1.0", "bbob-biobj-mixint_f016_i05_d080 1.0", "bbob-biobj-mixint_f016_i05_d160 1.0", "bbob-biobj-mixint_f016_i06_d005 1.0", "bbob-biobj-mixint_f016_i06_d010 1.0", "bbob-biobj-mixint_f016_i06_d020 1.0", "bbob-biobj-mixint_f016_i06_d040 1.0", "bbob-biobj-mixint_f016_i06_d080 1.0", "bbob-biobj-mixint_f016_i06_d160 1.0", "bbob-biobj-mixint_f016_i07_d005 1.0", "bbob-biobj-mixint_f016_i07_d010 1.0", "bbob-biobj-mixint_f016_i07_d020 1.0", "bbob-biobj-mixint_f016_i07_d040 1.0", "bbob-biobj-mixint_f016_i07_d080 1.0", "bbob-biobj-mixint_f016_i07_d160 1.0", "bbob-biobj-mixint_f016_i08_d005 1.0", "bbob-biobj-mixint_f016_i08_d010 1.0", "bbob-biobj-mixint_f016_i08_d020 1.0", "bbob-biobj-mixint_f016_i08_d040 1.0", "bbob-biobj-mixint_f016_i08_d080 1.0", "bbob-biobj-mixint_f016_i08_d160 1.0", "bbob-biobj-mixint_f016_i09_d005 1.0", "bbob-biobj-mixint_f016_i09_d010 1.0", "bbob-biobj-mixint_f016_i09_d020 1.0", "bbob-biobj-mixint_f016_i09_d040 1.0", "bbob-biobj-mixint_f016_i09_d080 1.0", "bbob-biobj-mixint_f016_i09_d160 1.0", "bbob-biobj-mixint_f016_i10_d005 1.0", "bbob-biobj-mixint_f016_i10_d010 1.0", "bbob-biobj-mixint_f016_i10_d020 1.0", "bbob-biobj-mixint_f016_i10_d040 1.0", "bbob-biobj-mixint_f016_i10_d080 1.0", "bbob-biobj-mixint_f016_i10_d160 1.0", "bbob-biobj-mixint_f016_i11_d005 1.0", "bbob-biobj-mixint_f016_i11_d010 1.0", "bbob-biobj-mixint_f016_i11_d020 1.0", "bbob-biobj-mixint_f016_i11_d040 1.0", "bbob-biobj-mixint_f016_i11_d080 1.0", "bbob-biobj-mixint_f016_i11_d160 1.0", "bbob-biobj-mixint_f016_i12_d005 1.0", "bbob-biobj-mixint_f016_i12_d010 1.0", "bbob-biobj-mixint_f016_i12_d020 1.0", "bbob-biobj-mixint_f016_i12_d040 1.0", "bbob-biobj-mixint_f016_i12_d080 1.0", "bbob-biobj-mixint_f016_i12_d160 1.0", "bbob-biobj-mixint_f016_i13_d005 1.0", "bbob-biobj-mixint_f016_i13_d010 1.0", "bbob-biobj-mixint_f016_i13_d020 1.0", "bbob-biobj-mixint_f016_i13_d040 1.0", "bbob-biobj-mixint_f016_i13_d080 1.0", "bbob-biobj-mixint_f016_i13_d160 1.0", "bbob-biobj-mixint_f016_i14_d005 1.0", "bbob-biobj-mixint_f016_i14_d010 1.0", "bbob-biobj-mixint_f016_i14_d020 1.0", "bbob-biobj-mixint_f016_i14_d040 1.0", "bbob-biobj-mixint_f016_i14_d080 1.0", "bbob-biobj-mixint_f016_i14_d160 1.0", "bbob-biobj-mixint_f016_i15_d005 1.0", "bbob-biobj-mixint_f016_i15_d010 1.0", "bbob-biobj-mixint_f016_i15_d020 1.0", "bbob-biobj-mixint_f016_i15_d040 1.0", "bbob-biobj-mixint_f016_i15_d080 1.0", "bbob-biobj-mixint_f016_i15_d160 1.0", "bbob-biobj-mixint_f017_i01_d005 1.0", "bbob-biobj-mixint_f017_i01_d010 1.0", "bbob-biobj-mixint_f017_i01_d020 1.0", "bbob-biobj-mixint_f017_i01_d040 1.0", "bbob-biobj-mixint_f017_i01_d080 1.0", "bbob-biobj-mixint_f017_i01_d160 1.0", "bbob-biobj-mixint_f017_i02_d005 1.0", "bbob-biobj-mixint_f017_i02_d010 1.0", "bbob-biobj-mixint_f017_i02_d020 1.0", "bbob-biobj-mixint_f017_i02_d040 1.0", "bbob-biobj-mixint_f017_i02_d080 1.0", "bbob-biobj-mixint_f017_i02_d160 1.0", "bbob-biobj-mixint_f017_i03_d005 1.0", "bbob-biobj-mixint_f017_i03_d010 1.0", "bbob-biobj-mixint_f017_i03_d020 1.0", "bbob-biobj-mixint_f017_i03_d040 1.0", "bbob-biobj-mixint_f017_i03_d080 1.0", "bbob-biobj-mixint_f017_i03_d160 1.0", "bbob-biobj-mixint_f017_i04_d005 1.0", "bbob-biobj-mixint_f017_i04_d010 1.0", "bbob-biobj-mixint_f017_i04_d020 1.0", "bbob-biobj-mixint_f017_i04_d040 1.0", "bbob-biobj-mixint_f017_i04_d080 1.0", "bbob-biobj-mixint_f017_i04_d160 1.0", "bbob-biobj-mixint_f017_i05_d005 1.0", "bbob-biobj-mixint_f017_i05_d010 1.0", "bbob-biobj-mixint_f017_i05_d020 1.0", "bbob-biobj-mixint_f017_i05_d040 1.0", "bbob-biobj-mixint_f017_i05_d080 1.0", "bbob-biobj-mixint_f017_i05_d160 1.0", "bbob-biobj-mixint_f017_i06_d005 1.0", "bbob-biobj-mixint_f017_i06_d010 1.0", "bbob-biobj-mixint_f017_i06_d020 1.0", "bbob-biobj-mixint_f017_i06_d040 1.0", "bbob-biobj-mixint_f017_i06_d080 1.0", "bbob-biobj-mixint_f017_i06_d160 1.0", "bbob-biobj-mixint_f017_i07_d005 1.0", "bbob-biobj-mixint_f017_i07_d010 1.0", "bbob-biobj-mixint_f017_i07_d020 1.0", "bbob-biobj-mixint_f017_i07_d040 1.0", "bbob-biobj-mixint_f017_i07_d080 1.0", "bbob-biobj-mixint_f017_i07_d160 1.0", "bbob-biobj-mixint_f017_i08_d005 1.0", "bbob-biobj-mixint_f017_i08_d010 1.0", "bbob-biobj-mixint_f017_i08_d020 1.0", "bbob-biobj-mixint_f017_i08_d040 1.0", "bbob-biobj-mixint_f017_i08_d080 1.0", "bbob-biobj-mixint_f017_i08_d160 1.0", "bbob-biobj-mixint_f017_i09_d005 1.0", "bbob-biobj-mixint_f017_i09_d010 1.0", "bbob-biobj-mixint_f017_i09_d020 1.0", "bbob-biobj-mixint_f017_i09_d040 1.0", "bbob-biobj-mixint_f017_i09_d080 1.0", "bbob-biobj-mixint_f017_i09_d160 1.0", "bbob-biobj-mixint_f017_i10_d005 1.0", "bbob-biobj-mixint_f017_i10_d010 1.0", "bbob-biobj-mixint_f017_i10_d020 1.0", "bbob-biobj-mixint_f017_i10_d040 1.0", "bbob-biobj-mixint_f017_i10_d080 1.0", "bbob-biobj-mixint_f017_i10_d160 1.0", "bbob-biobj-mixint_f017_i11_d005 1.0", "bbob-biobj-mixint_f017_i11_d010 1.0", "bbob-biobj-mixint_f017_i11_d020 1.0", "bbob-biobj-mixint_f017_i11_d040 1.0", "bbob-biobj-mixint_f017_i11_d080 1.0", "bbob-biobj-mixint_f017_i11_d160 1.0", "bbob-biobj-mixint_f017_i12_d005 1.0", "bbob-biobj-mixint_f017_i12_d010 1.0", "bbob-biobj-mixint_f017_i12_d020 1.0", "bbob-biobj-mixint_f017_i12_d040 1.0", "bbob-biobj-mixint_f017_i12_d080 1.0", "bbob-biobj-mixint_f017_i12_d160 1.0", "bbob-biobj-mixint_f017_i13_d005 1.0", "bbob-biobj-mixint_f017_i13_d010 1.0", "bbob-biobj-mixint_f017_i13_d020 1.0", "bbob-biobj-mixint_f017_i13_d040 1.0", "bbob-biobj-mixint_f017_i13_d080 1.0", "bbob-biobj-mixint_f017_i13_d160 1.0", "bbob-biobj-mixint_f017_i14_d005 1.0", "bbob-biobj-mixint_f017_i14_d010 1.0", "bbob-biobj-mixint_f017_i14_d020 1.0", "bbob-biobj-mixint_f017_i14_d040 1.0", "bbob-biobj-mixint_f017_i14_d080 1.0", "bbob-biobj-mixint_f017_i14_d160 1.0", "bbob-biobj-mixint_f017_i15_d005 1.0", "bbob-biobj-mixint_f017_i15_d010 1.0", "bbob-biobj-mixint_f017_i15_d020 1.0", "bbob-biobj-mixint_f017_i15_d040 1.0", "bbob-biobj-mixint_f017_i15_d080 1.0", "bbob-biobj-mixint_f017_i15_d160 1.0", "bbob-biobj-mixint_f018_i01_d005 1.0", "bbob-biobj-mixint_f018_i01_d010 1.0", "bbob-biobj-mixint_f018_i01_d020 1.0", "bbob-biobj-mixint_f018_i01_d040 1.0", "bbob-biobj-mixint_f018_i01_d080 1.0", "bbob-biobj-mixint_f018_i01_d160 1.0", "bbob-biobj-mixint_f018_i02_d005 1.0", "bbob-biobj-mixint_f018_i02_d010 1.0", "bbob-biobj-mixint_f018_i02_d020 1.0", "bbob-biobj-mixint_f018_i02_d040 1.0", "bbob-biobj-mixint_f018_i02_d080 1.0", "bbob-biobj-mixint_f018_i02_d160 1.0", "bbob-biobj-mixint_f018_i03_d005 1.0", "bbob-biobj-mixint_f018_i03_d010 1.0", "bbob-biobj-mixint_f018_i03_d020 1.0", "bbob-biobj-mixint_f018_i03_d040 1.0", "bbob-biobj-mixint_f018_i03_d080 1.0", "bbob-biobj-mixint_f018_i03_d160 1.0", "bbob-biobj-mixint_f018_i04_d005 1.0", "bbob-biobj-mixint_f018_i04_d010 1.0", "bbob-biobj-mixint_f018_i04_d020 1.0", "bbob-biobj-mixint_f018_i04_d040 1.0", "bbob-biobj-mixint_f018_i04_d080 1.0", "bbob-biobj-mixint_f018_i04_d160 1.0", "bbob-biobj-mixint_f018_i05_d005 1.0", "bbob-biobj-mixint_f018_i05_d010 1.0", "bbob-biobj-mixint_f018_i05_d020 1.0", "bbob-biobj-mixint_f018_i05_d040 1.0", "bbob-biobj-mixint_f018_i05_d080 1.0", "bbob-biobj-mixint_f018_i05_d160 1.0", "bbob-biobj-mixint_f018_i06_d005 1.0", "bbob-biobj-mixint_f018_i06_d010 1.0", "bbob-biobj-mixint_f018_i06_d020 1.0", "bbob-biobj-mixint_f018_i06_d040 1.0", "bbob-biobj-mixint_f018_i06_d080 1.0", "bbob-biobj-mixint_f018_i06_d160 1.0", "bbob-biobj-mixint_f018_i07_d005 1.0", "bbob-biobj-mixint_f018_i07_d010 1.0", "bbob-biobj-mixint_f018_i07_d020 1.0", "bbob-biobj-mixint_f018_i07_d040 1.0", "bbob-biobj-mixint_f018_i07_d080 1.0", "bbob-biobj-mixint_f018_i07_d160 1.0", "bbob-biobj-mixint_f018_i08_d005 1.0", "bbob-biobj-mixint_f018_i08_d010 1.0", "bbob-biobj-mixint_f018_i08_d020 1.0", "bbob-biobj-mixint_f018_i08_d040 1.0", "bbob-biobj-mixint_f018_i08_d080 1.0", "bbob-biobj-mixint_f018_i08_d160 1.0", "bbob-biobj-mixint_f018_i09_d005 1.0", "bbob-biobj-mixint_f018_i09_d010 1.0", "bbob-biobj-mixint_f018_i09_d020 1.0", "bbob-biobj-mixint_f018_i09_d040 1.0", "bbob-biobj-mixint_f018_i09_d080 1.0", "bbob-biobj-mixint_f018_i09_d160 1.0", "bbob-biobj-mixint_f018_i10_d005 1.0", "bbob-biobj-mixint_f018_i10_d010 1.0", "bbob-biobj-mixint_f018_i10_d020 1.0", "bbob-biobj-mixint_f018_i10_d040 1.0", "bbob-biobj-mixint_f018_i10_d080 1.0", "bbob-biobj-mixint_f018_i10_d160 1.0", "bbob-biobj-mixint_f018_i11_d005 1.0", "bbob-biobj-mixint_f018_i11_d010 1.0", "bbob-biobj-mixint_f018_i11_d020 1.0", "bbob-biobj-mixint_f018_i11_d040 1.0", "bbob-biobj-mixint_f018_i11_d080 1.0", "bbob-biobj-mixint_f018_i11_d160 1.0", "bbob-biobj-mixint_f018_i12_d005 1.0", "bbob-biobj-mixint_f018_i12_d010 1.0", "bbob-biobj-mixint_f018_i12_d020 1.0", "bbob-biobj-mixint_f018_i12_d040 1.0", "bbob-biobj-mixint_f018_i12_d080 1.0", "bbob-biobj-mixint_f018_i12_d160 1.0", "bbob-biobj-mixint_f018_i13_d005 1.0", "bbob-biobj-mixint_f018_i13_d010 1.0", "bbob-biobj-mixint_f018_i13_d020 1.0", "bbob-biobj-mixint_f018_i13_d040 1.0", "bbob-biobj-mixint_f018_i13_d080 1.0", "bbob-biobj-mixint_f018_i13_d160 1.0", "bbob-biobj-mixint_f018_i14_d005 1.0", "bbob-biobj-mixint_f018_i14_d010 1.0", "bbob-biobj-mixint_f018_i14_d020 1.0", "bbob-biobj-mixint_f018_i14_d040 1.0", "bbob-biobj-mixint_f018_i14_d080 1.0", "bbob-biobj-mixint_f018_i14_d160 1.0", "bbob-biobj-mixint_f018_i15_d005 1.0", "bbob-biobj-mixint_f018_i15_d010 1.0", "bbob-biobj-mixint_f018_i15_d020 1.0", "bbob-biobj-mixint_f018_i15_d040 1.0", "bbob-biobj-mixint_f018_i15_d080 1.0", "bbob-biobj-mixint_f018_i15_d160 1.0", "bbob-biobj-mixint_f019_i01_d005 1.0", "bbob-biobj-mixint_f019_i01_d010 1.0", "bbob-biobj-mixint_f019_i01_d020 1.0", "bbob-biobj-mixint_f019_i01_d040 1.0", "bbob-biobj-mixint_f019_i01_d080 1.0", "bbob-biobj-mixint_f019_i01_d160 1.0", "bbob-biobj-mixint_f019_i02_d005 1.0", "bbob-biobj-mixint_f019_i02_d010 1.0", "bbob-biobj-mixint_f019_i02_d020 1.0", "bbob-biobj-mixint_f019_i02_d040 1.0", "bbob-biobj-mixint_f019_i02_d080 1.0", "bbob-biobj-mixint_f019_i02_d160 1.0", "bbob-biobj-mixint_f019_i03_d005 1.0", "bbob-biobj-mixint_f019_i03_d010 1.0", "bbob-biobj-mixint_f019_i03_d020 1.0", "bbob-biobj-mixint_f019_i03_d040 1.0", "bbob-biobj-mixint_f019_i03_d080 1.0", "bbob-biobj-mixint_f019_i03_d160 1.0", "bbob-biobj-mixint_f019_i04_d005 1.0", "bbob-biobj-mixint_f019_i04_d010 1.0", "bbob-biobj-mixint_f019_i04_d020 1.0", "bbob-biobj-mixint_f019_i04_d040 1.0", "bbob-biobj-mixint_f019_i04_d080 1.0", "bbob-biobj-mixint_f019_i04_d160 1.0", "bbob-biobj-mixint_f019_i05_d005 1.0", "bbob-biobj-mixint_f019_i05_d010 1.0", "bbob-biobj-mixint_f019_i05_d020 1.0", "bbob-biobj-mixint_f019_i05_d040 1.0", "bbob-biobj-mixint_f019_i05_d080 1.0", "bbob-biobj-mixint_f019_i05_d160 1.0", "bbob-biobj-mixint_f019_i06_d005 1.0", "bbob-biobj-mixint_f019_i06_d010 1.0", "bbob-biobj-mixint_f019_i06_d020 1.0", "bbob-biobj-mixint_f019_i06_d040 1.0", "bbob-biobj-mixint_f019_i06_d080 1.0", "bbob-biobj-mixint_f019_i06_d160 1.0", "bbob-biobj-mixint_f019_i07_d005 1.0", "bbob-biobj-mixint_f019_i07_d010 1.0", "bbob-biobj-mixint_f019_i07_d020 1.0", "bbob-biobj-mixint_f019_i07_d040 1.0", "bbob-biobj-mixint_f019_i07_d080 1.0", "bbob-biobj-mixint_f019_i07_d160 1.0", "bbob-biobj-mixint_f019_i08_d005 1.0", "bbob-biobj-mixint_f019_i08_d010 1.0", "bbob-biobj-mixint_f019_i08_d020 1.0", "bbob-biobj-mixint_f019_i08_d040 1.0", "bbob-biobj-mixint_f019_i08_d080 1.0", "bbob-biobj-mixint_f019_i08_d160 1.0", "bbob-biobj-mixint_f019_i09_d005 1.0", "bbob-biobj-mixint_f019_i09_d010 1.0", "bbob-biobj-mixint_f019_i09_d020 1.0", "bbob-biobj-mixint_f019_i09_d040 1.0", "bbob-biobj-mixint_f019_i09_d080 1.0", "bbob-biobj-mixint_f019_i09_d160 1.0", "bbob-biobj-mixint_f019_i10_d005 1.0", "bbob-biobj-mixint_f019_i10_d010 1.0", "bbob-biobj-mixint_f019_i10_d020 1.0", "bbob-biobj-mixint_f019_i10_d040 1.0", "bbob-biobj-mixint_f019_i10_d080 1.0", "bbob-biobj-mixint_f019_i10_d160 1.0", "bbob-biobj-mixint_f019_i11_d005 1.0", "bbob-biobj-mixint_f019_i11_d010 1.0", "bbob-biobj-mixint_f019_i11_d020 1.0", "bbob-biobj-mixint_f019_i11_d040 1.0", "bbob-biobj-mixint_f019_i11_d080 1.0", "bbob-biobj-mixint_f019_i11_d160 1.0", "bbob-biobj-mixint_f019_i12_d005 1.0", "bbob-biobj-mixint_f019_i12_d010 1.0", "bbob-biobj-mixint_f019_i12_d020 1.0", "bbob-biobj-mixint_f019_i12_d040 1.0", "bbob-biobj-mixint_f019_i12_d080 1.0", "bbob-biobj-mixint_f019_i12_d160 1.0", "bbob-biobj-mixint_f019_i13_d005 1.0", "bbob-biobj-mixint_f019_i13_d010 1.0", "bbob-biobj-mixint_f019_i13_d020 1.0", "bbob-biobj-mixint_f019_i13_d040 1.0", "bbob-biobj-mixint_f019_i13_d080 1.0", "bbob-biobj-mixint_f019_i13_d160 1.0", "bbob-biobj-mixint_f019_i14_d005 1.0", "bbob-biobj-mixint_f019_i14_d010 1.0", "bbob-biobj-mixint_f019_i14_d020 1.0", "bbob-biobj-mixint_f019_i14_d040 1.0", "bbob-biobj-mixint_f019_i14_d080 1.0", "bbob-biobj-mixint_f019_i14_d160 1.0", "bbob-biobj-mixint_f019_i15_d005 1.0", "bbob-biobj-mixint_f019_i15_d010 1.0", "bbob-biobj-mixint_f019_i15_d020 1.0", "bbob-biobj-mixint_f019_i15_d040 1.0", "bbob-biobj-mixint_f019_i15_d080 1.0", "bbob-biobj-mixint_f019_i15_d160 1.0", "bbob-biobj-mixint_f020_i01_d005 1.0", "bbob-biobj-mixint_f020_i01_d010 1.0", "bbob-biobj-mixint_f020_i01_d020 1.0", "bbob-biobj-mixint_f020_i01_d040 1.0", "bbob-biobj-mixint_f020_i01_d080 1.0", "bbob-biobj-mixint_f020_i01_d160 1.0", "bbob-biobj-mixint_f020_i02_d005 1.0", "bbob-biobj-mixint_f020_i02_d010 1.0", "bbob-biobj-mixint_f020_i02_d020 1.0", "bbob-biobj-mixint_f020_i02_d040 1.0", "bbob-biobj-mixint_f020_i02_d080 1.0", "bbob-biobj-mixint_f020_i02_d160 1.0", "bbob-biobj-mixint_f020_i03_d005 1.0", "bbob-biobj-mixint_f020_i03_d010 1.0", "bbob-biobj-mixint_f020_i03_d020 1.0", "bbob-biobj-mixint_f020_i03_d040 1.0", "bbob-biobj-mixint_f020_i03_d080 1.0", "bbob-biobj-mixint_f020_i03_d160 1.0", "bbob-biobj-mixint_f020_i04_d005 1.0", "bbob-biobj-mixint_f020_i04_d010 1.0", "bbob-biobj-mixint_f020_i04_d020 1.0", "bbob-biobj-mixint_f020_i04_d040 1.0", "bbob-biobj-mixint_f020_i04_d080 1.0", "bbob-biobj-mixint_f020_i04_d160 1.0", "bbob-biobj-mixint_f020_i05_d005 1.0", "bbob-biobj-mixint_f020_i05_d010 1.0", "bbob-biobj-mixint_f020_i05_d020 1.0", "bbob-biobj-mixint_f020_i05_d040 1.0", "bbob-biobj-mixint_f020_i05_d080 1.0", "bbob-biobj-mixint_f020_i05_d160 1.0", "bbob-biobj-mixint_f020_i06_d005 1.0", "bbob-biobj-mixint_f020_i06_d010 1.0", "bbob-biobj-mixint_f020_i06_d020 1.0", "bbob-biobj-mixint_f020_i06_d040 1.0", "bbob-biobj-mixint_f020_i06_d080 1.0", "bbob-biobj-mixint_f020_i06_d160 1.0", "bbob-biobj-mixint_f020_i07_d005 1.0", "bbob-biobj-mixint_f020_i07_d010 1.0", "bbob-biobj-mixint_f020_i07_d020 1.0", "bbob-biobj-mixint_f020_i07_d040 1.0", "bbob-biobj-mixint_f020_i07_d080 1.0", "bbob-biobj-mixint_f020_i07_d160 1.0", "bbob-biobj-mixint_f020_i08_d005 1.0", "bbob-biobj-mixint_f020_i08_d010 1.0", "bbob-biobj-mixint_f020_i08_d020 1.0", "bbob-biobj-mixint_f020_i08_d040 1.0", "bbob-biobj-mixint_f020_i08_d080 1.0", "bbob-biobj-mixint_f020_i08_d160 1.0", "bbob-biobj-mixint_f020_i09_d005 1.0", "bbob-biobj-mixint_f020_i09_d010 1.0", "bbob-biobj-mixint_f020_i09_d020 1.0", "bbob-biobj-mixint_f020_i09_d040 1.0", "bbob-biobj-mixint_f020_i09_d080 1.0", "bbob-biobj-mixint_f020_i09_d160 1.0", "bbob-biobj-mixint_f020_i10_d005 1.0", "bbob-biobj-mixint_f020_i10_d010 1.0", "bbob-biobj-mixint_f020_i10_d020 1.0", "bbob-biobj-mixint_f020_i10_d040 1.0", "bbob-biobj-mixint_f020_i10_d080 1.0", "bbob-biobj-mixint_f020_i10_d160 1.0", "bbob-biobj-mixint_f020_i11_d005 1.0", "bbob-biobj-mixint_f020_i11_d010 1.0", "bbob-biobj-mixint_f020_i11_d020 1.0", "bbob-biobj-mixint_f020_i11_d040 1.0", "bbob-biobj-mixint_f020_i11_d080 1.0", "bbob-biobj-mixint_f020_i11_d160 1.0", "bbob-biobj-mixint_f020_i12_d005 1.0", "bbob-biobj-mixint_f020_i12_d010 1.0", "bbob-biobj-mixint_f020_i12_d020 1.0", "bbob-biobj-mixint_f020_i12_d040 1.0", "bbob-biobj-mixint_f020_i12_d080 1.0", "bbob-biobj-mixint_f020_i12_d160 1.0", "bbob-biobj-mixint_f020_i13_d005 1.0", "bbob-biobj-mixint_f020_i13_d010 1.0", "bbob-biobj-mixint_f020_i13_d020 1.0", "bbob-biobj-mixint_f020_i13_d040 1.0", "bbob-biobj-mixint_f020_i13_d080 1.0", "bbob-biobj-mixint_f020_i13_d160 1.0", "bbob-biobj-mixint_f020_i14_d005 1.0", "bbob-biobj-mixint_f020_i14_d010 1.0", "bbob-biobj-mixint_f020_i14_d020 1.0", "bbob-biobj-mixint_f020_i14_d040 1.0", "bbob-biobj-mixint_f020_i14_d080 1.0", "bbob-biobj-mixint_f020_i14_d160 1.0", "bbob-biobj-mixint_f020_i15_d005 1.0", "bbob-biobj-mixint_f020_i15_d010 1.0", "bbob-biobj-mixint_f020_i15_d020 1.0", "bbob-biobj-mixint_f020_i15_d040 1.0", "bbob-biobj-mixint_f020_i15_d080 1.0", "bbob-biobj-mixint_f020_i15_d160 1.0", "bbob-biobj-mixint_f021_i01_d005 1.0", "bbob-biobj-mixint_f021_i01_d010 1.0", "bbob-biobj-mixint_f021_i01_d020 1.0", "bbob-biobj-mixint_f021_i01_d040 1.0", "bbob-biobj-mixint_f021_i01_d080 1.0", "bbob-biobj-mixint_f021_i01_d160 1.0", "bbob-biobj-mixint_f021_i02_d005 1.0", "bbob-biobj-mixint_f021_i02_d010 1.0", "bbob-biobj-mixint_f021_i02_d020 1.0", "bbob-biobj-mixint_f021_i02_d040 1.0", "bbob-biobj-mixint_f021_i02_d080 1.0", "bbob-biobj-mixint_f021_i02_d160 1.0", "bbob-biobj-mixint_f021_i03_d005 1.0", "bbob-biobj-mixint_f021_i03_d010 1.0", "bbob-biobj-mixint_f021_i03_d020 1.0", "bbob-biobj-mixint_f021_i03_d040 1.0", "bbob-biobj-mixint_f021_i03_d080 1.0", "bbob-biobj-mixint_f021_i03_d160 1.0", "bbob-biobj-mixint_f021_i04_d005 1.0", "bbob-biobj-mixint_f021_i04_d010 1.0", "bbob-biobj-mixint_f021_i04_d020 1.0", "bbob-biobj-mixint_f021_i04_d040 1.0", "bbob-biobj-mixint_f021_i04_d080 1.0", "bbob-biobj-mixint_f021_i04_d160 1.0", "bbob-biobj-mixint_f021_i05_d005 1.0", "bbob-biobj-mixint_f021_i05_d010 1.0", "bbob-biobj-mixint_f021_i05_d020 1.0", "bbob-biobj-mixint_f021_i05_d040 1.0", "bbob-biobj-mixint_f021_i05_d080 1.0", "bbob-biobj-mixint_f021_i05_d160 1.0", "bbob-biobj-mixint_f021_i06_d005 1.0", "bbob-biobj-mixint_f021_i06_d010 1.0", "bbob-biobj-mixint_f021_i06_d020 1.0", "bbob-biobj-mixint_f021_i06_d040 1.0", "bbob-biobj-mixint_f021_i06_d080 1.0", "bbob-biobj-mixint_f021_i06_d160 1.0", "bbob-biobj-mixint_f021_i07_d005 1.0", "bbob-biobj-mixint_f021_i07_d010 1.0", "bbob-biobj-mixint_f021_i07_d020 1.0", "bbob-biobj-mixint_f021_i07_d040 1.0", "bbob-biobj-mixint_f021_i07_d080 1.0", "bbob-biobj-mixint_f021_i07_d160 1.0", "bbob-biobj-mixint_f021_i08_d005 1.0", "bbob-biobj-mixint_f021_i08_d010 1.0", "bbob-biobj-mixint_f021_i08_d020 1.0", "bbob-biobj-mixint_f021_i08_d040 1.0", "bbob-biobj-mixint_f021_i08_d080 1.0", "bbob-biobj-mixint_f021_i08_d160 1.0", "bbob-biobj-mixint_f021_i09_d005 1.0", "bbob-biobj-mixint_f021_i09_d010 1.0", "bbob-biobj-mixint_f021_i09_d020 1.0", "bbob-biobj-mixint_f021_i09_d040 1.0", "bbob-biobj-mixint_f021_i09_d080 1.0", "bbob-biobj-mixint_f021_i09_d160 1.0", "bbob-biobj-mixint_f021_i10_d005 1.0", "bbob-biobj-mixint_f021_i10_d010 1.0", "bbob-biobj-mixint_f021_i10_d020 1.0", "bbob-biobj-mixint_f021_i10_d040 1.0", "bbob-biobj-mixint_f021_i10_d080 1.0", "bbob-biobj-mixint_f021_i10_d160 1.0", "bbob-biobj-mixint_f021_i11_d005 1.0", "bbob-biobj-mixint_f021_i11_d010 1.0", "bbob-biobj-mixint_f021_i11_d020 1.0", "bbob-biobj-mixint_f021_i11_d040 1.0", "bbob-biobj-mixint_f021_i11_d080 1.0", "bbob-biobj-mixint_f021_i11_d160 1.0", "bbob-biobj-mixint_f021_i12_d005 1.0", "bbob-biobj-mixint_f021_i12_d010 1.0", "bbob-biobj-mixint_f021_i12_d020 1.0", "bbob-biobj-mixint_f021_i12_d040 1.0", "bbob-biobj-mixint_f021_i12_d080 1.0", "bbob-biobj-mixint_f021_i12_d160 1.0", "bbob-biobj-mixint_f021_i13_d005 1.0", "bbob-biobj-mixint_f021_i13_d010 1.0", "bbob-biobj-mixint_f021_i13_d020 1.0", "bbob-biobj-mixint_f021_i13_d040 1.0", "bbob-biobj-mixint_f021_i13_d080 1.0", "bbob-biobj-mixint_f021_i13_d160 1.0", "bbob-biobj-mixint_f021_i14_d005 1.0", "bbob-biobj-mixint_f021_i14_d010 1.0", "bbob-biobj-mixint_f021_i14_d020 1.0", "bbob-biobj-mixint_f021_i14_d040 1.0", "bbob-biobj-mixint_f021_i14_d080 1.0", "bbob-biobj-mixint_f021_i14_d160 1.0", "bbob-biobj-mixint_f021_i15_d005 1.0", "bbob-biobj-mixint_f021_i15_d010 1.0", "bbob-biobj-mixint_f021_i15_d020 1.0", "bbob-biobj-mixint_f021_i15_d040 1.0", "bbob-biobj-mixint_f021_i15_d080 1.0", "bbob-biobj-mixint_f021_i15_d160 1.0", "bbob-biobj-mixint_f022_i01_d005 1.0", "bbob-biobj-mixint_f022_i01_d010 1.0", "bbob-biobj-mixint_f022_i01_d020 1.0", "bbob-biobj-mixint_f022_i01_d040 1.0", "bbob-biobj-mixint_f022_i01_d080 1.0", "bbob-biobj-mixint_f022_i01_d160 1.0", "bbob-biobj-mixint_f022_i02_d005 1.0", "bbob-biobj-mixint_f022_i02_d010 1.0", "bbob-biobj-mixint_f022_i02_d020 1.0", "bbob-biobj-mixint_f022_i02_d040 1.0", "bbob-biobj-mixint_f022_i02_d080 1.0", "bbob-biobj-mixint_f022_i02_d160 1.0", "bbob-biobj-mixint_f022_i03_d005 1.0", "bbob-biobj-mixint_f022_i03_d010 1.0", "bbob-biobj-mixint_f022_i03_d020 1.0", "bbob-biobj-mixint_f022_i03_d040 1.0", "bbob-biobj-mixint_f022_i03_d080 1.0", "bbob-biobj-mixint_f022_i03_d160 1.0", "bbob-biobj-mixint_f022_i04_d005 1.0", "bbob-biobj-mixint_f022_i04_d010 1.0", "bbob-biobj-mixint_f022_i04_d020 1.0", "bbob-biobj-mixint_f022_i04_d040 1.0", "bbob-biobj-mixint_f022_i04_d080 1.0", "bbob-biobj-mixint_f022_i04_d160 1.0", "bbob-biobj-mixint_f022_i05_d005 1.0", "bbob-biobj-mixint_f022_i05_d010 1.0", "bbob-biobj-mixint_f022_i05_d020 1.0", "bbob-biobj-mixint_f022_i05_d040 1.0", "bbob-biobj-mixint_f022_i05_d080 1.0", "bbob-biobj-mixint_f022_i05_d160 1.0", "bbob-biobj-mixint_f022_i06_d005 1.0", "bbob-biobj-mixint_f022_i06_d010 1.0", "bbob-biobj-mixint_f022_i06_d020 1.0", "bbob-biobj-mixint_f022_i06_d040 1.0", "bbob-biobj-mixint_f022_i06_d080 1.0", "bbob-biobj-mixint_f022_i06_d160 1.0", "bbob-biobj-mixint_f022_i07_d005 1.0", "bbob-biobj-mixint_f022_i07_d010 1.0", "bbob-biobj-mixint_f022_i07_d020 1.0", "bbob-biobj-mixint_f022_i07_d040 1.0", "bbob-biobj-mixint_f022_i07_d080 1.0", "bbob-biobj-mixint_f022_i07_d160 1.0", "bbob-biobj-mixint_f022_i08_d005 1.0", "bbob-biobj-mixint_f022_i08_d010 1.0", "bbob-biobj-mixint_f022_i08_d020 1.0", "bbob-biobj-mixint_f022_i08_d040 1.0", "bbob-biobj-mixint_f022_i08_d080 1.0", "bbob-biobj-mixint_f022_i08_d160 1.0", "bbob-biobj-mixint_f022_i09_d005 1.0", "bbob-biobj-mixint_f022_i09_d010 1.0", "bbob-biobj-mixint_f022_i09_d020 1.0", "bbob-biobj-mixint_f022_i09_d040 1.0", "bbob-biobj-mixint_f022_i09_d080 1.0", "bbob-biobj-mixint_f022_i09_d160 1.0", "bbob-biobj-mixint_f022_i10_d005 1.0", "bbob-biobj-mixint_f022_i10_d010 1.0", "bbob-biobj-mixint_f022_i10_d020 1.0", "bbob-biobj-mixint_f022_i10_d040 1.0", "bbob-biobj-mixint_f022_i10_d080 1.0", "bbob-biobj-mixint_f022_i10_d160 1.0", "bbob-biobj-mixint_f022_i11_d005 1.0", "bbob-biobj-mixint_f022_i11_d010 1.0", "bbob-biobj-mixint_f022_i11_d020 1.0", "bbob-biobj-mixint_f022_i11_d040 1.0", "bbob-biobj-mixint_f022_i11_d080 1.0", "bbob-biobj-mixint_f022_i11_d160 1.0", "bbob-biobj-mixint_f022_i12_d005 1.0", "bbob-biobj-mixint_f022_i12_d010 1.0", "bbob-biobj-mixint_f022_i12_d020 1.0", "bbob-biobj-mixint_f022_i12_d040 1.0", "bbob-biobj-mixint_f022_i12_d080 1.0", "bbob-biobj-mixint_f022_i12_d160 1.0", "bbob-biobj-mixint_f022_i13_d005 1.0", "bbob-biobj-mixint_f022_i13_d010 1.0", "bbob-biobj-mixint_f022_i13_d020 1.0", "bbob-biobj-mixint_f022_i13_d040 1.0", "bbob-biobj-mixint_f022_i13_d080 1.0", "bbob-biobj-mixint_f022_i13_d160 1.0", "bbob-biobj-mixint_f022_i14_d005 1.0", "bbob-biobj-mixint_f022_i14_d010 1.0", "bbob-biobj-mixint_f022_i14_d020 1.0", "bbob-biobj-mixint_f022_i14_d040 1.0", "bbob-biobj-mixint_f022_i14_d080 1.0", "bbob-biobj-mixint_f022_i14_d160 1.0", "bbob-biobj-mixint_f022_i15_d005 1.0", "bbob-biobj-mixint_f022_i15_d010 1.0", "bbob-biobj-mixint_f022_i15_d020 1.0", "bbob-biobj-mixint_f022_i15_d040 1.0", "bbob-biobj-mixint_f022_i15_d080 1.0", "bbob-biobj-mixint_f022_i15_d160 1.0", "bbob-biobj-mixint_f023_i01_d005 1.0", "bbob-biobj-mixint_f023_i01_d010 1.0", "bbob-biobj-mixint_f023_i01_d020 1.0", "bbob-biobj-mixint_f023_i01_d040 1.0", "bbob-biobj-mixint_f023_i01_d080 1.0", "bbob-biobj-mixint_f023_i01_d160 1.0", "bbob-biobj-mixint_f023_i02_d005 1.0", "bbob-biobj-mixint_f023_i02_d010 1.0", "bbob-biobj-mixint_f023_i02_d020 1.0", "bbob-biobj-mixint_f023_i02_d040 1.0", "bbob-biobj-mixint_f023_i02_d080 1.0", "bbob-biobj-mixint_f023_i02_d160 1.0", "bbob-biobj-mixint_f023_i03_d005 1.0", "bbob-biobj-mixint_f023_i03_d010 1.0", "bbob-biobj-mixint_f023_i03_d020 1.0", "bbob-biobj-mixint_f023_i03_d040 1.0", "bbob-biobj-mixint_f023_i03_d080 1.0", "bbob-biobj-mixint_f023_i03_d160 1.0", "bbob-biobj-mixint_f023_i04_d005 1.0", "bbob-biobj-mixint_f023_i04_d010 1.0", "bbob-biobj-mixint_f023_i04_d020 1.0", "bbob-biobj-mixint_f023_i04_d040 1.0", "bbob-biobj-mixint_f023_i04_d080 1.0", "bbob-biobj-mixint_f023_i04_d160 1.0", "bbob-biobj-mixint_f023_i05_d005 1.0", "bbob-biobj-mixint_f023_i05_d010 1.0", "bbob-biobj-mixint_f023_i05_d020 1.0", "bbob-biobj-mixint_f023_i05_d040 1.0", "bbob-biobj-mixint_f023_i05_d080 1.0", "bbob-biobj-mixint_f023_i05_d160 1.0", "bbob-biobj-mixint_f023_i06_d005 1.0", "bbob-biobj-mixint_f023_i06_d010 1.0", "bbob-biobj-mixint_f023_i06_d020 1.0", "bbob-biobj-mixint_f023_i06_d040 1.0", "bbob-biobj-mixint_f023_i06_d080 1.0", "bbob-biobj-mixint_f023_i06_d160 1.0", "bbob-biobj-mixint_f023_i07_d005 1.0", "bbob-biobj-mixint_f023_i07_d010 1.0", "bbob-biobj-mixint_f023_i07_d020 1.0", "bbob-biobj-mixint_f023_i07_d040 1.0", "bbob-biobj-mixint_f023_i07_d080 1.0", "bbob-biobj-mixint_f023_i07_d160 1.0", "bbob-biobj-mixint_f023_i08_d005 1.0", "bbob-biobj-mixint_f023_i08_d010 1.0", "bbob-biobj-mixint_f023_i08_d020 1.0", "bbob-biobj-mixint_f023_i08_d040 1.0", "bbob-biobj-mixint_f023_i08_d080 1.0", "bbob-biobj-mixint_f023_i08_d160 1.0", "bbob-biobj-mixint_f023_i09_d005 1.0", "bbob-biobj-mixint_f023_i09_d010 1.0", "bbob-biobj-mixint_f023_i09_d020 1.0", "bbob-biobj-mixint_f023_i09_d040 1.0", "bbob-biobj-mixint_f023_i09_d080 1.0", "bbob-biobj-mixint_f023_i09_d160 1.0", "bbob-biobj-mixint_f023_i10_d005 1.0", "bbob-biobj-mixint_f023_i10_d010 1.0", "bbob-biobj-mixint_f023_i10_d020 1.0", "bbob-biobj-mixint_f023_i10_d040 1.0", "bbob-biobj-mixint_f023_i10_d080 1.0", "bbob-biobj-mixint_f023_i10_d160 1.0", "bbob-biobj-mixint_f023_i11_d005 1.0", "bbob-biobj-mixint_f023_i11_d010 1.0", "bbob-biobj-mixint_f023_i11_d020 1.0", "bbob-biobj-mixint_f023_i11_d040 1.0", "bbob-biobj-mixint_f023_i11_d080 1.0", "bbob-biobj-mixint_f023_i11_d160 1.0", "bbob-biobj-mixint_f023_i12_d005 1.0", "bbob-biobj-mixint_f023_i12_d010 1.0", "bbob-biobj-mixint_f023_i12_d020 1.0", "bbob-biobj-mixint_f023_i12_d040 1.0", "bbob-biobj-mixint_f023_i12_d080 1.0", "bbob-biobj-mixint_f023_i12_d160 1.0", "bbob-biobj-mixint_f023_i13_d005 1.0", "bbob-biobj-mixint_f023_i13_d010 1.0", "bbob-biobj-mixint_f023_i13_d020 1.0", "bbob-biobj-mixint_f023_i13_d040 1.0", "bbob-biobj-mixint_f023_i13_d080 1.0", "bbob-biobj-mixint_f023_i13_d160 1.0", "bbob-biobj-mixint_f023_i14_d005 1.0", "bbob-biobj-mixint_f023_i14_d010 1.0", "bbob-biobj-mixint_f023_i14_d020 1.0", "bbob-biobj-mixint_f023_i14_d040 1.0", "bbob-biobj-mixint_f023_i14_d080 1.0", "bbob-biobj-mixint_f023_i14_d160 1.0", "bbob-biobj-mixint_f023_i15_d005 1.0", "bbob-biobj-mixint_f023_i15_d010 1.0", "bbob-biobj-mixint_f023_i15_d020 1.0", "bbob-biobj-mixint_f023_i15_d040 1.0", "bbob-biobj-mixint_f023_i15_d080 1.0", "bbob-biobj-mixint_f023_i15_d160 1.0", "bbob-biobj-mixint_f024_i01_d005 1.0", "bbob-biobj-mixint_f024_i01_d010 1.0", "bbob-biobj-mixint_f024_i01_d020 1.0", "bbob-biobj-mixint_f024_i01_d040 1.0", "bbob-biobj-mixint_f024_i01_d080 1.0", "bbob-biobj-mixint_f024_i01_d160 1.0", "bbob-biobj-mixint_f024_i02_d005 1.0", "bbob-biobj-mixint_f024_i02_d010 1.0", "bbob-biobj-mixint_f024_i02_d020 1.0", "bbob-biobj-mixint_f024_i02_d040 1.0", "bbob-biobj-mixint_f024_i02_d080 1.0", "bbob-biobj-mixint_f024_i02_d160 1.0", "bbob-biobj-mixint_f024_i03_d005 1.0", "bbob-biobj-mixint_f024_i03_d010 1.0", "bbob-biobj-mixint_f024_i03_d020 1.0", "bbob-biobj-mixint_f024_i03_d040 1.0", "bbob-biobj-mixint_f024_i03_d080 1.0", "bbob-biobj-mixint_f024_i03_d160 1.0", "bbob-biobj-mixint_f024_i04_d005 1.0", "bbob-biobj-mixint_f024_i04_d010 1.0", "bbob-biobj-mixint_f024_i04_d020 1.0", "bbob-biobj-mixint_f024_i04_d040 1.0", "bbob-biobj-mixint_f024_i04_d080 1.0", "bbob-biobj-mixint_f024_i04_d160 1.0", "bbob-biobj-mixint_f024_i05_d005 1.0", "bbob-biobj-mixint_f024_i05_d010 1.0", "bbob-biobj-mixint_f024_i05_d020 1.0", "bbob-biobj-mixint_f024_i05_d040 1.0", "bbob-biobj-mixint_f024_i05_d080 1.0", "bbob-biobj-mixint_f024_i05_d160 1.0", "bbob-biobj-mixint_f024_i06_d005 1.0", "bbob-biobj-mixint_f024_i06_d010 1.0", "bbob-biobj-mixint_f024_i06_d020 1.0", "bbob-biobj-mixint_f024_i06_d040 1.0", "bbob-biobj-mixint_f024_i06_d080 1.0", "bbob-biobj-mixint_f024_i06_d160 1.0", "bbob-biobj-mixint_f024_i07_d005 1.0", "bbob-biobj-mixint_f024_i07_d010 1.0", "bbob-biobj-mixint_f024_i07_d020 1.0", "bbob-biobj-mixint_f024_i07_d040 1.0", "bbob-biobj-mixint_f024_i07_d080 1.0", "bbob-biobj-mixint_f024_i07_d160 1.0", "bbob-biobj-mixint_f024_i08_d005 1.0", "bbob-biobj-mixint_f024_i08_d010 1.0", "bbob-biobj-mixint_f024_i08_d020 1.0", "bbob-biobj-mixint_f024_i08_d040 1.0", "bbob-biobj-mixint_f024_i08_d080 1.0", "bbob-biobj-mixint_f024_i08_d160 1.0", "bbob-biobj-mixint_f024_i09_d005 1.0", "bbob-biobj-mixint_f024_i09_d010 1.0", "bbob-biobj-mixint_f024_i09_d020 1.0", "bbob-biobj-mixint_f024_i09_d040 1.0", "bbob-biobj-mixint_f024_i09_d080 1.0", "bbob-biobj-mixint_f024_i09_d160 1.0", "bbob-biobj-mixint_f024_i10_d005 1.0", "bbob-biobj-mixint_f024_i10_d010 1.0", "bbob-biobj-mixint_f024_i10_d020 1.0", "bbob-biobj-mixint_f024_i10_d040 1.0", "bbob-biobj-mixint_f024_i10_d080 1.0", "bbob-biobj-mixint_f024_i10_d160 1.0", "bbob-biobj-mixint_f024_i11_d005 1.0", "bbob-biobj-mixint_f024_i11_d010 1.0", "bbob-biobj-mixint_f024_i11_d020 1.0", "bbob-biobj-mixint_f024_i11_d040 1.0", "bbob-biobj-mixint_f024_i11_d080 1.0", "bbob-biobj-mixint_f024_i11_d160 1.0", "bbob-biobj-mixint_f024_i12_d005 1.0", "bbob-biobj-mixint_f024_i12_d010 1.0", "bbob-biobj-mixint_f024_i12_d020 1.0", "bbob-biobj-mixint_f024_i12_d040 1.0", "bbob-biobj-mixint_f024_i12_d080 1.0", "bbob-biobj-mixint_f024_i12_d160 1.0", "bbob-biobj-mixint_f024_i13_d005 1.0", "bbob-biobj-mixint_f024_i13_d010 1.0", "bbob-biobj-mixint_f024_i13_d020 1.0", "bbob-biobj-mixint_f024_i13_d040 1.0", "bbob-biobj-mixint_f024_i13_d080 1.0", "bbob-biobj-mixint_f024_i13_d160 1.0", "bbob-biobj-mixint_f024_i14_d005 1.0", "bbob-biobj-mixint_f024_i14_d010 1.0", "bbob-biobj-mixint_f024_i14_d020 1.0", "bbob-biobj-mixint_f024_i14_d040 1.0", "bbob-biobj-mixint_f024_i14_d080 1.0", "bbob-biobj-mixint_f024_i14_d160 1.0", "bbob-biobj-mixint_f024_i15_d005 1.0", "bbob-biobj-mixint_f024_i15_d010 1.0", "bbob-biobj-mixint_f024_i15_d020 1.0", "bbob-biobj-mixint_f024_i15_d040 1.0", "bbob-biobj-mixint_f024_i15_d080 1.0", "bbob-biobj-mixint_f024_i15_d160 1.0", "bbob-biobj-mixint_f025_i01_d005 1.0", "bbob-biobj-mixint_f025_i01_d010 1.0", "bbob-biobj-mixint_f025_i01_d020 1.0", "bbob-biobj-mixint_f025_i01_d040 1.0", "bbob-biobj-mixint_f025_i01_d080 1.0", "bbob-biobj-mixint_f025_i01_d160 1.0", "bbob-biobj-mixint_f025_i02_d005 1.0", "bbob-biobj-mixint_f025_i02_d010 1.0", "bbob-biobj-mixint_f025_i02_d020 1.0", "bbob-biobj-mixint_f025_i02_d040 1.0", "bbob-biobj-mixint_f025_i02_d080 1.0", "bbob-biobj-mixint_f025_i02_d160 1.0", "bbob-biobj-mixint_f025_i03_d005 1.0", "bbob-biobj-mixint_f025_i03_d010 1.0", "bbob-biobj-mixint_f025_i03_d020 1.0", "bbob-biobj-mixint_f025_i03_d040 1.0", "bbob-biobj-mixint_f025_i03_d080 1.0", "bbob-biobj-mixint_f025_i03_d160 1.0", "bbob-biobj-mixint_f025_i04_d005 1.0", "bbob-biobj-mixint_f025_i04_d010 1.0", "bbob-biobj-mixint_f025_i04_d020 1.0", "bbob-biobj-mixint_f025_i04_d040 1.0", "bbob-biobj-mixint_f025_i04_d080 1.0", "bbob-biobj-mixint_f025_i04_d160 1.0", "bbob-biobj-mixint_f025_i05_d005 1.0", "bbob-biobj-mixint_f025_i05_d010 1.0", "bbob-biobj-mixint_f025_i05_d020 1.0", "bbob-biobj-mixint_f025_i05_d040 1.0", "bbob-biobj-mixint_f025_i05_d080 1.0", "bbob-biobj-mixint_f025_i05_d160 1.0", "bbob-biobj-mixint_f025_i06_d005 1.0", "bbob-biobj-mixint_f025_i06_d010 1.0", "bbob-biobj-mixint_f025_i06_d020 1.0", "bbob-biobj-mixint_f025_i06_d040 1.0", "bbob-biobj-mixint_f025_i06_d080 1.0", "bbob-biobj-mixint_f025_i06_d160 1.0", "bbob-biobj-mixint_f025_i07_d005 1.0", "bbob-biobj-mixint_f025_i07_d010 1.0", "bbob-biobj-mixint_f025_i07_d020 1.0", "bbob-biobj-mixint_f025_i07_d040 1.0", "bbob-biobj-mixint_f025_i07_d080 1.0", "bbob-biobj-mixint_f025_i07_d160 1.0", "bbob-biobj-mixint_f025_i08_d005 1.0", "bbob-biobj-mixint_f025_i08_d010 1.0", "bbob-biobj-mixint_f025_i08_d020 1.0", "bbob-biobj-mixint_f025_i08_d040 1.0", "bbob-biobj-mixint_f025_i08_d080 1.0", "bbob-biobj-mixint_f025_i08_d160 1.0", "bbob-biobj-mixint_f025_i09_d005 1.0", "bbob-biobj-mixint_f025_i09_d010 1.0", "bbob-biobj-mixint_f025_i09_d020 1.0", "bbob-biobj-mixint_f025_i09_d040 1.0", "bbob-biobj-mixint_f025_i09_d080 1.0", "bbob-biobj-mixint_f025_i09_d160 1.0", "bbob-biobj-mixint_f025_i10_d005 1.0", "bbob-biobj-mixint_f025_i10_d010 1.0", "bbob-biobj-mixint_f025_i10_d020 1.0", "bbob-biobj-mixint_f025_i10_d040 1.0", "bbob-biobj-mixint_f025_i10_d080 1.0", "bbob-biobj-mixint_f025_i10_d160 1.0", "bbob-biobj-mixint_f025_i11_d005 1.0", "bbob-biobj-mixint_f025_i11_d010 1.0", "bbob-biobj-mixint_f025_i11_d020 1.0", "bbob-biobj-mixint_f025_i11_d040 1.0", "bbob-biobj-mixint_f025_i11_d080 1.0", "bbob-biobj-mixint_f025_i11_d160 1.0", "bbob-biobj-mixint_f025_i12_d005 1.0", "bbob-biobj-mixint_f025_i12_d010 1.0", "bbob-biobj-mixint_f025_i12_d020 1.0", "bbob-biobj-mixint_f025_i12_d040 1.0", "bbob-biobj-mixint_f025_i12_d080 1.0", "bbob-biobj-mixint_f025_i12_d160 1.0", "bbob-biobj-mixint_f025_i13_d005 1.0", "bbob-biobj-mixint_f025_i13_d010 1.0", "bbob-biobj-mixint_f025_i13_d020 1.0", "bbob-biobj-mixint_f025_i13_d040 1.0", "bbob-biobj-mixint_f025_i13_d080 1.0", "bbob-biobj-mixint_f025_i13_d160 1.0", "bbob-biobj-mixint_f025_i14_d005 1.0", "bbob-biobj-mixint_f025_i14_d010 1.0", "bbob-biobj-mixint_f025_i14_d020 1.0", "bbob-biobj-mixint_f025_i14_d040 1.0", "bbob-biobj-mixint_f025_i14_d080 1.0", "bbob-biobj-mixint_f025_i14_d160 1.0", "bbob-biobj-mixint_f025_i15_d005 1.0", "bbob-biobj-mixint_f025_i15_d010 1.0", "bbob-biobj-mixint_f025_i15_d020 1.0", "bbob-biobj-mixint_f025_i15_d040 1.0", "bbob-biobj-mixint_f025_i15_d080 1.0", "bbob-biobj-mixint_f025_i15_d160 1.0", "bbob-biobj-mixint_f026_i01_d005 1.0", "bbob-biobj-mixint_f026_i01_d010 1.0", "bbob-biobj-mixint_f026_i01_d020 1.0", "bbob-biobj-mixint_f026_i01_d040 1.0", "bbob-biobj-mixint_f026_i01_d080 1.0", "bbob-biobj-mixint_f026_i01_d160 1.0", "bbob-biobj-mixint_f026_i02_d005 1.0", "bbob-biobj-mixint_f026_i02_d010 1.0", "bbob-biobj-mixint_f026_i02_d020 1.0", "bbob-biobj-mixint_f026_i02_d040 1.0", "bbob-biobj-mixint_f026_i02_d080 1.0", "bbob-biobj-mixint_f026_i02_d160 1.0", "bbob-biobj-mixint_f026_i03_d005 1.0", "bbob-biobj-mixint_f026_i03_d010 1.0", "bbob-biobj-mixint_f026_i03_d020 1.0", "bbob-biobj-mixint_f026_i03_d040 1.0", "bbob-biobj-mixint_f026_i03_d080 1.0", "bbob-biobj-mixint_f026_i03_d160 1.0", "bbob-biobj-mixint_f026_i04_d005 1.0", "bbob-biobj-mixint_f026_i04_d010 1.0", "bbob-biobj-mixint_f026_i04_d020 1.0", "bbob-biobj-mixint_f026_i04_d040 1.0", "bbob-biobj-mixint_f026_i04_d080 1.0", "bbob-biobj-mixint_f026_i04_d160 1.0", "bbob-biobj-mixint_f026_i05_d005 1.0", "bbob-biobj-mixint_f026_i05_d010 1.0", "bbob-biobj-mixint_f026_i05_d020 1.0", "bbob-biobj-mixint_f026_i05_d040 1.0", "bbob-biobj-mixint_f026_i05_d080 1.0", "bbob-biobj-mixint_f026_i05_d160 1.0", "bbob-biobj-mixint_f026_i06_d005 1.0", "bbob-biobj-mixint_f026_i06_d010 1.0", "bbob-biobj-mixint_f026_i06_d020 1.0", "bbob-biobj-mixint_f026_i06_d040 1.0", "bbob-biobj-mixint_f026_i06_d080 1.0", "bbob-biobj-mixint_f026_i06_d160 1.0", "bbob-biobj-mixint_f026_i07_d005 1.0", "bbob-biobj-mixint_f026_i07_d010 1.0", "bbob-biobj-mixint_f026_i07_d020 1.0", "bbob-biobj-mixint_f026_i07_d040 1.0", "bbob-biobj-mixint_f026_i07_d080 1.0", "bbob-biobj-mixint_f026_i07_d160 1.0", "bbob-biobj-mixint_f026_i08_d005 1.0", "bbob-biobj-mixint_f026_i08_d010 1.0", "bbob-biobj-mixint_f026_i08_d020 1.0", "bbob-biobj-mixint_f026_i08_d040 1.0", "bbob-biobj-mixint_f026_i08_d080 1.0", "bbob-biobj-mixint_f026_i08_d160 1.0", "bbob-biobj-mixint_f026_i09_d005 1.0", "bbob-biobj-mixint_f026_i09_d010 1.0", "bbob-biobj-mixint_f026_i09_d020 1.0", "bbob-biobj-mixint_f026_i09_d040 1.0", "bbob-biobj-mixint_f026_i09_d080 1.0", "bbob-biobj-mixint_f026_i09_d160 1.0", "bbob-biobj-mixint_f026_i10_d005 1.0", "bbob-biobj-mixint_f026_i10_d010 1.0", "bbob-biobj-mixint_f026_i10_d020 1.0", "bbob-biobj-mixint_f026_i10_d040 1.0", "bbob-biobj-mixint_f026_i10_d080 1.0", "bbob-biobj-mixint_f026_i10_d160 1.0", "bbob-biobj-mixint_f026_i11_d005 1.0", "bbob-biobj-mixint_f026_i11_d010 1.0", "bbob-biobj-mixint_f026_i11_d020 1.0", "bbob-biobj-mixint_f026_i11_d040 1.0", "bbob-biobj-mixint_f026_i11_d080 1.0", "bbob-biobj-mixint_f026_i11_d160 1.0", "bbob-biobj-mixint_f026_i12_d005 1.0", "bbob-biobj-mixint_f026_i12_d010 1.0", "bbob-biobj-mixint_f026_i12_d020 1.0", "bbob-biobj-mixint_f026_i12_d040 1.0", "bbob-biobj-mixint_f026_i12_d080 1.0", "bbob-biobj-mixint_f026_i12_d160 1.0", "bbob-biobj-mixint_f026_i13_d005 1.0", "bbob-biobj-mixint_f026_i13_d010 1.0", "bbob-biobj-mixint_f026_i13_d020 1.0", "bbob-biobj-mixint_f026_i13_d040 1.0", "bbob-biobj-mixint_f026_i13_d080 1.0", "bbob-biobj-mixint_f026_i13_d160 1.0", "bbob-biobj-mixint_f026_i14_d005 1.0", "bbob-biobj-mixint_f026_i14_d010 1.0", "bbob-biobj-mixint_f026_i14_d020 1.0", "bbob-biobj-mixint_f026_i14_d040 1.0", "bbob-biobj-mixint_f026_i14_d080 1.0", "bbob-biobj-mixint_f026_i14_d160 1.0", "bbob-biobj-mixint_f026_i15_d005 1.0", "bbob-biobj-mixint_f026_i15_d010 1.0", "bbob-biobj-mixint_f026_i15_d020 1.0", "bbob-biobj-mixint_f026_i15_d040 1.0", "bbob-biobj-mixint_f026_i15_d080 1.0", "bbob-biobj-mixint_f026_i15_d160 1.0", "bbob-biobj-mixint_f027_i01_d005 1.0", "bbob-biobj-mixint_f027_i01_d010 1.0", "bbob-biobj-mixint_f027_i01_d020 1.0", "bbob-biobj-mixint_f027_i01_d040 1.0", "bbob-biobj-mixint_f027_i01_d080 1.0", "bbob-biobj-mixint_f027_i01_d160 1.0", "bbob-biobj-mixint_f027_i02_d005 1.0", "bbob-biobj-mixint_f027_i02_d010 1.0", "bbob-biobj-mixint_f027_i02_d020 1.0", "bbob-biobj-mixint_f027_i02_d040 1.0", "bbob-biobj-mixint_f027_i02_d080 1.0", "bbob-biobj-mixint_f027_i02_d160 1.0", "bbob-biobj-mixint_f027_i03_d005 1.0", "bbob-biobj-mixint_f027_i03_d010 1.0", "bbob-biobj-mixint_f027_i03_d020 1.0", "bbob-biobj-mixint_f027_i03_d040 1.0", "bbob-biobj-mixint_f027_i03_d080 1.0", "bbob-biobj-mixint_f027_i03_d160 1.0", "bbob-biobj-mixint_f027_i04_d005 1.0", "bbob-biobj-mixint_f027_i04_d010 1.0", "bbob-biobj-mixint_f027_i04_d020 1.0", "bbob-biobj-mixint_f027_i04_d040 1.0", "bbob-biobj-mixint_f027_i04_d080 1.0", "bbob-biobj-mixint_f027_i04_d160 1.0", "bbob-biobj-mixint_f027_i05_d005 1.0", "bbob-biobj-mixint_f027_i05_d010 1.0", "bbob-biobj-mixint_f027_i05_d020 1.0", "bbob-biobj-mixint_f027_i05_d040 1.0", "bbob-biobj-mixint_f027_i05_d080 1.0", "bbob-biobj-mixint_f027_i05_d160 1.0", "bbob-biobj-mixint_f027_i06_d005 1.0", "bbob-biobj-mixint_f027_i06_d010 1.0", "bbob-biobj-mixint_f027_i06_d020 1.0", "bbob-biobj-mixint_f027_i06_d040 1.0", "bbob-biobj-mixint_f027_i06_d080 1.0", "bbob-biobj-mixint_f027_i06_d160 1.0", "bbob-biobj-mixint_f027_i07_d005 1.0", "bbob-biobj-mixint_f027_i07_d010 1.0", "bbob-biobj-mixint_f027_i07_d020 1.0", "bbob-biobj-mixint_f027_i07_d040 1.0", "bbob-biobj-mixint_f027_i07_d080 1.0", "bbob-biobj-mixint_f027_i07_d160 1.0", "bbob-biobj-mixint_f027_i08_d005 1.0", "bbob-biobj-mixint_f027_i08_d010 1.0", "bbob-biobj-mixint_f027_i08_d020 1.0", "bbob-biobj-mixint_f027_i08_d040 1.0", "bbob-biobj-mixint_f027_i08_d080 1.0", "bbob-biobj-mixint_f027_i08_d160 1.0", "bbob-biobj-mixint_f027_i09_d005 1.0", "bbob-biobj-mixint_f027_i09_d010 1.0", "bbob-biobj-mixint_f027_i09_d020 1.0", "bbob-biobj-mixint_f027_i09_d040 1.0", "bbob-biobj-mixint_f027_i09_d080 1.0", "bbob-biobj-mixint_f027_i09_d160 1.0", "bbob-biobj-mixint_f027_i10_d005 1.0", "bbob-biobj-mixint_f027_i10_d010 1.0", "bbob-biobj-mixint_f027_i10_d020 1.0", "bbob-biobj-mixint_f027_i10_d040 1.0", "bbob-biobj-mixint_f027_i10_d080 1.0", "bbob-biobj-mixint_f027_i10_d160 1.0", "bbob-biobj-mixint_f027_i11_d005 1.0", "bbob-biobj-mixint_f027_i11_d010 1.0", "bbob-biobj-mixint_f027_i11_d020 1.0", "bbob-biobj-mixint_f027_i11_d040 1.0", "bbob-biobj-mixint_f027_i11_d080 1.0", "bbob-biobj-mixint_f027_i11_d160 1.0", "bbob-biobj-mixint_f027_i12_d005 1.0", "bbob-biobj-mixint_f027_i12_d010 1.0", "bbob-biobj-mixint_f027_i12_d020 1.0", "bbob-biobj-mixint_f027_i12_d040 1.0", "bbob-biobj-mixint_f027_i12_d080 1.0", "bbob-biobj-mixint_f027_i12_d160 1.0", "bbob-biobj-mixint_f027_i13_d005 1.0", "bbob-biobj-mixint_f027_i13_d010 1.0", "bbob-biobj-mixint_f027_i13_d020 1.0", "bbob-biobj-mixint_f027_i13_d040 1.0", "bbob-biobj-mixint_f027_i13_d080 1.0", "bbob-biobj-mixint_f027_i13_d160 1.0", "bbob-biobj-mixint_f027_i14_d005 1.0", "bbob-biobj-mixint_f027_i14_d010 1.0", "bbob-biobj-mixint_f027_i14_d020 1.0", "bbob-biobj-mixint_f027_i14_d040 1.0", "bbob-biobj-mixint_f027_i14_d080 1.0", "bbob-biobj-mixint_f027_i14_d160 1.0", "bbob-biobj-mixint_f027_i15_d005 1.0", "bbob-biobj-mixint_f027_i15_d010 1.0", "bbob-biobj-mixint_f027_i15_d020 1.0", "bbob-biobj-mixint_f027_i15_d040 1.0", "bbob-biobj-mixint_f027_i15_d080 1.0", "bbob-biobj-mixint_f027_i15_d160 1.0", "bbob-biobj-mixint_f028_i01_d005 1.0", "bbob-biobj-mixint_f028_i01_d010 1.0", "bbob-biobj-mixint_f028_i01_d020 1.0", "bbob-biobj-mixint_f028_i01_d040 1.0", "bbob-biobj-mixint_f028_i01_d080 1.0", "bbob-biobj-mixint_f028_i01_d160 1.0", "bbob-biobj-mixint_f028_i02_d005 1.0", "bbob-biobj-mixint_f028_i02_d010 1.0", "bbob-biobj-mixint_f028_i02_d020 1.0", "bbob-biobj-mixint_f028_i02_d040 1.0", "bbob-biobj-mixint_f028_i02_d080 1.0", "bbob-biobj-mixint_f028_i02_d160 1.0", "bbob-biobj-mixint_f028_i03_d005 1.0", "bbob-biobj-mixint_f028_i03_d010 1.0", "bbob-biobj-mixint_f028_i03_d020 1.0", "bbob-biobj-mixint_f028_i03_d040 1.0", "bbob-biobj-mixint_f028_i03_d080 1.0", "bbob-biobj-mixint_f028_i03_d160 1.0", "bbob-biobj-mixint_f028_i04_d005 1.0", "bbob-biobj-mixint_f028_i04_d010 1.0", "bbob-biobj-mixint_f028_i04_d020 1.0", "bbob-biobj-mixint_f028_i04_d040 1.0", "bbob-biobj-mixint_f028_i04_d080 1.0", "bbob-biobj-mixint_f028_i04_d160 1.0", "bbob-biobj-mixint_f028_i05_d005 1.0", "bbob-biobj-mixint_f028_i05_d010 1.0", "bbob-biobj-mixint_f028_i05_d020 1.0", "bbob-biobj-mixint_f028_i05_d040 1.0", "bbob-biobj-mixint_f028_i05_d080 1.0", "bbob-biobj-mixint_f028_i05_d160 1.0", "bbob-biobj-mixint_f028_i06_d005 1.0", "bbob-biobj-mixint_f028_i06_d010 1.0", "bbob-biobj-mixint_f028_i06_d020 1.0", "bbob-biobj-mixint_f028_i06_d040 1.0", "bbob-biobj-mixint_f028_i06_d080 1.0", "bbob-biobj-mixint_f028_i06_d160 1.0", "bbob-biobj-mixint_f028_i07_d005 1.0", "bbob-biobj-mixint_f028_i07_d010 1.0", "bbob-biobj-mixint_f028_i07_d020 1.0", "bbob-biobj-mixint_f028_i07_d040 1.0", "bbob-biobj-mixint_f028_i07_d080 1.0", "bbob-biobj-mixint_f028_i07_d160 1.0", "bbob-biobj-mixint_f028_i08_d005 1.0", "bbob-biobj-mixint_f028_i08_d010 1.0", "bbob-biobj-mixint_f028_i08_d020 1.0", "bbob-biobj-mixint_f028_i08_d040 1.0", "bbob-biobj-mixint_f028_i08_d080 1.0", "bbob-biobj-mixint_f028_i08_d160 1.0", "bbob-biobj-mixint_f028_i09_d005 1.0", "bbob-biobj-mixint_f028_i09_d010 1.0", "bbob-biobj-mixint_f028_i09_d020 1.0", "bbob-biobj-mixint_f028_i09_d040 1.0", "bbob-biobj-mixint_f028_i09_d080 1.0", "bbob-biobj-mixint_f028_i09_d160 1.0", "bbob-biobj-mixint_f028_i10_d005 1.0", "bbob-biobj-mixint_f028_i10_d010 1.0", "bbob-biobj-mixint_f028_i10_d020 1.0", "bbob-biobj-mixint_f028_i10_d040 1.0", "bbob-biobj-mixint_f028_i10_d080 1.0", "bbob-biobj-mixint_f028_i10_d160 1.0", "bbob-biobj-mixint_f028_i11_d005 1.0", "bbob-biobj-mixint_f028_i11_d010 1.0", "bbob-biobj-mixint_f028_i11_d020 1.0", "bbob-biobj-mixint_f028_i11_d040 1.0", "bbob-biobj-mixint_f028_i11_d080 1.0", "bbob-biobj-mixint_f028_i11_d160 1.0", "bbob-biobj-mixint_f028_i12_d005 1.0", "bbob-biobj-mixint_f028_i12_d010 1.0", "bbob-biobj-mixint_f028_i12_d020 1.0", "bbob-biobj-mixint_f028_i12_d040 1.0", "bbob-biobj-mixint_f028_i12_d080 1.0", "bbob-biobj-mixint_f028_i12_d160 1.0", "bbob-biobj-mixint_f028_i13_d005 1.0", "bbob-biobj-mixint_f028_i13_d010 1.0", "bbob-biobj-mixint_f028_i13_d020 1.0", "bbob-biobj-mixint_f028_i13_d040 1.0", "bbob-biobj-mixint_f028_i13_d080 1.0", "bbob-biobj-mixint_f028_i13_d160 1.0", "bbob-biobj-mixint_f028_i14_d005 1.0", "bbob-biobj-mixint_f028_i14_d010 1.0", "bbob-biobj-mixint_f028_i14_d020 1.0", "bbob-biobj-mixint_f028_i14_d040 1.0", "bbob-biobj-mixint_f028_i14_d080 1.0", "bbob-biobj-mixint_f028_i14_d160 1.0", "bbob-biobj-mixint_f028_i15_d005 1.0", "bbob-biobj-mixint_f028_i15_d010 1.0", "bbob-biobj-mixint_f028_i15_d020 1.0", "bbob-biobj-mixint_f028_i15_d040 1.0", "bbob-biobj-mixint_f028_i15_d080 1.0", "bbob-biobj-mixint_f028_i15_d160 1.0", "bbob-biobj-mixint_f029_i01_d005 1.0", "bbob-biobj-mixint_f029_i01_d010 1.0", "bbob-biobj-mixint_f029_i01_d020 1.0", "bbob-biobj-mixint_f029_i01_d040 1.0", "bbob-biobj-mixint_f029_i01_d080 1.0", "bbob-biobj-mixint_f029_i01_d160 1.0", "bbob-biobj-mixint_f029_i02_d005 1.0", "bbob-biobj-mixint_f029_i02_d010 1.0", "bbob-biobj-mixint_f029_i02_d020 1.0", "bbob-biobj-mixint_f029_i02_d040 1.0", "bbob-biobj-mixint_f029_i02_d080 1.0", "bbob-biobj-mixint_f029_i02_d160 1.0", "bbob-biobj-mixint_f029_i03_d005 1.0", "bbob-biobj-mixint_f029_i03_d010 1.0", "bbob-biobj-mixint_f029_i03_d020 1.0", "bbob-biobj-mixint_f029_i03_d040 1.0", "bbob-biobj-mixint_f029_i03_d080 1.0", "bbob-biobj-mixint_f029_i03_d160 1.0", "bbob-biobj-mixint_f029_i04_d005 1.0", "bbob-biobj-mixint_f029_i04_d010 1.0", "bbob-biobj-mixint_f029_i04_d020 1.0", "bbob-biobj-mixint_f029_i04_d040 1.0", "bbob-biobj-mixint_f029_i04_d080 1.0", "bbob-biobj-mixint_f029_i04_d160 1.0", "bbob-biobj-mixint_f029_i05_d005 1.0", "bbob-biobj-mixint_f029_i05_d010 1.0", "bbob-biobj-mixint_f029_i05_d020 1.0", "bbob-biobj-mixint_f029_i05_d040 1.0", "bbob-biobj-mixint_f029_i05_d080 1.0", "bbob-biobj-mixint_f029_i05_d160 1.0", "bbob-biobj-mixint_f029_i06_d005 1.0", "bbob-biobj-mixint_f029_i06_d010 1.0", "bbob-biobj-mixint_f029_i06_d020 1.0", "bbob-biobj-mixint_f029_i06_d040 1.0", "bbob-biobj-mixint_f029_i06_d080 1.0", "bbob-biobj-mixint_f029_i06_d160 1.0", "bbob-biobj-mixint_f029_i07_d005 1.0", "bbob-biobj-mixint_f029_i07_d010 1.0", "bbob-biobj-mixint_f029_i07_d020 1.0", "bbob-biobj-mixint_f029_i07_d040 1.0", "bbob-biobj-mixint_f029_i07_d080 1.0", "bbob-biobj-mixint_f029_i07_d160 1.0", "bbob-biobj-mixint_f029_i08_d005 1.0", "bbob-biobj-mixint_f029_i08_d010 1.0", "bbob-biobj-mixint_f029_i08_d020 1.0", "bbob-biobj-mixint_f029_i08_d040 1.0", "bbob-biobj-mixint_f029_i08_d080 1.0", "bbob-biobj-mixint_f029_i08_d160 1.0", "bbob-biobj-mixint_f029_i09_d005 1.0", "bbob-biobj-mixint_f029_i09_d010 1.0", "bbob-biobj-mixint_f029_i09_d020 1.0", "bbob-biobj-mixint_f029_i09_d040 1.0", "bbob-biobj-mixint_f029_i09_d080 1.0", "bbob-biobj-mixint_f029_i09_d160 1.0", "bbob-biobj-mixint_f029_i10_d005 1.0", "bbob-biobj-mixint_f029_i10_d010 1.0", "bbob-biobj-mixint_f029_i10_d020 1.0", "bbob-biobj-mixint_f029_i10_d040 1.0", "bbob-biobj-mixint_f029_i10_d080 1.0", "bbob-biobj-mixint_f029_i10_d160 1.0", "bbob-biobj-mixint_f029_i11_d005 1.0", "bbob-biobj-mixint_f029_i11_d010 1.0", "bbob-biobj-mixint_f029_i11_d020 1.0", "bbob-biobj-mixint_f029_i11_d040 1.0", "bbob-biobj-mixint_f029_i11_d080 1.0", "bbob-biobj-mixint_f029_i11_d160 1.0", "bbob-biobj-mixint_f029_i12_d005 1.0", "bbob-biobj-mixint_f029_i12_d010 1.0", "bbob-biobj-mixint_f029_i12_d020 1.0", "bbob-biobj-mixint_f029_i12_d040 1.0", "bbob-biobj-mixint_f029_i12_d080 1.0", "bbob-biobj-mixint_f029_i12_d160 1.0", "bbob-biobj-mixint_f029_i13_d005 1.0", "bbob-biobj-mixint_f029_i13_d010 1.0", "bbob-biobj-mixint_f029_i13_d020 1.0", "bbob-biobj-mixint_f029_i13_d040 1.0", "bbob-biobj-mixint_f029_i13_d080 1.0", "bbob-biobj-mixint_f029_i13_d160 1.0", "bbob-biobj-mixint_f029_i14_d005 1.0", "bbob-biobj-mixint_f029_i14_d010 1.0", "bbob-biobj-mixint_f029_i14_d020 1.0", "bbob-biobj-mixint_f029_i14_d040 1.0", "bbob-biobj-mixint_f029_i14_d080 1.0", "bbob-biobj-mixint_f029_i14_d160 1.0", "bbob-biobj-mixint_f029_i15_d005 1.0", "bbob-biobj-mixint_f029_i15_d010 1.0", "bbob-biobj-mixint_f029_i15_d020 1.0", "bbob-biobj-mixint_f029_i15_d040 1.0", "bbob-biobj-mixint_f029_i15_d080 1.0", "bbob-biobj-mixint_f029_i15_d160 1.0", "bbob-biobj-mixint_f030_i01_d005 1.0", "bbob-biobj-mixint_f030_i01_d010 1.0", "bbob-biobj-mixint_f030_i01_d020 1.0", "bbob-biobj-mixint_f030_i01_d040 1.0", "bbob-biobj-mixint_f030_i01_d080 1.0", "bbob-biobj-mixint_f030_i01_d160 1.0", "bbob-biobj-mixint_f030_i02_d005 1.0", "bbob-biobj-mixint_f030_i02_d010 1.0", "bbob-biobj-mixint_f030_i02_d020 1.0", "bbob-biobj-mixint_f030_i02_d040 1.0", "bbob-biobj-mixint_f030_i02_d080 1.0", "bbob-biobj-mixint_f030_i02_d160 1.0", "bbob-biobj-mixint_f030_i03_d005 1.0", "bbob-biobj-mixint_f030_i03_d010 1.0", "bbob-biobj-mixint_f030_i03_d020 1.0", "bbob-biobj-mixint_f030_i03_d040 1.0", "bbob-biobj-mixint_f030_i03_d080 1.0", "bbob-biobj-mixint_f030_i03_d160 1.0", "bbob-biobj-mixint_f030_i04_d005 1.0", "bbob-biobj-mixint_f030_i04_d010 1.0", "bbob-biobj-mixint_f030_i04_d020 1.0", "bbob-biobj-mixint_f030_i04_d040 1.0", "bbob-biobj-mixint_f030_i04_d080 1.0", "bbob-biobj-mixint_f030_i04_d160 1.0", "bbob-biobj-mixint_f030_i05_d005 1.0", "bbob-biobj-mixint_f030_i05_d010 1.0", "bbob-biobj-mixint_f030_i05_d020 1.0", "bbob-biobj-mixint_f030_i05_d040 1.0", "bbob-biobj-mixint_f030_i05_d080 1.0", "bbob-biobj-mixint_f030_i05_d160 1.0", "bbob-biobj-mixint_f030_i06_d005 1.0", "bbob-biobj-mixint_f030_i06_d010 1.0", "bbob-biobj-mixint_f030_i06_d020 1.0", "bbob-biobj-mixint_f030_i06_d040 1.0", "bbob-biobj-mixint_f030_i06_d080 1.0", "bbob-biobj-mixint_f030_i06_d160 1.0", "bbob-biobj-mixint_f030_i07_d005 1.0", "bbob-biobj-mixint_f030_i07_d010 1.0", "bbob-biobj-mixint_f030_i07_d020 1.0", "bbob-biobj-mixint_f030_i07_d040 1.0", "bbob-biobj-mixint_f030_i07_d080 1.0", "bbob-biobj-mixint_f030_i07_d160 1.0", "bbob-biobj-mixint_f030_i08_d005 1.0", "bbob-biobj-mixint_f030_i08_d010 1.0", "bbob-biobj-mixint_f030_i08_d020 1.0", "bbob-biobj-mixint_f030_i08_d040 1.0", "bbob-biobj-mixint_f030_i08_d080 1.0", "bbob-biobj-mixint_f030_i08_d160 1.0", "bbob-biobj-mixint_f030_i09_d005 1.0", "bbob-biobj-mixint_f030_i09_d010 1.0", "bbob-biobj-mixint_f030_i09_d020 1.0", "bbob-biobj-mixint_f030_i09_d040 1.0", "bbob-biobj-mixint_f030_i09_d080 1.0", "bbob-biobj-mixint_f030_i09_d160 1.0", "bbob-biobj-mixint_f030_i10_d005 1.0", "bbob-biobj-mixint_f030_i10_d010 1.0", "bbob-biobj-mixint_f030_i10_d020 1.0", "bbob-biobj-mixint_f030_i10_d040 1.0", "bbob-biobj-mixint_f030_i10_d080 1.0", "bbob-biobj-mixint_f030_i10_d160 1.0", "bbob-biobj-mixint_f030_i11_d005 1.0", "bbob-biobj-mixint_f030_i11_d010 1.0", "bbob-biobj-mixint_f030_i11_d020 1.0", "bbob-biobj-mixint_f030_i11_d040 1.0", "bbob-biobj-mixint_f030_i11_d080 1.0", "bbob-biobj-mixint_f030_i11_d160 1.0", "bbob-biobj-mixint_f030_i12_d005 1.0", "bbob-biobj-mixint_f030_i12_d010 1.0", "bbob-biobj-mixint_f030_i12_d020 1.0", "bbob-biobj-mixint_f030_i12_d040 1.0", "bbob-biobj-mixint_f030_i12_d080 1.0", "bbob-biobj-mixint_f030_i12_d160 1.0", "bbob-biobj-mixint_f030_i13_d005 1.0", "bbob-biobj-mixint_f030_i13_d010 1.0", "bbob-biobj-mixint_f030_i13_d020 1.0", "bbob-biobj-mixint_f030_i13_d040 1.0", "bbob-biobj-mixint_f030_i13_d080 1.0", "bbob-biobj-mixint_f030_i13_d160 1.0", "bbob-biobj-mixint_f030_i14_d005 1.0", "bbob-biobj-mixint_f030_i14_d010 1.0", "bbob-biobj-mixint_f030_i14_d020 1.0", "bbob-biobj-mixint_f030_i14_d040 1.0", "bbob-biobj-mixint_f030_i14_d080 1.0", "bbob-biobj-mixint_f030_i14_d160 1.0", "bbob-biobj-mixint_f030_i15_d005 1.0", "bbob-biobj-mixint_f030_i15_d010 1.0", "bbob-biobj-mixint_f030_i15_d020 1.0", "bbob-biobj-mixint_f030_i15_d040 1.0", "bbob-biobj-mixint_f030_i15_d080 1.0", "bbob-biobj-mixint_f030_i15_d160 1.0", "bbob-biobj-mixint_f031_i01_d005 1.0", "bbob-biobj-mixint_f031_i01_d010 1.0", "bbob-biobj-mixint_f031_i01_d020 1.0", "bbob-biobj-mixint_f031_i01_d040 1.0", "bbob-biobj-mixint_f031_i01_d080 1.0", "bbob-biobj-mixint_f031_i01_d160 1.0", "bbob-biobj-mixint_f031_i02_d005 1.0", "bbob-biobj-mixint_f031_i02_d010 1.0", "bbob-biobj-mixint_f031_i02_d020 1.0", "bbob-biobj-mixint_f031_i02_d040 1.0", "bbob-biobj-mixint_f031_i02_d080 1.0", "bbob-biobj-mixint_f031_i02_d160 1.0", "bbob-biobj-mixint_f031_i03_d005 1.0", "bbob-biobj-mixint_f031_i03_d010 1.0", "bbob-biobj-mixint_f031_i03_d020 1.0", "bbob-biobj-mixint_f031_i03_d040 1.0", "bbob-biobj-mixint_f031_i03_d080 1.0", "bbob-biobj-mixint_f031_i03_d160 1.0", "bbob-biobj-mixint_f031_i04_d005 1.0", "bbob-biobj-mixint_f031_i04_d010 1.0", "bbob-biobj-mixint_f031_i04_d020 1.0", "bbob-biobj-mixint_f031_i04_d040 1.0", "bbob-biobj-mixint_f031_i04_d080 1.0", "bbob-biobj-mixint_f031_i04_d160 1.0", "bbob-biobj-mixint_f031_i05_d005 1.0", "bbob-biobj-mixint_f031_i05_d010 1.0", "bbob-biobj-mixint_f031_i05_d020 1.0", "bbob-biobj-mixint_f031_i05_d040 1.0", "bbob-biobj-mixint_f031_i05_d080 1.0", "bbob-biobj-mixint_f031_i05_d160 1.0", "bbob-biobj-mixint_f031_i06_d005 1.0", "bbob-biobj-mixint_f031_i06_d010 1.0", "bbob-biobj-mixint_f031_i06_d020 1.0", "bbob-biobj-mixint_f031_i06_d040 1.0", "bbob-biobj-mixint_f031_i06_d080 1.0", "bbob-biobj-mixint_f031_i06_d160 1.0", "bbob-biobj-mixint_f031_i07_d005 1.0", "bbob-biobj-mixint_f031_i07_d010 1.0", "bbob-biobj-mixint_f031_i07_d020 1.0", "bbob-biobj-mixint_f031_i07_d040 1.0", "bbob-biobj-mixint_f031_i07_d080 1.0", "bbob-biobj-mixint_f031_i07_d160 1.0", "bbob-biobj-mixint_f031_i08_d005 1.0", "bbob-biobj-mixint_f031_i08_d010 1.0", "bbob-biobj-mixint_f031_i08_d020 1.0", "bbob-biobj-mixint_f031_i08_d040 1.0", "bbob-biobj-mixint_f031_i08_d080 1.0", "bbob-biobj-mixint_f031_i08_d160 1.0", "bbob-biobj-mixint_f031_i09_d005 1.0", "bbob-biobj-mixint_f031_i09_d010 1.0", "bbob-biobj-mixint_f031_i09_d020 1.0", "bbob-biobj-mixint_f031_i09_d040 1.0", "bbob-biobj-mixint_f031_i09_d080 1.0", "bbob-biobj-mixint_f031_i09_d160 1.0", "bbob-biobj-mixint_f031_i10_d005 1.0", "bbob-biobj-mixint_f031_i10_d010 1.0", "bbob-biobj-mixint_f031_i10_d020 1.0", "bbob-biobj-mixint_f031_i10_d040 1.0", "bbob-biobj-mixint_f031_i10_d080 1.0", "bbob-biobj-mixint_f031_i10_d160 1.0", "bbob-biobj-mixint_f031_i11_d005 1.0", "bbob-biobj-mixint_f031_i11_d010 1.0", "bbob-biobj-mixint_f031_i11_d020 1.0", "bbob-biobj-mixint_f031_i11_d040 1.0", "bbob-biobj-mixint_f031_i11_d080 1.0", "bbob-biobj-mixint_f031_i11_d160 1.0", "bbob-biobj-mixint_f031_i12_d005 1.0", "bbob-biobj-mixint_f031_i12_d010 1.0", "bbob-biobj-mixint_f031_i12_d020 1.0", "bbob-biobj-mixint_f031_i12_d040 1.0", "bbob-biobj-mixint_f031_i12_d080 1.0", "bbob-biobj-mixint_f031_i12_d160 1.0", "bbob-biobj-mixint_f031_i13_d005 1.0", "bbob-biobj-mixint_f031_i13_d010 1.0", "bbob-biobj-mixint_f031_i13_d020 1.0", "bbob-biobj-mixint_f031_i13_d040 1.0", "bbob-biobj-mixint_f031_i13_d080 1.0", "bbob-biobj-mixint_f031_i13_d160 1.0", "bbob-biobj-mixint_f031_i14_d005 1.0", "bbob-biobj-mixint_f031_i14_d010 1.0", "bbob-biobj-mixint_f031_i14_d020 1.0", "bbob-biobj-mixint_f031_i14_d040 1.0", "bbob-biobj-mixint_f031_i14_d080 1.0", "bbob-biobj-mixint_f031_i14_d160 1.0", "bbob-biobj-mixint_f031_i15_d005 1.0", "bbob-biobj-mixint_f031_i15_d010 1.0", "bbob-biobj-mixint_f031_i15_d020 1.0", "bbob-biobj-mixint_f031_i15_d040 1.0", "bbob-biobj-mixint_f031_i15_d080 1.0", "bbob-biobj-mixint_f031_i15_d160 1.0", "bbob-biobj-mixint_f032_i01_d005 1.0", "bbob-biobj-mixint_f032_i01_d010 1.0", "bbob-biobj-mixint_f032_i01_d020 1.0", "bbob-biobj-mixint_f032_i01_d040 1.0", "bbob-biobj-mixint_f032_i01_d080 1.0", "bbob-biobj-mixint_f032_i01_d160 1.0", "bbob-biobj-mixint_f032_i02_d005 1.0", "bbob-biobj-mixint_f032_i02_d010 1.0", "bbob-biobj-mixint_f032_i02_d020 1.0", "bbob-biobj-mixint_f032_i02_d040 1.0", "bbob-biobj-mixint_f032_i02_d080 1.0", "bbob-biobj-mixint_f032_i02_d160 1.0", "bbob-biobj-mixint_f032_i03_d005 1.0", "bbob-biobj-mixint_f032_i03_d010 1.0", "bbob-biobj-mixint_f032_i03_d020 1.0", "bbob-biobj-mixint_f032_i03_d040 1.0", "bbob-biobj-mixint_f032_i03_d080 1.0", "bbob-biobj-mixint_f032_i03_d160 1.0", "bbob-biobj-mixint_f032_i04_d005 1.0", "bbob-biobj-mixint_f032_i04_d010 1.0", "bbob-biobj-mixint_f032_i04_d020 1.0", "bbob-biobj-mixint_f032_i04_d040 1.0", "bbob-biobj-mixint_f032_i04_d080 1.0", "bbob-biobj-mixint_f032_i04_d160 1.0", "bbob-biobj-mixint_f032_i05_d005 1.0", "bbob-biobj-mixint_f032_i05_d010 1.0", "bbob-biobj-mixint_f032_i05_d020 1.0", "bbob-biobj-mixint_f032_i05_d040 1.0", "bbob-biobj-mixint_f032_i05_d080 1.0", "bbob-biobj-mixint_f032_i05_d160 1.0", "bbob-biobj-mixint_f032_i06_d005 1.0", "bbob-biobj-mixint_f032_i06_d010 1.0", "bbob-biobj-mixint_f032_i06_d020 1.0", "bbob-biobj-mixint_f032_i06_d040 1.0", "bbob-biobj-mixint_f032_i06_d080 1.0", "bbob-biobj-mixint_f032_i06_d160 1.0", "bbob-biobj-mixint_f032_i07_d005 1.0", "bbob-biobj-mixint_f032_i07_d010 1.0", "bbob-biobj-mixint_f032_i07_d020 1.0", "bbob-biobj-mixint_f032_i07_d040 1.0", "bbob-biobj-mixint_f032_i07_d080 1.0", "bbob-biobj-mixint_f032_i07_d160 1.0", "bbob-biobj-mixint_f032_i08_d005 1.0", "bbob-biobj-mixint_f032_i08_d010 1.0", "bbob-biobj-mixint_f032_i08_d020 1.0", "bbob-biobj-mixint_f032_i08_d040 1.0", "bbob-biobj-mixint_f032_i08_d080 1.0", "bbob-biobj-mixint_f032_i08_d160 1.0", "bbob-biobj-mixint_f032_i09_d005 1.0", "bbob-biobj-mixint_f032_i09_d010 1.0", "bbob-biobj-mixint_f032_i09_d020 1.0", "bbob-biobj-mixint_f032_i09_d040 1.0", "bbob-biobj-mixint_f032_i09_d080 1.0", "bbob-biobj-mixint_f032_i09_d160 1.0", "bbob-biobj-mixint_f032_i10_d005 1.0", "bbob-biobj-mixint_f032_i10_d010 1.0", "bbob-biobj-mixint_f032_i10_d020 1.0", "bbob-biobj-mixint_f032_i10_d040 1.0", "bbob-biobj-mixint_f032_i10_d080 1.0", "bbob-biobj-mixint_f032_i10_d160 1.0", "bbob-biobj-mixint_f032_i11_d005 1.0", "bbob-biobj-mixint_f032_i11_d010 1.0", "bbob-biobj-mixint_f032_i11_d020 1.0", "bbob-biobj-mixint_f032_i11_d040 1.0", "bbob-biobj-mixint_f032_i11_d080 1.0", "bbob-biobj-mixint_f032_i11_d160 1.0", "bbob-biobj-mixint_f032_i12_d005 1.0", "bbob-biobj-mixint_f032_i12_d010 1.0", "bbob-biobj-mixint_f032_i12_d020 1.0", "bbob-biobj-mixint_f032_i12_d040 1.0", "bbob-biobj-mixint_f032_i12_d080 1.0", "bbob-biobj-mixint_f032_i12_d160 1.0", "bbob-biobj-mixint_f032_i13_d005 1.0", "bbob-biobj-mixint_f032_i13_d010 1.0", "bbob-biobj-mixint_f032_i13_d020 1.0", "bbob-biobj-mixint_f032_i13_d040 1.0", "bbob-biobj-mixint_f032_i13_d080 1.0", "bbob-biobj-mixint_f032_i13_d160 1.0", "bbob-biobj-mixint_f032_i14_d005 1.0", "bbob-biobj-mixint_f032_i14_d010 1.0", "bbob-biobj-mixint_f032_i14_d020 1.0", "bbob-biobj-mixint_f032_i14_d040 1.0", "bbob-biobj-mixint_f032_i14_d080 1.0", "bbob-biobj-mixint_f032_i14_d160 1.0", "bbob-biobj-mixint_f032_i15_d005 1.0", "bbob-biobj-mixint_f032_i15_d010 1.0", "bbob-biobj-mixint_f032_i15_d020 1.0", "bbob-biobj-mixint_f032_i15_d040 1.0", "bbob-biobj-mixint_f032_i15_d080 1.0", "bbob-biobj-mixint_f032_i15_d160 1.0", "bbob-biobj-mixint_f033_i01_d005 1.0", "bbob-biobj-mixint_f033_i01_d010 1.0", "bbob-biobj-mixint_f033_i01_d020 1.0", "bbob-biobj-mixint_f033_i01_d040 1.0", "bbob-biobj-mixint_f033_i01_d080 1.0", "bbob-biobj-mixint_f033_i01_d160 1.0", "bbob-biobj-mixint_f033_i02_d005 1.0", "bbob-biobj-mixint_f033_i02_d010 1.0", "bbob-biobj-mixint_f033_i02_d020 1.0", "bbob-biobj-mixint_f033_i02_d040 1.0", "bbob-biobj-mixint_f033_i02_d080 1.0", "bbob-biobj-mixint_f033_i02_d160 1.0", "bbob-biobj-mixint_f033_i03_d005 1.0", "bbob-biobj-mixint_f033_i03_d010 1.0", "bbob-biobj-mixint_f033_i03_d020 1.0", "bbob-biobj-mixint_f033_i03_d040 1.0", "bbob-biobj-mixint_f033_i03_d080 1.0", "bbob-biobj-mixint_f033_i03_d160 1.0", "bbob-biobj-mixint_f033_i04_d005 1.0", "bbob-biobj-mixint_f033_i04_d010 1.0", "bbob-biobj-mixint_f033_i04_d020 1.0", "bbob-biobj-mixint_f033_i04_d040 1.0", "bbob-biobj-mixint_f033_i04_d080 1.0", "bbob-biobj-mixint_f033_i04_d160 1.0", "bbob-biobj-mixint_f033_i05_d005 1.0", "bbob-biobj-mixint_f033_i05_d010 1.0", "bbob-biobj-mixint_f033_i05_d020 1.0", "bbob-biobj-mixint_f033_i05_d040 1.0", "bbob-biobj-mixint_f033_i05_d080 1.0", "bbob-biobj-mixint_f033_i05_d160 1.0", "bbob-biobj-mixint_f033_i06_d005 1.0", "bbob-biobj-mixint_f033_i06_d010 1.0", "bbob-biobj-mixint_f033_i06_d020 1.0", "bbob-biobj-mixint_f033_i06_d040 1.0", "bbob-biobj-mixint_f033_i06_d080 1.0", "bbob-biobj-mixint_f033_i06_d160 1.0", "bbob-biobj-mixint_f033_i07_d005 1.0", "bbob-biobj-mixint_f033_i07_d010 1.0", "bbob-biobj-mixint_f033_i07_d020 1.0", "bbob-biobj-mixint_f033_i07_d040 1.0", "bbob-biobj-mixint_f033_i07_d080 1.0", "bbob-biobj-mixint_f033_i07_d160 1.0", "bbob-biobj-mixint_f033_i08_d005 1.0", "bbob-biobj-mixint_f033_i08_d010 1.0", "bbob-biobj-mixint_f033_i08_d020 1.0", "bbob-biobj-mixint_f033_i08_d040 1.0", "bbob-biobj-mixint_f033_i08_d080 1.0", "bbob-biobj-mixint_f033_i08_d160 1.0", "bbob-biobj-mixint_f033_i09_d005 1.0", "bbob-biobj-mixint_f033_i09_d010 1.0", "bbob-biobj-mixint_f033_i09_d020 1.0", "bbob-biobj-mixint_f033_i09_d040 1.0", "bbob-biobj-mixint_f033_i09_d080 1.0", "bbob-biobj-mixint_f033_i09_d160 1.0", "bbob-biobj-mixint_f033_i10_d005 1.0", "bbob-biobj-mixint_f033_i10_d010 1.0", "bbob-biobj-mixint_f033_i10_d020 1.0", "bbob-biobj-mixint_f033_i10_d040 1.0", "bbob-biobj-mixint_f033_i10_d080 1.0", "bbob-biobj-mixint_f033_i10_d160 1.0", "bbob-biobj-mixint_f033_i11_d005 1.0", "bbob-biobj-mixint_f033_i11_d010 1.0", "bbob-biobj-mixint_f033_i11_d020 1.0", "bbob-biobj-mixint_f033_i11_d040 1.0", "bbob-biobj-mixint_f033_i11_d080 1.0", "bbob-biobj-mixint_f033_i11_d160 1.0", "bbob-biobj-mixint_f033_i12_d005 1.0", "bbob-biobj-mixint_f033_i12_d010 1.0", "bbob-biobj-mixint_f033_i12_d020 1.0", "bbob-biobj-mixint_f033_i12_d040 1.0", "bbob-biobj-mixint_f033_i12_d080 1.0", "bbob-biobj-mixint_f033_i12_d160 1.0", "bbob-biobj-mixint_f033_i13_d005 1.0", "bbob-biobj-mixint_f033_i13_d010 1.0", "bbob-biobj-mixint_f033_i13_d020 1.0", "bbob-biobj-mixint_f033_i13_d040 1.0", "bbob-biobj-mixint_f033_i13_d080 1.0", "bbob-biobj-mixint_f033_i13_d160 1.0", "bbob-biobj-mixint_f033_i14_d005 1.0", "bbob-biobj-mixint_f033_i14_d010 1.0", "bbob-biobj-mixint_f033_i14_d020 1.0", "bbob-biobj-mixint_f033_i14_d040 1.0", "bbob-biobj-mixint_f033_i14_d080 1.0", "bbob-biobj-mixint_f033_i14_d160 1.0", "bbob-biobj-mixint_f033_i15_d005 1.0", "bbob-biobj-mixint_f033_i15_d010 1.0", "bbob-biobj-mixint_f033_i15_d020 1.0", "bbob-biobj-mixint_f033_i15_d040 1.0", "bbob-biobj-mixint_f033_i15_d080 1.0", "bbob-biobj-mixint_f033_i15_d160 1.0", "bbob-biobj-mixint_f034_i01_d005 1.0", "bbob-biobj-mixint_f034_i01_d010 1.0", "bbob-biobj-mixint_f034_i01_d020 1.0", "bbob-biobj-mixint_f034_i01_d040 1.0", "bbob-biobj-mixint_f034_i01_d080 1.0", "bbob-biobj-mixint_f034_i01_d160 1.0", "bbob-biobj-mixint_f034_i02_d005 1.0", "bbob-biobj-mixint_f034_i02_d010 1.0", "bbob-biobj-mixint_f034_i02_d020 1.0", "bbob-biobj-mixint_f034_i02_d040 1.0", "bbob-biobj-mixint_f034_i02_d080 1.0", "bbob-biobj-mixint_f034_i02_d160 1.0", "bbob-biobj-mixint_f034_i03_d005 1.0", "bbob-biobj-mixint_f034_i03_d010 1.0", "bbob-biobj-mixint_f034_i03_d020 1.0", "bbob-biobj-mixint_f034_i03_d040 1.0", "bbob-biobj-mixint_f034_i03_d080 1.0", "bbob-biobj-mixint_f034_i03_d160 1.0", "bbob-biobj-mixint_f034_i04_d005 1.0", "bbob-biobj-mixint_f034_i04_d010 1.0", "bbob-biobj-mixint_f034_i04_d020 1.0", "bbob-biobj-mixint_f034_i04_d040 1.0", "bbob-biobj-mixint_f034_i04_d080 1.0", "bbob-biobj-mixint_f034_i04_d160 1.0", "bbob-biobj-mixint_f034_i05_d005 1.0", "bbob-biobj-mixint_f034_i05_d010 1.0", "bbob-biobj-mixint_f034_i05_d020 1.0", "bbob-biobj-mixint_f034_i05_d040 1.0", "bbob-biobj-mixint_f034_i05_d080 1.0", "bbob-biobj-mixint_f034_i05_d160 1.0", "bbob-biobj-mixint_f034_i06_d005 1.0", "bbob-biobj-mixint_f034_i06_d010 1.0", "bbob-biobj-mixint_f034_i06_d020 1.0", "bbob-biobj-mixint_f034_i06_d040 1.0", "bbob-biobj-mixint_f034_i06_d080 1.0", "bbob-biobj-mixint_f034_i06_d160 1.0", "bbob-biobj-mixint_f034_i07_d005 1.0", "bbob-biobj-mixint_f034_i07_d010 1.0", "bbob-biobj-mixint_f034_i07_d020 1.0", "bbob-biobj-mixint_f034_i07_d040 1.0", "bbob-biobj-mixint_f034_i07_d080 1.0", "bbob-biobj-mixint_f034_i07_d160 1.0", "bbob-biobj-mixint_f034_i08_d005 1.0", "bbob-biobj-mixint_f034_i08_d010 1.0", "bbob-biobj-mixint_f034_i08_d020 1.0", "bbob-biobj-mixint_f034_i08_d040 1.0", "bbob-biobj-mixint_f034_i08_d080 1.0", "bbob-biobj-mixint_f034_i08_d160 1.0", "bbob-biobj-mixint_f034_i09_d005 1.0", "bbob-biobj-mixint_f034_i09_d010 1.0", "bbob-biobj-mixint_f034_i09_d020 1.0", "bbob-biobj-mixint_f034_i09_d040 1.0", "bbob-biobj-mixint_f034_i09_d080 1.0", "bbob-biobj-mixint_f034_i09_d160 1.0", "bbob-biobj-mixint_f034_i10_d005 1.0", "bbob-biobj-mixint_f034_i10_d010 1.0", "bbob-biobj-mixint_f034_i10_d020 1.0", "bbob-biobj-mixint_f034_i10_d040 1.0", "bbob-biobj-mixint_f034_i10_d080 1.0", "bbob-biobj-mixint_f034_i10_d160 1.0", "bbob-biobj-mixint_f034_i11_d005 1.0", "bbob-biobj-mixint_f034_i11_d010 1.0", "bbob-biobj-mixint_f034_i11_d020 1.0", "bbob-biobj-mixint_f034_i11_d040 1.0", "bbob-biobj-mixint_f034_i11_d080 1.0", "bbob-biobj-mixint_f034_i11_d160 1.0", "bbob-biobj-mixint_f034_i12_d005 1.0", "bbob-biobj-mixint_f034_i12_d010 1.0", "bbob-biobj-mixint_f034_i12_d020 1.0", "bbob-biobj-mixint_f034_i12_d040 1.0", "bbob-biobj-mixint_f034_i12_d080 1.0", "bbob-biobj-mixint_f034_i12_d160 1.0", "bbob-biobj-mixint_f034_i13_d005 1.0", "bbob-biobj-mixint_f034_i13_d010 1.0", "bbob-biobj-mixint_f034_i13_d020 1.0", "bbob-biobj-mixint_f034_i13_d040 1.0", "bbob-biobj-mixint_f034_i13_d080 1.0", "bbob-biobj-mixint_f034_i13_d160 1.0", "bbob-biobj-mixint_f034_i14_d005 1.0", "bbob-biobj-mixint_f034_i14_d010 1.0", "bbob-biobj-mixint_f034_i14_d020 1.0", "bbob-biobj-mixint_f034_i14_d040 1.0", "bbob-biobj-mixint_f034_i14_d080 1.0", "bbob-biobj-mixint_f034_i14_d160 1.0", "bbob-biobj-mixint_f034_i15_d005 1.0", "bbob-biobj-mixint_f034_i15_d010 1.0", "bbob-biobj-mixint_f034_i15_d020 1.0", "bbob-biobj-mixint_f034_i15_d040 1.0", "bbob-biobj-mixint_f034_i15_d080 1.0", "bbob-biobj-mixint_f034_i15_d160 1.0", "bbob-biobj-mixint_f035_i01_d005 1.0", "bbob-biobj-mixint_f035_i01_d010 1.0", "bbob-biobj-mixint_f035_i01_d020 1.0", "bbob-biobj-mixint_f035_i01_d040 1.0", "bbob-biobj-mixint_f035_i01_d080 1.0", "bbob-biobj-mixint_f035_i01_d160 1.0", "bbob-biobj-mixint_f035_i02_d005 1.0", "bbob-biobj-mixint_f035_i02_d010 1.0", "bbob-biobj-mixint_f035_i02_d020 1.0", "bbob-biobj-mixint_f035_i02_d040 1.0", "bbob-biobj-mixint_f035_i02_d080 1.0", "bbob-biobj-mixint_f035_i02_d160 1.0", "bbob-biobj-mixint_f035_i03_d005 1.0", "bbob-biobj-mixint_f035_i03_d010 1.0", "bbob-biobj-mixint_f035_i03_d020 1.0", "bbob-biobj-mixint_f035_i03_d040 1.0", "bbob-biobj-mixint_f035_i03_d080 1.0", "bbob-biobj-mixint_f035_i03_d160 1.0", "bbob-biobj-mixint_f035_i04_d005 1.0", "bbob-biobj-mixint_f035_i04_d010 1.0", "bbob-biobj-mixint_f035_i04_d020 1.0", "bbob-biobj-mixint_f035_i04_d040 1.0", "bbob-biobj-mixint_f035_i04_d080 1.0", "bbob-biobj-mixint_f035_i04_d160 1.0", "bbob-biobj-mixint_f035_i05_d005 1.0", "bbob-biobj-mixint_f035_i05_d010 1.0", "bbob-biobj-mixint_f035_i05_d020 1.0", "bbob-biobj-mixint_f035_i05_d040 1.0", "bbob-biobj-mixint_f035_i05_d080 1.0", "bbob-biobj-mixint_f035_i05_d160 1.0", "bbob-biobj-mixint_f035_i06_d005 1.0", "bbob-biobj-mixint_f035_i06_d010 1.0", "bbob-biobj-mixint_f035_i06_d020 1.0", "bbob-biobj-mixint_f035_i06_d040 1.0", "bbob-biobj-mixint_f035_i06_d080 1.0", "bbob-biobj-mixint_f035_i06_d160 1.0", "bbob-biobj-mixint_f035_i07_d005 1.0", "bbob-biobj-mixint_f035_i07_d010 1.0", "bbob-biobj-mixint_f035_i07_d020 1.0", "bbob-biobj-mixint_f035_i07_d040 1.0", "bbob-biobj-mixint_f035_i07_d080 1.0", "bbob-biobj-mixint_f035_i07_d160 1.0", "bbob-biobj-mixint_f035_i08_d005 1.0", "bbob-biobj-mixint_f035_i08_d010 1.0", "bbob-biobj-mixint_f035_i08_d020 1.0", "bbob-biobj-mixint_f035_i08_d040 1.0", "bbob-biobj-mixint_f035_i08_d080 1.0", "bbob-biobj-mixint_f035_i08_d160 1.0", "bbob-biobj-mixint_f035_i09_d005 1.0", "bbob-biobj-mixint_f035_i09_d010 1.0", "bbob-biobj-mixint_f035_i09_d020 1.0", "bbob-biobj-mixint_f035_i09_d040 1.0", "bbob-biobj-mixint_f035_i09_d080 1.0", "bbob-biobj-mixint_f035_i09_d160 1.0", "bbob-biobj-mixint_f035_i10_d005 1.0", "bbob-biobj-mixint_f035_i10_d010 1.0", "bbob-biobj-mixint_f035_i10_d020 1.0", "bbob-biobj-mixint_f035_i10_d040 1.0", "bbob-biobj-mixint_f035_i10_d080 1.0", "bbob-biobj-mixint_f035_i10_d160 1.0", "bbob-biobj-mixint_f035_i11_d005 1.0", "bbob-biobj-mixint_f035_i11_d010 1.0", "bbob-biobj-mixint_f035_i11_d020 1.0", "bbob-biobj-mixint_f035_i11_d040 1.0", "bbob-biobj-mixint_f035_i11_d080 1.0", "bbob-biobj-mixint_f035_i11_d160 1.0", "bbob-biobj-mixint_f035_i12_d005 1.0", "bbob-biobj-mixint_f035_i12_d010 1.0", "bbob-biobj-mixint_f035_i12_d020 1.0", "bbob-biobj-mixint_f035_i12_d040 1.0", "bbob-biobj-mixint_f035_i12_d080 1.0", "bbob-biobj-mixint_f035_i12_d160 1.0", "bbob-biobj-mixint_f035_i13_d005 1.0", "bbob-biobj-mixint_f035_i13_d010 1.0", "bbob-biobj-mixint_f035_i13_d020 1.0", "bbob-biobj-mixint_f035_i13_d040 1.0", "bbob-biobj-mixint_f035_i13_d080 1.0", "bbob-biobj-mixint_f035_i13_d160 1.0", "bbob-biobj-mixint_f035_i14_d005 1.0", "bbob-biobj-mixint_f035_i14_d010 1.0", "bbob-biobj-mixint_f035_i14_d020 1.0", "bbob-biobj-mixint_f035_i14_d040 1.0", "bbob-biobj-mixint_f035_i14_d080 1.0", "bbob-biobj-mixint_f035_i14_d160 1.0", "bbob-biobj-mixint_f035_i15_d005 1.0", "bbob-biobj-mixint_f035_i15_d010 1.0", "bbob-biobj-mixint_f035_i15_d020 1.0", "bbob-biobj-mixint_f035_i15_d040 1.0", "bbob-biobj-mixint_f035_i15_d080 1.0", "bbob-biobj-mixint_f035_i15_d160 1.0", "bbob-biobj-mixint_f036_i01_d005 1.0", "bbob-biobj-mixint_f036_i01_d010 1.0", "bbob-biobj-mixint_f036_i01_d020 1.0", "bbob-biobj-mixint_f036_i01_d040 1.0", "bbob-biobj-mixint_f036_i01_d080 1.0", "bbob-biobj-mixint_f036_i01_d160 1.0", "bbob-biobj-mixint_f036_i02_d005 1.0", "bbob-biobj-mixint_f036_i02_d010 1.0", "bbob-biobj-mixint_f036_i02_d020 1.0", "bbob-biobj-mixint_f036_i02_d040 1.0", "bbob-biobj-mixint_f036_i02_d080 1.0", "bbob-biobj-mixint_f036_i02_d160 1.0", "bbob-biobj-mixint_f036_i03_d005 1.0", "bbob-biobj-mixint_f036_i03_d010 1.0", "bbob-biobj-mixint_f036_i03_d020 1.0", "bbob-biobj-mixint_f036_i03_d040 1.0", "bbob-biobj-mixint_f036_i03_d080 1.0", "bbob-biobj-mixint_f036_i03_d160 1.0", "bbob-biobj-mixint_f036_i04_d005 1.0", "bbob-biobj-mixint_f036_i04_d010 1.0", "bbob-biobj-mixint_f036_i04_d020 1.0", "bbob-biobj-mixint_f036_i04_d040 1.0", "bbob-biobj-mixint_f036_i04_d080 1.0", "bbob-biobj-mixint_f036_i04_d160 1.0", "bbob-biobj-mixint_f036_i05_d005 1.0", "bbob-biobj-mixint_f036_i05_d010 1.0", "bbob-biobj-mixint_f036_i05_d020 1.0", "bbob-biobj-mixint_f036_i05_d040 1.0", "bbob-biobj-mixint_f036_i05_d080 1.0", "bbob-biobj-mixint_f036_i05_d160 1.0", "bbob-biobj-mixint_f036_i06_d005 1.0", "bbob-biobj-mixint_f036_i06_d010 1.0", "bbob-biobj-mixint_f036_i06_d020 1.0", "bbob-biobj-mixint_f036_i06_d040 1.0", "bbob-biobj-mixint_f036_i06_d080 1.0", "bbob-biobj-mixint_f036_i06_d160 1.0", "bbob-biobj-mixint_f036_i07_d005 1.0", "bbob-biobj-mixint_f036_i07_d010 1.0", "bbob-biobj-mixint_f036_i07_d020 1.0", "bbob-biobj-mixint_f036_i07_d040 1.0", "bbob-biobj-mixint_f036_i07_d080 1.0", "bbob-biobj-mixint_f036_i07_d160 1.0", "bbob-biobj-mixint_f036_i08_d005 1.0", "bbob-biobj-mixint_f036_i08_d010 1.0", "bbob-biobj-mixint_f036_i08_d020 1.0", "bbob-biobj-mixint_f036_i08_d040 1.0", "bbob-biobj-mixint_f036_i08_d080 1.0", "bbob-biobj-mixint_f036_i08_d160 1.0", "bbob-biobj-mixint_f036_i09_d005 1.0", "bbob-biobj-mixint_f036_i09_d010 1.0", "bbob-biobj-mixint_f036_i09_d020 1.0", "bbob-biobj-mixint_f036_i09_d040 1.0", "bbob-biobj-mixint_f036_i09_d080 1.0", "bbob-biobj-mixint_f036_i09_d160 1.0", "bbob-biobj-mixint_f036_i10_d005 1.0", "bbob-biobj-mixint_f036_i10_d010 1.0", "bbob-biobj-mixint_f036_i10_d020 1.0", "bbob-biobj-mixint_f036_i10_d040 1.0", "bbob-biobj-mixint_f036_i10_d080 1.0", "bbob-biobj-mixint_f036_i10_d160 1.0", "bbob-biobj-mixint_f036_i11_d005 1.0", "bbob-biobj-mixint_f036_i11_d010 1.0", "bbob-biobj-mixint_f036_i11_d020 1.0", "bbob-biobj-mixint_f036_i11_d040 1.0", "bbob-biobj-mixint_f036_i11_d080 1.0", "bbob-biobj-mixint_f036_i11_d160 1.0", "bbob-biobj-mixint_f036_i12_d005 1.0", "bbob-biobj-mixint_f036_i12_d010 1.0", "bbob-biobj-mixint_f036_i12_d020 1.0", "bbob-biobj-mixint_f036_i12_d040 1.0", "bbob-biobj-mixint_f036_i12_d080 1.0", "bbob-biobj-mixint_f036_i12_d160 1.0", "bbob-biobj-mixint_f036_i13_d005 1.0", "bbob-biobj-mixint_f036_i13_d010 1.0", "bbob-biobj-mixint_f036_i13_d020 1.0", "bbob-biobj-mixint_f036_i13_d040 1.0", "bbob-biobj-mixint_f036_i13_d080 1.0", "bbob-biobj-mixint_f036_i13_d160 1.0", "bbob-biobj-mixint_f036_i14_d005 1.0", "bbob-biobj-mixint_f036_i14_d010 1.0", "bbob-biobj-mixint_f036_i14_d020 1.0", "bbob-biobj-mixint_f036_i14_d040 1.0", "bbob-biobj-mixint_f036_i14_d080 1.0", "bbob-biobj-mixint_f036_i14_d160 1.0", "bbob-biobj-mixint_f036_i15_d005 1.0", "bbob-biobj-mixint_f036_i15_d010 1.0", "bbob-biobj-mixint_f036_i15_d020 1.0", "bbob-biobj-mixint_f036_i15_d040 1.0", "bbob-biobj-mixint_f036_i15_d080 1.0", "bbob-biobj-mixint_f036_i15_d160 1.0", "bbob-biobj-mixint_f037_i01_d005 1.0", "bbob-biobj-mixint_f037_i01_d010 1.0", "bbob-biobj-mixint_f037_i01_d020 1.0", "bbob-biobj-mixint_f037_i01_d040 1.0", "bbob-biobj-mixint_f037_i01_d080 1.0", "bbob-biobj-mixint_f037_i01_d160 1.0", "bbob-biobj-mixint_f037_i02_d005 1.0", "bbob-biobj-mixint_f037_i02_d010 1.0", "bbob-biobj-mixint_f037_i02_d020 1.0", "bbob-biobj-mixint_f037_i02_d040 1.0", "bbob-biobj-mixint_f037_i02_d080 1.0", "bbob-biobj-mixint_f037_i02_d160 1.0", "bbob-biobj-mixint_f037_i03_d005 1.0", "bbob-biobj-mixint_f037_i03_d010 1.0", "bbob-biobj-mixint_f037_i03_d020 1.0", "bbob-biobj-mixint_f037_i03_d040 1.0", "bbob-biobj-mixint_f037_i03_d080 1.0", "bbob-biobj-mixint_f037_i03_d160 1.0", "bbob-biobj-mixint_f037_i04_d005 1.0", "bbob-biobj-mixint_f037_i04_d010 1.0", "bbob-biobj-mixint_f037_i04_d020 1.0", "bbob-biobj-mixint_f037_i04_d040 1.0", "bbob-biobj-mixint_f037_i04_d080 1.0", "bbob-biobj-mixint_f037_i04_d160 1.0", "bbob-biobj-mixint_f037_i05_d005 1.0", "bbob-biobj-mixint_f037_i05_d010 1.0", "bbob-biobj-mixint_f037_i05_d020 1.0", "bbob-biobj-mixint_f037_i05_d040 1.0", "bbob-biobj-mixint_f037_i05_d080 1.0", "bbob-biobj-mixint_f037_i05_d160 1.0", "bbob-biobj-mixint_f037_i06_d005 1.0", "bbob-biobj-mixint_f037_i06_d010 1.0", "bbob-biobj-mixint_f037_i06_d020 1.0", "bbob-biobj-mixint_f037_i06_d040 1.0", "bbob-biobj-mixint_f037_i06_d080 1.0", "bbob-biobj-mixint_f037_i06_d160 1.0", "bbob-biobj-mixint_f037_i07_d005 1.0", "bbob-biobj-mixint_f037_i07_d010 1.0", "bbob-biobj-mixint_f037_i07_d020 1.0", "bbob-biobj-mixint_f037_i07_d040 1.0", "bbob-biobj-mixint_f037_i07_d080 1.0", "bbob-biobj-mixint_f037_i07_d160 1.0", "bbob-biobj-mixint_f037_i08_d005 1.0", "bbob-biobj-mixint_f037_i08_d010 1.0", "bbob-biobj-mixint_f037_i08_d020 1.0", "bbob-biobj-mixint_f037_i08_d040 1.0", "bbob-biobj-mixint_f037_i08_d080 1.0", "bbob-biobj-mixint_f037_i08_d160 1.0", "bbob-biobj-mixint_f037_i09_d005 1.0", "bbob-biobj-mixint_f037_i09_d010 1.0", "bbob-biobj-mixint_f037_i09_d020 1.0", "bbob-biobj-mixint_f037_i09_d040 1.0", "bbob-biobj-mixint_f037_i09_d080 1.0", "bbob-biobj-mixint_f037_i09_d160 1.0", "bbob-biobj-mixint_f037_i10_d005 1.0", "bbob-biobj-mixint_f037_i10_d010 1.0", "bbob-biobj-mixint_f037_i10_d020 1.0", "bbob-biobj-mixint_f037_i10_d040 1.0", "bbob-biobj-mixint_f037_i10_d080 1.0", "bbob-biobj-mixint_f037_i10_d160 1.0", "bbob-biobj-mixint_f037_i11_d005 1.0", "bbob-biobj-mixint_f037_i11_d010 1.0", "bbob-biobj-mixint_f037_i11_d020 1.0", "bbob-biobj-mixint_f037_i11_d040 1.0", "bbob-biobj-mixint_f037_i11_d080 1.0", "bbob-biobj-mixint_f037_i11_d160 1.0", "bbob-biobj-mixint_f037_i12_d005 1.0", "bbob-biobj-mixint_f037_i12_d010 1.0", "bbob-biobj-mixint_f037_i12_d020 1.0", "bbob-biobj-mixint_f037_i12_d040 1.0", "bbob-biobj-mixint_f037_i12_d080 1.0", "bbob-biobj-mixint_f037_i12_d160 1.0", "bbob-biobj-mixint_f037_i13_d005 1.0", "bbob-biobj-mixint_f037_i13_d010 1.0", "bbob-biobj-mixint_f037_i13_d020 1.0", "bbob-biobj-mixint_f037_i13_d040 1.0", "bbob-biobj-mixint_f037_i13_d080 1.0", "bbob-biobj-mixint_f037_i13_d160 1.0", "bbob-biobj-mixint_f037_i14_d005 1.0", "bbob-biobj-mixint_f037_i14_d010 1.0", "bbob-biobj-mixint_f037_i14_d020 1.0", "bbob-biobj-mixint_f037_i14_d040 1.0", "bbob-biobj-mixint_f037_i14_d080 1.0", "bbob-biobj-mixint_f037_i14_d160 1.0", "bbob-biobj-mixint_f037_i15_d005 1.0", "bbob-biobj-mixint_f037_i15_d010 1.0", "bbob-biobj-mixint_f037_i15_d020 1.0", "bbob-biobj-mixint_f037_i15_d040 1.0", "bbob-biobj-mixint_f037_i15_d080 1.0", "bbob-biobj-mixint_f037_i15_d160 1.0", "bbob-biobj-mixint_f038_i01_d005 1.0", "bbob-biobj-mixint_f038_i01_d010 1.0", "bbob-biobj-mixint_f038_i01_d020 1.0", "bbob-biobj-mixint_f038_i01_d040 1.0", "bbob-biobj-mixint_f038_i01_d080 1.0", "bbob-biobj-mixint_f038_i01_d160 1.0", "bbob-biobj-mixint_f038_i02_d005 1.0", "bbob-biobj-mixint_f038_i02_d010 1.0", "bbob-biobj-mixint_f038_i02_d020 1.0", "bbob-biobj-mixint_f038_i02_d040 1.0", "bbob-biobj-mixint_f038_i02_d080 1.0", "bbob-biobj-mixint_f038_i02_d160 1.0", "bbob-biobj-mixint_f038_i03_d005 1.0", "bbob-biobj-mixint_f038_i03_d010 1.0", "bbob-biobj-mixint_f038_i03_d020 1.0", "bbob-biobj-mixint_f038_i03_d040 1.0", "bbob-biobj-mixint_f038_i03_d080 1.0", "bbob-biobj-mixint_f038_i03_d160 1.0", "bbob-biobj-mixint_f038_i04_d005 1.0", "bbob-biobj-mixint_f038_i04_d010 1.0", "bbob-biobj-mixint_f038_i04_d020 1.0", "bbob-biobj-mixint_f038_i04_d040 1.0", "bbob-biobj-mixint_f038_i04_d080 1.0", "bbob-biobj-mixint_f038_i04_d160 1.0", "bbob-biobj-mixint_f038_i05_d005 1.0", "bbob-biobj-mixint_f038_i05_d010 1.0", "bbob-biobj-mixint_f038_i05_d020 1.0", "bbob-biobj-mixint_f038_i05_d040 1.0", "bbob-biobj-mixint_f038_i05_d080 1.0", "bbob-biobj-mixint_f038_i05_d160 1.0", "bbob-biobj-mixint_f038_i06_d005 1.0", "bbob-biobj-mixint_f038_i06_d010 1.0", "bbob-biobj-mixint_f038_i06_d020 1.0", "bbob-biobj-mixint_f038_i06_d040 1.0", "bbob-biobj-mixint_f038_i06_d080 1.0", "bbob-biobj-mixint_f038_i06_d160 1.0", "bbob-biobj-mixint_f038_i07_d005 1.0", "bbob-biobj-mixint_f038_i07_d010 1.0", "bbob-biobj-mixint_f038_i07_d020 1.0", "bbob-biobj-mixint_f038_i07_d040 1.0", "bbob-biobj-mixint_f038_i07_d080 1.0", "bbob-biobj-mixint_f038_i07_d160 1.0", "bbob-biobj-mixint_f038_i08_d005 1.0", "bbob-biobj-mixint_f038_i08_d010 1.0", "bbob-biobj-mixint_f038_i08_d020 1.0", "bbob-biobj-mixint_f038_i08_d040 1.0", "bbob-biobj-mixint_f038_i08_d080 1.0", "bbob-biobj-mixint_f038_i08_d160 1.0", "bbob-biobj-mixint_f038_i09_d005 1.0", "bbob-biobj-mixint_f038_i09_d010 1.0", "bbob-biobj-mixint_f038_i09_d020 1.0", "bbob-biobj-mixint_f038_i09_d040 1.0", "bbob-biobj-mixint_f038_i09_d080 1.0", "bbob-biobj-mixint_f038_i09_d160 1.0", "bbob-biobj-mixint_f038_i10_d005 1.0", "bbob-biobj-mixint_f038_i10_d010 1.0", "bbob-biobj-mixint_f038_i10_d020 1.0", "bbob-biobj-mixint_f038_i10_d040 1.0", "bbob-biobj-mixint_f038_i10_d080 1.0", "bbob-biobj-mixint_f038_i10_d160 1.0", "bbob-biobj-mixint_f038_i11_d005 1.0", "bbob-biobj-mixint_f038_i11_d010 1.0", "bbob-biobj-mixint_f038_i11_d020 1.0", "bbob-biobj-mixint_f038_i11_d040 1.0", "bbob-biobj-mixint_f038_i11_d080 1.0", "bbob-biobj-mixint_f038_i11_d160 1.0", "bbob-biobj-mixint_f038_i12_d005 1.0", "bbob-biobj-mixint_f038_i12_d010 1.0", "bbob-biobj-mixint_f038_i12_d020 1.0", "bbob-biobj-mixint_f038_i12_d040 1.0", "bbob-biobj-mixint_f038_i12_d080 1.0", "bbob-biobj-mixint_f038_i12_d160 1.0", "bbob-biobj-mixint_f038_i13_d005 1.0", "bbob-biobj-mixint_f038_i13_d010 1.0", "bbob-biobj-mixint_f038_i13_d020 1.0", "bbob-biobj-mixint_f038_i13_d040 1.0", "bbob-biobj-mixint_f038_i13_d080 1.0", "bbob-biobj-mixint_f038_i13_d160 1.0", "bbob-biobj-mixint_f038_i14_d005 1.0", "bbob-biobj-mixint_f038_i14_d010 1.0", "bbob-biobj-mixint_f038_i14_d020 1.0", "bbob-biobj-mixint_f038_i14_d040 1.0", "bbob-biobj-mixint_f038_i14_d080 1.0", "bbob-biobj-mixint_f038_i14_d160 1.0", "bbob-biobj-mixint_f038_i15_d005 1.0", "bbob-biobj-mixint_f038_i15_d010 1.0", "bbob-biobj-mixint_f038_i15_d020 1.0", "bbob-biobj-mixint_f038_i15_d040 1.0", "bbob-biobj-mixint_f038_i15_d080 1.0", "bbob-biobj-mixint_f038_i15_d160 1.0", "bbob-biobj-mixint_f039_i01_d005 1.0", "bbob-biobj-mixint_f039_i01_d010 1.0", "bbob-biobj-mixint_f039_i01_d020 1.0", "bbob-biobj-mixint_f039_i01_d040 1.0", "bbob-biobj-mixint_f039_i01_d080 1.0", "bbob-biobj-mixint_f039_i01_d160 1.0", "bbob-biobj-mixint_f039_i02_d005 1.0", "bbob-biobj-mixint_f039_i02_d010 1.0", "bbob-biobj-mixint_f039_i02_d020 1.0", "bbob-biobj-mixint_f039_i02_d040 1.0", "bbob-biobj-mixint_f039_i02_d080 1.0", "bbob-biobj-mixint_f039_i02_d160 1.0", "bbob-biobj-mixint_f039_i03_d005 1.0", "bbob-biobj-mixint_f039_i03_d010 1.0", "bbob-biobj-mixint_f039_i03_d020 1.0", "bbob-biobj-mixint_f039_i03_d040 1.0", "bbob-biobj-mixint_f039_i03_d080 1.0", "bbob-biobj-mixint_f039_i03_d160 1.0", "bbob-biobj-mixint_f039_i04_d005 1.0", "bbob-biobj-mixint_f039_i04_d010 1.0", "bbob-biobj-mixint_f039_i04_d020 1.0", "bbob-biobj-mixint_f039_i04_d040 1.0", "bbob-biobj-mixint_f039_i04_d080 1.0", "bbob-biobj-mixint_f039_i04_d160 1.0", "bbob-biobj-mixint_f039_i05_d005 1.0", "bbob-biobj-mixint_f039_i05_d010 1.0", "bbob-biobj-mixint_f039_i05_d020 1.0", "bbob-biobj-mixint_f039_i05_d040 1.0", "bbob-biobj-mixint_f039_i05_d080 1.0", "bbob-biobj-mixint_f039_i05_d160 1.0", "bbob-biobj-mixint_f039_i06_d005 1.0", "bbob-biobj-mixint_f039_i06_d010 1.0", "bbob-biobj-mixint_f039_i06_d020 1.0", "bbob-biobj-mixint_f039_i06_d040 1.0", "bbob-biobj-mixint_f039_i06_d080 1.0", "bbob-biobj-mixint_f039_i06_d160 1.0", "bbob-biobj-mixint_f039_i07_d005 1.0", "bbob-biobj-mixint_f039_i07_d010 1.0", "bbob-biobj-mixint_f039_i07_d020 1.0", "bbob-biobj-mixint_f039_i07_d040 1.0", "bbob-biobj-mixint_f039_i07_d080 1.0", "bbob-biobj-mixint_f039_i07_d160 1.0", "bbob-biobj-mixint_f039_i08_d005 1.0", "bbob-biobj-mixint_f039_i08_d010 1.0", "bbob-biobj-mixint_f039_i08_d020 1.0", "bbob-biobj-mixint_f039_i08_d040 1.0", "bbob-biobj-mixint_f039_i08_d080 1.0", "bbob-biobj-mixint_f039_i08_d160 1.0", "bbob-biobj-mixint_f039_i09_d005 1.0", "bbob-biobj-mixint_f039_i09_d010 1.0", "bbob-biobj-mixint_f039_i09_d020 1.0", "bbob-biobj-mixint_f039_i09_d040 1.0", "bbob-biobj-mixint_f039_i09_d080 1.0", "bbob-biobj-mixint_f039_i09_d160 1.0", "bbob-biobj-mixint_f039_i10_d005 1.0", "bbob-biobj-mixint_f039_i10_d010 1.0", "bbob-biobj-mixint_f039_i10_d020 1.0", "bbob-biobj-mixint_f039_i10_d040 1.0", "bbob-biobj-mixint_f039_i10_d080 1.0", "bbob-biobj-mixint_f039_i10_d160 1.0", "bbob-biobj-mixint_f039_i11_d005 1.0", "bbob-biobj-mixint_f039_i11_d010 1.0", "bbob-biobj-mixint_f039_i11_d020 1.0", "bbob-biobj-mixint_f039_i11_d040 1.0", "bbob-biobj-mixint_f039_i11_d080 1.0", "bbob-biobj-mixint_f039_i11_d160 1.0", "bbob-biobj-mixint_f039_i12_d005 1.0", "bbob-biobj-mixint_f039_i12_d010 1.0", "bbob-biobj-mixint_f039_i12_d020 1.0", "bbob-biobj-mixint_f039_i12_d040 1.0", "bbob-biobj-mixint_f039_i12_d080 1.0", "bbob-biobj-mixint_f039_i12_d160 1.0", "bbob-biobj-mixint_f039_i13_d005 1.0", "bbob-biobj-mixint_f039_i13_d010 1.0", "bbob-biobj-mixint_f039_i13_d020 1.0", "bbob-biobj-mixint_f039_i13_d040 1.0", "bbob-biobj-mixint_f039_i13_d080 1.0", "bbob-biobj-mixint_f039_i13_d160 1.0", "bbob-biobj-mixint_f039_i14_d005 1.0", "bbob-biobj-mixint_f039_i14_d010 1.0", "bbob-biobj-mixint_f039_i14_d020 1.0", "bbob-biobj-mixint_f039_i14_d040 1.0", "bbob-biobj-mixint_f039_i14_d080 1.0", "bbob-biobj-mixint_f039_i14_d160 1.0", "bbob-biobj-mixint_f039_i15_d005 1.0", "bbob-biobj-mixint_f039_i15_d010 1.0", "bbob-biobj-mixint_f039_i15_d020 1.0", "bbob-biobj-mixint_f039_i15_d040 1.0", "bbob-biobj-mixint_f039_i15_d080 1.0", "bbob-biobj-mixint_f039_i15_d160 1.0", "bbob-biobj-mixint_f040_i01_d005 1.0", "bbob-biobj-mixint_f040_i01_d010 1.0", "bbob-biobj-mixint_f040_i01_d020 1.0", "bbob-biobj-mixint_f040_i01_d040 1.0", "bbob-biobj-mixint_f040_i01_d080 1.0", "bbob-biobj-mixint_f040_i01_d160 1.0", "bbob-biobj-mixint_f040_i02_d005 1.0", "bbob-biobj-mixint_f040_i02_d010 1.0", "bbob-biobj-mixint_f040_i02_d020 1.0", "bbob-biobj-mixint_f040_i02_d040 1.0", "bbob-biobj-mixint_f040_i02_d080 1.0", "bbob-biobj-mixint_f040_i02_d160 1.0", "bbob-biobj-mixint_f040_i03_d005 1.0", "bbob-biobj-mixint_f040_i03_d010 1.0", "bbob-biobj-mixint_f040_i03_d020 1.0", "bbob-biobj-mixint_f040_i03_d040 1.0", "bbob-biobj-mixint_f040_i03_d080 1.0", "bbob-biobj-mixint_f040_i03_d160 1.0", "bbob-biobj-mixint_f040_i04_d005 1.0", "bbob-biobj-mixint_f040_i04_d010 1.0", "bbob-biobj-mixint_f040_i04_d020 1.0", "bbob-biobj-mixint_f040_i04_d040 1.0", "bbob-biobj-mixint_f040_i04_d080 1.0", "bbob-biobj-mixint_f040_i04_d160 1.0", "bbob-biobj-mixint_f040_i05_d005 1.0", "bbob-biobj-mixint_f040_i05_d010 1.0", "bbob-biobj-mixint_f040_i05_d020 1.0", "bbob-biobj-mixint_f040_i05_d040 1.0", "bbob-biobj-mixint_f040_i05_d080 1.0", "bbob-biobj-mixint_f040_i05_d160 1.0", "bbob-biobj-mixint_f040_i06_d005 1.0", "bbob-biobj-mixint_f040_i06_d010 1.0", "bbob-biobj-mixint_f040_i06_d020 1.0", "bbob-biobj-mixint_f040_i06_d040 1.0", "bbob-biobj-mixint_f040_i06_d080 1.0", "bbob-biobj-mixint_f040_i06_d160 1.0", "bbob-biobj-mixint_f040_i07_d005 1.0", "bbob-biobj-mixint_f040_i07_d010 1.0", "bbob-biobj-mixint_f040_i07_d020 1.0", "bbob-biobj-mixint_f040_i07_d040 1.0", "bbob-biobj-mixint_f040_i07_d080 1.0", "bbob-biobj-mixint_f040_i07_d160 1.0", "bbob-biobj-mixint_f040_i08_d005 1.0", "bbob-biobj-mixint_f040_i08_d010 1.0", "bbob-biobj-mixint_f040_i08_d020 1.0", "bbob-biobj-mixint_f040_i08_d040 1.0", "bbob-biobj-mixint_f040_i08_d080 1.0", "bbob-biobj-mixint_f040_i08_d160 1.0", "bbob-biobj-mixint_f040_i09_d005 1.0", "bbob-biobj-mixint_f040_i09_d010 1.0", "bbob-biobj-mixint_f040_i09_d020 1.0", "bbob-biobj-mixint_f040_i09_d040 1.0", "bbob-biobj-mixint_f040_i09_d080 1.0", "bbob-biobj-mixint_f040_i09_d160 1.0", "bbob-biobj-mixint_f040_i10_d005 1.0", "bbob-biobj-mixint_f040_i10_d010 1.0", "bbob-biobj-mixint_f040_i10_d020 1.0", "bbob-biobj-mixint_f040_i10_d040 1.0", "bbob-biobj-mixint_f040_i10_d080 1.0", "bbob-biobj-mixint_f040_i10_d160 1.0", "bbob-biobj-mixint_f040_i11_d005 1.0", "bbob-biobj-mixint_f040_i11_d010 1.0", "bbob-biobj-mixint_f040_i11_d020 1.0", "bbob-biobj-mixint_f040_i11_d040 1.0", "bbob-biobj-mixint_f040_i11_d080 1.0", "bbob-biobj-mixint_f040_i11_d160 1.0", "bbob-biobj-mixint_f040_i12_d005 1.0", "bbob-biobj-mixint_f040_i12_d010 1.0", "bbob-biobj-mixint_f040_i12_d020 1.0", "bbob-biobj-mixint_f040_i12_d040 1.0", "bbob-biobj-mixint_f040_i12_d080 1.0", "bbob-biobj-mixint_f040_i12_d160 1.0", "bbob-biobj-mixint_f040_i13_d005 1.0", "bbob-biobj-mixint_f040_i13_d010 1.0", "bbob-biobj-mixint_f040_i13_d020 1.0", "bbob-biobj-mixint_f040_i13_d040 1.0", "bbob-biobj-mixint_f040_i13_d080 1.0", "bbob-biobj-mixint_f040_i13_d160 1.0", "bbob-biobj-mixint_f040_i14_d005 1.0", "bbob-biobj-mixint_f040_i14_d010 1.0", "bbob-biobj-mixint_f040_i14_d020 1.0", "bbob-biobj-mixint_f040_i14_d040 1.0", "bbob-biobj-mixint_f040_i14_d080 1.0", "bbob-biobj-mixint_f040_i14_d160 1.0", "bbob-biobj-mixint_f040_i15_d005 1.0", "bbob-biobj-mixint_f040_i15_d010 1.0", "bbob-biobj-mixint_f040_i15_d020 1.0", "bbob-biobj-mixint_f040_i15_d040 1.0", "bbob-biobj-mixint_f040_i15_d080 1.0", "bbob-biobj-mixint_f040_i15_d160 1.0", "bbob-biobj-mixint_f041_i01_d005 1.0", "bbob-biobj-mixint_f041_i01_d010 1.0", "bbob-biobj-mixint_f041_i01_d020 1.0", "bbob-biobj-mixint_f041_i01_d040 1.0", "bbob-biobj-mixint_f041_i01_d080 1.0", "bbob-biobj-mixint_f041_i01_d160 1.0", "bbob-biobj-mixint_f041_i02_d005 1.0", "bbob-biobj-mixint_f041_i02_d010 1.0", "bbob-biobj-mixint_f041_i02_d020 1.0", "bbob-biobj-mixint_f041_i02_d040 1.0", "bbob-biobj-mixint_f041_i02_d080 1.0", "bbob-biobj-mixint_f041_i02_d160 1.0", "bbob-biobj-mixint_f041_i03_d005 1.0", "bbob-biobj-mixint_f041_i03_d010 1.0", "bbob-biobj-mixint_f041_i03_d020 1.0", "bbob-biobj-mixint_f041_i03_d040 1.0", "bbob-biobj-mixint_f041_i03_d080 1.0", "bbob-biobj-mixint_f041_i03_d160 1.0", "bbob-biobj-mixint_f041_i04_d005 1.0", "bbob-biobj-mixint_f041_i04_d010 1.0", "bbob-biobj-mixint_f041_i04_d020 1.0", "bbob-biobj-mixint_f041_i04_d040 1.0", "bbob-biobj-mixint_f041_i04_d080 1.0", "bbob-biobj-mixint_f041_i04_d160 1.0", "bbob-biobj-mixint_f041_i05_d005 1.0", "bbob-biobj-mixint_f041_i05_d010 1.0", "bbob-biobj-mixint_f041_i05_d020 1.0", "bbob-biobj-mixint_f041_i05_d040 1.0", "bbob-biobj-mixint_f041_i05_d080 1.0", "bbob-biobj-mixint_f041_i05_d160 1.0", "bbob-biobj-mixint_f041_i06_d005 1.0", "bbob-biobj-mixint_f041_i06_d010 1.0", "bbob-biobj-mixint_f041_i06_d020 1.0", "bbob-biobj-mixint_f041_i06_d040 1.0", "bbob-biobj-mixint_f041_i06_d080 1.0", "bbob-biobj-mixint_f041_i06_d160 1.0", "bbob-biobj-mixint_f041_i07_d005 1.0", "bbob-biobj-mixint_f041_i07_d010 1.0", "bbob-biobj-mixint_f041_i07_d020 1.0", "bbob-biobj-mixint_f041_i07_d040 1.0", "bbob-biobj-mixint_f041_i07_d080 1.0", "bbob-biobj-mixint_f041_i07_d160 1.0", "bbob-biobj-mixint_f041_i08_d005 1.0", "bbob-biobj-mixint_f041_i08_d010 1.0", "bbob-biobj-mixint_f041_i08_d020 1.0", "bbob-biobj-mixint_f041_i08_d040 1.0", "bbob-biobj-mixint_f041_i08_d080 1.0", "bbob-biobj-mixint_f041_i08_d160 1.0", "bbob-biobj-mixint_f041_i09_d005 1.0", "bbob-biobj-mixint_f041_i09_d010 1.0", "bbob-biobj-mixint_f041_i09_d020 1.0", "bbob-biobj-mixint_f041_i09_d040 1.0", "bbob-biobj-mixint_f041_i09_d080 1.0", "bbob-biobj-mixint_f041_i09_d160 1.0", "bbob-biobj-mixint_f041_i10_d005 1.0", "bbob-biobj-mixint_f041_i10_d010 1.0", "bbob-biobj-mixint_f041_i10_d020 1.0", "bbob-biobj-mixint_f041_i10_d040 1.0", "bbob-biobj-mixint_f041_i10_d080 1.0", "bbob-biobj-mixint_f041_i10_d160 1.0", "bbob-biobj-mixint_f041_i11_d005 1.0", "bbob-biobj-mixint_f041_i11_d010 1.0", "bbob-biobj-mixint_f041_i11_d020 1.0", "bbob-biobj-mixint_f041_i11_d040 1.0", "bbob-biobj-mixint_f041_i11_d080 1.0", "bbob-biobj-mixint_f041_i11_d160 1.0", "bbob-biobj-mixint_f041_i12_d005 1.0", "bbob-biobj-mixint_f041_i12_d010 1.0", "bbob-biobj-mixint_f041_i12_d020 1.0", "bbob-biobj-mixint_f041_i12_d040 1.0", "bbob-biobj-mixint_f041_i12_d080 1.0", "bbob-biobj-mixint_f041_i12_d160 1.0", "bbob-biobj-mixint_f041_i13_d005 1.0", "bbob-biobj-mixint_f041_i13_d010 1.0", "bbob-biobj-mixint_f041_i13_d020 1.0", "bbob-biobj-mixint_f041_i13_d040 1.0", "bbob-biobj-mixint_f041_i13_d080 1.0", "bbob-biobj-mixint_f041_i13_d160 1.0", "bbob-biobj-mixint_f041_i14_d005 1.0", "bbob-biobj-mixint_f041_i14_d010 1.0", "bbob-biobj-mixint_f041_i14_d020 1.0", "bbob-biobj-mixint_f041_i14_d040 1.0", "bbob-biobj-mixint_f041_i14_d080 1.0", "bbob-biobj-mixint_f041_i14_d160 1.0", "bbob-biobj-mixint_f041_i15_d005 1.0", "bbob-biobj-mixint_f041_i15_d010 1.0", "bbob-biobj-mixint_f041_i15_d020 1.0", "bbob-biobj-mixint_f041_i15_d040 1.0", "bbob-biobj-mixint_f041_i15_d080 1.0", "bbob-biobj-mixint_f041_i15_d160 1.0", "bbob-biobj-mixint_f042_i01_d005 1.0", "bbob-biobj-mixint_f042_i01_d010 1.0", "bbob-biobj-mixint_f042_i01_d020 1.0", "bbob-biobj-mixint_f042_i01_d040 1.0", "bbob-biobj-mixint_f042_i01_d080 1.0", "bbob-biobj-mixint_f042_i01_d160 1.0", "bbob-biobj-mixint_f042_i02_d005 1.0", "bbob-biobj-mixint_f042_i02_d010 1.0", "bbob-biobj-mixint_f042_i02_d020 1.0", "bbob-biobj-mixint_f042_i02_d040 1.0", "bbob-biobj-mixint_f042_i02_d080 1.0", "bbob-biobj-mixint_f042_i02_d160 1.0", "bbob-biobj-mixint_f042_i03_d005 1.0", "bbob-biobj-mixint_f042_i03_d010 1.0", "bbob-biobj-mixint_f042_i03_d020 1.0", "bbob-biobj-mixint_f042_i03_d040 1.0", "bbob-biobj-mixint_f042_i03_d080 1.0", "bbob-biobj-mixint_f042_i03_d160 1.0", "bbob-biobj-mixint_f042_i04_d005 1.0", "bbob-biobj-mixint_f042_i04_d010 1.0", "bbob-biobj-mixint_f042_i04_d020 1.0", "bbob-biobj-mixint_f042_i04_d040 1.0", "bbob-biobj-mixint_f042_i04_d080 1.0", "bbob-biobj-mixint_f042_i04_d160 1.0", "bbob-biobj-mixint_f042_i05_d005 1.0", "bbob-biobj-mixint_f042_i05_d010 1.0", "bbob-biobj-mixint_f042_i05_d020 1.0", "bbob-biobj-mixint_f042_i05_d040 1.0", "bbob-biobj-mixint_f042_i05_d080 1.0", "bbob-biobj-mixint_f042_i05_d160 1.0", "bbob-biobj-mixint_f042_i06_d005 1.0", "bbob-biobj-mixint_f042_i06_d010 1.0", "bbob-biobj-mixint_f042_i06_d020 1.0", "bbob-biobj-mixint_f042_i06_d040 1.0", "bbob-biobj-mixint_f042_i06_d080 1.0", "bbob-biobj-mixint_f042_i06_d160 1.0", "bbob-biobj-mixint_f042_i07_d005 1.0", "bbob-biobj-mixint_f042_i07_d010 1.0", "bbob-biobj-mixint_f042_i07_d020 1.0", "bbob-biobj-mixint_f042_i07_d040 1.0", "bbob-biobj-mixint_f042_i07_d080 1.0", "bbob-biobj-mixint_f042_i07_d160 1.0", "bbob-biobj-mixint_f042_i08_d005 1.0", "bbob-biobj-mixint_f042_i08_d010 1.0", "bbob-biobj-mixint_f042_i08_d020 1.0", "bbob-biobj-mixint_f042_i08_d040 1.0", "bbob-biobj-mixint_f042_i08_d080 1.0", "bbob-biobj-mixint_f042_i08_d160 1.0", "bbob-biobj-mixint_f042_i09_d005 1.0", "bbob-biobj-mixint_f042_i09_d010 1.0", "bbob-biobj-mixint_f042_i09_d020 1.0", "bbob-biobj-mixint_f042_i09_d040 1.0", "bbob-biobj-mixint_f042_i09_d080 1.0", "bbob-biobj-mixint_f042_i09_d160 1.0", "bbob-biobj-mixint_f042_i10_d005 1.0", "bbob-biobj-mixint_f042_i10_d010 1.0", "bbob-biobj-mixint_f042_i10_d020 1.0", "bbob-biobj-mixint_f042_i10_d040 1.0", "bbob-biobj-mixint_f042_i10_d080 1.0", "bbob-biobj-mixint_f042_i10_d160 1.0", "bbob-biobj-mixint_f042_i11_d005 1.0", "bbob-biobj-mixint_f042_i11_d010 1.0", "bbob-biobj-mixint_f042_i11_d020 1.0", "bbob-biobj-mixint_f042_i11_d040 1.0", "bbob-biobj-mixint_f042_i11_d080 1.0", "bbob-biobj-mixint_f042_i11_d160 1.0", "bbob-biobj-mixint_f042_i12_d005 1.0", "bbob-biobj-mixint_f042_i12_d010 1.0", "bbob-biobj-mixint_f042_i12_d020 1.0", "bbob-biobj-mixint_f042_i12_d040 1.0", "bbob-biobj-mixint_f042_i12_d080 1.0", "bbob-biobj-mixint_f042_i12_d160 1.0", "bbob-biobj-mixint_f042_i13_d005 1.0", "bbob-biobj-mixint_f042_i13_d010 1.0", "bbob-biobj-mixint_f042_i13_d020 1.0", "bbob-biobj-mixint_f042_i13_d040 1.0", "bbob-biobj-mixint_f042_i13_d080 1.0", "bbob-biobj-mixint_f042_i13_d160 1.0", "bbob-biobj-mixint_f042_i14_d005 1.0", "bbob-biobj-mixint_f042_i14_d010 1.0", "bbob-biobj-mixint_f042_i14_d020 1.0", "bbob-biobj-mixint_f042_i14_d040 1.0", "bbob-biobj-mixint_f042_i14_d080 1.0", "bbob-biobj-mixint_f042_i14_d160 1.0", "bbob-biobj-mixint_f042_i15_d005 1.0", "bbob-biobj-mixint_f042_i15_d010 1.0", "bbob-biobj-mixint_f042_i15_d020 1.0", "bbob-biobj-mixint_f042_i15_d040 1.0", "bbob-biobj-mixint_f042_i15_d080 1.0", "bbob-biobj-mixint_f042_i15_d160 1.0", "bbob-biobj-mixint_f043_i01_d005 1.0", "bbob-biobj-mixint_f043_i01_d010 1.0", "bbob-biobj-mixint_f043_i01_d020 1.0", "bbob-biobj-mixint_f043_i01_d040 1.0", "bbob-biobj-mixint_f043_i01_d080 1.0", "bbob-biobj-mixint_f043_i01_d160 1.0", "bbob-biobj-mixint_f043_i02_d005 1.0", "bbob-biobj-mixint_f043_i02_d010 1.0", "bbob-biobj-mixint_f043_i02_d020 1.0", "bbob-biobj-mixint_f043_i02_d040 1.0", "bbob-biobj-mixint_f043_i02_d080 1.0", "bbob-biobj-mixint_f043_i02_d160 1.0", "bbob-biobj-mixint_f043_i03_d005 1.0", "bbob-biobj-mixint_f043_i03_d010 1.0", "bbob-biobj-mixint_f043_i03_d020 1.0", "bbob-biobj-mixint_f043_i03_d040 1.0", "bbob-biobj-mixint_f043_i03_d080 1.0", "bbob-biobj-mixint_f043_i03_d160 1.0", "bbob-biobj-mixint_f043_i04_d005 1.0", "bbob-biobj-mixint_f043_i04_d010 1.0", "bbob-biobj-mixint_f043_i04_d020 1.0", "bbob-biobj-mixint_f043_i04_d040 1.0", "bbob-biobj-mixint_f043_i04_d080 1.0", "bbob-biobj-mixint_f043_i04_d160 1.0", "bbob-biobj-mixint_f043_i05_d005 1.0", "bbob-biobj-mixint_f043_i05_d010 1.0", "bbob-biobj-mixint_f043_i05_d020 1.0", "bbob-biobj-mixint_f043_i05_d040 1.0", "bbob-biobj-mixint_f043_i05_d080 1.0", "bbob-biobj-mixint_f043_i05_d160 1.0", "bbob-biobj-mixint_f043_i06_d005 1.0", "bbob-biobj-mixint_f043_i06_d010 1.0", "bbob-biobj-mixint_f043_i06_d020 1.0", "bbob-biobj-mixint_f043_i06_d040 1.0", "bbob-biobj-mixint_f043_i06_d080 1.0", "bbob-biobj-mixint_f043_i06_d160 1.0", "bbob-biobj-mixint_f043_i07_d005 1.0", "bbob-biobj-mixint_f043_i07_d010 1.0", "bbob-biobj-mixint_f043_i07_d020 1.0", "bbob-biobj-mixint_f043_i07_d040 1.0", "bbob-biobj-mixint_f043_i07_d080 1.0", "bbob-biobj-mixint_f043_i07_d160 1.0", "bbob-biobj-mixint_f043_i08_d005 1.0", "bbob-biobj-mixint_f043_i08_d010 1.0", "bbob-biobj-mixint_f043_i08_d020 1.0", "bbob-biobj-mixint_f043_i08_d040 1.0", "bbob-biobj-mixint_f043_i08_d080 1.0", "bbob-biobj-mixint_f043_i08_d160 1.0", "bbob-biobj-mixint_f043_i09_d005 1.0", "bbob-biobj-mixint_f043_i09_d010 1.0", "bbob-biobj-mixint_f043_i09_d020 1.0", "bbob-biobj-mixint_f043_i09_d040 1.0", "bbob-biobj-mixint_f043_i09_d080 1.0", "bbob-biobj-mixint_f043_i09_d160 1.0", "bbob-biobj-mixint_f043_i10_d005 1.0", "bbob-biobj-mixint_f043_i10_d010 1.0", "bbob-biobj-mixint_f043_i10_d020 1.0", "bbob-biobj-mixint_f043_i10_d040 1.0", "bbob-biobj-mixint_f043_i10_d080 1.0", "bbob-biobj-mixint_f043_i10_d160 1.0", "bbob-biobj-mixint_f043_i11_d005 1.0", "bbob-biobj-mixint_f043_i11_d010 1.0", "bbob-biobj-mixint_f043_i11_d020 1.0", "bbob-biobj-mixint_f043_i11_d040 1.0", "bbob-biobj-mixint_f043_i11_d080 1.0", "bbob-biobj-mixint_f043_i11_d160 1.0", "bbob-biobj-mixint_f043_i12_d005 1.0", "bbob-biobj-mixint_f043_i12_d010 1.0", "bbob-biobj-mixint_f043_i12_d020 1.0", "bbob-biobj-mixint_f043_i12_d040 1.0", "bbob-biobj-mixint_f043_i12_d080 1.0", "bbob-biobj-mixint_f043_i12_d160 1.0", "bbob-biobj-mixint_f043_i13_d005 1.0", "bbob-biobj-mixint_f043_i13_d010 1.0", "bbob-biobj-mixint_f043_i13_d020 1.0", "bbob-biobj-mixint_f043_i13_d040 1.0", "bbob-biobj-mixint_f043_i13_d080 1.0", "bbob-biobj-mixint_f043_i13_d160 1.0", "bbob-biobj-mixint_f043_i14_d005 1.0", "bbob-biobj-mixint_f043_i14_d010 1.0", "bbob-biobj-mixint_f043_i14_d020 1.0", "bbob-biobj-mixint_f043_i14_d040 1.0", "bbob-biobj-mixint_f043_i14_d080 1.0", "bbob-biobj-mixint_f043_i14_d160 1.0", "bbob-biobj-mixint_f043_i15_d005 1.0", "bbob-biobj-mixint_f043_i15_d010 1.0", "bbob-biobj-mixint_f043_i15_d020 1.0", "bbob-biobj-mixint_f043_i15_d040 1.0", "bbob-biobj-mixint_f043_i15_d080 1.0", "bbob-biobj-mixint_f043_i15_d160 1.0", "bbob-biobj-mixint_f044_i01_d005 1.0", "bbob-biobj-mixint_f044_i01_d010 1.0", "bbob-biobj-mixint_f044_i01_d020 1.0", "bbob-biobj-mixint_f044_i01_d040 1.0", "bbob-biobj-mixint_f044_i01_d080 1.0", "bbob-biobj-mixint_f044_i01_d160 1.0", "bbob-biobj-mixint_f044_i02_d005 1.0", "bbob-biobj-mixint_f044_i02_d010 1.0", "bbob-biobj-mixint_f044_i02_d020 1.0", "bbob-biobj-mixint_f044_i02_d040 1.0", "bbob-biobj-mixint_f044_i02_d080 1.0", "bbob-biobj-mixint_f044_i02_d160 1.0", "bbob-biobj-mixint_f044_i03_d005 1.0", "bbob-biobj-mixint_f044_i03_d010 1.0", "bbob-biobj-mixint_f044_i03_d020 1.0", "bbob-biobj-mixint_f044_i03_d040 1.0", "bbob-biobj-mixint_f044_i03_d080 1.0", "bbob-biobj-mixint_f044_i03_d160 1.0", "bbob-biobj-mixint_f044_i04_d005 1.0", "bbob-biobj-mixint_f044_i04_d010 1.0", "bbob-biobj-mixint_f044_i04_d020 1.0", "bbob-biobj-mixint_f044_i04_d040 1.0", "bbob-biobj-mixint_f044_i04_d080 1.0", "bbob-biobj-mixint_f044_i04_d160 1.0", "bbob-biobj-mixint_f044_i05_d005 1.0", "bbob-biobj-mixint_f044_i05_d010 1.0", "bbob-biobj-mixint_f044_i05_d020 1.0", "bbob-biobj-mixint_f044_i05_d040 1.0", "bbob-biobj-mixint_f044_i05_d080 1.0", "bbob-biobj-mixint_f044_i05_d160 1.0", "bbob-biobj-mixint_f044_i06_d005 1.0", "bbob-biobj-mixint_f044_i06_d010 1.0", "bbob-biobj-mixint_f044_i06_d020 1.0", "bbob-biobj-mixint_f044_i06_d040 1.0", "bbob-biobj-mixint_f044_i06_d080 1.0", "bbob-biobj-mixint_f044_i06_d160 1.0", "bbob-biobj-mixint_f044_i07_d005 1.0", "bbob-biobj-mixint_f044_i07_d010 1.0", "bbob-biobj-mixint_f044_i07_d020 1.0", "bbob-biobj-mixint_f044_i07_d040 1.0", "bbob-biobj-mixint_f044_i07_d080 1.0", "bbob-biobj-mixint_f044_i07_d160 1.0", "bbob-biobj-mixint_f044_i08_d005 1.0", "bbob-biobj-mixint_f044_i08_d010 1.0", "bbob-biobj-mixint_f044_i08_d020 1.0", "bbob-biobj-mixint_f044_i08_d040 1.0", "bbob-biobj-mixint_f044_i08_d080 1.0", "bbob-biobj-mixint_f044_i08_d160 1.0", "bbob-biobj-mixint_f044_i09_d005 1.0", "bbob-biobj-mixint_f044_i09_d010 1.0", "bbob-biobj-mixint_f044_i09_d020 1.0", "bbob-biobj-mixint_f044_i09_d040 1.0", "bbob-biobj-mixint_f044_i09_d080 1.0", "bbob-biobj-mixint_f044_i09_d160 1.0", "bbob-biobj-mixint_f044_i10_d005 1.0", "bbob-biobj-mixint_f044_i10_d010 1.0", "bbob-biobj-mixint_f044_i10_d020 1.0", "bbob-biobj-mixint_f044_i10_d040 1.0", "bbob-biobj-mixint_f044_i10_d080 1.0", "bbob-biobj-mixint_f044_i10_d160 1.0", "bbob-biobj-mixint_f044_i11_d005 1.0", "bbob-biobj-mixint_f044_i11_d010 1.0", "bbob-biobj-mixint_f044_i11_d020 1.0", "bbob-biobj-mixint_f044_i11_d040 1.0", "bbob-biobj-mixint_f044_i11_d080 1.0", "bbob-biobj-mixint_f044_i11_d160 1.0", "bbob-biobj-mixint_f044_i12_d005 1.0", "bbob-biobj-mixint_f044_i12_d010 1.0", "bbob-biobj-mixint_f044_i12_d020 1.0", "bbob-biobj-mixint_f044_i12_d040 1.0", "bbob-biobj-mixint_f044_i12_d080 1.0", "bbob-biobj-mixint_f044_i12_d160 1.0", "bbob-biobj-mixint_f044_i13_d005 1.0", "bbob-biobj-mixint_f044_i13_d010 1.0", "bbob-biobj-mixint_f044_i13_d020 1.0", "bbob-biobj-mixint_f044_i13_d040 1.0", "bbob-biobj-mixint_f044_i13_d080 1.0", "bbob-biobj-mixint_f044_i13_d160 1.0", "bbob-biobj-mixint_f044_i14_d005 1.0", "bbob-biobj-mixint_f044_i14_d010 1.0", "bbob-biobj-mixint_f044_i14_d020 1.0", "bbob-biobj-mixint_f044_i14_d040 1.0", "bbob-biobj-mixint_f044_i14_d080 1.0", "bbob-biobj-mixint_f044_i14_d160 1.0", "bbob-biobj-mixint_f044_i15_d005 1.0", "bbob-biobj-mixint_f044_i15_d010 1.0", "bbob-biobj-mixint_f044_i15_d020 1.0", "bbob-biobj-mixint_f044_i15_d040 1.0", "bbob-biobj-mixint_f044_i15_d080 1.0", "bbob-biobj-mixint_f044_i15_d160 1.0", "bbob-biobj-mixint_f045_i01_d005 1.0", "bbob-biobj-mixint_f045_i01_d010 1.0", "bbob-biobj-mixint_f045_i01_d020 1.0", "bbob-biobj-mixint_f045_i01_d040 1.0", "bbob-biobj-mixint_f045_i01_d080 1.0", "bbob-biobj-mixint_f045_i01_d160 1.0", "bbob-biobj-mixint_f045_i02_d005 1.0", "bbob-biobj-mixint_f045_i02_d010 1.0", "bbob-biobj-mixint_f045_i02_d020 1.0", "bbob-biobj-mixint_f045_i02_d040 1.0", "bbob-biobj-mixint_f045_i02_d080 1.0", "bbob-biobj-mixint_f045_i02_d160 1.0", "bbob-biobj-mixint_f045_i03_d005 1.0", "bbob-biobj-mixint_f045_i03_d010 1.0", "bbob-biobj-mixint_f045_i03_d020 1.0", "bbob-biobj-mixint_f045_i03_d040 1.0", "bbob-biobj-mixint_f045_i03_d080 1.0", "bbob-biobj-mixint_f045_i03_d160 1.0", "bbob-biobj-mixint_f045_i04_d005 1.0", "bbob-biobj-mixint_f045_i04_d010 1.0", "bbob-biobj-mixint_f045_i04_d020 1.0", "bbob-biobj-mixint_f045_i04_d040 1.0", "bbob-biobj-mixint_f045_i04_d080 1.0", "bbob-biobj-mixint_f045_i04_d160 1.0", "bbob-biobj-mixint_f045_i05_d005 1.0", "bbob-biobj-mixint_f045_i05_d010 1.0", "bbob-biobj-mixint_f045_i05_d020 1.0", "bbob-biobj-mixint_f045_i05_d040 1.0", "bbob-biobj-mixint_f045_i05_d080 1.0", "bbob-biobj-mixint_f045_i05_d160 1.0", "bbob-biobj-mixint_f045_i06_d005 1.0", "bbob-biobj-mixint_f045_i06_d010 1.0", "bbob-biobj-mixint_f045_i06_d020 1.0", "bbob-biobj-mixint_f045_i06_d040 1.0", "bbob-biobj-mixint_f045_i06_d080 1.0", "bbob-biobj-mixint_f045_i06_d160 1.0", "bbob-biobj-mixint_f045_i07_d005 1.0", "bbob-biobj-mixint_f045_i07_d010 1.0", "bbob-biobj-mixint_f045_i07_d020 1.0", "bbob-biobj-mixint_f045_i07_d040 1.0", "bbob-biobj-mixint_f045_i07_d080 1.0", "bbob-biobj-mixint_f045_i07_d160 1.0", "bbob-biobj-mixint_f045_i08_d005 1.0", "bbob-biobj-mixint_f045_i08_d010 1.0", "bbob-biobj-mixint_f045_i08_d020 1.0", "bbob-biobj-mixint_f045_i08_d040 1.0", "bbob-biobj-mixint_f045_i08_d080 1.0", "bbob-biobj-mixint_f045_i08_d160 1.0", "bbob-biobj-mixint_f045_i09_d005 1.0", "bbob-biobj-mixint_f045_i09_d010 1.0", "bbob-biobj-mixint_f045_i09_d020 1.0", "bbob-biobj-mixint_f045_i09_d040 1.0", "bbob-biobj-mixint_f045_i09_d080 1.0", "bbob-biobj-mixint_f045_i09_d160 1.0", "bbob-biobj-mixint_f045_i10_d005 1.0", "bbob-biobj-mixint_f045_i10_d010 1.0", "bbob-biobj-mixint_f045_i10_d020 1.0", "bbob-biobj-mixint_f045_i10_d040 1.0", "bbob-biobj-mixint_f045_i10_d080 1.0", "bbob-biobj-mixint_f045_i10_d160 1.0", "bbob-biobj-mixint_f045_i11_d005 1.0", "bbob-biobj-mixint_f045_i11_d010 1.0", "bbob-biobj-mixint_f045_i11_d020 1.0", "bbob-biobj-mixint_f045_i11_d040 1.0", "bbob-biobj-mixint_f045_i11_d080 1.0", "bbob-biobj-mixint_f045_i11_d160 1.0", "bbob-biobj-mixint_f045_i12_d005 1.0", "bbob-biobj-mixint_f045_i12_d010 1.0", "bbob-biobj-mixint_f045_i12_d020 1.0", "bbob-biobj-mixint_f045_i12_d040 1.0", "bbob-biobj-mixint_f045_i12_d080 1.0", "bbob-biobj-mixint_f045_i12_d160 1.0", "bbob-biobj-mixint_f045_i13_d005 1.0", "bbob-biobj-mixint_f045_i13_d010 1.0", "bbob-biobj-mixint_f045_i13_d020 1.0", "bbob-biobj-mixint_f045_i13_d040 1.0", "bbob-biobj-mixint_f045_i13_d080 1.0", "bbob-biobj-mixint_f045_i13_d160 1.0", "bbob-biobj-mixint_f045_i14_d005 1.0", "bbob-biobj-mixint_f045_i14_d010 1.0", "bbob-biobj-mixint_f045_i14_d020 1.0", "bbob-biobj-mixint_f045_i14_d040 1.0", "bbob-biobj-mixint_f045_i14_d080 1.0", "bbob-biobj-mixint_f045_i14_d160 1.0", "bbob-biobj-mixint_f045_i15_d005 1.0", "bbob-biobj-mixint_f045_i15_d010 1.0", "bbob-biobj-mixint_f045_i15_d020 1.0", "bbob-biobj-mixint_f045_i15_d040 1.0", "bbob-biobj-mixint_f045_i15_d080 1.0", "bbob-biobj-mixint_f045_i15_d160 1.0", "bbob-biobj-mixint_f046_i01_d005 1.0", "bbob-biobj-mixint_f046_i01_d010 1.0", "bbob-biobj-mixint_f046_i01_d020 1.0", "bbob-biobj-mixint_f046_i01_d040 1.0", "bbob-biobj-mixint_f046_i01_d080 1.0", "bbob-biobj-mixint_f046_i01_d160 1.0", "bbob-biobj-mixint_f046_i02_d005 1.0", "bbob-biobj-mixint_f046_i02_d010 1.0", "bbob-biobj-mixint_f046_i02_d020 1.0", "bbob-biobj-mixint_f046_i02_d040 1.0", "bbob-biobj-mixint_f046_i02_d080 1.0", "bbob-biobj-mixint_f046_i02_d160 1.0", "bbob-biobj-mixint_f046_i03_d005 1.0", "bbob-biobj-mixint_f046_i03_d010 1.0", "bbob-biobj-mixint_f046_i03_d020 1.0", "bbob-biobj-mixint_f046_i03_d040 1.0", "bbob-biobj-mixint_f046_i03_d080 1.0", "bbob-biobj-mixint_f046_i03_d160 1.0", "bbob-biobj-mixint_f046_i04_d005 1.0", "bbob-biobj-mixint_f046_i04_d010 1.0", "bbob-biobj-mixint_f046_i04_d020 1.0", "bbob-biobj-mixint_f046_i04_d040 1.0", "bbob-biobj-mixint_f046_i04_d080 1.0", "bbob-biobj-mixint_f046_i04_d160 1.0", "bbob-biobj-mixint_f046_i05_d005 1.0", "bbob-biobj-mixint_f046_i05_d010 1.0", "bbob-biobj-mixint_f046_i05_d020 1.0", "bbob-biobj-mixint_f046_i05_d040 1.0", "bbob-biobj-mixint_f046_i05_d080 1.0", "bbob-biobj-mixint_f046_i05_d160 1.0", "bbob-biobj-mixint_f046_i06_d005 1.0", "bbob-biobj-mixint_f046_i06_d010 1.0", "bbob-biobj-mixint_f046_i06_d020 1.0", "bbob-biobj-mixint_f046_i06_d040 1.0", "bbob-biobj-mixint_f046_i06_d080 1.0", "bbob-biobj-mixint_f046_i06_d160 1.0", "bbob-biobj-mixint_f046_i07_d005 1.0", "bbob-biobj-mixint_f046_i07_d010 1.0", "bbob-biobj-mixint_f046_i07_d020 1.0", "bbob-biobj-mixint_f046_i07_d040 1.0", "bbob-biobj-mixint_f046_i07_d080 1.0", "bbob-biobj-mixint_f046_i07_d160 1.0", "bbob-biobj-mixint_f046_i08_d005 1.0", "bbob-biobj-mixint_f046_i08_d010 1.0", "bbob-biobj-mixint_f046_i08_d020 1.0", "bbob-biobj-mixint_f046_i08_d040 1.0", "bbob-biobj-mixint_f046_i08_d080 1.0", "bbob-biobj-mixint_f046_i08_d160 1.0", "bbob-biobj-mixint_f046_i09_d005 1.0", "bbob-biobj-mixint_f046_i09_d010 1.0", "bbob-biobj-mixint_f046_i09_d020 1.0", "bbob-biobj-mixint_f046_i09_d040 1.0", "bbob-biobj-mixint_f046_i09_d080 1.0", "bbob-biobj-mixint_f046_i09_d160 1.0", "bbob-biobj-mixint_f046_i10_d005 1.0", "bbob-biobj-mixint_f046_i10_d010 1.0", "bbob-biobj-mixint_f046_i10_d020 1.0", "bbob-biobj-mixint_f046_i10_d040 1.0", "bbob-biobj-mixint_f046_i10_d080 1.0", "bbob-biobj-mixint_f046_i10_d160 1.0", "bbob-biobj-mixint_f046_i11_d005 1.0", "bbob-biobj-mixint_f046_i11_d010 1.0", "bbob-biobj-mixint_f046_i11_d020 1.0", "bbob-biobj-mixint_f046_i11_d040 1.0", "bbob-biobj-mixint_f046_i11_d080 1.0", "bbob-biobj-mixint_f046_i11_d160 1.0", "bbob-biobj-mixint_f046_i12_d005 1.0", "bbob-biobj-mixint_f046_i12_d010 1.0", "bbob-biobj-mixint_f046_i12_d020 1.0", "bbob-biobj-mixint_f046_i12_d040 1.0", "bbob-biobj-mixint_f046_i12_d080 1.0", "bbob-biobj-mixint_f046_i12_d160 1.0", "bbob-biobj-mixint_f046_i13_d005 1.0", "bbob-biobj-mixint_f046_i13_d010 1.0", "bbob-biobj-mixint_f046_i13_d020 1.0", "bbob-biobj-mixint_f046_i13_d040 1.0", "bbob-biobj-mixint_f046_i13_d080 1.0", "bbob-biobj-mixint_f046_i13_d160 1.0", "bbob-biobj-mixint_f046_i14_d005 1.0", "bbob-biobj-mixint_f046_i14_d010 1.0", "bbob-biobj-mixint_f046_i14_d020 1.0", "bbob-biobj-mixint_f046_i14_d040 1.0", "bbob-biobj-mixint_f046_i14_d080 1.0", "bbob-biobj-mixint_f046_i14_d160 1.0", "bbob-biobj-mixint_f046_i15_d005 1.0", "bbob-biobj-mixint_f046_i15_d010 1.0", "bbob-biobj-mixint_f046_i15_d020 1.0", "bbob-biobj-mixint_f046_i15_d040 1.0", "bbob-biobj-mixint_f046_i15_d080 1.0", "bbob-biobj-mixint_f046_i15_d160 1.0", "bbob-biobj-mixint_f047_i01_d005 1.0", "bbob-biobj-mixint_f047_i01_d010 1.0", "bbob-biobj-mixint_f047_i01_d020 1.0", "bbob-biobj-mixint_f047_i01_d040 1.0", "bbob-biobj-mixint_f047_i01_d080 1.0", "bbob-biobj-mixint_f047_i01_d160 1.0", "bbob-biobj-mixint_f047_i02_d005 1.0", "bbob-biobj-mixint_f047_i02_d010 1.0", "bbob-biobj-mixint_f047_i02_d020 1.0", "bbob-biobj-mixint_f047_i02_d040 1.0", "bbob-biobj-mixint_f047_i02_d080 1.0", "bbob-biobj-mixint_f047_i02_d160 1.0", "bbob-biobj-mixint_f047_i03_d005 1.0", "bbob-biobj-mixint_f047_i03_d010 1.0", "bbob-biobj-mixint_f047_i03_d020 1.0", "bbob-biobj-mixint_f047_i03_d040 1.0", "bbob-biobj-mixint_f047_i03_d080 1.0", "bbob-biobj-mixint_f047_i03_d160 1.0", "bbob-biobj-mixint_f047_i04_d005 1.0", "bbob-biobj-mixint_f047_i04_d010 1.0", "bbob-biobj-mixint_f047_i04_d020 1.0", "bbob-biobj-mixint_f047_i04_d040 1.0", "bbob-biobj-mixint_f047_i04_d080 1.0", "bbob-biobj-mixint_f047_i04_d160 1.0", "bbob-biobj-mixint_f047_i05_d005 1.0", "bbob-biobj-mixint_f047_i05_d010 1.0", "bbob-biobj-mixint_f047_i05_d020 1.0", "bbob-biobj-mixint_f047_i05_d040 1.0", "bbob-biobj-mixint_f047_i05_d080 1.0", "bbob-biobj-mixint_f047_i05_d160 1.0", "bbob-biobj-mixint_f047_i06_d005 1.0", "bbob-biobj-mixint_f047_i06_d010 1.0", "bbob-biobj-mixint_f047_i06_d020 1.0", "bbob-biobj-mixint_f047_i06_d040 1.0", "bbob-biobj-mixint_f047_i06_d080 1.0", "bbob-biobj-mixint_f047_i06_d160 1.0", "bbob-biobj-mixint_f047_i07_d005 1.0", "bbob-biobj-mixint_f047_i07_d010 1.0", "bbob-biobj-mixint_f047_i07_d020 1.0", "bbob-biobj-mixint_f047_i07_d040 1.0", "bbob-biobj-mixint_f047_i07_d080 1.0", "bbob-biobj-mixint_f047_i07_d160 1.0", "bbob-biobj-mixint_f047_i08_d005 1.0", "bbob-biobj-mixint_f047_i08_d010 1.0", "bbob-biobj-mixint_f047_i08_d020 1.0", "bbob-biobj-mixint_f047_i08_d040 1.0", "bbob-biobj-mixint_f047_i08_d080 1.0", "bbob-biobj-mixint_f047_i08_d160 1.0", "bbob-biobj-mixint_f047_i09_d005 1.0", "bbob-biobj-mixint_f047_i09_d010 1.0", "bbob-biobj-mixint_f047_i09_d020 1.0", "bbob-biobj-mixint_f047_i09_d040 1.0", "bbob-biobj-mixint_f047_i09_d080 1.0", "bbob-biobj-mixint_f047_i09_d160 1.0", "bbob-biobj-mixint_f047_i10_d005 1.0", "bbob-biobj-mixint_f047_i10_d010 1.0", "bbob-biobj-mixint_f047_i10_d020 1.0", "bbob-biobj-mixint_f047_i10_d040 1.0", "bbob-biobj-mixint_f047_i10_d080 1.0", "bbob-biobj-mixint_f047_i10_d160 1.0", "bbob-biobj-mixint_f047_i11_d005 1.0", "bbob-biobj-mixint_f047_i11_d010 1.0", "bbob-biobj-mixint_f047_i11_d020 1.0", "bbob-biobj-mixint_f047_i11_d040 1.0", "bbob-biobj-mixint_f047_i11_d080 1.0", "bbob-biobj-mixint_f047_i11_d160 1.0", "bbob-biobj-mixint_f047_i12_d005 1.0", "bbob-biobj-mixint_f047_i12_d010 1.0", "bbob-biobj-mixint_f047_i12_d020 1.0", "bbob-biobj-mixint_f047_i12_d040 1.0", "bbob-biobj-mixint_f047_i12_d080 1.0", "bbob-biobj-mixint_f047_i12_d160 1.0", "bbob-biobj-mixint_f047_i13_d005 1.0", "bbob-biobj-mixint_f047_i13_d010 1.0", "bbob-biobj-mixint_f047_i13_d020 1.0", "bbob-biobj-mixint_f047_i13_d040 1.0", "bbob-biobj-mixint_f047_i13_d080 1.0", "bbob-biobj-mixint_f047_i13_d160 1.0", "bbob-biobj-mixint_f047_i14_d005 1.0", "bbob-biobj-mixint_f047_i14_d010 1.0", "bbob-biobj-mixint_f047_i14_d020 1.0", "bbob-biobj-mixint_f047_i14_d040 1.0", "bbob-biobj-mixint_f047_i14_d080 1.0", "bbob-biobj-mixint_f047_i14_d160 1.0", "bbob-biobj-mixint_f047_i15_d005 1.0", "bbob-biobj-mixint_f047_i15_d010 1.0", "bbob-biobj-mixint_f047_i15_d020 1.0", "bbob-biobj-mixint_f047_i15_d040 1.0", "bbob-biobj-mixint_f047_i15_d080 1.0", "bbob-biobj-mixint_f047_i15_d160 1.0", "bbob-biobj-mixint_f048_i01_d005 1.0", "bbob-biobj-mixint_f048_i01_d010 1.0", "bbob-biobj-mixint_f048_i01_d020 1.0", "bbob-biobj-mixint_f048_i01_d040 1.0", "bbob-biobj-mixint_f048_i01_d080 1.0", "bbob-biobj-mixint_f048_i01_d160 1.0", "bbob-biobj-mixint_f048_i02_d005 1.0", "bbob-biobj-mixint_f048_i02_d010 1.0", "bbob-biobj-mixint_f048_i02_d020 1.0", "bbob-biobj-mixint_f048_i02_d040 1.0", "bbob-biobj-mixint_f048_i02_d080 1.0", "bbob-biobj-mixint_f048_i02_d160 1.0", "bbob-biobj-mixint_f048_i03_d005 1.0", "bbob-biobj-mixint_f048_i03_d010 1.0", "bbob-biobj-mixint_f048_i03_d020 1.0", "bbob-biobj-mixint_f048_i03_d040 1.0", "bbob-biobj-mixint_f048_i03_d080 1.0", "bbob-biobj-mixint_f048_i03_d160 1.0", "bbob-biobj-mixint_f048_i04_d005 1.0", "bbob-biobj-mixint_f048_i04_d010 1.0", "bbob-biobj-mixint_f048_i04_d020 1.0", "bbob-biobj-mixint_f048_i04_d040 1.0", "bbob-biobj-mixint_f048_i04_d080 1.0", "bbob-biobj-mixint_f048_i04_d160 1.0", "bbob-biobj-mixint_f048_i05_d005 1.0", "bbob-biobj-mixint_f048_i05_d010 1.0", "bbob-biobj-mixint_f048_i05_d020 1.0", "bbob-biobj-mixint_f048_i05_d040 1.0", "bbob-biobj-mixint_f048_i05_d080 1.0", "bbob-biobj-mixint_f048_i05_d160 1.0", "bbob-biobj-mixint_f048_i06_d005 1.0", "bbob-biobj-mixint_f048_i06_d010 1.0", "bbob-biobj-mixint_f048_i06_d020 1.0", "bbob-biobj-mixint_f048_i06_d040 1.0", "bbob-biobj-mixint_f048_i06_d080 1.0", "bbob-biobj-mixint_f048_i06_d160 1.0", "bbob-biobj-mixint_f048_i07_d005 1.0", "bbob-biobj-mixint_f048_i07_d010 1.0", "bbob-biobj-mixint_f048_i07_d020 1.0", "bbob-biobj-mixint_f048_i07_d040 1.0", "bbob-biobj-mixint_f048_i07_d080 1.0", "bbob-biobj-mixint_f048_i07_d160 1.0", "bbob-biobj-mixint_f048_i08_d005 1.0", "bbob-biobj-mixint_f048_i08_d010 1.0", "bbob-biobj-mixint_f048_i08_d020 1.0", "bbob-biobj-mixint_f048_i08_d040 1.0", "bbob-biobj-mixint_f048_i08_d080 1.0", "bbob-biobj-mixint_f048_i08_d160 1.0", "bbob-biobj-mixint_f048_i09_d005 1.0", "bbob-biobj-mixint_f048_i09_d010 1.0", "bbob-biobj-mixint_f048_i09_d020 1.0", "bbob-biobj-mixint_f048_i09_d040 1.0", "bbob-biobj-mixint_f048_i09_d080 1.0", "bbob-biobj-mixint_f048_i09_d160 1.0", "bbob-biobj-mixint_f048_i10_d005 1.0", "bbob-biobj-mixint_f048_i10_d010 1.0", "bbob-biobj-mixint_f048_i10_d020 1.0", "bbob-biobj-mixint_f048_i10_d040 1.0", "bbob-biobj-mixint_f048_i10_d080 1.0", "bbob-biobj-mixint_f048_i10_d160 1.0", "bbob-biobj-mixint_f048_i11_d005 1.0", "bbob-biobj-mixint_f048_i11_d010 1.0", "bbob-biobj-mixint_f048_i11_d020 1.0", "bbob-biobj-mixint_f048_i11_d040 1.0", "bbob-biobj-mixint_f048_i11_d080 1.0", "bbob-biobj-mixint_f048_i11_d160 1.0", "bbob-biobj-mixint_f048_i12_d005 1.0", "bbob-biobj-mixint_f048_i12_d010 1.0", "bbob-biobj-mixint_f048_i12_d020 1.0", "bbob-biobj-mixint_f048_i12_d040 1.0", "bbob-biobj-mixint_f048_i12_d080 1.0", "bbob-biobj-mixint_f048_i12_d160 1.0", "bbob-biobj-mixint_f048_i13_d005 1.0", "bbob-biobj-mixint_f048_i13_d010 1.0", "bbob-biobj-mixint_f048_i13_d020 1.0", "bbob-biobj-mixint_f048_i13_d040 1.0", "bbob-biobj-mixint_f048_i13_d080 1.0", "bbob-biobj-mixint_f048_i13_d160 1.0", "bbob-biobj-mixint_f048_i14_d005 1.0", "bbob-biobj-mixint_f048_i14_d010 1.0", "bbob-biobj-mixint_f048_i14_d020 1.0", "bbob-biobj-mixint_f048_i14_d040 1.0", "bbob-biobj-mixint_f048_i14_d080 1.0", "bbob-biobj-mixint_f048_i14_d160 1.0", "bbob-biobj-mixint_f048_i15_d005 1.0", "bbob-biobj-mixint_f048_i15_d010 1.0", "bbob-biobj-mixint_f048_i15_d020 1.0", "bbob-biobj-mixint_f048_i15_d040 1.0", "bbob-biobj-mixint_f048_i15_d080 1.0", "bbob-biobj-mixint_f048_i15_d160 1.0", "bbob-biobj-mixint_f049_i01_d005 1.0", "bbob-biobj-mixint_f049_i01_d010 1.0", "bbob-biobj-mixint_f049_i01_d020 1.0", "bbob-biobj-mixint_f049_i01_d040 1.0", "bbob-biobj-mixint_f049_i01_d080 1.0", "bbob-biobj-mixint_f049_i01_d160 1.0", "bbob-biobj-mixint_f049_i02_d005 1.0", "bbob-biobj-mixint_f049_i02_d010 1.0", "bbob-biobj-mixint_f049_i02_d020 1.0", "bbob-biobj-mixint_f049_i02_d040 1.0", "bbob-biobj-mixint_f049_i02_d080 1.0", "bbob-biobj-mixint_f049_i02_d160 1.0", "bbob-biobj-mixint_f049_i03_d005 1.0", "bbob-biobj-mixint_f049_i03_d010 1.0", "bbob-biobj-mixint_f049_i03_d020 1.0", "bbob-biobj-mixint_f049_i03_d040 1.0", "bbob-biobj-mixint_f049_i03_d080 1.0", "bbob-biobj-mixint_f049_i03_d160 1.0", "bbob-biobj-mixint_f049_i04_d005 1.0", "bbob-biobj-mixint_f049_i04_d010 1.0", "bbob-biobj-mixint_f049_i04_d020 1.0", "bbob-biobj-mixint_f049_i04_d040 1.0", "bbob-biobj-mixint_f049_i04_d080 1.0", "bbob-biobj-mixint_f049_i04_d160 1.0", "bbob-biobj-mixint_f049_i05_d005 1.0", "bbob-biobj-mixint_f049_i05_d010 1.0", "bbob-biobj-mixint_f049_i05_d020 1.0", "bbob-biobj-mixint_f049_i05_d040 1.0", "bbob-biobj-mixint_f049_i05_d080 1.0", "bbob-biobj-mixint_f049_i05_d160 1.0", "bbob-biobj-mixint_f049_i06_d005 1.0", "bbob-biobj-mixint_f049_i06_d010 1.0", "bbob-biobj-mixint_f049_i06_d020 1.0", "bbob-biobj-mixint_f049_i06_d040 1.0", "bbob-biobj-mixint_f049_i06_d080 1.0", "bbob-biobj-mixint_f049_i06_d160 1.0", "bbob-biobj-mixint_f049_i07_d005 1.0", "bbob-biobj-mixint_f049_i07_d010 1.0", "bbob-biobj-mixint_f049_i07_d020 1.0", "bbob-biobj-mixint_f049_i07_d040 1.0", "bbob-biobj-mixint_f049_i07_d080 1.0", "bbob-biobj-mixint_f049_i07_d160 1.0", "bbob-biobj-mixint_f049_i08_d005 1.0", "bbob-biobj-mixint_f049_i08_d010 1.0", "bbob-biobj-mixint_f049_i08_d020 1.0", "bbob-biobj-mixint_f049_i08_d040 1.0", "bbob-biobj-mixint_f049_i08_d080 1.0", "bbob-biobj-mixint_f049_i08_d160 1.0", "bbob-biobj-mixint_f049_i09_d005 1.0", "bbob-biobj-mixint_f049_i09_d010 1.0", "bbob-biobj-mixint_f049_i09_d020 1.0", "bbob-biobj-mixint_f049_i09_d040 1.0", "bbob-biobj-mixint_f049_i09_d080 1.0", "bbob-biobj-mixint_f049_i09_d160 1.0", "bbob-biobj-mixint_f049_i10_d005 1.0", "bbob-biobj-mixint_f049_i10_d010 1.0", "bbob-biobj-mixint_f049_i10_d020 1.0", "bbob-biobj-mixint_f049_i10_d040 1.0", "bbob-biobj-mixint_f049_i10_d080 1.0", "bbob-biobj-mixint_f049_i10_d160 1.0", "bbob-biobj-mixint_f049_i11_d005 1.0", "bbob-biobj-mixint_f049_i11_d010 1.0", "bbob-biobj-mixint_f049_i11_d020 1.0", "bbob-biobj-mixint_f049_i11_d040 1.0", "bbob-biobj-mixint_f049_i11_d080 1.0", "bbob-biobj-mixint_f049_i11_d160 1.0", "bbob-biobj-mixint_f049_i12_d005 1.0", "bbob-biobj-mixint_f049_i12_d010 1.0", "bbob-biobj-mixint_f049_i12_d020 1.0", "bbob-biobj-mixint_f049_i12_d040 1.0", "bbob-biobj-mixint_f049_i12_d080 1.0", "bbob-biobj-mixint_f049_i12_d160 1.0", "bbob-biobj-mixint_f049_i13_d005 1.0", "bbob-biobj-mixint_f049_i13_d010 1.0", "bbob-biobj-mixint_f049_i13_d020 1.0", "bbob-biobj-mixint_f049_i13_d040 1.0", "bbob-biobj-mixint_f049_i13_d080 1.0", "bbob-biobj-mixint_f049_i13_d160 1.0", "bbob-biobj-mixint_f049_i14_d005 1.0", "bbob-biobj-mixint_f049_i14_d010 1.0", "bbob-biobj-mixint_f049_i14_d020 1.0", "bbob-biobj-mixint_f049_i14_d040 1.0", "bbob-biobj-mixint_f049_i14_d080 1.0", "bbob-biobj-mixint_f049_i14_d160 1.0", "bbob-biobj-mixint_f049_i15_d005 1.0", "bbob-biobj-mixint_f049_i15_d010 1.0", "bbob-biobj-mixint_f049_i15_d020 1.0", "bbob-biobj-mixint_f049_i15_d040 1.0", "bbob-biobj-mixint_f049_i15_d080 1.0", "bbob-biobj-mixint_f049_i15_d160 1.0", "bbob-biobj-mixint_f050_i01_d005 1.0", "bbob-biobj-mixint_f050_i01_d010 1.0", "bbob-biobj-mixint_f050_i01_d020 1.0", "bbob-biobj-mixint_f050_i01_d040 1.0", "bbob-biobj-mixint_f050_i01_d080 1.0", "bbob-biobj-mixint_f050_i01_d160 1.0", "bbob-biobj-mixint_f050_i02_d005 1.0", "bbob-biobj-mixint_f050_i02_d010 1.0", "bbob-biobj-mixint_f050_i02_d020 1.0", "bbob-biobj-mixint_f050_i02_d040 1.0", "bbob-biobj-mixint_f050_i02_d080 1.0", "bbob-biobj-mixint_f050_i02_d160 1.0", "bbob-biobj-mixint_f050_i03_d005 1.0", "bbob-biobj-mixint_f050_i03_d010 1.0", "bbob-biobj-mixint_f050_i03_d020 1.0", "bbob-biobj-mixint_f050_i03_d040 1.0", "bbob-biobj-mixint_f050_i03_d080 1.0", "bbob-biobj-mixint_f050_i03_d160 1.0", "bbob-biobj-mixint_f050_i04_d005 1.0", "bbob-biobj-mixint_f050_i04_d010 1.0", "bbob-biobj-mixint_f050_i04_d020 1.0", "bbob-biobj-mixint_f050_i04_d040 1.0", "bbob-biobj-mixint_f050_i04_d080 1.0", "bbob-biobj-mixint_f050_i04_d160 1.0", "bbob-biobj-mixint_f050_i05_d005 1.0", "bbob-biobj-mixint_f050_i05_d010 1.0", "bbob-biobj-mixint_f050_i05_d020 1.0", "bbob-biobj-mixint_f050_i05_d040 1.0", "bbob-biobj-mixint_f050_i05_d080 1.0", "bbob-biobj-mixint_f050_i05_d160 1.0", "bbob-biobj-mixint_f050_i06_d005 1.0", "bbob-biobj-mixint_f050_i06_d010 1.0", "bbob-biobj-mixint_f050_i06_d020 1.0", "bbob-biobj-mixint_f050_i06_d040 1.0", "bbob-biobj-mixint_f050_i06_d080 1.0", "bbob-biobj-mixint_f050_i06_d160 1.0", "bbob-biobj-mixint_f050_i07_d005 1.0", "bbob-biobj-mixint_f050_i07_d010 1.0", "bbob-biobj-mixint_f050_i07_d020 1.0", "bbob-biobj-mixint_f050_i07_d040 1.0", "bbob-biobj-mixint_f050_i07_d080 1.0", "bbob-biobj-mixint_f050_i07_d160 1.0", "bbob-biobj-mixint_f050_i08_d005 1.0", "bbob-biobj-mixint_f050_i08_d010 1.0", "bbob-biobj-mixint_f050_i08_d020 1.0", "bbob-biobj-mixint_f050_i08_d040 1.0", "bbob-biobj-mixint_f050_i08_d080 1.0", "bbob-biobj-mixint_f050_i08_d160 1.0", "bbob-biobj-mixint_f050_i09_d005 1.0", "bbob-biobj-mixint_f050_i09_d010 1.0", "bbob-biobj-mixint_f050_i09_d020 1.0", "bbob-biobj-mixint_f050_i09_d040 1.0", "bbob-biobj-mixint_f050_i09_d080 1.0", "bbob-biobj-mixint_f050_i09_d160 1.0", "bbob-biobj-mixint_f050_i10_d005 1.0", "bbob-biobj-mixint_f050_i10_d010 1.0", "bbob-biobj-mixint_f050_i10_d020 1.0", "bbob-biobj-mixint_f050_i10_d040 1.0", "bbob-biobj-mixint_f050_i10_d080 1.0", "bbob-biobj-mixint_f050_i10_d160 1.0", "bbob-biobj-mixint_f050_i11_d005 1.0", "bbob-biobj-mixint_f050_i11_d010 1.0", "bbob-biobj-mixint_f050_i11_d020 1.0", "bbob-biobj-mixint_f050_i11_d040 1.0", "bbob-biobj-mixint_f050_i11_d080 1.0", "bbob-biobj-mixint_f050_i11_d160 1.0", "bbob-biobj-mixint_f050_i12_d005 1.0", "bbob-biobj-mixint_f050_i12_d010 1.0", "bbob-biobj-mixint_f050_i12_d020 1.0", "bbob-biobj-mixint_f050_i12_d040 1.0", "bbob-biobj-mixint_f050_i12_d080 1.0", "bbob-biobj-mixint_f050_i12_d160 1.0", "bbob-biobj-mixint_f050_i13_d005 1.0", "bbob-biobj-mixint_f050_i13_d010 1.0", "bbob-biobj-mixint_f050_i13_d020 1.0", "bbob-biobj-mixint_f050_i13_d040 1.0", "bbob-biobj-mixint_f050_i13_d080 1.0", "bbob-biobj-mixint_f050_i13_d160 1.0", "bbob-biobj-mixint_f050_i14_d005 1.0", "bbob-biobj-mixint_f050_i14_d010 1.0", "bbob-biobj-mixint_f050_i14_d020 1.0", "bbob-biobj-mixint_f050_i14_d040 1.0", "bbob-biobj-mixint_f050_i14_d080 1.0", "bbob-biobj-mixint_f050_i14_d160 1.0", "bbob-biobj-mixint_f050_i15_d005 1.0", "bbob-biobj-mixint_f050_i15_d010 1.0", "bbob-biobj-mixint_f050_i15_d020 1.0", "bbob-biobj-mixint_f050_i15_d040 1.0", "bbob-biobj-mixint_f050_i15_d080 1.0", "bbob-biobj-mixint_f050_i15_d160 1.0", "bbob-biobj-mixint_f051_i01_d005 1.0", "bbob-biobj-mixint_f051_i01_d010 1.0", "bbob-biobj-mixint_f051_i01_d020 1.0", "bbob-biobj-mixint_f051_i01_d040 1.0", "bbob-biobj-mixint_f051_i01_d080 1.0", "bbob-biobj-mixint_f051_i01_d160 1.0", "bbob-biobj-mixint_f051_i02_d005 1.0", "bbob-biobj-mixint_f051_i02_d010 1.0", "bbob-biobj-mixint_f051_i02_d020 1.0", "bbob-biobj-mixint_f051_i02_d040 1.0", "bbob-biobj-mixint_f051_i02_d080 1.0", "bbob-biobj-mixint_f051_i02_d160 1.0", "bbob-biobj-mixint_f051_i03_d005 1.0", "bbob-biobj-mixint_f051_i03_d010 1.0", "bbob-biobj-mixint_f051_i03_d020 1.0", "bbob-biobj-mixint_f051_i03_d040 1.0", "bbob-biobj-mixint_f051_i03_d080 1.0", "bbob-biobj-mixint_f051_i03_d160 1.0", "bbob-biobj-mixint_f051_i04_d005 1.0", "bbob-biobj-mixint_f051_i04_d010 1.0", "bbob-biobj-mixint_f051_i04_d020 1.0", "bbob-biobj-mixint_f051_i04_d040 1.0", "bbob-biobj-mixint_f051_i04_d080 1.0", "bbob-biobj-mixint_f051_i04_d160 1.0", "bbob-biobj-mixint_f051_i05_d005 1.0", "bbob-biobj-mixint_f051_i05_d010 1.0", "bbob-biobj-mixint_f051_i05_d020 1.0", "bbob-biobj-mixint_f051_i05_d040 1.0", "bbob-biobj-mixint_f051_i05_d080 1.0", "bbob-biobj-mixint_f051_i05_d160 1.0", "bbob-biobj-mixint_f051_i06_d005 1.0", "bbob-biobj-mixint_f051_i06_d010 1.0", "bbob-biobj-mixint_f051_i06_d020 1.0", "bbob-biobj-mixint_f051_i06_d040 1.0", "bbob-biobj-mixint_f051_i06_d080 1.0", "bbob-biobj-mixint_f051_i06_d160 1.0", "bbob-biobj-mixint_f051_i07_d005 1.0", "bbob-biobj-mixint_f051_i07_d010 1.0", "bbob-biobj-mixint_f051_i07_d020 1.0", "bbob-biobj-mixint_f051_i07_d040 1.0", "bbob-biobj-mixint_f051_i07_d080 1.0", "bbob-biobj-mixint_f051_i07_d160 1.0", "bbob-biobj-mixint_f051_i08_d005 1.0", "bbob-biobj-mixint_f051_i08_d010 1.0", "bbob-biobj-mixint_f051_i08_d020 1.0", "bbob-biobj-mixint_f051_i08_d040 1.0", "bbob-biobj-mixint_f051_i08_d080 1.0", "bbob-biobj-mixint_f051_i08_d160 1.0", "bbob-biobj-mixint_f051_i09_d005 1.0", "bbob-biobj-mixint_f051_i09_d010 1.0", "bbob-biobj-mixint_f051_i09_d020 1.0", "bbob-biobj-mixint_f051_i09_d040 1.0", "bbob-biobj-mixint_f051_i09_d080 1.0", "bbob-biobj-mixint_f051_i09_d160 1.0", "bbob-biobj-mixint_f051_i10_d005 1.0", "bbob-biobj-mixint_f051_i10_d010 1.0", "bbob-biobj-mixint_f051_i10_d020 1.0", "bbob-biobj-mixint_f051_i10_d040 1.0", "bbob-biobj-mixint_f051_i10_d080 1.0", "bbob-biobj-mixint_f051_i10_d160 1.0", "bbob-biobj-mixint_f051_i11_d005 1.0", "bbob-biobj-mixint_f051_i11_d010 1.0", "bbob-biobj-mixint_f051_i11_d020 1.0", "bbob-biobj-mixint_f051_i11_d040 1.0", "bbob-biobj-mixint_f051_i11_d080 1.0", "bbob-biobj-mixint_f051_i11_d160 1.0", "bbob-biobj-mixint_f051_i12_d005 1.0", "bbob-biobj-mixint_f051_i12_d010 1.0", "bbob-biobj-mixint_f051_i12_d020 1.0", "bbob-biobj-mixint_f051_i12_d040 1.0", "bbob-biobj-mixint_f051_i12_d080 1.0", "bbob-biobj-mixint_f051_i12_d160 1.0", "bbob-biobj-mixint_f051_i13_d005 1.0", "bbob-biobj-mixint_f051_i13_d010 1.0", "bbob-biobj-mixint_f051_i13_d020 1.0", "bbob-biobj-mixint_f051_i13_d040 1.0", "bbob-biobj-mixint_f051_i13_d080 1.0", "bbob-biobj-mixint_f051_i13_d160 1.0", "bbob-biobj-mixint_f051_i14_d005 1.0", "bbob-biobj-mixint_f051_i14_d010 1.0", "bbob-biobj-mixint_f051_i14_d020 1.0", "bbob-biobj-mixint_f051_i14_d040 1.0", "bbob-biobj-mixint_f051_i14_d080 1.0", "bbob-biobj-mixint_f051_i14_d160 1.0", "bbob-biobj-mixint_f051_i15_d005 1.0", "bbob-biobj-mixint_f051_i15_d010 1.0", "bbob-biobj-mixint_f051_i15_d020 1.0", "bbob-biobj-mixint_f051_i15_d040 1.0", "bbob-biobj-mixint_f051_i15_d080 1.0", "bbob-biobj-mixint_f051_i15_d160 1.0", "bbob-biobj-mixint_f052_i01_d005 1.0", "bbob-biobj-mixint_f052_i01_d010 1.0", "bbob-biobj-mixint_f052_i01_d020 1.0", "bbob-biobj-mixint_f052_i01_d040 1.0", "bbob-biobj-mixint_f052_i01_d080 1.0", "bbob-biobj-mixint_f052_i01_d160 1.0", "bbob-biobj-mixint_f052_i02_d005 1.0", "bbob-biobj-mixint_f052_i02_d010 1.0", "bbob-biobj-mixint_f052_i02_d020 1.0", "bbob-biobj-mixint_f052_i02_d040 1.0", "bbob-biobj-mixint_f052_i02_d080 1.0", "bbob-biobj-mixint_f052_i02_d160 1.0", "bbob-biobj-mixint_f052_i03_d005 1.0", "bbob-biobj-mixint_f052_i03_d010 1.0", "bbob-biobj-mixint_f052_i03_d020 1.0", "bbob-biobj-mixint_f052_i03_d040 1.0", "bbob-biobj-mixint_f052_i03_d080 1.0", "bbob-biobj-mixint_f052_i03_d160 1.0", "bbob-biobj-mixint_f052_i04_d005 1.0", "bbob-biobj-mixint_f052_i04_d010 1.0", "bbob-biobj-mixint_f052_i04_d020 1.0", "bbob-biobj-mixint_f052_i04_d040 1.0", "bbob-biobj-mixint_f052_i04_d080 1.0", "bbob-biobj-mixint_f052_i04_d160 1.0", "bbob-biobj-mixint_f052_i05_d005 1.0", "bbob-biobj-mixint_f052_i05_d010 1.0", "bbob-biobj-mixint_f052_i05_d020 1.0", "bbob-biobj-mixint_f052_i05_d040 1.0", "bbob-biobj-mixint_f052_i05_d080 1.0", "bbob-biobj-mixint_f052_i05_d160 1.0", "bbob-biobj-mixint_f052_i06_d005 1.0", "bbob-biobj-mixint_f052_i06_d010 1.0", "bbob-biobj-mixint_f052_i06_d020 1.0", "bbob-biobj-mixint_f052_i06_d040 1.0", "bbob-biobj-mixint_f052_i06_d080 1.0", "bbob-biobj-mixint_f052_i06_d160 1.0", "bbob-biobj-mixint_f052_i07_d005 1.0", "bbob-biobj-mixint_f052_i07_d010 1.0", "bbob-biobj-mixint_f052_i07_d020 1.0", "bbob-biobj-mixint_f052_i07_d040 1.0", "bbob-biobj-mixint_f052_i07_d080 1.0", "bbob-biobj-mixint_f052_i07_d160 1.0", "bbob-biobj-mixint_f052_i08_d005 1.0", "bbob-biobj-mixint_f052_i08_d010 1.0", "bbob-biobj-mixint_f052_i08_d020 1.0", "bbob-biobj-mixint_f052_i08_d040 1.0", "bbob-biobj-mixint_f052_i08_d080 1.0", "bbob-biobj-mixint_f052_i08_d160 1.0", "bbob-biobj-mixint_f052_i09_d005 1.0", "bbob-biobj-mixint_f052_i09_d010 1.0", "bbob-biobj-mixint_f052_i09_d020 1.0", "bbob-biobj-mixint_f052_i09_d040 1.0", "bbob-biobj-mixint_f052_i09_d080 1.0", "bbob-biobj-mixint_f052_i09_d160 1.0", "bbob-biobj-mixint_f052_i10_d005 1.0", "bbob-biobj-mixint_f052_i10_d010 1.0", "bbob-biobj-mixint_f052_i10_d020 1.0", "bbob-biobj-mixint_f052_i10_d040 1.0", "bbob-biobj-mixint_f052_i10_d080 1.0", "bbob-biobj-mixint_f052_i10_d160 1.0", "bbob-biobj-mixint_f052_i11_d005 1.0", "bbob-biobj-mixint_f052_i11_d010 1.0", "bbob-biobj-mixint_f052_i11_d020 1.0", "bbob-biobj-mixint_f052_i11_d040 1.0", "bbob-biobj-mixint_f052_i11_d080 1.0", "bbob-biobj-mixint_f052_i11_d160 1.0", "bbob-biobj-mixint_f052_i12_d005 1.0", "bbob-biobj-mixint_f052_i12_d010 1.0", "bbob-biobj-mixint_f052_i12_d020 1.0", "bbob-biobj-mixint_f052_i12_d040 1.0", "bbob-biobj-mixint_f052_i12_d080 1.0", "bbob-biobj-mixint_f052_i12_d160 1.0", "bbob-biobj-mixint_f052_i13_d005 1.0", "bbob-biobj-mixint_f052_i13_d010 1.0", "bbob-biobj-mixint_f052_i13_d020 1.0", "bbob-biobj-mixint_f052_i13_d040 1.0", "bbob-biobj-mixint_f052_i13_d080 1.0", "bbob-biobj-mixint_f052_i13_d160 1.0", "bbob-biobj-mixint_f052_i14_d005 1.0", "bbob-biobj-mixint_f052_i14_d010 1.0", "bbob-biobj-mixint_f052_i14_d020 1.0", "bbob-biobj-mixint_f052_i14_d040 1.0", "bbob-biobj-mixint_f052_i14_d080 1.0", "bbob-biobj-mixint_f052_i14_d160 1.0", "bbob-biobj-mixint_f052_i15_d005 1.0", "bbob-biobj-mixint_f052_i15_d010 1.0", "bbob-biobj-mixint_f052_i15_d020 1.0", "bbob-biobj-mixint_f052_i15_d040 1.0", "bbob-biobj-mixint_f052_i15_d080 1.0", "bbob-biobj-mixint_f052_i15_d160 1.0", "bbob-biobj-mixint_f053_i01_d005 1.0", "bbob-biobj-mixint_f053_i01_d010 1.0", "bbob-biobj-mixint_f053_i01_d020 1.0", "bbob-biobj-mixint_f053_i01_d040 1.0", "bbob-biobj-mixint_f053_i01_d080 1.0", "bbob-biobj-mixint_f053_i01_d160 1.0", "bbob-biobj-mixint_f053_i02_d005 1.0", "bbob-biobj-mixint_f053_i02_d010 1.0", "bbob-biobj-mixint_f053_i02_d020 1.0", "bbob-biobj-mixint_f053_i02_d040 1.0", "bbob-biobj-mixint_f053_i02_d080 1.0", "bbob-biobj-mixint_f053_i02_d160 1.0", "bbob-biobj-mixint_f053_i03_d005 1.0", "bbob-biobj-mixint_f053_i03_d010 1.0", "bbob-biobj-mixint_f053_i03_d020 1.0", "bbob-biobj-mixint_f053_i03_d040 1.0", "bbob-biobj-mixint_f053_i03_d080 1.0", "bbob-biobj-mixint_f053_i03_d160 1.0", "bbob-biobj-mixint_f053_i04_d005 1.0", "bbob-biobj-mixint_f053_i04_d010 1.0", "bbob-biobj-mixint_f053_i04_d020 1.0", "bbob-biobj-mixint_f053_i04_d040 1.0", "bbob-biobj-mixint_f053_i04_d080 1.0", "bbob-biobj-mixint_f053_i04_d160 1.0", "bbob-biobj-mixint_f053_i05_d005 1.0", "bbob-biobj-mixint_f053_i05_d010 1.0", "bbob-biobj-mixint_f053_i05_d020 1.0", "bbob-biobj-mixint_f053_i05_d040 1.0", "bbob-biobj-mixint_f053_i05_d080 1.0", "bbob-biobj-mixint_f053_i05_d160 1.0", "bbob-biobj-mixint_f053_i06_d005 1.0", "bbob-biobj-mixint_f053_i06_d010 1.0", "bbob-biobj-mixint_f053_i06_d020 1.0", "bbob-biobj-mixint_f053_i06_d040 1.0", "bbob-biobj-mixint_f053_i06_d080 1.0", "bbob-biobj-mixint_f053_i06_d160 1.0", "bbob-biobj-mixint_f053_i07_d005 1.0", "bbob-biobj-mixint_f053_i07_d010 1.0", "bbob-biobj-mixint_f053_i07_d020 1.0", "bbob-biobj-mixint_f053_i07_d040 1.0", "bbob-biobj-mixint_f053_i07_d080 1.0", "bbob-biobj-mixint_f053_i07_d160 1.0", "bbob-biobj-mixint_f053_i08_d005 1.0", "bbob-biobj-mixint_f053_i08_d010 1.0", "bbob-biobj-mixint_f053_i08_d020 1.0", "bbob-biobj-mixint_f053_i08_d040 1.0", "bbob-biobj-mixint_f053_i08_d080 1.0", "bbob-biobj-mixint_f053_i08_d160 1.0", "bbob-biobj-mixint_f053_i09_d005 1.0", "bbob-biobj-mixint_f053_i09_d010 1.0", "bbob-biobj-mixint_f053_i09_d020 1.0", "bbob-biobj-mixint_f053_i09_d040 1.0", "bbob-biobj-mixint_f053_i09_d080 1.0", "bbob-biobj-mixint_f053_i09_d160 1.0", "bbob-biobj-mixint_f053_i10_d005 1.0", "bbob-biobj-mixint_f053_i10_d010 1.0", "bbob-biobj-mixint_f053_i10_d020 1.0", "bbob-biobj-mixint_f053_i10_d040 1.0", "bbob-biobj-mixint_f053_i10_d080 1.0", "bbob-biobj-mixint_f053_i10_d160 1.0", "bbob-biobj-mixint_f053_i11_d005 1.0", "bbob-biobj-mixint_f053_i11_d010 1.0", "bbob-biobj-mixint_f053_i11_d020 1.0", "bbob-biobj-mixint_f053_i11_d040 1.0", "bbob-biobj-mixint_f053_i11_d080 1.0", "bbob-biobj-mixint_f053_i11_d160 1.0", "bbob-biobj-mixint_f053_i12_d005 1.0", "bbob-biobj-mixint_f053_i12_d010 1.0", "bbob-biobj-mixint_f053_i12_d020 1.0", "bbob-biobj-mixint_f053_i12_d040 1.0", "bbob-biobj-mixint_f053_i12_d080 1.0", "bbob-biobj-mixint_f053_i12_d160 1.0", "bbob-biobj-mixint_f053_i13_d005 1.0", "bbob-biobj-mixint_f053_i13_d010 1.0", "bbob-biobj-mixint_f053_i13_d020 1.0", "bbob-biobj-mixint_f053_i13_d040 1.0", "bbob-biobj-mixint_f053_i13_d080 1.0", "bbob-biobj-mixint_f053_i13_d160 1.0", "bbob-biobj-mixint_f053_i14_d005 1.0", "bbob-biobj-mixint_f053_i14_d010 1.0", "bbob-biobj-mixint_f053_i14_d020 1.0", "bbob-biobj-mixint_f053_i14_d040 1.0", "bbob-biobj-mixint_f053_i14_d080 1.0", "bbob-biobj-mixint_f053_i14_d160 1.0", "bbob-biobj-mixint_f053_i15_d005 1.0", "bbob-biobj-mixint_f053_i15_d010 1.0", "bbob-biobj-mixint_f053_i15_d020 1.0", "bbob-biobj-mixint_f053_i15_d040 1.0", "bbob-biobj-mixint_f053_i15_d080 1.0", "bbob-biobj-mixint_f053_i15_d160 1.0", "bbob-biobj-mixint_f054_i01_d005 1.0", "bbob-biobj-mixint_f054_i01_d010 1.0", "bbob-biobj-mixint_f054_i01_d020 1.0", "bbob-biobj-mixint_f054_i01_d040 1.0", "bbob-biobj-mixint_f054_i01_d080 1.0", "bbob-biobj-mixint_f054_i01_d160 1.0", "bbob-biobj-mixint_f054_i02_d005 1.0", "bbob-biobj-mixint_f054_i02_d010 1.0", "bbob-biobj-mixint_f054_i02_d020 1.0", "bbob-biobj-mixint_f054_i02_d040 1.0", "bbob-biobj-mixint_f054_i02_d080 1.0", "bbob-biobj-mixint_f054_i02_d160 1.0", "bbob-biobj-mixint_f054_i03_d005 1.0", "bbob-biobj-mixint_f054_i03_d010 1.0", "bbob-biobj-mixint_f054_i03_d020 1.0", "bbob-biobj-mixint_f054_i03_d040 1.0", "bbob-biobj-mixint_f054_i03_d080 1.0", "bbob-biobj-mixint_f054_i03_d160 1.0", "bbob-biobj-mixint_f054_i04_d005 1.0", "bbob-biobj-mixint_f054_i04_d010 1.0", "bbob-biobj-mixint_f054_i04_d020 1.0", "bbob-biobj-mixint_f054_i04_d040 1.0", "bbob-biobj-mixint_f054_i04_d080 1.0", "bbob-biobj-mixint_f054_i04_d160 1.0", "bbob-biobj-mixint_f054_i05_d005 1.0", "bbob-biobj-mixint_f054_i05_d010 1.0", "bbob-biobj-mixint_f054_i05_d020 1.0", "bbob-biobj-mixint_f054_i05_d040 1.0", "bbob-biobj-mixint_f054_i05_d080 1.0", "bbob-biobj-mixint_f054_i05_d160 1.0", "bbob-biobj-mixint_f054_i06_d005 1.0", "bbob-biobj-mixint_f054_i06_d010 1.0", "bbob-biobj-mixint_f054_i06_d020 1.0", "bbob-biobj-mixint_f054_i06_d040 1.0", "bbob-biobj-mixint_f054_i06_d080 1.0", "bbob-biobj-mixint_f054_i06_d160 1.0", "bbob-biobj-mixint_f054_i07_d005 1.0", "bbob-biobj-mixint_f054_i07_d010 1.0", "bbob-biobj-mixint_f054_i07_d020 1.0", "bbob-biobj-mixint_f054_i07_d040 1.0", "bbob-biobj-mixint_f054_i07_d080 1.0", "bbob-biobj-mixint_f054_i07_d160 1.0", "bbob-biobj-mixint_f054_i08_d005 1.0", "bbob-biobj-mixint_f054_i08_d010 1.0", "bbob-biobj-mixint_f054_i08_d020 1.0", "bbob-biobj-mixint_f054_i08_d040 1.0", "bbob-biobj-mixint_f054_i08_d080 1.0", "bbob-biobj-mixint_f054_i08_d160 1.0", "bbob-biobj-mixint_f054_i09_d005 1.0", "bbob-biobj-mixint_f054_i09_d010 1.0", "bbob-biobj-mixint_f054_i09_d020 1.0", "bbob-biobj-mixint_f054_i09_d040 1.0", "bbob-biobj-mixint_f054_i09_d080 1.0", "bbob-biobj-mixint_f054_i09_d160 1.0", "bbob-biobj-mixint_f054_i10_d005 1.0", "bbob-biobj-mixint_f054_i10_d010 1.0", "bbob-biobj-mixint_f054_i10_d020 1.0", "bbob-biobj-mixint_f054_i10_d040 1.0", "bbob-biobj-mixint_f054_i10_d080 1.0", "bbob-biobj-mixint_f054_i10_d160 1.0", "bbob-biobj-mixint_f054_i11_d005 1.0", "bbob-biobj-mixint_f054_i11_d010 1.0", "bbob-biobj-mixint_f054_i11_d020 1.0", "bbob-biobj-mixint_f054_i11_d040 1.0", "bbob-biobj-mixint_f054_i11_d080 1.0", "bbob-biobj-mixint_f054_i11_d160 1.0", "bbob-biobj-mixint_f054_i12_d005 1.0", "bbob-biobj-mixint_f054_i12_d010 1.0", "bbob-biobj-mixint_f054_i12_d020 1.0", "bbob-biobj-mixint_f054_i12_d040 1.0", "bbob-biobj-mixint_f054_i12_d080 1.0", "bbob-biobj-mixint_f054_i12_d160 1.0", "bbob-biobj-mixint_f054_i13_d005 1.0", "bbob-biobj-mixint_f054_i13_d010 1.0", "bbob-biobj-mixint_f054_i13_d020 1.0", "bbob-biobj-mixint_f054_i13_d040 1.0", "bbob-biobj-mixint_f054_i13_d080 1.0", "bbob-biobj-mixint_f054_i13_d160 1.0", "bbob-biobj-mixint_f054_i14_d005 1.0", "bbob-biobj-mixint_f054_i14_d010 1.0", "bbob-biobj-mixint_f054_i14_d020 1.0", "bbob-biobj-mixint_f054_i14_d040 1.0", "bbob-biobj-mixint_f054_i14_d080 1.0", "bbob-biobj-mixint_f054_i14_d160 1.0", "bbob-biobj-mixint_f054_i15_d005 1.0", "bbob-biobj-mixint_f054_i15_d010 1.0", "bbob-biobj-mixint_f054_i15_d020 1.0", "bbob-biobj-mixint_f054_i15_d040 1.0", "bbob-biobj-mixint_f054_i15_d080 1.0", "bbob-biobj-mixint_f054_i15_d160 1.0", "bbob-biobj-mixint_f055_i01_d005 1.0", "bbob-biobj-mixint_f055_i01_d010 1.0", "bbob-biobj-mixint_f055_i01_d020 1.0", "bbob-biobj-mixint_f055_i01_d040 1.0", "bbob-biobj-mixint_f055_i01_d080 1.0", "bbob-biobj-mixint_f055_i01_d160 1.0", "bbob-biobj-mixint_f055_i02_d005 1.0", "bbob-biobj-mixint_f055_i02_d010 1.0", "bbob-biobj-mixint_f055_i02_d020 1.0", "bbob-biobj-mixint_f055_i02_d040 1.0", "bbob-biobj-mixint_f055_i02_d080 1.0", "bbob-biobj-mixint_f055_i02_d160 1.0", "bbob-biobj-mixint_f055_i03_d005 1.0", "bbob-biobj-mixint_f055_i03_d010 1.0", "bbob-biobj-mixint_f055_i03_d020 1.0", "bbob-biobj-mixint_f055_i03_d040 1.0", "bbob-biobj-mixint_f055_i03_d080 1.0", "bbob-biobj-mixint_f055_i03_d160 1.0", "bbob-biobj-mixint_f055_i04_d005 1.0", "bbob-biobj-mixint_f055_i04_d010 1.0", "bbob-biobj-mixint_f055_i04_d020 1.0", "bbob-biobj-mixint_f055_i04_d040 1.0", "bbob-biobj-mixint_f055_i04_d080 1.0", "bbob-biobj-mixint_f055_i04_d160 1.0", "bbob-biobj-mixint_f055_i05_d005 1.0", "bbob-biobj-mixint_f055_i05_d010 1.0", "bbob-biobj-mixint_f055_i05_d020 1.0", "bbob-biobj-mixint_f055_i05_d040 1.0", "bbob-biobj-mixint_f055_i05_d080 1.0", "bbob-biobj-mixint_f055_i05_d160 1.0", "bbob-biobj-mixint_f055_i06_d005 1.0", "bbob-biobj-mixint_f055_i06_d010 1.0", "bbob-biobj-mixint_f055_i06_d020 1.0", "bbob-biobj-mixint_f055_i06_d040 1.0", "bbob-biobj-mixint_f055_i06_d080 1.0", "bbob-biobj-mixint_f055_i06_d160 1.0", "bbob-biobj-mixint_f055_i07_d005 1.0", "bbob-biobj-mixint_f055_i07_d010 1.0", "bbob-biobj-mixint_f055_i07_d020 1.0", "bbob-biobj-mixint_f055_i07_d040 1.0", "bbob-biobj-mixint_f055_i07_d080 1.0", "bbob-biobj-mixint_f055_i07_d160 1.0", "bbob-biobj-mixint_f055_i08_d005 1.0", "bbob-biobj-mixint_f055_i08_d010 1.0", "bbob-biobj-mixint_f055_i08_d020 1.0", "bbob-biobj-mixint_f055_i08_d040 1.0", "bbob-biobj-mixint_f055_i08_d080 1.0", "bbob-biobj-mixint_f055_i08_d160 1.0", "bbob-biobj-mixint_f055_i09_d005 1.0", "bbob-biobj-mixint_f055_i09_d010 1.0", "bbob-biobj-mixint_f055_i09_d020 1.0", "bbob-biobj-mixint_f055_i09_d040 1.0", "bbob-biobj-mixint_f055_i09_d080 1.0", "bbob-biobj-mixint_f055_i09_d160 1.0", "bbob-biobj-mixint_f055_i10_d005 1.0", "bbob-biobj-mixint_f055_i10_d010 1.0", "bbob-biobj-mixint_f055_i10_d020 1.0", "bbob-biobj-mixint_f055_i10_d040 1.0", "bbob-biobj-mixint_f055_i10_d080 1.0", "bbob-biobj-mixint_f055_i10_d160 1.0", "bbob-biobj-mixint_f055_i11_d005 1.0", "bbob-biobj-mixint_f055_i11_d010 1.0", "bbob-biobj-mixint_f055_i11_d020 1.0", "bbob-biobj-mixint_f055_i11_d040 1.0", "bbob-biobj-mixint_f055_i11_d080 1.0", "bbob-biobj-mixint_f055_i11_d160 1.0", "bbob-biobj-mixint_f055_i12_d005 1.0", "bbob-biobj-mixint_f055_i12_d010 1.0", "bbob-biobj-mixint_f055_i12_d020 1.0", "bbob-biobj-mixint_f055_i12_d040 1.0", "bbob-biobj-mixint_f055_i12_d080 1.0", "bbob-biobj-mixint_f055_i12_d160 1.0", "bbob-biobj-mixint_f055_i13_d005 1.0", "bbob-biobj-mixint_f055_i13_d010 1.0", "bbob-biobj-mixint_f055_i13_d020 1.0", "bbob-biobj-mixint_f055_i13_d040 1.0", "bbob-biobj-mixint_f055_i13_d080 1.0", "bbob-biobj-mixint_f055_i13_d160 1.0", "bbob-biobj-mixint_f055_i14_d005 1.0", "bbob-biobj-mixint_f055_i14_d010 1.0", "bbob-biobj-mixint_f055_i14_d020 1.0", "bbob-biobj-mixint_f055_i14_d040 1.0", "bbob-biobj-mixint_f055_i14_d080 1.0", "bbob-biobj-mixint_f055_i14_d160 1.0", "bbob-biobj-mixint_f055_i15_d005 1.0", "bbob-biobj-mixint_f055_i15_d010 1.0", "bbob-biobj-mixint_f055_i15_d020 1.0", "bbob-biobj-mixint_f055_i15_d040 1.0", "bbob-biobj-mixint_f055_i15_d080 1.0", "bbob-biobj-mixint_f055_i15_d160 1.0", "bbob-biobj-mixint_f056_i01_d005 1.0", "bbob-biobj-mixint_f056_i01_d010 1.0", "bbob-biobj-mixint_f056_i01_d020 1.0", "bbob-biobj-mixint_f056_i01_d040 1.0", "bbob-biobj-mixint_f056_i01_d080 1.0", "bbob-biobj-mixint_f056_i01_d160 1.0", "bbob-biobj-mixint_f056_i02_d005 1.0", "bbob-biobj-mixint_f056_i02_d010 1.0", "bbob-biobj-mixint_f056_i02_d020 1.0", "bbob-biobj-mixint_f056_i02_d040 1.0", "bbob-biobj-mixint_f056_i02_d080 1.0", "bbob-biobj-mixint_f056_i02_d160 1.0", "bbob-biobj-mixint_f056_i03_d005 1.0", "bbob-biobj-mixint_f056_i03_d010 1.0", "bbob-biobj-mixint_f056_i03_d020 1.0", "bbob-biobj-mixint_f056_i03_d040 1.0", "bbob-biobj-mixint_f056_i03_d080 1.0", "bbob-biobj-mixint_f056_i03_d160 1.0", "bbob-biobj-mixint_f056_i04_d005 1.0", "bbob-biobj-mixint_f056_i04_d010 1.0", "bbob-biobj-mixint_f056_i04_d020 1.0", "bbob-biobj-mixint_f056_i04_d040 1.0", "bbob-biobj-mixint_f056_i04_d080 1.0", "bbob-biobj-mixint_f056_i04_d160 1.0", "bbob-biobj-mixint_f056_i05_d005 1.0", "bbob-biobj-mixint_f056_i05_d010 1.0", "bbob-biobj-mixint_f056_i05_d020 1.0", "bbob-biobj-mixint_f056_i05_d040 1.0", "bbob-biobj-mixint_f056_i05_d080 1.0", "bbob-biobj-mixint_f056_i05_d160 1.0", "bbob-biobj-mixint_f056_i06_d005 1.0", "bbob-biobj-mixint_f056_i06_d010 1.0", "bbob-biobj-mixint_f056_i06_d020 1.0", "bbob-biobj-mixint_f056_i06_d040 1.0", "bbob-biobj-mixint_f056_i06_d080 1.0", "bbob-biobj-mixint_f056_i06_d160 1.0", "bbob-biobj-mixint_f056_i07_d005 1.0", "bbob-biobj-mixint_f056_i07_d010 1.0", "bbob-biobj-mixint_f056_i07_d020 1.0", "bbob-biobj-mixint_f056_i07_d040 1.0", "bbob-biobj-mixint_f056_i07_d080 1.0", "bbob-biobj-mixint_f056_i07_d160 1.0", "bbob-biobj-mixint_f056_i08_d005 1.0", "bbob-biobj-mixint_f056_i08_d010 1.0", "bbob-biobj-mixint_f056_i08_d020 1.0", "bbob-biobj-mixint_f056_i08_d040 1.0", "bbob-biobj-mixint_f056_i08_d080 1.0", "bbob-biobj-mixint_f056_i08_d160 1.0", "bbob-biobj-mixint_f056_i09_d005 1.0", "bbob-biobj-mixint_f056_i09_d010 1.0", "bbob-biobj-mixint_f056_i09_d020 1.0", "bbob-biobj-mixint_f056_i09_d040 1.0", "bbob-biobj-mixint_f056_i09_d080 1.0", "bbob-biobj-mixint_f056_i09_d160 1.0", "bbob-biobj-mixint_f056_i10_d005 1.0", "bbob-biobj-mixint_f056_i10_d010 1.0", "bbob-biobj-mixint_f056_i10_d020 1.0", "bbob-biobj-mixint_f056_i10_d040 1.0", "bbob-biobj-mixint_f056_i10_d080 1.0", "bbob-biobj-mixint_f056_i10_d160 1.0", "bbob-biobj-mixint_f056_i11_d005 1.0", "bbob-biobj-mixint_f056_i11_d010 1.0", "bbob-biobj-mixint_f056_i11_d020 1.0", "bbob-biobj-mixint_f056_i11_d040 1.0", "bbob-biobj-mixint_f056_i11_d080 1.0", "bbob-biobj-mixint_f056_i11_d160 1.0", "bbob-biobj-mixint_f056_i12_d005 1.0", "bbob-biobj-mixint_f056_i12_d010 1.0", "bbob-biobj-mixint_f056_i12_d020 1.0", "bbob-biobj-mixint_f056_i12_d040 1.0", "bbob-biobj-mixint_f056_i12_d080 1.0", "bbob-biobj-mixint_f056_i12_d160 1.0", "bbob-biobj-mixint_f056_i13_d005 1.0", "bbob-biobj-mixint_f056_i13_d010 1.0", "bbob-biobj-mixint_f056_i13_d020 1.0", "bbob-biobj-mixint_f056_i13_d040 1.0", "bbob-biobj-mixint_f056_i13_d080 1.0", "bbob-biobj-mixint_f056_i13_d160 1.0", "bbob-biobj-mixint_f056_i14_d005 1.0", "bbob-biobj-mixint_f056_i14_d010 1.0", "bbob-biobj-mixint_f056_i14_d020 1.0", "bbob-biobj-mixint_f056_i14_d040 1.0", "bbob-biobj-mixint_f056_i14_d080 1.0", "bbob-biobj-mixint_f056_i14_d160 1.0", "bbob-biobj-mixint_f056_i15_d005 1.0", "bbob-biobj-mixint_f056_i15_d010 1.0", "bbob-biobj-mixint_f056_i15_d020 1.0", "bbob-biobj-mixint_f056_i15_d040 1.0", "bbob-biobj-mixint_f056_i15_d080 1.0", "bbob-biobj-mixint_f056_i15_d160 1.0", "bbob-biobj-mixint_f057_i01_d005 1.0", "bbob-biobj-mixint_f057_i01_d010 1.0", "bbob-biobj-mixint_f057_i01_d020 1.0", "bbob-biobj-mixint_f057_i01_d040 1.0", "bbob-biobj-mixint_f057_i01_d080 1.0", "bbob-biobj-mixint_f057_i01_d160 1.0", "bbob-biobj-mixint_f057_i02_d005 1.0", "bbob-biobj-mixint_f057_i02_d010 1.0", "bbob-biobj-mixint_f057_i02_d020 1.0", "bbob-biobj-mixint_f057_i02_d040 1.0", "bbob-biobj-mixint_f057_i02_d080 1.0", "bbob-biobj-mixint_f057_i02_d160 1.0", "bbob-biobj-mixint_f057_i03_d005 1.0", "bbob-biobj-mixint_f057_i03_d010 1.0", "bbob-biobj-mixint_f057_i03_d020 1.0", "bbob-biobj-mixint_f057_i03_d040 1.0", "bbob-biobj-mixint_f057_i03_d080 1.0", "bbob-biobj-mixint_f057_i03_d160 1.0", "bbob-biobj-mixint_f057_i04_d005 1.0", "bbob-biobj-mixint_f057_i04_d010 1.0", "bbob-biobj-mixint_f057_i04_d020 1.0", "bbob-biobj-mixint_f057_i04_d040 1.0", "bbob-biobj-mixint_f057_i04_d080 1.0", "bbob-biobj-mixint_f057_i04_d160 1.0", "bbob-biobj-mixint_f057_i05_d005 1.0", "bbob-biobj-mixint_f057_i05_d010 1.0", "bbob-biobj-mixint_f057_i05_d020 1.0", "bbob-biobj-mixint_f057_i05_d040 1.0", "bbob-biobj-mixint_f057_i05_d080 1.0", "bbob-biobj-mixint_f057_i05_d160 1.0", "bbob-biobj-mixint_f057_i06_d005 1.0", "bbob-biobj-mixint_f057_i06_d010 1.0", "bbob-biobj-mixint_f057_i06_d020 1.0", "bbob-biobj-mixint_f057_i06_d040 1.0", "bbob-biobj-mixint_f057_i06_d080 1.0", "bbob-biobj-mixint_f057_i06_d160 1.0", "bbob-biobj-mixint_f057_i07_d005 1.0", "bbob-biobj-mixint_f057_i07_d010 1.0", "bbob-biobj-mixint_f057_i07_d020 1.0", "bbob-biobj-mixint_f057_i07_d040 1.0", "bbob-biobj-mixint_f057_i07_d080 1.0", "bbob-biobj-mixint_f057_i07_d160 1.0", "bbob-biobj-mixint_f057_i08_d005 1.0", "bbob-biobj-mixint_f057_i08_d010 1.0", "bbob-biobj-mixint_f057_i08_d020 1.0", "bbob-biobj-mixint_f057_i08_d040 1.0", "bbob-biobj-mixint_f057_i08_d080 1.0", "bbob-biobj-mixint_f057_i08_d160 1.0", "bbob-biobj-mixint_f057_i09_d005 1.0", "bbob-biobj-mixint_f057_i09_d010 1.0", "bbob-biobj-mixint_f057_i09_d020 1.0", "bbob-biobj-mixint_f057_i09_d040 1.0", "bbob-biobj-mixint_f057_i09_d080 1.0", "bbob-biobj-mixint_f057_i09_d160 1.0", "bbob-biobj-mixint_f057_i10_d005 1.0", "bbob-biobj-mixint_f057_i10_d010 1.0", "bbob-biobj-mixint_f057_i10_d020 1.0", "bbob-biobj-mixint_f057_i10_d040 1.0", "bbob-biobj-mixint_f057_i10_d080 1.0", "bbob-biobj-mixint_f057_i10_d160 1.0", "bbob-biobj-mixint_f057_i11_d005 1.0", "bbob-biobj-mixint_f057_i11_d010 1.0", "bbob-biobj-mixint_f057_i11_d020 1.0", "bbob-biobj-mixint_f057_i11_d040 1.0", "bbob-biobj-mixint_f057_i11_d080 1.0", "bbob-biobj-mixint_f057_i11_d160 1.0", "bbob-biobj-mixint_f057_i12_d005 1.0", "bbob-biobj-mixint_f057_i12_d010 1.0", "bbob-biobj-mixint_f057_i12_d020 1.0", "bbob-biobj-mixint_f057_i12_d040 1.0", "bbob-biobj-mixint_f057_i12_d080 1.0", "bbob-biobj-mixint_f057_i12_d160 1.0", "bbob-biobj-mixint_f057_i13_d005 1.0", "bbob-biobj-mixint_f057_i13_d010 1.0", "bbob-biobj-mixint_f057_i13_d020 1.0", "bbob-biobj-mixint_f057_i13_d040 1.0", "bbob-biobj-mixint_f057_i13_d080 1.0", "bbob-biobj-mixint_f057_i13_d160 1.0", "bbob-biobj-mixint_f057_i14_d005 1.0", "bbob-biobj-mixint_f057_i14_d010 1.0", "bbob-biobj-mixint_f057_i14_d020 1.0", "bbob-biobj-mixint_f057_i14_d040 1.0", "bbob-biobj-mixint_f057_i14_d080 1.0", "bbob-biobj-mixint_f057_i14_d160 1.0", "bbob-biobj-mixint_f057_i15_d005 1.0", "bbob-biobj-mixint_f057_i15_d010 1.0", "bbob-biobj-mixint_f057_i15_d020 1.0", "bbob-biobj-mixint_f057_i15_d040 1.0", "bbob-biobj-mixint_f057_i15_d080 1.0", "bbob-biobj-mixint_f057_i15_d160 1.0", "bbob-biobj-mixint_f058_i01_d005 1.0", "bbob-biobj-mixint_f058_i01_d010 1.0", "bbob-biobj-mixint_f058_i01_d020 1.0", "bbob-biobj-mixint_f058_i01_d040 1.0", "bbob-biobj-mixint_f058_i01_d080 1.0", "bbob-biobj-mixint_f058_i01_d160 1.0", "bbob-biobj-mixint_f058_i02_d005 1.0", "bbob-biobj-mixint_f058_i02_d010 1.0", "bbob-biobj-mixint_f058_i02_d020 1.0", "bbob-biobj-mixint_f058_i02_d040 1.0", "bbob-biobj-mixint_f058_i02_d080 1.0", "bbob-biobj-mixint_f058_i02_d160 1.0", "bbob-biobj-mixint_f058_i03_d005 1.0", "bbob-biobj-mixint_f058_i03_d010 1.0", "bbob-biobj-mixint_f058_i03_d020 1.0", "bbob-biobj-mixint_f058_i03_d040 1.0", "bbob-biobj-mixint_f058_i03_d080 1.0", "bbob-biobj-mixint_f058_i03_d160 1.0", "bbob-biobj-mixint_f058_i04_d005 1.0", "bbob-biobj-mixint_f058_i04_d010 1.0", "bbob-biobj-mixint_f058_i04_d020 1.0", "bbob-biobj-mixint_f058_i04_d040 1.0", "bbob-biobj-mixint_f058_i04_d080 1.0", "bbob-biobj-mixint_f058_i04_d160 1.0", "bbob-biobj-mixint_f058_i05_d005 1.0", "bbob-biobj-mixint_f058_i05_d010 1.0", "bbob-biobj-mixint_f058_i05_d020 1.0", "bbob-biobj-mixint_f058_i05_d040 1.0", "bbob-biobj-mixint_f058_i05_d080 1.0", "bbob-biobj-mixint_f058_i05_d160 1.0", "bbob-biobj-mixint_f058_i06_d005 1.0", "bbob-biobj-mixint_f058_i06_d010 1.0", "bbob-biobj-mixint_f058_i06_d020 1.0", "bbob-biobj-mixint_f058_i06_d040 1.0", "bbob-biobj-mixint_f058_i06_d080 1.0", "bbob-biobj-mixint_f058_i06_d160 1.0", "bbob-biobj-mixint_f058_i07_d005 1.0", "bbob-biobj-mixint_f058_i07_d010 1.0", "bbob-biobj-mixint_f058_i07_d020 1.0", "bbob-biobj-mixint_f058_i07_d040 1.0", "bbob-biobj-mixint_f058_i07_d080 1.0", "bbob-biobj-mixint_f058_i07_d160 1.0", "bbob-biobj-mixint_f058_i08_d005 1.0", "bbob-biobj-mixint_f058_i08_d010 1.0", "bbob-biobj-mixint_f058_i08_d020 1.0", "bbob-biobj-mixint_f058_i08_d040 1.0", "bbob-biobj-mixint_f058_i08_d080 1.0", "bbob-biobj-mixint_f058_i08_d160 1.0", "bbob-biobj-mixint_f058_i09_d005 1.0", "bbob-biobj-mixint_f058_i09_d010 1.0", "bbob-biobj-mixint_f058_i09_d020 1.0", "bbob-biobj-mixint_f058_i09_d040 1.0", "bbob-biobj-mixint_f058_i09_d080 1.0", "bbob-biobj-mixint_f058_i09_d160 1.0", "bbob-biobj-mixint_f058_i10_d005 1.0", "bbob-biobj-mixint_f058_i10_d010 1.0", "bbob-biobj-mixint_f058_i10_d020 1.0", "bbob-biobj-mixint_f058_i10_d040 1.0", "bbob-biobj-mixint_f058_i10_d080 1.0", "bbob-biobj-mixint_f058_i10_d160 1.0", "bbob-biobj-mixint_f058_i11_d005 1.0", "bbob-biobj-mixint_f058_i11_d010 1.0", "bbob-biobj-mixint_f058_i11_d020 1.0", "bbob-biobj-mixint_f058_i11_d040 1.0", "bbob-biobj-mixint_f058_i11_d080 1.0", "bbob-biobj-mixint_f058_i11_d160 1.0", "bbob-biobj-mixint_f058_i12_d005 1.0", "bbob-biobj-mixint_f058_i12_d010 1.0", "bbob-biobj-mixint_f058_i12_d020 1.0", "bbob-biobj-mixint_f058_i12_d040 1.0", "bbob-biobj-mixint_f058_i12_d080 1.0", "bbob-biobj-mixint_f058_i12_d160 1.0", "bbob-biobj-mixint_f058_i13_d005 1.0", "bbob-biobj-mixint_f058_i13_d010 1.0", "bbob-biobj-mixint_f058_i13_d020 1.0", "bbob-biobj-mixint_f058_i13_d040 1.0", "bbob-biobj-mixint_f058_i13_d080 1.0", "bbob-biobj-mixint_f058_i13_d160 1.0", "bbob-biobj-mixint_f058_i14_d005 1.0", "bbob-biobj-mixint_f058_i14_d010 1.0", "bbob-biobj-mixint_f058_i14_d020 1.0", "bbob-biobj-mixint_f058_i14_d040 1.0", "bbob-biobj-mixint_f058_i14_d080 1.0", "bbob-biobj-mixint_f058_i14_d160 1.0", "bbob-biobj-mixint_f058_i15_d005 1.0", "bbob-biobj-mixint_f058_i15_d010 1.0", "bbob-biobj-mixint_f058_i15_d020 1.0", "bbob-biobj-mixint_f058_i15_d040 1.0", "bbob-biobj-mixint_f058_i15_d080 1.0", "bbob-biobj-mixint_f058_i15_d160 1.0", "bbob-biobj-mixint_f059_i01_d005 1.0", "bbob-biobj-mixint_f059_i01_d010 1.0", "bbob-biobj-mixint_f059_i01_d020 1.0", "bbob-biobj-mixint_f059_i01_d040 1.0", "bbob-biobj-mixint_f059_i01_d080 1.0", "bbob-biobj-mixint_f059_i01_d160 1.0", "bbob-biobj-mixint_f059_i02_d005 1.0", "bbob-biobj-mixint_f059_i02_d010 1.0", "bbob-biobj-mixint_f059_i02_d020 1.0", "bbob-biobj-mixint_f059_i02_d040 1.0", "bbob-biobj-mixint_f059_i02_d080 1.0", "bbob-biobj-mixint_f059_i02_d160 1.0", "bbob-biobj-mixint_f059_i03_d005 1.0", "bbob-biobj-mixint_f059_i03_d010 1.0", "bbob-biobj-mixint_f059_i03_d020 1.0", "bbob-biobj-mixint_f059_i03_d040 1.0", "bbob-biobj-mixint_f059_i03_d080 1.0", "bbob-biobj-mixint_f059_i03_d160 1.0", "bbob-biobj-mixint_f059_i04_d005 1.0", "bbob-biobj-mixint_f059_i04_d010 1.0", "bbob-biobj-mixint_f059_i04_d020 1.0", "bbob-biobj-mixint_f059_i04_d040 1.0", "bbob-biobj-mixint_f059_i04_d080 1.0", "bbob-biobj-mixint_f059_i04_d160 1.0", "bbob-biobj-mixint_f059_i05_d005 1.0", "bbob-biobj-mixint_f059_i05_d010 1.0", "bbob-biobj-mixint_f059_i05_d020 1.0", "bbob-biobj-mixint_f059_i05_d040 1.0", "bbob-biobj-mixint_f059_i05_d080 1.0", "bbob-biobj-mixint_f059_i05_d160 1.0", "bbob-biobj-mixint_f059_i06_d005 1.0", "bbob-biobj-mixint_f059_i06_d010 1.0", "bbob-biobj-mixint_f059_i06_d020 1.0", "bbob-biobj-mixint_f059_i06_d040 1.0", "bbob-biobj-mixint_f059_i06_d080 1.0", "bbob-biobj-mixint_f059_i06_d160 1.0", "bbob-biobj-mixint_f059_i07_d005 1.0", "bbob-biobj-mixint_f059_i07_d010 1.0", "bbob-biobj-mixint_f059_i07_d020 1.0", "bbob-biobj-mixint_f059_i07_d040 1.0", "bbob-biobj-mixint_f059_i07_d080 1.0", "bbob-biobj-mixint_f059_i07_d160 1.0", "bbob-biobj-mixint_f059_i08_d005 1.0", "bbob-biobj-mixint_f059_i08_d010 1.0", "bbob-biobj-mixint_f059_i08_d020 1.0", "bbob-biobj-mixint_f059_i08_d040 1.0", "bbob-biobj-mixint_f059_i08_d080 1.0", "bbob-biobj-mixint_f059_i08_d160 1.0", "bbob-biobj-mixint_f059_i09_d005 1.0", "bbob-biobj-mixint_f059_i09_d010 1.0", "bbob-biobj-mixint_f059_i09_d020 1.0", "bbob-biobj-mixint_f059_i09_d040 1.0", "bbob-biobj-mixint_f059_i09_d080 1.0", "bbob-biobj-mixint_f059_i09_d160 1.0", "bbob-biobj-mixint_f059_i10_d005 1.0", "bbob-biobj-mixint_f059_i10_d010 1.0", "bbob-biobj-mixint_f059_i10_d020 1.0", "bbob-biobj-mixint_f059_i10_d040 1.0", "bbob-biobj-mixint_f059_i10_d080 1.0", "bbob-biobj-mixint_f059_i10_d160 1.0", "bbob-biobj-mixint_f059_i11_d005 1.0", "bbob-biobj-mixint_f059_i11_d010 1.0", "bbob-biobj-mixint_f059_i11_d020 1.0", "bbob-biobj-mixint_f059_i11_d040 1.0", "bbob-biobj-mixint_f059_i11_d080 1.0", "bbob-biobj-mixint_f059_i11_d160 1.0", "bbob-biobj-mixint_f059_i12_d005 1.0", "bbob-biobj-mixint_f059_i12_d010 1.0", "bbob-biobj-mixint_f059_i12_d020 1.0", "bbob-biobj-mixint_f059_i12_d040 1.0", "bbob-biobj-mixint_f059_i12_d080 1.0", "bbob-biobj-mixint_f059_i12_d160 1.0", "bbob-biobj-mixint_f059_i13_d005 1.0", "bbob-biobj-mixint_f059_i13_d010 1.0", "bbob-biobj-mixint_f059_i13_d020 1.0", "bbob-biobj-mixint_f059_i13_d040 1.0", "bbob-biobj-mixint_f059_i13_d080 1.0", "bbob-biobj-mixint_f059_i13_d160 1.0", "bbob-biobj-mixint_f059_i14_d005 1.0", "bbob-biobj-mixint_f059_i14_d010 1.0", "bbob-biobj-mixint_f059_i14_d020 1.0", "bbob-biobj-mixint_f059_i14_d040 1.0", "bbob-biobj-mixint_f059_i14_d080 1.0", "bbob-biobj-mixint_f059_i14_d160 1.0", "bbob-biobj-mixint_f059_i15_d005 1.0", "bbob-biobj-mixint_f059_i15_d010 1.0", "bbob-biobj-mixint_f059_i15_d020 1.0", "bbob-biobj-mixint_f059_i15_d040 1.0", "bbob-biobj-mixint_f059_i15_d080 1.0", "bbob-biobj-mixint_f059_i15_d160 1.0", "bbob-biobj-mixint_f060_i01_d005 1.0", "bbob-biobj-mixint_f060_i01_d010 1.0", "bbob-biobj-mixint_f060_i01_d020 1.0", "bbob-biobj-mixint_f060_i01_d040 1.0", "bbob-biobj-mixint_f060_i01_d080 1.0", "bbob-biobj-mixint_f060_i01_d160 1.0", "bbob-biobj-mixint_f060_i02_d005 1.0", "bbob-biobj-mixint_f060_i02_d010 1.0", "bbob-biobj-mixint_f060_i02_d020 1.0", "bbob-biobj-mixint_f060_i02_d040 1.0", "bbob-biobj-mixint_f060_i02_d080 1.0", "bbob-biobj-mixint_f060_i02_d160 1.0", "bbob-biobj-mixint_f060_i03_d005 1.0", "bbob-biobj-mixint_f060_i03_d010 1.0", "bbob-biobj-mixint_f060_i03_d020 1.0", "bbob-biobj-mixint_f060_i03_d040 1.0", "bbob-biobj-mixint_f060_i03_d080 1.0", "bbob-biobj-mixint_f060_i03_d160 1.0", "bbob-biobj-mixint_f060_i04_d005 1.0", "bbob-biobj-mixint_f060_i04_d010 1.0", "bbob-biobj-mixint_f060_i04_d020 1.0", "bbob-biobj-mixint_f060_i04_d040 1.0", "bbob-biobj-mixint_f060_i04_d080 1.0", "bbob-biobj-mixint_f060_i04_d160 1.0", "bbob-biobj-mixint_f060_i05_d005 1.0", "bbob-biobj-mixint_f060_i05_d010 1.0", "bbob-biobj-mixint_f060_i05_d020 1.0", "bbob-biobj-mixint_f060_i05_d040 1.0", "bbob-biobj-mixint_f060_i05_d080 1.0", "bbob-biobj-mixint_f060_i05_d160 1.0", "bbob-biobj-mixint_f060_i06_d005 1.0", "bbob-biobj-mixint_f060_i06_d010 1.0", "bbob-biobj-mixint_f060_i06_d020 1.0", "bbob-biobj-mixint_f060_i06_d040 1.0", "bbob-biobj-mixint_f060_i06_d080 1.0", "bbob-biobj-mixint_f060_i06_d160 1.0", "bbob-biobj-mixint_f060_i07_d005 1.0", "bbob-biobj-mixint_f060_i07_d010 1.0", "bbob-biobj-mixint_f060_i07_d020 1.0", "bbob-biobj-mixint_f060_i07_d040 1.0", "bbob-biobj-mixint_f060_i07_d080 1.0", "bbob-biobj-mixint_f060_i07_d160 1.0", "bbob-biobj-mixint_f060_i08_d005 1.0", "bbob-biobj-mixint_f060_i08_d010 1.0", "bbob-biobj-mixint_f060_i08_d020 1.0", "bbob-biobj-mixint_f060_i08_d040 1.0", "bbob-biobj-mixint_f060_i08_d080 1.0", "bbob-biobj-mixint_f060_i08_d160 1.0", "bbob-biobj-mixint_f060_i09_d005 1.0", "bbob-biobj-mixint_f060_i09_d010 1.0", "bbob-biobj-mixint_f060_i09_d020 1.0", "bbob-biobj-mixint_f060_i09_d040 1.0", "bbob-biobj-mixint_f060_i09_d080 1.0", "bbob-biobj-mixint_f060_i09_d160 1.0", "bbob-biobj-mixint_f060_i10_d005 1.0", "bbob-biobj-mixint_f060_i10_d010 1.0", "bbob-biobj-mixint_f060_i10_d020 1.0", "bbob-biobj-mixint_f060_i10_d040 1.0", "bbob-biobj-mixint_f060_i10_d080 1.0", "bbob-biobj-mixint_f060_i10_d160 1.0", "bbob-biobj-mixint_f060_i11_d005 1.0", "bbob-biobj-mixint_f060_i11_d010 1.0", "bbob-biobj-mixint_f060_i11_d020 1.0", "bbob-biobj-mixint_f060_i11_d040 1.0", "bbob-biobj-mixint_f060_i11_d080 1.0", "bbob-biobj-mixint_f060_i11_d160 1.0", "bbob-biobj-mixint_f060_i12_d005 1.0", "bbob-biobj-mixint_f060_i12_d010 1.0", "bbob-biobj-mixint_f060_i12_d020 1.0", "bbob-biobj-mixint_f060_i12_d040 1.0", "bbob-biobj-mixint_f060_i12_d080 1.0", "bbob-biobj-mixint_f060_i12_d160 1.0", "bbob-biobj-mixint_f060_i13_d005 1.0", "bbob-biobj-mixint_f060_i13_d010 1.0", "bbob-biobj-mixint_f060_i13_d020 1.0", "bbob-biobj-mixint_f060_i13_d040 1.0", "bbob-biobj-mixint_f060_i13_d080 1.0", "bbob-biobj-mixint_f060_i13_d160 1.0", "bbob-biobj-mixint_f060_i14_d005 1.0", "bbob-biobj-mixint_f060_i14_d010 1.0", "bbob-biobj-mixint_f060_i14_d020 1.0", "bbob-biobj-mixint_f060_i14_d040 1.0", "bbob-biobj-mixint_f060_i14_d080 1.0", "bbob-biobj-mixint_f060_i14_d160 1.0", "bbob-biobj-mixint_f060_i15_d005 1.0", "bbob-biobj-mixint_f060_i15_d010 1.0", "bbob-biobj-mixint_f060_i15_d020 1.0", "bbob-biobj-mixint_f060_i15_d040 1.0", "bbob-biobj-mixint_f060_i15_d080 1.0", "bbob-biobj-mixint_f060_i15_d160 1.0", "bbob-biobj-mixint_f061_i01_d005 1.0", "bbob-biobj-mixint_f061_i01_d010 1.0", "bbob-biobj-mixint_f061_i01_d020 1.0", "bbob-biobj-mixint_f061_i01_d040 1.0", "bbob-biobj-mixint_f061_i01_d080 1.0", "bbob-biobj-mixint_f061_i01_d160 1.0", "bbob-biobj-mixint_f061_i02_d005 1.0", "bbob-biobj-mixint_f061_i02_d010 1.0", "bbob-biobj-mixint_f061_i02_d020 1.0", "bbob-biobj-mixint_f061_i02_d040 1.0", "bbob-biobj-mixint_f061_i02_d080 1.0", "bbob-biobj-mixint_f061_i02_d160 1.0", "bbob-biobj-mixint_f061_i03_d005 1.0", "bbob-biobj-mixint_f061_i03_d010 1.0", "bbob-biobj-mixint_f061_i03_d020 1.0", "bbob-biobj-mixint_f061_i03_d040 1.0", "bbob-biobj-mixint_f061_i03_d080 1.0", "bbob-biobj-mixint_f061_i03_d160 1.0", "bbob-biobj-mixint_f061_i04_d005 1.0", "bbob-biobj-mixint_f061_i04_d010 1.0", "bbob-biobj-mixint_f061_i04_d020 1.0", "bbob-biobj-mixint_f061_i04_d040 1.0", "bbob-biobj-mixint_f061_i04_d080 1.0", "bbob-biobj-mixint_f061_i04_d160 1.0", "bbob-biobj-mixint_f061_i05_d005 1.0", "bbob-biobj-mixint_f061_i05_d010 1.0", "bbob-biobj-mixint_f061_i05_d020 1.0", "bbob-biobj-mixint_f061_i05_d040 1.0", "bbob-biobj-mixint_f061_i05_d080 1.0", "bbob-biobj-mixint_f061_i05_d160 1.0", "bbob-biobj-mixint_f061_i06_d005 1.0", "bbob-biobj-mixint_f061_i06_d010 1.0", "bbob-biobj-mixint_f061_i06_d020 1.0", "bbob-biobj-mixint_f061_i06_d040 1.0", "bbob-biobj-mixint_f061_i06_d080 1.0", "bbob-biobj-mixint_f061_i06_d160 1.0", "bbob-biobj-mixint_f061_i07_d005 1.0", "bbob-biobj-mixint_f061_i07_d010 1.0", "bbob-biobj-mixint_f061_i07_d020 1.0", "bbob-biobj-mixint_f061_i07_d040 1.0", "bbob-biobj-mixint_f061_i07_d080 1.0", "bbob-biobj-mixint_f061_i07_d160 1.0", "bbob-biobj-mixint_f061_i08_d005 1.0", "bbob-biobj-mixint_f061_i08_d010 1.0", "bbob-biobj-mixint_f061_i08_d020 1.0", "bbob-biobj-mixint_f061_i08_d040 1.0", "bbob-biobj-mixint_f061_i08_d080 1.0", "bbob-biobj-mixint_f061_i08_d160 1.0", "bbob-biobj-mixint_f061_i09_d005 1.0", "bbob-biobj-mixint_f061_i09_d010 1.0", "bbob-biobj-mixint_f061_i09_d020 1.0", "bbob-biobj-mixint_f061_i09_d040 1.0", "bbob-biobj-mixint_f061_i09_d080 1.0", "bbob-biobj-mixint_f061_i09_d160 1.0", "bbob-biobj-mixint_f061_i10_d005 1.0", "bbob-biobj-mixint_f061_i10_d010 1.0", "bbob-biobj-mixint_f061_i10_d020 1.0", "bbob-biobj-mixint_f061_i10_d040 1.0", "bbob-biobj-mixint_f061_i10_d080 1.0", "bbob-biobj-mixint_f061_i10_d160 1.0", "bbob-biobj-mixint_f061_i11_d005 1.0", "bbob-biobj-mixint_f061_i11_d010 1.0", "bbob-biobj-mixint_f061_i11_d020 1.0", "bbob-biobj-mixint_f061_i11_d040 1.0", "bbob-biobj-mixint_f061_i11_d080 1.0", "bbob-biobj-mixint_f061_i11_d160 1.0", "bbob-biobj-mixint_f061_i12_d005 1.0", "bbob-biobj-mixint_f061_i12_d010 1.0", "bbob-biobj-mixint_f061_i12_d020 1.0", "bbob-biobj-mixint_f061_i12_d040 1.0", "bbob-biobj-mixint_f061_i12_d080 1.0", "bbob-biobj-mixint_f061_i12_d160 1.0", "bbob-biobj-mixint_f061_i13_d005 1.0", "bbob-biobj-mixint_f061_i13_d010 1.0", "bbob-biobj-mixint_f061_i13_d020 1.0", "bbob-biobj-mixint_f061_i13_d040 1.0", "bbob-biobj-mixint_f061_i13_d080 1.0", "bbob-biobj-mixint_f061_i13_d160 1.0", "bbob-biobj-mixint_f061_i14_d005 1.0", "bbob-biobj-mixint_f061_i14_d010 1.0", "bbob-biobj-mixint_f061_i14_d020 1.0", "bbob-biobj-mixint_f061_i14_d040 1.0", "bbob-biobj-mixint_f061_i14_d080 1.0", "bbob-biobj-mixint_f061_i14_d160 1.0", "bbob-biobj-mixint_f061_i15_d005 1.0", "bbob-biobj-mixint_f061_i15_d010 1.0", "bbob-biobj-mixint_f061_i15_d020 1.0", "bbob-biobj-mixint_f061_i15_d040 1.0", "bbob-biobj-mixint_f061_i15_d080 1.0", "bbob-biobj-mixint_f061_i15_d160 1.0", "bbob-biobj-mixint_f062_i01_d005 1.0", "bbob-biobj-mixint_f062_i01_d010 1.0", "bbob-biobj-mixint_f062_i01_d020 1.0", "bbob-biobj-mixint_f062_i01_d040 1.0", "bbob-biobj-mixint_f062_i01_d080 1.0", "bbob-biobj-mixint_f062_i01_d160 1.0", "bbob-biobj-mixint_f062_i02_d005 1.0", "bbob-biobj-mixint_f062_i02_d010 1.0", "bbob-biobj-mixint_f062_i02_d020 1.0", "bbob-biobj-mixint_f062_i02_d040 1.0", "bbob-biobj-mixint_f062_i02_d080 1.0", "bbob-biobj-mixint_f062_i02_d160 1.0", "bbob-biobj-mixint_f062_i03_d005 1.0", "bbob-biobj-mixint_f062_i03_d010 1.0", "bbob-biobj-mixint_f062_i03_d020 1.0", "bbob-biobj-mixint_f062_i03_d040 1.0", "bbob-biobj-mixint_f062_i03_d080 1.0", "bbob-biobj-mixint_f062_i03_d160 1.0", "bbob-biobj-mixint_f062_i04_d005 1.0", "bbob-biobj-mixint_f062_i04_d010 1.0", "bbob-biobj-mixint_f062_i04_d020 1.0", "bbob-biobj-mixint_f062_i04_d040 1.0", "bbob-biobj-mixint_f062_i04_d080 1.0", "bbob-biobj-mixint_f062_i04_d160 1.0", "bbob-biobj-mixint_f062_i05_d005 1.0", "bbob-biobj-mixint_f062_i05_d010 1.0", "bbob-biobj-mixint_f062_i05_d020 1.0", "bbob-biobj-mixint_f062_i05_d040 1.0", "bbob-biobj-mixint_f062_i05_d080 1.0", "bbob-biobj-mixint_f062_i05_d160 1.0", "bbob-biobj-mixint_f062_i06_d005 1.0", "bbob-biobj-mixint_f062_i06_d010 1.0", "bbob-biobj-mixint_f062_i06_d020 1.0", "bbob-biobj-mixint_f062_i06_d040 1.0", "bbob-biobj-mixint_f062_i06_d080 1.0", "bbob-biobj-mixint_f062_i06_d160 1.0", "bbob-biobj-mixint_f062_i07_d005 1.0", "bbob-biobj-mixint_f062_i07_d010 1.0", "bbob-biobj-mixint_f062_i07_d020 1.0", "bbob-biobj-mixint_f062_i07_d040 1.0", "bbob-biobj-mixint_f062_i07_d080 1.0", "bbob-biobj-mixint_f062_i07_d160 1.0", "bbob-biobj-mixint_f062_i08_d005 1.0", "bbob-biobj-mixint_f062_i08_d010 1.0", "bbob-biobj-mixint_f062_i08_d020 1.0", "bbob-biobj-mixint_f062_i08_d040 1.0", "bbob-biobj-mixint_f062_i08_d080 1.0", "bbob-biobj-mixint_f062_i08_d160 1.0", "bbob-biobj-mixint_f062_i09_d005 1.0", "bbob-biobj-mixint_f062_i09_d010 1.0", "bbob-biobj-mixint_f062_i09_d020 1.0", "bbob-biobj-mixint_f062_i09_d040 1.0", "bbob-biobj-mixint_f062_i09_d080 1.0", "bbob-biobj-mixint_f062_i09_d160 1.0", "bbob-biobj-mixint_f062_i10_d005 1.0", "bbob-biobj-mixint_f062_i10_d010 1.0", "bbob-biobj-mixint_f062_i10_d020 1.0", "bbob-biobj-mixint_f062_i10_d040 1.0", "bbob-biobj-mixint_f062_i10_d080 1.0", "bbob-biobj-mixint_f062_i10_d160 1.0", "bbob-biobj-mixint_f062_i11_d005 1.0", "bbob-biobj-mixint_f062_i11_d010 1.0", "bbob-biobj-mixint_f062_i11_d020 1.0", "bbob-biobj-mixint_f062_i11_d040 1.0", "bbob-biobj-mixint_f062_i11_d080 1.0", "bbob-biobj-mixint_f062_i11_d160 1.0", "bbob-biobj-mixint_f062_i12_d005 1.0", "bbob-biobj-mixint_f062_i12_d010 1.0", "bbob-biobj-mixint_f062_i12_d020 1.0", "bbob-biobj-mixint_f062_i12_d040 1.0", "bbob-biobj-mixint_f062_i12_d080 1.0", "bbob-biobj-mixint_f062_i12_d160 1.0", "bbob-biobj-mixint_f062_i13_d005 1.0", "bbob-biobj-mixint_f062_i13_d010 1.0", "bbob-biobj-mixint_f062_i13_d020 1.0", "bbob-biobj-mixint_f062_i13_d040 1.0", "bbob-biobj-mixint_f062_i13_d080 1.0", "bbob-biobj-mixint_f062_i13_d160 1.0", "bbob-biobj-mixint_f062_i14_d005 1.0", "bbob-biobj-mixint_f062_i14_d010 1.0", "bbob-biobj-mixint_f062_i14_d020 1.0", "bbob-biobj-mixint_f062_i14_d040 1.0", "bbob-biobj-mixint_f062_i14_d080 1.0", "bbob-biobj-mixint_f062_i14_d160 1.0", "bbob-biobj-mixint_f062_i15_d005 1.0", "bbob-biobj-mixint_f062_i15_d010 1.0", "bbob-biobj-mixint_f062_i15_d020 1.0", "bbob-biobj-mixint_f062_i15_d040 1.0", "bbob-biobj-mixint_f062_i15_d080 1.0", "bbob-biobj-mixint_f062_i15_d160 1.0", "bbob-biobj-mixint_f063_i01_d005 1.0", "bbob-biobj-mixint_f063_i01_d010 1.0", "bbob-biobj-mixint_f063_i01_d020 1.0", "bbob-biobj-mixint_f063_i01_d040 1.0", "bbob-biobj-mixint_f063_i01_d080 1.0", "bbob-biobj-mixint_f063_i01_d160 1.0", "bbob-biobj-mixint_f063_i02_d005 1.0", "bbob-biobj-mixint_f063_i02_d010 1.0", "bbob-biobj-mixint_f063_i02_d020 1.0", "bbob-biobj-mixint_f063_i02_d040 1.0", "bbob-biobj-mixint_f063_i02_d080 1.0", "bbob-biobj-mixint_f063_i02_d160 1.0", "bbob-biobj-mixint_f063_i03_d005 1.0", "bbob-biobj-mixint_f063_i03_d010 1.0", "bbob-biobj-mixint_f063_i03_d020 1.0", "bbob-biobj-mixint_f063_i03_d040 1.0", "bbob-biobj-mixint_f063_i03_d080 1.0", "bbob-biobj-mixint_f063_i03_d160 1.0", "bbob-biobj-mixint_f063_i04_d005 1.0", "bbob-biobj-mixint_f063_i04_d010 1.0", "bbob-biobj-mixint_f063_i04_d020 1.0", "bbob-biobj-mixint_f063_i04_d040 1.0", "bbob-biobj-mixint_f063_i04_d080 1.0", "bbob-biobj-mixint_f063_i04_d160 1.0", "bbob-biobj-mixint_f063_i05_d005 1.0", "bbob-biobj-mixint_f063_i05_d010 1.0", "bbob-biobj-mixint_f063_i05_d020 1.0", "bbob-biobj-mixint_f063_i05_d040 1.0", "bbob-biobj-mixint_f063_i05_d080 1.0", "bbob-biobj-mixint_f063_i05_d160 1.0", "bbob-biobj-mixint_f063_i06_d005 1.0", "bbob-biobj-mixint_f063_i06_d010 1.0", "bbob-biobj-mixint_f063_i06_d020 1.0", "bbob-biobj-mixint_f063_i06_d040 1.0", "bbob-biobj-mixint_f063_i06_d080 1.0", "bbob-biobj-mixint_f063_i06_d160 1.0", "bbob-biobj-mixint_f063_i07_d005 1.0", "bbob-biobj-mixint_f063_i07_d010 1.0", "bbob-biobj-mixint_f063_i07_d020 1.0", "bbob-biobj-mixint_f063_i07_d040 1.0", "bbob-biobj-mixint_f063_i07_d080 1.0", "bbob-biobj-mixint_f063_i07_d160 1.0", "bbob-biobj-mixint_f063_i08_d005 1.0", "bbob-biobj-mixint_f063_i08_d010 1.0", "bbob-biobj-mixint_f063_i08_d020 1.0", "bbob-biobj-mixint_f063_i08_d040 1.0", "bbob-biobj-mixint_f063_i08_d080 1.0", "bbob-biobj-mixint_f063_i08_d160 1.0", "bbob-biobj-mixint_f063_i09_d005 1.0", "bbob-biobj-mixint_f063_i09_d010 1.0", "bbob-biobj-mixint_f063_i09_d020 1.0", "bbob-biobj-mixint_f063_i09_d040 1.0", "bbob-biobj-mixint_f063_i09_d080 1.0", "bbob-biobj-mixint_f063_i09_d160 1.0", "bbob-biobj-mixint_f063_i10_d005 1.0", "bbob-biobj-mixint_f063_i10_d010 1.0", "bbob-biobj-mixint_f063_i10_d020 1.0", "bbob-biobj-mixint_f063_i10_d040 1.0", "bbob-biobj-mixint_f063_i10_d080 1.0", "bbob-biobj-mixint_f063_i10_d160 1.0", "bbob-biobj-mixint_f063_i11_d005 1.0", "bbob-biobj-mixint_f063_i11_d010 1.0", "bbob-biobj-mixint_f063_i11_d020 1.0", "bbob-biobj-mixint_f063_i11_d040 1.0", "bbob-biobj-mixint_f063_i11_d080 1.0", "bbob-biobj-mixint_f063_i11_d160 1.0", "bbob-biobj-mixint_f063_i12_d005 1.0", "bbob-biobj-mixint_f063_i12_d010 1.0", "bbob-biobj-mixint_f063_i12_d020 1.0", "bbob-biobj-mixint_f063_i12_d040 1.0", "bbob-biobj-mixint_f063_i12_d080 1.0", "bbob-biobj-mixint_f063_i12_d160 1.0", "bbob-biobj-mixint_f063_i13_d005 1.0", "bbob-biobj-mixint_f063_i13_d010 1.0", "bbob-biobj-mixint_f063_i13_d020 1.0", "bbob-biobj-mixint_f063_i13_d040 1.0", "bbob-biobj-mixint_f063_i13_d080 1.0", "bbob-biobj-mixint_f063_i13_d160 1.0", "bbob-biobj-mixint_f063_i14_d005 1.0", "bbob-biobj-mixint_f063_i14_d010 1.0", "bbob-biobj-mixint_f063_i14_d020 1.0", "bbob-biobj-mixint_f063_i14_d040 1.0", "bbob-biobj-mixint_f063_i14_d080 1.0", "bbob-biobj-mixint_f063_i14_d160 1.0", "bbob-biobj-mixint_f063_i15_d005 1.0", "bbob-biobj-mixint_f063_i15_d010 1.0", "bbob-biobj-mixint_f063_i15_d020 1.0", "bbob-biobj-mixint_f063_i15_d040 1.0", "bbob-biobj-mixint_f063_i15_d080 1.0", "bbob-biobj-mixint_f063_i15_d160 1.0", "bbob-biobj-mixint_f064_i01_d005 1.0", "bbob-biobj-mixint_f064_i01_d010 1.0", "bbob-biobj-mixint_f064_i01_d020 1.0", "bbob-biobj-mixint_f064_i01_d040 1.0", "bbob-biobj-mixint_f064_i01_d080 1.0", "bbob-biobj-mixint_f064_i01_d160 1.0", "bbob-biobj-mixint_f064_i02_d005 1.0", "bbob-biobj-mixint_f064_i02_d010 1.0", "bbob-biobj-mixint_f064_i02_d020 1.0", "bbob-biobj-mixint_f064_i02_d040 1.0", "bbob-biobj-mixint_f064_i02_d080 1.0", "bbob-biobj-mixint_f064_i02_d160 1.0", "bbob-biobj-mixint_f064_i03_d005 1.0", "bbob-biobj-mixint_f064_i03_d010 1.0", "bbob-biobj-mixint_f064_i03_d020 1.0", "bbob-biobj-mixint_f064_i03_d040 1.0", "bbob-biobj-mixint_f064_i03_d080 1.0", "bbob-biobj-mixint_f064_i03_d160 1.0", "bbob-biobj-mixint_f064_i04_d005 1.0", "bbob-biobj-mixint_f064_i04_d010 1.0", "bbob-biobj-mixint_f064_i04_d020 1.0", "bbob-biobj-mixint_f064_i04_d040 1.0", "bbob-biobj-mixint_f064_i04_d080 1.0", "bbob-biobj-mixint_f064_i04_d160 1.0", "bbob-biobj-mixint_f064_i05_d005 1.0", "bbob-biobj-mixint_f064_i05_d010 1.0", "bbob-biobj-mixint_f064_i05_d020 1.0", "bbob-biobj-mixint_f064_i05_d040 1.0", "bbob-biobj-mixint_f064_i05_d080 1.0", "bbob-biobj-mixint_f064_i05_d160 1.0", "bbob-biobj-mixint_f064_i06_d005 1.0", "bbob-biobj-mixint_f064_i06_d010 1.0", "bbob-biobj-mixint_f064_i06_d020 1.0", "bbob-biobj-mixint_f064_i06_d040 1.0", "bbob-biobj-mixint_f064_i06_d080 1.0", "bbob-biobj-mixint_f064_i06_d160 1.0", "bbob-biobj-mixint_f064_i07_d005 1.0", "bbob-biobj-mixint_f064_i07_d010 1.0", "bbob-biobj-mixint_f064_i07_d020 1.0", "bbob-biobj-mixint_f064_i07_d040 1.0", "bbob-biobj-mixint_f064_i07_d080 1.0", "bbob-biobj-mixint_f064_i07_d160 1.0", "bbob-biobj-mixint_f064_i08_d005 1.0", "bbob-biobj-mixint_f064_i08_d010 1.0", "bbob-biobj-mixint_f064_i08_d020 1.0", "bbob-biobj-mixint_f064_i08_d040 1.0", "bbob-biobj-mixint_f064_i08_d080 1.0", "bbob-biobj-mixint_f064_i08_d160 1.0", "bbob-biobj-mixint_f064_i09_d005 1.0", "bbob-biobj-mixint_f064_i09_d010 1.0", "bbob-biobj-mixint_f064_i09_d020 1.0", "bbob-biobj-mixint_f064_i09_d040 1.0", "bbob-biobj-mixint_f064_i09_d080 1.0", "bbob-biobj-mixint_f064_i09_d160 1.0", "bbob-biobj-mixint_f064_i10_d005 1.0", "bbob-biobj-mixint_f064_i10_d010 1.0", "bbob-biobj-mixint_f064_i10_d020 1.0", "bbob-biobj-mixint_f064_i10_d040 1.0", "bbob-biobj-mixint_f064_i10_d080 1.0", "bbob-biobj-mixint_f064_i10_d160 1.0", "bbob-biobj-mixint_f064_i11_d005 1.0", "bbob-biobj-mixint_f064_i11_d010 1.0", "bbob-biobj-mixint_f064_i11_d020 1.0", "bbob-biobj-mixint_f064_i11_d040 1.0", "bbob-biobj-mixint_f064_i11_d080 1.0", "bbob-biobj-mixint_f064_i11_d160 1.0", "bbob-biobj-mixint_f064_i12_d005 1.0", "bbob-biobj-mixint_f064_i12_d010 1.0", "bbob-biobj-mixint_f064_i12_d020 1.0", "bbob-biobj-mixint_f064_i12_d040 1.0", "bbob-biobj-mixint_f064_i12_d080 1.0", "bbob-biobj-mixint_f064_i12_d160 1.0", "bbob-biobj-mixint_f064_i13_d005 1.0", "bbob-biobj-mixint_f064_i13_d010 1.0", "bbob-biobj-mixint_f064_i13_d020 1.0", "bbob-biobj-mixint_f064_i13_d040 1.0", "bbob-biobj-mixint_f064_i13_d080 1.0", "bbob-biobj-mixint_f064_i13_d160 1.0", "bbob-biobj-mixint_f064_i14_d005 1.0", "bbob-biobj-mixint_f064_i14_d010 1.0", "bbob-biobj-mixint_f064_i14_d020 1.0", "bbob-biobj-mixint_f064_i14_d040 1.0", "bbob-biobj-mixint_f064_i14_d080 1.0", "bbob-biobj-mixint_f064_i14_d160 1.0", "bbob-biobj-mixint_f064_i15_d005 1.0", "bbob-biobj-mixint_f064_i15_d010 1.0", "bbob-biobj-mixint_f064_i15_d020 1.0", "bbob-biobj-mixint_f064_i15_d040 1.0", "bbob-biobj-mixint_f064_i15_d080 1.0", "bbob-biobj-mixint_f064_i15_d160 1.0", "bbob-biobj-mixint_f065_i01_d005 1.0", "bbob-biobj-mixint_f065_i01_d010 1.0", "bbob-biobj-mixint_f065_i01_d020 1.0", "bbob-biobj-mixint_f065_i01_d040 1.0", "bbob-biobj-mixint_f065_i01_d080 1.0", "bbob-biobj-mixint_f065_i01_d160 1.0", "bbob-biobj-mixint_f065_i02_d005 1.0", "bbob-biobj-mixint_f065_i02_d010 1.0", "bbob-biobj-mixint_f065_i02_d020 1.0", "bbob-biobj-mixint_f065_i02_d040 1.0", "bbob-biobj-mixint_f065_i02_d080 1.0", "bbob-biobj-mixint_f065_i02_d160 1.0", "bbob-biobj-mixint_f065_i03_d005 1.0", "bbob-biobj-mixint_f065_i03_d010 1.0", "bbob-biobj-mixint_f065_i03_d020 1.0", "bbob-biobj-mixint_f065_i03_d040 1.0", "bbob-biobj-mixint_f065_i03_d080 1.0", "bbob-biobj-mixint_f065_i03_d160 1.0", "bbob-biobj-mixint_f065_i04_d005 1.0", "bbob-biobj-mixint_f065_i04_d010 1.0", "bbob-biobj-mixint_f065_i04_d020 1.0", "bbob-biobj-mixint_f065_i04_d040 1.0", "bbob-biobj-mixint_f065_i04_d080 1.0", "bbob-biobj-mixint_f065_i04_d160 1.0", "bbob-biobj-mixint_f065_i05_d005 1.0", "bbob-biobj-mixint_f065_i05_d010 1.0", "bbob-biobj-mixint_f065_i05_d020 1.0", "bbob-biobj-mixint_f065_i05_d040 1.0", "bbob-biobj-mixint_f065_i05_d080 1.0", "bbob-biobj-mixint_f065_i05_d160 1.0", "bbob-biobj-mixint_f065_i06_d005 1.0", "bbob-biobj-mixint_f065_i06_d010 1.0", "bbob-biobj-mixint_f065_i06_d020 1.0", "bbob-biobj-mixint_f065_i06_d040 1.0", "bbob-biobj-mixint_f065_i06_d080 1.0", "bbob-biobj-mixint_f065_i06_d160 1.0", "bbob-biobj-mixint_f065_i07_d005 1.0", "bbob-biobj-mixint_f065_i07_d010 1.0", "bbob-biobj-mixint_f065_i07_d020 1.0", "bbob-biobj-mixint_f065_i07_d040 1.0", "bbob-biobj-mixint_f065_i07_d080 1.0", "bbob-biobj-mixint_f065_i07_d160 1.0", "bbob-biobj-mixint_f065_i08_d005 1.0", "bbob-biobj-mixint_f065_i08_d010 1.0", "bbob-biobj-mixint_f065_i08_d020 1.0", "bbob-biobj-mixint_f065_i08_d040 1.0", "bbob-biobj-mixint_f065_i08_d080 1.0", "bbob-biobj-mixint_f065_i08_d160 1.0", "bbob-biobj-mixint_f065_i09_d005 1.0", "bbob-biobj-mixint_f065_i09_d010 1.0", "bbob-biobj-mixint_f065_i09_d020 1.0", "bbob-biobj-mixint_f065_i09_d040 1.0", "bbob-biobj-mixint_f065_i09_d080 1.0", "bbob-biobj-mixint_f065_i09_d160 1.0", "bbob-biobj-mixint_f065_i10_d005 1.0", "bbob-biobj-mixint_f065_i10_d010 1.0", "bbob-biobj-mixint_f065_i10_d020 1.0", "bbob-biobj-mixint_f065_i10_d040 1.0", "bbob-biobj-mixint_f065_i10_d080 1.0", "bbob-biobj-mixint_f065_i10_d160 1.0", "bbob-biobj-mixint_f065_i11_d005 1.0", "bbob-biobj-mixint_f065_i11_d010 1.0", "bbob-biobj-mixint_f065_i11_d020 1.0", "bbob-biobj-mixint_f065_i11_d040 1.0", "bbob-biobj-mixint_f065_i11_d080 1.0", "bbob-biobj-mixint_f065_i11_d160 1.0", "bbob-biobj-mixint_f065_i12_d005 1.0", "bbob-biobj-mixint_f065_i12_d010 1.0", "bbob-biobj-mixint_f065_i12_d020 1.0", "bbob-biobj-mixint_f065_i12_d040 1.0", "bbob-biobj-mixint_f065_i12_d080 1.0", "bbob-biobj-mixint_f065_i12_d160 1.0", "bbob-biobj-mixint_f065_i13_d005 1.0", "bbob-biobj-mixint_f065_i13_d010 1.0", "bbob-biobj-mixint_f065_i13_d020 1.0", "bbob-biobj-mixint_f065_i13_d040 1.0", "bbob-biobj-mixint_f065_i13_d080 1.0", "bbob-biobj-mixint_f065_i13_d160 1.0", "bbob-biobj-mixint_f065_i14_d005 1.0", "bbob-biobj-mixint_f065_i14_d010 1.0", "bbob-biobj-mixint_f065_i14_d020 1.0", "bbob-biobj-mixint_f065_i14_d040 1.0", "bbob-biobj-mixint_f065_i14_d080 1.0", "bbob-biobj-mixint_f065_i14_d160 1.0", "bbob-biobj-mixint_f065_i15_d005 1.0", "bbob-biobj-mixint_f065_i15_d010 1.0", "bbob-biobj-mixint_f065_i15_d020 1.0", "bbob-biobj-mixint_f065_i15_d040 1.0", "bbob-biobj-mixint_f065_i15_d080 1.0", "bbob-biobj-mixint_f065_i15_d160 1.0", "bbob-biobj-mixint_f066_i01_d005 1.0", "bbob-biobj-mixint_f066_i01_d010 1.0", "bbob-biobj-mixint_f066_i01_d020 1.0", "bbob-biobj-mixint_f066_i01_d040 1.0", "bbob-biobj-mixint_f066_i01_d080 1.0", "bbob-biobj-mixint_f066_i01_d160 1.0", "bbob-biobj-mixint_f066_i02_d005 1.0", "bbob-biobj-mixint_f066_i02_d010 1.0", "bbob-biobj-mixint_f066_i02_d020 1.0", "bbob-biobj-mixint_f066_i02_d040 1.0", "bbob-biobj-mixint_f066_i02_d080 1.0", "bbob-biobj-mixint_f066_i02_d160 1.0", "bbob-biobj-mixint_f066_i03_d005 1.0", "bbob-biobj-mixint_f066_i03_d010 1.0", "bbob-biobj-mixint_f066_i03_d020 1.0", "bbob-biobj-mixint_f066_i03_d040 1.0", "bbob-biobj-mixint_f066_i03_d080 1.0", "bbob-biobj-mixint_f066_i03_d160 1.0", "bbob-biobj-mixint_f066_i04_d005 1.0", "bbob-biobj-mixint_f066_i04_d010 1.0", "bbob-biobj-mixint_f066_i04_d020 1.0", "bbob-biobj-mixint_f066_i04_d040 1.0", "bbob-biobj-mixint_f066_i04_d080 1.0", "bbob-biobj-mixint_f066_i04_d160 1.0", "bbob-biobj-mixint_f066_i05_d005 1.0", "bbob-biobj-mixint_f066_i05_d010 1.0", "bbob-biobj-mixint_f066_i05_d020 1.0", "bbob-biobj-mixint_f066_i05_d040 1.0", "bbob-biobj-mixint_f066_i05_d080 1.0", "bbob-biobj-mixint_f066_i05_d160 1.0", "bbob-biobj-mixint_f066_i06_d005 1.0", "bbob-biobj-mixint_f066_i06_d010 1.0", "bbob-biobj-mixint_f066_i06_d020 1.0", "bbob-biobj-mixint_f066_i06_d040 1.0", "bbob-biobj-mixint_f066_i06_d080 1.0", "bbob-biobj-mixint_f066_i06_d160 1.0", "bbob-biobj-mixint_f066_i07_d005 1.0", "bbob-biobj-mixint_f066_i07_d010 1.0", "bbob-biobj-mixint_f066_i07_d020 1.0", "bbob-biobj-mixint_f066_i07_d040 1.0", "bbob-biobj-mixint_f066_i07_d080 1.0", "bbob-biobj-mixint_f066_i07_d160 1.0", "bbob-biobj-mixint_f066_i08_d005 1.0", "bbob-biobj-mixint_f066_i08_d010 1.0", "bbob-biobj-mixint_f066_i08_d020 1.0", "bbob-biobj-mixint_f066_i08_d040 1.0", "bbob-biobj-mixint_f066_i08_d080 1.0", "bbob-biobj-mixint_f066_i08_d160 1.0", "bbob-biobj-mixint_f066_i09_d005 1.0", "bbob-biobj-mixint_f066_i09_d010 1.0", "bbob-biobj-mixint_f066_i09_d020 1.0", "bbob-biobj-mixint_f066_i09_d040 1.0", "bbob-biobj-mixint_f066_i09_d080 1.0", "bbob-biobj-mixint_f066_i09_d160 1.0", "bbob-biobj-mixint_f066_i10_d005 1.0", "bbob-biobj-mixint_f066_i10_d010 1.0", "bbob-biobj-mixint_f066_i10_d020 1.0", "bbob-biobj-mixint_f066_i10_d040 1.0", "bbob-biobj-mixint_f066_i10_d080 1.0", "bbob-biobj-mixint_f066_i10_d160 1.0", "bbob-biobj-mixint_f066_i11_d005 1.0", "bbob-biobj-mixint_f066_i11_d010 1.0", "bbob-biobj-mixint_f066_i11_d020 1.0", "bbob-biobj-mixint_f066_i11_d040 1.0", "bbob-biobj-mixint_f066_i11_d080 1.0", "bbob-biobj-mixint_f066_i11_d160 1.0", "bbob-biobj-mixint_f066_i12_d005 1.0", "bbob-biobj-mixint_f066_i12_d010 1.0", "bbob-biobj-mixint_f066_i12_d020 1.0", "bbob-biobj-mixint_f066_i12_d040 1.0", "bbob-biobj-mixint_f066_i12_d080 1.0", "bbob-biobj-mixint_f066_i12_d160 1.0", "bbob-biobj-mixint_f066_i13_d005 1.0", "bbob-biobj-mixint_f066_i13_d010 1.0", "bbob-biobj-mixint_f066_i13_d020 1.0", "bbob-biobj-mixint_f066_i13_d040 1.0", "bbob-biobj-mixint_f066_i13_d080 1.0", "bbob-biobj-mixint_f066_i13_d160 1.0", "bbob-biobj-mixint_f066_i14_d005 1.0", "bbob-biobj-mixint_f066_i14_d010 1.0", "bbob-biobj-mixint_f066_i14_d020 1.0", "bbob-biobj-mixint_f066_i14_d040 1.0", "bbob-biobj-mixint_f066_i14_d080 1.0", "bbob-biobj-mixint_f066_i14_d160 1.0", "bbob-biobj-mixint_f066_i15_d005 1.0", "bbob-biobj-mixint_f066_i15_d010 1.0", "bbob-biobj-mixint_f066_i15_d020 1.0", "bbob-biobj-mixint_f066_i15_d040 1.0", "bbob-biobj-mixint_f066_i15_d080 1.0", "bbob-biobj-mixint_f066_i15_d160 1.0", "bbob-biobj-mixint_f067_i01_d005 1.0", "bbob-biobj-mixint_f067_i01_d010 1.0", "bbob-biobj-mixint_f067_i01_d020 1.0", "bbob-biobj-mixint_f067_i01_d040 1.0", "bbob-biobj-mixint_f067_i01_d080 1.0", "bbob-biobj-mixint_f067_i01_d160 1.0", "bbob-biobj-mixint_f067_i02_d005 1.0", "bbob-biobj-mixint_f067_i02_d010 1.0", "bbob-biobj-mixint_f067_i02_d020 1.0", "bbob-biobj-mixint_f067_i02_d040 1.0", "bbob-biobj-mixint_f067_i02_d080 1.0", "bbob-biobj-mixint_f067_i02_d160 1.0", "bbob-biobj-mixint_f067_i03_d005 1.0", "bbob-biobj-mixint_f067_i03_d010 1.0", "bbob-biobj-mixint_f067_i03_d020 1.0", "bbob-biobj-mixint_f067_i03_d040 1.0", "bbob-biobj-mixint_f067_i03_d080 1.0", "bbob-biobj-mixint_f067_i03_d160 1.0", "bbob-biobj-mixint_f067_i04_d005 1.0", "bbob-biobj-mixint_f067_i04_d010 1.0", "bbob-biobj-mixint_f067_i04_d020 1.0", "bbob-biobj-mixint_f067_i04_d040 1.0", "bbob-biobj-mixint_f067_i04_d080 1.0", "bbob-biobj-mixint_f067_i04_d160 1.0", "bbob-biobj-mixint_f067_i05_d005 1.0", "bbob-biobj-mixint_f067_i05_d010 1.0", "bbob-biobj-mixint_f067_i05_d020 1.0", "bbob-biobj-mixint_f067_i05_d040 1.0", "bbob-biobj-mixint_f067_i05_d080 1.0", "bbob-biobj-mixint_f067_i05_d160 1.0", "bbob-biobj-mixint_f067_i06_d005 1.0", "bbob-biobj-mixint_f067_i06_d010 1.0", "bbob-biobj-mixint_f067_i06_d020 1.0", "bbob-biobj-mixint_f067_i06_d040 1.0", "bbob-biobj-mixint_f067_i06_d080 1.0", "bbob-biobj-mixint_f067_i06_d160 1.0", "bbob-biobj-mixint_f067_i07_d005 1.0", "bbob-biobj-mixint_f067_i07_d010 1.0", "bbob-biobj-mixint_f067_i07_d020 1.0", "bbob-biobj-mixint_f067_i07_d040 1.0", "bbob-biobj-mixint_f067_i07_d080 1.0", "bbob-biobj-mixint_f067_i07_d160 1.0", "bbob-biobj-mixint_f067_i08_d005 1.0", "bbob-biobj-mixint_f067_i08_d010 1.0", "bbob-biobj-mixint_f067_i08_d020 1.0", "bbob-biobj-mixint_f067_i08_d040 1.0", "bbob-biobj-mixint_f067_i08_d080 1.0", "bbob-biobj-mixint_f067_i08_d160 1.0", "bbob-biobj-mixint_f067_i09_d005 1.0", "bbob-biobj-mixint_f067_i09_d010 1.0", "bbob-biobj-mixint_f067_i09_d020 1.0", "bbob-biobj-mixint_f067_i09_d040 1.0", "bbob-biobj-mixint_f067_i09_d080 1.0", "bbob-biobj-mixint_f067_i09_d160 1.0", "bbob-biobj-mixint_f067_i10_d005 1.0", "bbob-biobj-mixint_f067_i10_d010 1.0", "bbob-biobj-mixint_f067_i10_d020 1.0", "bbob-biobj-mixint_f067_i10_d040 1.0", "bbob-biobj-mixint_f067_i10_d080 1.0", "bbob-biobj-mixint_f067_i10_d160 1.0", "bbob-biobj-mixint_f067_i11_d005 1.0", "bbob-biobj-mixint_f067_i11_d010 1.0", "bbob-biobj-mixint_f067_i11_d020 1.0", "bbob-biobj-mixint_f067_i11_d040 1.0", "bbob-biobj-mixint_f067_i11_d080 1.0", "bbob-biobj-mixint_f067_i11_d160 1.0", "bbob-biobj-mixint_f067_i12_d005 1.0", "bbob-biobj-mixint_f067_i12_d010 1.0", "bbob-biobj-mixint_f067_i12_d020 1.0", "bbob-biobj-mixint_f067_i12_d040 1.0", "bbob-biobj-mixint_f067_i12_d080 1.0", "bbob-biobj-mixint_f067_i12_d160 1.0", "bbob-biobj-mixint_f067_i13_d005 1.0", "bbob-biobj-mixint_f067_i13_d010 1.0", "bbob-biobj-mixint_f067_i13_d020 1.0", "bbob-biobj-mixint_f067_i13_d040 1.0", "bbob-biobj-mixint_f067_i13_d080 1.0", "bbob-biobj-mixint_f067_i13_d160 1.0", "bbob-biobj-mixint_f067_i14_d005 1.0", "bbob-biobj-mixint_f067_i14_d010 1.0", "bbob-biobj-mixint_f067_i14_d020 1.0", "bbob-biobj-mixint_f067_i14_d040 1.0", "bbob-biobj-mixint_f067_i14_d080 1.0", "bbob-biobj-mixint_f067_i14_d160 1.0", "bbob-biobj-mixint_f067_i15_d005 1.0", "bbob-biobj-mixint_f067_i15_d010 1.0", "bbob-biobj-mixint_f067_i15_d020 1.0", "bbob-biobj-mixint_f067_i15_d040 1.0", "bbob-biobj-mixint_f067_i15_d080 1.0", "bbob-biobj-mixint_f067_i15_d160 1.0", "bbob-biobj-mixint_f068_i01_d005 1.0", "bbob-biobj-mixint_f068_i01_d010 1.0", "bbob-biobj-mixint_f068_i01_d020 1.0", "bbob-biobj-mixint_f068_i01_d040 1.0", "bbob-biobj-mixint_f068_i01_d080 1.0", "bbob-biobj-mixint_f068_i01_d160 1.0", "bbob-biobj-mixint_f068_i02_d005 1.0", "bbob-biobj-mixint_f068_i02_d010 1.0", "bbob-biobj-mixint_f068_i02_d020 1.0", "bbob-biobj-mixint_f068_i02_d040 1.0", "bbob-biobj-mixint_f068_i02_d080 1.0", "bbob-biobj-mixint_f068_i02_d160 1.0", "bbob-biobj-mixint_f068_i03_d005 1.0", "bbob-biobj-mixint_f068_i03_d010 1.0", "bbob-biobj-mixint_f068_i03_d020 1.0", "bbob-biobj-mixint_f068_i03_d040 1.0", "bbob-biobj-mixint_f068_i03_d080 1.0", "bbob-biobj-mixint_f068_i03_d160 1.0", "bbob-biobj-mixint_f068_i04_d005 1.0", "bbob-biobj-mixint_f068_i04_d010 1.0", "bbob-biobj-mixint_f068_i04_d020 1.0", "bbob-biobj-mixint_f068_i04_d040 1.0", "bbob-biobj-mixint_f068_i04_d080 1.0", "bbob-biobj-mixint_f068_i04_d160 1.0", "bbob-biobj-mixint_f068_i05_d005 1.0", "bbob-biobj-mixint_f068_i05_d010 1.0", "bbob-biobj-mixint_f068_i05_d020 1.0", "bbob-biobj-mixint_f068_i05_d040 1.0", "bbob-biobj-mixint_f068_i05_d080 1.0", "bbob-biobj-mixint_f068_i05_d160 1.0", "bbob-biobj-mixint_f068_i06_d005 1.0", "bbob-biobj-mixint_f068_i06_d010 1.0", "bbob-biobj-mixint_f068_i06_d020 1.0", "bbob-biobj-mixint_f068_i06_d040 1.0", "bbob-biobj-mixint_f068_i06_d080 1.0", "bbob-biobj-mixint_f068_i06_d160 1.0", "bbob-biobj-mixint_f068_i07_d005 1.0", "bbob-biobj-mixint_f068_i07_d010 1.0", "bbob-biobj-mixint_f068_i07_d020 1.0", "bbob-biobj-mixint_f068_i07_d040 1.0", "bbob-biobj-mixint_f068_i07_d080 1.0", "bbob-biobj-mixint_f068_i07_d160 1.0", "bbob-biobj-mixint_f068_i08_d005 1.0", "bbob-biobj-mixint_f068_i08_d010 1.0", "bbob-biobj-mixint_f068_i08_d020 1.0", "bbob-biobj-mixint_f068_i08_d040 1.0", "bbob-biobj-mixint_f068_i08_d080 1.0", "bbob-biobj-mixint_f068_i08_d160 1.0", "bbob-biobj-mixint_f068_i09_d005 1.0", "bbob-biobj-mixint_f068_i09_d010 1.0", "bbob-biobj-mixint_f068_i09_d020 1.0", "bbob-biobj-mixint_f068_i09_d040 1.0", "bbob-biobj-mixint_f068_i09_d080 1.0", "bbob-biobj-mixint_f068_i09_d160 1.0", "bbob-biobj-mixint_f068_i10_d005 1.0", "bbob-biobj-mixint_f068_i10_d010 1.0", "bbob-biobj-mixint_f068_i10_d020 1.0", "bbob-biobj-mixint_f068_i10_d040 1.0", "bbob-biobj-mixint_f068_i10_d080 1.0", "bbob-biobj-mixint_f068_i10_d160 1.0", "bbob-biobj-mixint_f068_i11_d005 1.0", "bbob-biobj-mixint_f068_i11_d010 1.0", "bbob-biobj-mixint_f068_i11_d020 1.0", "bbob-biobj-mixint_f068_i11_d040 1.0", "bbob-biobj-mixint_f068_i11_d080 1.0", "bbob-biobj-mixint_f068_i11_d160 1.0", "bbob-biobj-mixint_f068_i12_d005 1.0", "bbob-biobj-mixint_f068_i12_d010 1.0", "bbob-biobj-mixint_f068_i12_d020 1.0", "bbob-biobj-mixint_f068_i12_d040 1.0", "bbob-biobj-mixint_f068_i12_d080 1.0", "bbob-biobj-mixint_f068_i12_d160 1.0", "bbob-biobj-mixint_f068_i13_d005 1.0", "bbob-biobj-mixint_f068_i13_d010 1.0", "bbob-biobj-mixint_f068_i13_d020 1.0", "bbob-biobj-mixint_f068_i13_d040 1.0", "bbob-biobj-mixint_f068_i13_d080 1.0", "bbob-biobj-mixint_f068_i13_d160 1.0", "bbob-biobj-mixint_f068_i14_d005 1.0", "bbob-biobj-mixint_f068_i14_d010 1.0", "bbob-biobj-mixint_f068_i14_d020 1.0", "bbob-biobj-mixint_f068_i14_d040 1.0", "bbob-biobj-mixint_f068_i14_d080 1.0", "bbob-biobj-mixint_f068_i14_d160 1.0", "bbob-biobj-mixint_f068_i15_d005 1.0", "bbob-biobj-mixint_f068_i15_d010 1.0", "bbob-biobj-mixint_f068_i15_d020 1.0", "bbob-biobj-mixint_f068_i15_d040 1.0", "bbob-biobj-mixint_f068_i15_d080 1.0", "bbob-biobj-mixint_f068_i15_d160 1.0", "bbob-biobj-mixint_f069_i01_d005 1.0", "bbob-biobj-mixint_f069_i01_d010 1.0", "bbob-biobj-mixint_f069_i01_d020 1.0", "bbob-biobj-mixint_f069_i01_d040 1.0", "bbob-biobj-mixint_f069_i01_d080 1.0", "bbob-biobj-mixint_f069_i01_d160 1.0", "bbob-biobj-mixint_f069_i02_d005 1.0", "bbob-biobj-mixint_f069_i02_d010 1.0", "bbob-biobj-mixint_f069_i02_d020 1.0", "bbob-biobj-mixint_f069_i02_d040 1.0", "bbob-biobj-mixint_f069_i02_d080 1.0", "bbob-biobj-mixint_f069_i02_d160 1.0", "bbob-biobj-mixint_f069_i03_d005 1.0", "bbob-biobj-mixint_f069_i03_d010 1.0", "bbob-biobj-mixint_f069_i03_d020 1.0", "bbob-biobj-mixint_f069_i03_d040 1.0", "bbob-biobj-mixint_f069_i03_d080 1.0", "bbob-biobj-mixint_f069_i03_d160 1.0", "bbob-biobj-mixint_f069_i04_d005 1.0", "bbob-biobj-mixint_f069_i04_d010 1.0", "bbob-biobj-mixint_f069_i04_d020 1.0", "bbob-biobj-mixint_f069_i04_d040 1.0", "bbob-biobj-mixint_f069_i04_d080 1.0", "bbob-biobj-mixint_f069_i04_d160 1.0", "bbob-biobj-mixint_f069_i05_d005 1.0", "bbob-biobj-mixint_f069_i05_d010 1.0", "bbob-biobj-mixint_f069_i05_d020 1.0", "bbob-biobj-mixint_f069_i05_d040 1.0", "bbob-biobj-mixint_f069_i05_d080 1.0", "bbob-biobj-mixint_f069_i05_d160 1.0", "bbob-biobj-mixint_f069_i06_d005 1.0", "bbob-biobj-mixint_f069_i06_d010 1.0", "bbob-biobj-mixint_f069_i06_d020 1.0", "bbob-biobj-mixint_f069_i06_d040 1.0", "bbob-biobj-mixint_f069_i06_d080 1.0", "bbob-biobj-mixint_f069_i06_d160 1.0", "bbob-biobj-mixint_f069_i07_d005 1.0", "bbob-biobj-mixint_f069_i07_d010 1.0", "bbob-biobj-mixint_f069_i07_d020 1.0", "bbob-biobj-mixint_f069_i07_d040 1.0", "bbob-biobj-mixint_f069_i07_d080 1.0", "bbob-biobj-mixint_f069_i07_d160 1.0", "bbob-biobj-mixint_f069_i08_d005 1.0", "bbob-biobj-mixint_f069_i08_d010 1.0", "bbob-biobj-mixint_f069_i08_d020 1.0", "bbob-biobj-mixint_f069_i08_d040 1.0", "bbob-biobj-mixint_f069_i08_d080 1.0", "bbob-biobj-mixint_f069_i08_d160 1.0", "bbob-biobj-mixint_f069_i09_d005 1.0", "bbob-biobj-mixint_f069_i09_d010 1.0", "bbob-biobj-mixint_f069_i09_d020 1.0", "bbob-biobj-mixint_f069_i09_d040 1.0", "bbob-biobj-mixint_f069_i09_d080 1.0", "bbob-biobj-mixint_f069_i09_d160 1.0", "bbob-biobj-mixint_f069_i10_d005 1.0", "bbob-biobj-mixint_f069_i10_d010 1.0", "bbob-biobj-mixint_f069_i10_d020 1.0", "bbob-biobj-mixint_f069_i10_d040 1.0", "bbob-biobj-mixint_f069_i10_d080 1.0", "bbob-biobj-mixint_f069_i10_d160 1.0", "bbob-biobj-mixint_f069_i11_d005 1.0", "bbob-biobj-mixint_f069_i11_d010 1.0", "bbob-biobj-mixint_f069_i11_d020 1.0", "bbob-biobj-mixint_f069_i11_d040 1.0", "bbob-biobj-mixint_f069_i11_d080 1.0", "bbob-biobj-mixint_f069_i11_d160 1.0", "bbob-biobj-mixint_f069_i12_d005 1.0", "bbob-biobj-mixint_f069_i12_d010 1.0", "bbob-biobj-mixint_f069_i12_d020 1.0", "bbob-biobj-mixint_f069_i12_d040 1.0", "bbob-biobj-mixint_f069_i12_d080 1.0", "bbob-biobj-mixint_f069_i12_d160 1.0", "bbob-biobj-mixint_f069_i13_d005 1.0", "bbob-biobj-mixint_f069_i13_d010 1.0", "bbob-biobj-mixint_f069_i13_d020 1.0", "bbob-biobj-mixint_f069_i13_d040 1.0", "bbob-biobj-mixint_f069_i13_d080 1.0", "bbob-biobj-mixint_f069_i13_d160 1.0", "bbob-biobj-mixint_f069_i14_d005 1.0", "bbob-biobj-mixint_f069_i14_d010 1.0", "bbob-biobj-mixint_f069_i14_d020 1.0", "bbob-biobj-mixint_f069_i14_d040 1.0", "bbob-biobj-mixint_f069_i14_d080 1.0", "bbob-biobj-mixint_f069_i14_d160 1.0", "bbob-biobj-mixint_f069_i15_d005 1.0", "bbob-biobj-mixint_f069_i15_d010 1.0", "bbob-biobj-mixint_f069_i15_d020 1.0", "bbob-biobj-mixint_f069_i15_d040 1.0", "bbob-biobj-mixint_f069_i15_d080 1.0", "bbob-biobj-mixint_f069_i15_d160 1.0", "bbob-biobj-mixint_f070_i01_d005 1.0", "bbob-biobj-mixint_f070_i01_d010 1.0", "bbob-biobj-mixint_f070_i01_d020 1.0", "bbob-biobj-mixint_f070_i01_d040 1.0", "bbob-biobj-mixint_f070_i01_d080 1.0", "bbob-biobj-mixint_f070_i01_d160 1.0", "bbob-biobj-mixint_f070_i02_d005 1.0", "bbob-biobj-mixint_f070_i02_d010 1.0", "bbob-biobj-mixint_f070_i02_d020 1.0", "bbob-biobj-mixint_f070_i02_d040 1.0", "bbob-biobj-mixint_f070_i02_d080 1.0", "bbob-biobj-mixint_f070_i02_d160 1.0", "bbob-biobj-mixint_f070_i03_d005 1.0", "bbob-biobj-mixint_f070_i03_d010 1.0", "bbob-biobj-mixint_f070_i03_d020 1.0", "bbob-biobj-mixint_f070_i03_d040 1.0", "bbob-biobj-mixint_f070_i03_d080 1.0", "bbob-biobj-mixint_f070_i03_d160 1.0", "bbob-biobj-mixint_f070_i04_d005 1.0", "bbob-biobj-mixint_f070_i04_d010 1.0", "bbob-biobj-mixint_f070_i04_d020 1.0", "bbob-biobj-mixint_f070_i04_d040 1.0", "bbob-biobj-mixint_f070_i04_d080 1.0", "bbob-biobj-mixint_f070_i04_d160 1.0", "bbob-biobj-mixint_f070_i05_d005 1.0", "bbob-biobj-mixint_f070_i05_d010 1.0", "bbob-biobj-mixint_f070_i05_d020 1.0", "bbob-biobj-mixint_f070_i05_d040 1.0", "bbob-biobj-mixint_f070_i05_d080 1.0", "bbob-biobj-mixint_f070_i05_d160 1.0", "bbob-biobj-mixint_f070_i06_d005 1.0", "bbob-biobj-mixint_f070_i06_d010 1.0", "bbob-biobj-mixint_f070_i06_d020 1.0", "bbob-biobj-mixint_f070_i06_d040 1.0", "bbob-biobj-mixint_f070_i06_d080 1.0", "bbob-biobj-mixint_f070_i06_d160 1.0", "bbob-biobj-mixint_f070_i07_d005 1.0", "bbob-biobj-mixint_f070_i07_d010 1.0", "bbob-biobj-mixint_f070_i07_d020 1.0", "bbob-biobj-mixint_f070_i07_d040 1.0", "bbob-biobj-mixint_f070_i07_d080 1.0", "bbob-biobj-mixint_f070_i07_d160 1.0", "bbob-biobj-mixint_f070_i08_d005 1.0", "bbob-biobj-mixint_f070_i08_d010 1.0", "bbob-biobj-mixint_f070_i08_d020 1.0", "bbob-biobj-mixint_f070_i08_d040 1.0", "bbob-biobj-mixint_f070_i08_d080 1.0", "bbob-biobj-mixint_f070_i08_d160 1.0", "bbob-biobj-mixint_f070_i09_d005 1.0", "bbob-biobj-mixint_f070_i09_d010 1.0", "bbob-biobj-mixint_f070_i09_d020 1.0", "bbob-biobj-mixint_f070_i09_d040 1.0", "bbob-biobj-mixint_f070_i09_d080 1.0", "bbob-biobj-mixint_f070_i09_d160 1.0", "bbob-biobj-mixint_f070_i10_d005 1.0", "bbob-biobj-mixint_f070_i10_d010 1.0", "bbob-biobj-mixint_f070_i10_d020 1.0", "bbob-biobj-mixint_f070_i10_d040 1.0", "bbob-biobj-mixint_f070_i10_d080 1.0", "bbob-biobj-mixint_f070_i10_d160 1.0", "bbob-biobj-mixint_f070_i11_d005 1.0", "bbob-biobj-mixint_f070_i11_d010 1.0", "bbob-biobj-mixint_f070_i11_d020 1.0", "bbob-biobj-mixint_f070_i11_d040 1.0", "bbob-biobj-mixint_f070_i11_d080 1.0", "bbob-biobj-mixint_f070_i11_d160 1.0", "bbob-biobj-mixint_f070_i12_d005 1.0", "bbob-biobj-mixint_f070_i12_d010 1.0", "bbob-biobj-mixint_f070_i12_d020 1.0", "bbob-biobj-mixint_f070_i12_d040 1.0", "bbob-biobj-mixint_f070_i12_d080 1.0", "bbob-biobj-mixint_f070_i12_d160 1.0", "bbob-biobj-mixint_f070_i13_d005 1.0", "bbob-biobj-mixint_f070_i13_d010 1.0", "bbob-biobj-mixint_f070_i13_d020 1.0", "bbob-biobj-mixint_f070_i13_d040 1.0", "bbob-biobj-mixint_f070_i13_d080 1.0", "bbob-biobj-mixint_f070_i13_d160 1.0", "bbob-biobj-mixint_f070_i14_d005 1.0", "bbob-biobj-mixint_f070_i14_d010 1.0", "bbob-biobj-mixint_f070_i14_d020 1.0", "bbob-biobj-mixint_f070_i14_d040 1.0", "bbob-biobj-mixint_f070_i14_d080 1.0", "bbob-biobj-mixint_f070_i14_d160 1.0", "bbob-biobj-mixint_f070_i15_d005 1.0", "bbob-biobj-mixint_f070_i15_d010 1.0", "bbob-biobj-mixint_f070_i15_d020 1.0", "bbob-biobj-mixint_f070_i15_d040 1.0", "bbob-biobj-mixint_f070_i15_d080 1.0", "bbob-biobj-mixint_f070_i15_d160 1.0", "bbob-biobj-mixint_f071_i01_d005 1.0", "bbob-biobj-mixint_f071_i01_d010 1.0", "bbob-biobj-mixint_f071_i01_d020 1.0", "bbob-biobj-mixint_f071_i01_d040 1.0", "bbob-biobj-mixint_f071_i01_d080 1.0", "bbob-biobj-mixint_f071_i01_d160 1.0", "bbob-biobj-mixint_f071_i02_d005 1.0", "bbob-biobj-mixint_f071_i02_d010 1.0", "bbob-biobj-mixint_f071_i02_d020 1.0", "bbob-biobj-mixint_f071_i02_d040 1.0", "bbob-biobj-mixint_f071_i02_d080 1.0", "bbob-biobj-mixint_f071_i02_d160 1.0", "bbob-biobj-mixint_f071_i03_d005 1.0", "bbob-biobj-mixint_f071_i03_d010 1.0", "bbob-biobj-mixint_f071_i03_d020 1.0", "bbob-biobj-mixint_f071_i03_d040 1.0", "bbob-biobj-mixint_f071_i03_d080 1.0", "bbob-biobj-mixint_f071_i03_d160 1.0", "bbob-biobj-mixint_f071_i04_d005 1.0", "bbob-biobj-mixint_f071_i04_d010 1.0", "bbob-biobj-mixint_f071_i04_d020 1.0", "bbob-biobj-mixint_f071_i04_d040 1.0", "bbob-biobj-mixint_f071_i04_d080 1.0", "bbob-biobj-mixint_f071_i04_d160 1.0", "bbob-biobj-mixint_f071_i05_d005 1.0", "bbob-biobj-mixint_f071_i05_d010 1.0", "bbob-biobj-mixint_f071_i05_d020 1.0", "bbob-biobj-mixint_f071_i05_d040 1.0", "bbob-biobj-mixint_f071_i05_d080 1.0", "bbob-biobj-mixint_f071_i05_d160 1.0", "bbob-biobj-mixint_f071_i06_d005 1.0", "bbob-biobj-mixint_f071_i06_d010 1.0", "bbob-biobj-mixint_f071_i06_d020 1.0", "bbob-biobj-mixint_f071_i06_d040 1.0", "bbob-biobj-mixint_f071_i06_d080 1.0", "bbob-biobj-mixint_f071_i06_d160 1.0", "bbob-biobj-mixint_f071_i07_d005 1.0", "bbob-biobj-mixint_f071_i07_d010 1.0", "bbob-biobj-mixint_f071_i07_d020 1.0", "bbob-biobj-mixint_f071_i07_d040 1.0", "bbob-biobj-mixint_f071_i07_d080 1.0", "bbob-biobj-mixint_f071_i07_d160 1.0", "bbob-biobj-mixint_f071_i08_d005 1.0", "bbob-biobj-mixint_f071_i08_d010 1.0", "bbob-biobj-mixint_f071_i08_d020 1.0", "bbob-biobj-mixint_f071_i08_d040 1.0", "bbob-biobj-mixint_f071_i08_d080 1.0", "bbob-biobj-mixint_f071_i08_d160 1.0", "bbob-biobj-mixint_f071_i09_d005 1.0", "bbob-biobj-mixint_f071_i09_d010 1.0", "bbob-biobj-mixint_f071_i09_d020 1.0", "bbob-biobj-mixint_f071_i09_d040 1.0", "bbob-biobj-mixint_f071_i09_d080 1.0", "bbob-biobj-mixint_f071_i09_d160 1.0", "bbob-biobj-mixint_f071_i10_d005 1.0", "bbob-biobj-mixint_f071_i10_d010 1.0", "bbob-biobj-mixint_f071_i10_d020 1.0", "bbob-biobj-mixint_f071_i10_d040 1.0", "bbob-biobj-mixint_f071_i10_d080 1.0", "bbob-biobj-mixint_f071_i10_d160 1.0", "bbob-biobj-mixint_f071_i11_d005 1.0", "bbob-biobj-mixint_f071_i11_d010 1.0", "bbob-biobj-mixint_f071_i11_d020 1.0", "bbob-biobj-mixint_f071_i11_d040 1.0", "bbob-biobj-mixint_f071_i11_d080 1.0", "bbob-biobj-mixint_f071_i11_d160 1.0", "bbob-biobj-mixint_f071_i12_d005 1.0", "bbob-biobj-mixint_f071_i12_d010 1.0", "bbob-biobj-mixint_f071_i12_d020 1.0", "bbob-biobj-mixint_f071_i12_d040 1.0", "bbob-biobj-mixint_f071_i12_d080 1.0", "bbob-biobj-mixint_f071_i12_d160 1.0", "bbob-biobj-mixint_f071_i13_d005 1.0", "bbob-biobj-mixint_f071_i13_d010 1.0", "bbob-biobj-mixint_f071_i13_d020 1.0", "bbob-biobj-mixint_f071_i13_d040 1.0", "bbob-biobj-mixint_f071_i13_d080 1.0", "bbob-biobj-mixint_f071_i13_d160 1.0", "bbob-biobj-mixint_f071_i14_d005 1.0", "bbob-biobj-mixint_f071_i14_d010 1.0", "bbob-biobj-mixint_f071_i14_d020 1.0", "bbob-biobj-mixint_f071_i14_d040 1.0", "bbob-biobj-mixint_f071_i14_d080 1.0", "bbob-biobj-mixint_f071_i14_d160 1.0", "bbob-biobj-mixint_f071_i15_d005 1.0", "bbob-biobj-mixint_f071_i15_d010 1.0", "bbob-biobj-mixint_f071_i15_d020 1.0", "bbob-biobj-mixint_f071_i15_d040 1.0", "bbob-biobj-mixint_f071_i15_d080 1.0", "bbob-biobj-mixint_f071_i15_d160 1.0", "bbob-biobj-mixint_f072_i01_d005 1.0", "bbob-biobj-mixint_f072_i01_d010 1.0", "bbob-biobj-mixint_f072_i01_d020 1.0", "bbob-biobj-mixint_f072_i01_d040 1.0", "bbob-biobj-mixint_f072_i01_d080 1.0", "bbob-biobj-mixint_f072_i01_d160 1.0", "bbob-biobj-mixint_f072_i02_d005 1.0", "bbob-biobj-mixint_f072_i02_d010 1.0", "bbob-biobj-mixint_f072_i02_d020 1.0", "bbob-biobj-mixint_f072_i02_d040 1.0", "bbob-biobj-mixint_f072_i02_d080 1.0", "bbob-biobj-mixint_f072_i02_d160 1.0", "bbob-biobj-mixint_f072_i03_d005 1.0", "bbob-biobj-mixint_f072_i03_d010 1.0", "bbob-biobj-mixint_f072_i03_d020 1.0", "bbob-biobj-mixint_f072_i03_d040 1.0", "bbob-biobj-mixint_f072_i03_d080 1.0", "bbob-biobj-mixint_f072_i03_d160 1.0", "bbob-biobj-mixint_f072_i04_d005 1.0", "bbob-biobj-mixint_f072_i04_d010 1.0", "bbob-biobj-mixint_f072_i04_d020 1.0", "bbob-biobj-mixint_f072_i04_d040 1.0", "bbob-biobj-mixint_f072_i04_d080 1.0", "bbob-biobj-mixint_f072_i04_d160 1.0", "bbob-biobj-mixint_f072_i05_d005 1.0", "bbob-biobj-mixint_f072_i05_d010 1.0", "bbob-biobj-mixint_f072_i05_d020 1.0", "bbob-biobj-mixint_f072_i05_d040 1.0", "bbob-biobj-mixint_f072_i05_d080 1.0", "bbob-biobj-mixint_f072_i05_d160 1.0", "bbob-biobj-mixint_f072_i06_d005 1.0", "bbob-biobj-mixint_f072_i06_d010 1.0", "bbob-biobj-mixint_f072_i06_d020 1.0", "bbob-biobj-mixint_f072_i06_d040 1.0", "bbob-biobj-mixint_f072_i06_d080 1.0", "bbob-biobj-mixint_f072_i06_d160 1.0", "bbob-biobj-mixint_f072_i07_d005 1.0", "bbob-biobj-mixint_f072_i07_d010 1.0", "bbob-biobj-mixint_f072_i07_d020 1.0", "bbob-biobj-mixint_f072_i07_d040 1.0", "bbob-biobj-mixint_f072_i07_d080 1.0", "bbob-biobj-mixint_f072_i07_d160 1.0", "bbob-biobj-mixint_f072_i08_d005 1.0", "bbob-biobj-mixint_f072_i08_d010 1.0", "bbob-biobj-mixint_f072_i08_d020 1.0", "bbob-biobj-mixint_f072_i08_d040 1.0", "bbob-biobj-mixint_f072_i08_d080 1.0", "bbob-biobj-mixint_f072_i08_d160 1.0", "bbob-biobj-mixint_f072_i09_d005 1.0", "bbob-biobj-mixint_f072_i09_d010 1.0", "bbob-biobj-mixint_f072_i09_d020 1.0", "bbob-biobj-mixint_f072_i09_d040 1.0", "bbob-biobj-mixint_f072_i09_d080 1.0", "bbob-biobj-mixint_f072_i09_d160 1.0", "bbob-biobj-mixint_f072_i10_d005 1.0", "bbob-biobj-mixint_f072_i10_d010 1.0", "bbob-biobj-mixint_f072_i10_d020 1.0", "bbob-biobj-mixint_f072_i10_d040 1.0", "bbob-biobj-mixint_f072_i10_d080 1.0", "bbob-biobj-mixint_f072_i10_d160 1.0", "bbob-biobj-mixint_f072_i11_d005 1.0", "bbob-biobj-mixint_f072_i11_d010 1.0", "bbob-biobj-mixint_f072_i11_d020 1.0", "bbob-biobj-mixint_f072_i11_d040 1.0", "bbob-biobj-mixint_f072_i11_d080 1.0", "bbob-biobj-mixint_f072_i11_d160 1.0", "bbob-biobj-mixint_f072_i12_d005 1.0", "bbob-biobj-mixint_f072_i12_d010 1.0", "bbob-biobj-mixint_f072_i12_d020 1.0", "bbob-biobj-mixint_f072_i12_d040 1.0", "bbob-biobj-mixint_f072_i12_d080 1.0", "bbob-biobj-mixint_f072_i12_d160 1.0", "bbob-biobj-mixint_f072_i13_d005 1.0", "bbob-biobj-mixint_f072_i13_d010 1.0", "bbob-biobj-mixint_f072_i13_d020 1.0", "bbob-biobj-mixint_f072_i13_d040 1.0", "bbob-biobj-mixint_f072_i13_d080 1.0", "bbob-biobj-mixint_f072_i13_d160 1.0", "bbob-biobj-mixint_f072_i14_d005 1.0", "bbob-biobj-mixint_f072_i14_d010 1.0", "bbob-biobj-mixint_f072_i14_d020 1.0", "bbob-biobj-mixint_f072_i14_d040 1.0", "bbob-biobj-mixint_f072_i14_d080 1.0", "bbob-biobj-mixint_f072_i14_d160 1.0", "bbob-biobj-mixint_f072_i15_d005 1.0", "bbob-biobj-mixint_f072_i15_d010 1.0", "bbob-biobj-mixint_f072_i15_d020 1.0", "bbob-biobj-mixint_f072_i15_d040 1.0", "bbob-biobj-mixint_f072_i15_d080 1.0", "bbob-biobj-mixint_f072_i15_d160 1.0", "bbob-biobj-mixint_f073_i01_d005 1.0", "bbob-biobj-mixint_f073_i01_d010 1.0", "bbob-biobj-mixint_f073_i01_d020 1.0", "bbob-biobj-mixint_f073_i01_d040 1.0", "bbob-biobj-mixint_f073_i01_d080 1.0", "bbob-biobj-mixint_f073_i01_d160 1.0", "bbob-biobj-mixint_f073_i02_d005 1.0", "bbob-biobj-mixint_f073_i02_d010 1.0", "bbob-biobj-mixint_f073_i02_d020 1.0", "bbob-biobj-mixint_f073_i02_d040 1.0", "bbob-biobj-mixint_f073_i02_d080 1.0", "bbob-biobj-mixint_f073_i02_d160 1.0", "bbob-biobj-mixint_f073_i03_d005 1.0", "bbob-biobj-mixint_f073_i03_d010 1.0", "bbob-biobj-mixint_f073_i03_d020 1.0", "bbob-biobj-mixint_f073_i03_d040 1.0", "bbob-biobj-mixint_f073_i03_d080 1.0", "bbob-biobj-mixint_f073_i03_d160 1.0", "bbob-biobj-mixint_f073_i04_d005 1.0", "bbob-biobj-mixint_f073_i04_d010 1.0", "bbob-biobj-mixint_f073_i04_d020 1.0", "bbob-biobj-mixint_f073_i04_d040 1.0", "bbob-biobj-mixint_f073_i04_d080 1.0", "bbob-biobj-mixint_f073_i04_d160 1.0", "bbob-biobj-mixint_f073_i05_d005 1.0", "bbob-biobj-mixint_f073_i05_d010 1.0", "bbob-biobj-mixint_f073_i05_d020 1.0", "bbob-biobj-mixint_f073_i05_d040 1.0", "bbob-biobj-mixint_f073_i05_d080 1.0", "bbob-biobj-mixint_f073_i05_d160 1.0", "bbob-biobj-mixint_f073_i06_d005 1.0", "bbob-biobj-mixint_f073_i06_d010 1.0", "bbob-biobj-mixint_f073_i06_d020 1.0", "bbob-biobj-mixint_f073_i06_d040 1.0", "bbob-biobj-mixint_f073_i06_d080 1.0", "bbob-biobj-mixint_f073_i06_d160 1.0", "bbob-biobj-mixint_f073_i07_d005 1.0", "bbob-biobj-mixint_f073_i07_d010 1.0", "bbob-biobj-mixint_f073_i07_d020 1.0", "bbob-biobj-mixint_f073_i07_d040 1.0", "bbob-biobj-mixint_f073_i07_d080 1.0", "bbob-biobj-mixint_f073_i07_d160 1.0", "bbob-biobj-mixint_f073_i08_d005 1.0", "bbob-biobj-mixint_f073_i08_d010 1.0", "bbob-biobj-mixint_f073_i08_d020 1.0", "bbob-biobj-mixint_f073_i08_d040 1.0", "bbob-biobj-mixint_f073_i08_d080 1.0", "bbob-biobj-mixint_f073_i08_d160 1.0", "bbob-biobj-mixint_f073_i09_d005 1.0", "bbob-biobj-mixint_f073_i09_d010 1.0", "bbob-biobj-mixint_f073_i09_d020 1.0", "bbob-biobj-mixint_f073_i09_d040 1.0", "bbob-biobj-mixint_f073_i09_d080 1.0", "bbob-biobj-mixint_f073_i09_d160 1.0", "bbob-biobj-mixint_f073_i10_d005 1.0", "bbob-biobj-mixint_f073_i10_d010 1.0", "bbob-biobj-mixint_f073_i10_d020 1.0", "bbob-biobj-mixint_f073_i10_d040 1.0", "bbob-biobj-mixint_f073_i10_d080 1.0", "bbob-biobj-mixint_f073_i10_d160 1.0", "bbob-biobj-mixint_f073_i11_d005 1.0", "bbob-biobj-mixint_f073_i11_d010 1.0", "bbob-biobj-mixint_f073_i11_d020 1.0", "bbob-biobj-mixint_f073_i11_d040 1.0", "bbob-biobj-mixint_f073_i11_d080 1.0", "bbob-biobj-mixint_f073_i11_d160 1.0", "bbob-biobj-mixint_f073_i12_d005 1.0", "bbob-biobj-mixint_f073_i12_d010 1.0", "bbob-biobj-mixint_f073_i12_d020 1.0", "bbob-biobj-mixint_f073_i12_d040 1.0", "bbob-biobj-mixint_f073_i12_d080 1.0", "bbob-biobj-mixint_f073_i12_d160 1.0", "bbob-biobj-mixint_f073_i13_d005 1.0", "bbob-biobj-mixint_f073_i13_d010 1.0", "bbob-biobj-mixint_f073_i13_d020 1.0", "bbob-biobj-mixint_f073_i13_d040 1.0", "bbob-biobj-mixint_f073_i13_d080 1.0", "bbob-biobj-mixint_f073_i13_d160 1.0", "bbob-biobj-mixint_f073_i14_d005 1.0", "bbob-biobj-mixint_f073_i14_d010 1.0", "bbob-biobj-mixint_f073_i14_d020 1.0", "bbob-biobj-mixint_f073_i14_d040 1.0", "bbob-biobj-mixint_f073_i14_d080 1.0", "bbob-biobj-mixint_f073_i14_d160 1.0", "bbob-biobj-mixint_f073_i15_d005 1.0", "bbob-biobj-mixint_f073_i15_d010 1.0", "bbob-biobj-mixint_f073_i15_d020 1.0", "bbob-biobj-mixint_f073_i15_d040 1.0", "bbob-biobj-mixint_f073_i15_d080 1.0", "bbob-biobj-mixint_f073_i15_d160 1.0", "bbob-biobj-mixint_f074_i01_d005 1.0", "bbob-biobj-mixint_f074_i01_d010 1.0", "bbob-biobj-mixint_f074_i01_d020 1.0", "bbob-biobj-mixint_f074_i01_d040 1.0", "bbob-biobj-mixint_f074_i01_d080 1.0", "bbob-biobj-mixint_f074_i01_d160 1.0", "bbob-biobj-mixint_f074_i02_d005 1.0", "bbob-biobj-mixint_f074_i02_d010 1.0", "bbob-biobj-mixint_f074_i02_d020 1.0", "bbob-biobj-mixint_f074_i02_d040 1.0", "bbob-biobj-mixint_f074_i02_d080 1.0", "bbob-biobj-mixint_f074_i02_d160 1.0", "bbob-biobj-mixint_f074_i03_d005 1.0", "bbob-biobj-mixint_f074_i03_d010 1.0", "bbob-biobj-mixint_f074_i03_d020 1.0", "bbob-biobj-mixint_f074_i03_d040 1.0", "bbob-biobj-mixint_f074_i03_d080 1.0", "bbob-biobj-mixint_f074_i03_d160 1.0", "bbob-biobj-mixint_f074_i04_d005 1.0", "bbob-biobj-mixint_f074_i04_d010 1.0", "bbob-biobj-mixint_f074_i04_d020 1.0", "bbob-biobj-mixint_f074_i04_d040 1.0", "bbob-biobj-mixint_f074_i04_d080 1.0", "bbob-biobj-mixint_f074_i04_d160 1.0", "bbob-biobj-mixint_f074_i05_d005 1.0", "bbob-biobj-mixint_f074_i05_d010 1.0", "bbob-biobj-mixint_f074_i05_d020 1.0", "bbob-biobj-mixint_f074_i05_d040 1.0", "bbob-biobj-mixint_f074_i05_d080 1.0", "bbob-biobj-mixint_f074_i05_d160 1.0", "bbob-biobj-mixint_f074_i06_d005 1.0", "bbob-biobj-mixint_f074_i06_d010 1.0", "bbob-biobj-mixint_f074_i06_d020 1.0", "bbob-biobj-mixint_f074_i06_d040 1.0", "bbob-biobj-mixint_f074_i06_d080 1.0", "bbob-biobj-mixint_f074_i06_d160 1.0", "bbob-biobj-mixint_f074_i07_d005 1.0", "bbob-biobj-mixint_f074_i07_d010 1.0", "bbob-biobj-mixint_f074_i07_d020 1.0", "bbob-biobj-mixint_f074_i07_d040 1.0", "bbob-biobj-mixint_f074_i07_d080 1.0", "bbob-biobj-mixint_f074_i07_d160 1.0", "bbob-biobj-mixint_f074_i08_d005 1.0", "bbob-biobj-mixint_f074_i08_d010 1.0", "bbob-biobj-mixint_f074_i08_d020 1.0", "bbob-biobj-mixint_f074_i08_d040 1.0", "bbob-biobj-mixint_f074_i08_d080 1.0", "bbob-biobj-mixint_f074_i08_d160 1.0", "bbob-biobj-mixint_f074_i09_d005 1.0", "bbob-biobj-mixint_f074_i09_d010 1.0", "bbob-biobj-mixint_f074_i09_d020 1.0", "bbob-biobj-mixint_f074_i09_d040 1.0", "bbob-biobj-mixint_f074_i09_d080 1.0", "bbob-biobj-mixint_f074_i09_d160 1.0", "bbob-biobj-mixint_f074_i10_d005 1.0", "bbob-biobj-mixint_f074_i10_d010 1.0", "bbob-biobj-mixint_f074_i10_d020 1.0", "bbob-biobj-mixint_f074_i10_d040 1.0", "bbob-biobj-mixint_f074_i10_d080 1.0", "bbob-biobj-mixint_f074_i10_d160 1.0", "bbob-biobj-mixint_f074_i11_d005 1.0", "bbob-biobj-mixint_f074_i11_d010 1.0", "bbob-biobj-mixint_f074_i11_d020 1.0", "bbob-biobj-mixint_f074_i11_d040 1.0", "bbob-biobj-mixint_f074_i11_d080 1.0", "bbob-biobj-mixint_f074_i11_d160 1.0", "bbob-biobj-mixint_f074_i12_d005 1.0", "bbob-biobj-mixint_f074_i12_d010 1.0", "bbob-biobj-mixint_f074_i12_d020 1.0", "bbob-biobj-mixint_f074_i12_d040 1.0", "bbob-biobj-mixint_f074_i12_d080 1.0", "bbob-biobj-mixint_f074_i12_d160 1.0", "bbob-biobj-mixint_f074_i13_d005 1.0", "bbob-biobj-mixint_f074_i13_d010 1.0", "bbob-biobj-mixint_f074_i13_d020 1.0", "bbob-biobj-mixint_f074_i13_d040 1.0", "bbob-biobj-mixint_f074_i13_d080 1.0", "bbob-biobj-mixint_f074_i13_d160 1.0", "bbob-biobj-mixint_f074_i14_d005 1.0", "bbob-biobj-mixint_f074_i14_d010 1.0", "bbob-biobj-mixint_f074_i14_d020 1.0", "bbob-biobj-mixint_f074_i14_d040 1.0", "bbob-biobj-mixint_f074_i14_d080 1.0", "bbob-biobj-mixint_f074_i14_d160 1.0", "bbob-biobj-mixint_f074_i15_d005 1.0", "bbob-biobj-mixint_f074_i15_d010 1.0", "bbob-biobj-mixint_f074_i15_d020 1.0", "bbob-biobj-mixint_f074_i15_d040 1.0", "bbob-biobj-mixint_f074_i15_d080 1.0", "bbob-biobj-mixint_f074_i15_d160 1.0", "bbob-biobj-mixint_f075_i01_d005 1.0", "bbob-biobj-mixint_f075_i01_d010 1.0", "bbob-biobj-mixint_f075_i01_d020 1.0", "bbob-biobj-mixint_f075_i01_d040 1.0", "bbob-biobj-mixint_f075_i01_d080 1.0", "bbob-biobj-mixint_f075_i01_d160 1.0", "bbob-biobj-mixint_f075_i02_d005 1.0", "bbob-biobj-mixint_f075_i02_d010 1.0", "bbob-biobj-mixint_f075_i02_d020 1.0", "bbob-biobj-mixint_f075_i02_d040 1.0", "bbob-biobj-mixint_f075_i02_d080 1.0", "bbob-biobj-mixint_f075_i02_d160 1.0", "bbob-biobj-mixint_f075_i03_d005 1.0", "bbob-biobj-mixint_f075_i03_d010 1.0", "bbob-biobj-mixint_f075_i03_d020 1.0", "bbob-biobj-mixint_f075_i03_d040 1.0", "bbob-biobj-mixint_f075_i03_d080 1.0", "bbob-biobj-mixint_f075_i03_d160 1.0", "bbob-biobj-mixint_f075_i04_d005 1.0", "bbob-biobj-mixint_f075_i04_d010 1.0", "bbob-biobj-mixint_f075_i04_d020 1.0", "bbob-biobj-mixint_f075_i04_d040 1.0", "bbob-biobj-mixint_f075_i04_d080 1.0", "bbob-biobj-mixint_f075_i04_d160 1.0", "bbob-biobj-mixint_f075_i05_d005 1.0", "bbob-biobj-mixint_f075_i05_d010 1.0", "bbob-biobj-mixint_f075_i05_d020 1.0", "bbob-biobj-mixint_f075_i05_d040 1.0", "bbob-biobj-mixint_f075_i05_d080 1.0", "bbob-biobj-mixint_f075_i05_d160 1.0", "bbob-biobj-mixint_f075_i06_d005 1.0", "bbob-biobj-mixint_f075_i06_d010 1.0", "bbob-biobj-mixint_f075_i06_d020 1.0", "bbob-biobj-mixint_f075_i06_d040 1.0", "bbob-biobj-mixint_f075_i06_d080 1.0", "bbob-biobj-mixint_f075_i06_d160 1.0", "bbob-biobj-mixint_f075_i07_d005 1.0", "bbob-biobj-mixint_f075_i07_d010 1.0", "bbob-biobj-mixint_f075_i07_d020 1.0", "bbob-biobj-mixint_f075_i07_d040 1.0", "bbob-biobj-mixint_f075_i07_d080 1.0", "bbob-biobj-mixint_f075_i07_d160 1.0", "bbob-biobj-mixint_f075_i08_d005 1.0", "bbob-biobj-mixint_f075_i08_d010 1.0", "bbob-biobj-mixint_f075_i08_d020 1.0", "bbob-biobj-mixint_f075_i08_d040 1.0", "bbob-biobj-mixint_f075_i08_d080 1.0", "bbob-biobj-mixint_f075_i08_d160 1.0", "bbob-biobj-mixint_f075_i09_d005 1.0", "bbob-biobj-mixint_f075_i09_d010 1.0", "bbob-biobj-mixint_f075_i09_d020 1.0", "bbob-biobj-mixint_f075_i09_d040 1.0", "bbob-biobj-mixint_f075_i09_d080 1.0", "bbob-biobj-mixint_f075_i09_d160 1.0", "bbob-biobj-mixint_f075_i10_d005 1.0", "bbob-biobj-mixint_f075_i10_d010 1.0", "bbob-biobj-mixint_f075_i10_d020 1.0", "bbob-biobj-mixint_f075_i10_d040 1.0", "bbob-biobj-mixint_f075_i10_d080 1.0", "bbob-biobj-mixint_f075_i10_d160 1.0", "bbob-biobj-mixint_f075_i11_d005 1.0", "bbob-biobj-mixint_f075_i11_d010 1.0", "bbob-biobj-mixint_f075_i11_d020 1.0", "bbob-biobj-mixint_f075_i11_d040 1.0", "bbob-biobj-mixint_f075_i11_d080 1.0", "bbob-biobj-mixint_f075_i11_d160 1.0", "bbob-biobj-mixint_f075_i12_d005 1.0", "bbob-biobj-mixint_f075_i12_d010 1.0", "bbob-biobj-mixint_f075_i12_d020 1.0", "bbob-biobj-mixint_f075_i12_d040 1.0", "bbob-biobj-mixint_f075_i12_d080 1.0", "bbob-biobj-mixint_f075_i12_d160 1.0", "bbob-biobj-mixint_f075_i13_d005 1.0", "bbob-biobj-mixint_f075_i13_d010 1.0", "bbob-biobj-mixint_f075_i13_d020 1.0", "bbob-biobj-mixint_f075_i13_d040 1.0", "bbob-biobj-mixint_f075_i13_d080 1.0", "bbob-biobj-mixint_f075_i13_d160 1.0", "bbob-biobj-mixint_f075_i14_d005 1.0", "bbob-biobj-mixint_f075_i14_d010 1.0", "bbob-biobj-mixint_f075_i14_d020 1.0", "bbob-biobj-mixint_f075_i14_d040 1.0", "bbob-biobj-mixint_f075_i14_d080 1.0", "bbob-biobj-mixint_f075_i14_d160 1.0", "bbob-biobj-mixint_f075_i15_d005 1.0", "bbob-biobj-mixint_f075_i15_d010 1.0", "bbob-biobj-mixint_f075_i15_d020 1.0", "bbob-biobj-mixint_f075_i15_d040 1.0", "bbob-biobj-mixint_f075_i15_d080 1.0", "bbob-biobj-mixint_f075_i15_d160 1.0", "bbob-biobj-mixint_f076_i01_d005 1.0", "bbob-biobj-mixint_f076_i01_d010 1.0", "bbob-biobj-mixint_f076_i01_d020 1.0", "bbob-biobj-mixint_f076_i01_d040 1.0", "bbob-biobj-mixint_f076_i01_d080 1.0", "bbob-biobj-mixint_f076_i01_d160 1.0", "bbob-biobj-mixint_f076_i02_d005 1.0", "bbob-biobj-mixint_f076_i02_d010 1.0", "bbob-biobj-mixint_f076_i02_d020 1.0", "bbob-biobj-mixint_f076_i02_d040 1.0", "bbob-biobj-mixint_f076_i02_d080 1.0", "bbob-biobj-mixint_f076_i02_d160 1.0", "bbob-biobj-mixint_f076_i03_d005 1.0", "bbob-biobj-mixint_f076_i03_d010 1.0", "bbob-biobj-mixint_f076_i03_d020 1.0", "bbob-biobj-mixint_f076_i03_d040 1.0", "bbob-biobj-mixint_f076_i03_d080 1.0", "bbob-biobj-mixint_f076_i03_d160 1.0", "bbob-biobj-mixint_f076_i04_d005 1.0", "bbob-biobj-mixint_f076_i04_d010 1.0", "bbob-biobj-mixint_f076_i04_d020 1.0", "bbob-biobj-mixint_f076_i04_d040 1.0", "bbob-biobj-mixint_f076_i04_d080 1.0", "bbob-biobj-mixint_f076_i04_d160 1.0", "bbob-biobj-mixint_f076_i05_d005 1.0", "bbob-biobj-mixint_f076_i05_d010 1.0", "bbob-biobj-mixint_f076_i05_d020 1.0", "bbob-biobj-mixint_f076_i05_d040 1.0", "bbob-biobj-mixint_f076_i05_d080 1.0", "bbob-biobj-mixint_f076_i05_d160 1.0", "bbob-biobj-mixint_f076_i06_d005 1.0", "bbob-biobj-mixint_f076_i06_d010 1.0", "bbob-biobj-mixint_f076_i06_d020 1.0", "bbob-biobj-mixint_f076_i06_d040 1.0", "bbob-biobj-mixint_f076_i06_d080 1.0", "bbob-biobj-mixint_f076_i06_d160 1.0", "bbob-biobj-mixint_f076_i07_d005 1.0", "bbob-biobj-mixint_f076_i07_d010 1.0", "bbob-biobj-mixint_f076_i07_d020 1.0", "bbob-biobj-mixint_f076_i07_d040 1.0", "bbob-biobj-mixint_f076_i07_d080 1.0", "bbob-biobj-mixint_f076_i07_d160 1.0", "bbob-biobj-mixint_f076_i08_d005 1.0", "bbob-biobj-mixint_f076_i08_d010 1.0", "bbob-biobj-mixint_f076_i08_d020 1.0", "bbob-biobj-mixint_f076_i08_d040 1.0", "bbob-biobj-mixint_f076_i08_d080 1.0", "bbob-biobj-mixint_f076_i08_d160 1.0", "bbob-biobj-mixint_f076_i09_d005 1.0", "bbob-biobj-mixint_f076_i09_d010 1.0", "bbob-biobj-mixint_f076_i09_d020 1.0", "bbob-biobj-mixint_f076_i09_d040 1.0", "bbob-biobj-mixint_f076_i09_d080 1.0", "bbob-biobj-mixint_f076_i09_d160 1.0", "bbob-biobj-mixint_f076_i10_d005 1.0", "bbob-biobj-mixint_f076_i10_d010 1.0", "bbob-biobj-mixint_f076_i10_d020 1.0", "bbob-biobj-mixint_f076_i10_d040 1.0", "bbob-biobj-mixint_f076_i10_d080 1.0", "bbob-biobj-mixint_f076_i10_d160 1.0", "bbob-biobj-mixint_f076_i11_d005 1.0", "bbob-biobj-mixint_f076_i11_d010 1.0", "bbob-biobj-mixint_f076_i11_d020 1.0", "bbob-biobj-mixint_f076_i11_d040 1.0", "bbob-biobj-mixint_f076_i11_d080 1.0", "bbob-biobj-mixint_f076_i11_d160 1.0", "bbob-biobj-mixint_f076_i12_d005 1.0", "bbob-biobj-mixint_f076_i12_d010 1.0", "bbob-biobj-mixint_f076_i12_d020 1.0", "bbob-biobj-mixint_f076_i12_d040 1.0", "bbob-biobj-mixint_f076_i12_d080 1.0", "bbob-biobj-mixint_f076_i12_d160 1.0", "bbob-biobj-mixint_f076_i13_d005 1.0", "bbob-biobj-mixint_f076_i13_d010 1.0", "bbob-biobj-mixint_f076_i13_d020 1.0", "bbob-biobj-mixint_f076_i13_d040 1.0", "bbob-biobj-mixint_f076_i13_d080 1.0", "bbob-biobj-mixint_f076_i13_d160 1.0", "bbob-biobj-mixint_f076_i14_d005 1.0", "bbob-biobj-mixint_f076_i14_d010 1.0", "bbob-biobj-mixint_f076_i14_d020 1.0", "bbob-biobj-mixint_f076_i14_d040 1.0", "bbob-biobj-mixint_f076_i14_d080 1.0", "bbob-biobj-mixint_f076_i14_d160 1.0", "bbob-biobj-mixint_f076_i15_d005 1.0", "bbob-biobj-mixint_f076_i15_d010 1.0", "bbob-biobj-mixint_f076_i15_d020 1.0", "bbob-biobj-mixint_f076_i15_d040 1.0", "bbob-biobj-mixint_f076_i15_d080 1.0", "bbob-biobj-mixint_f076_i15_d160 1.0", "bbob-biobj-mixint_f077_i01_d005 1.0", "bbob-biobj-mixint_f077_i01_d010 1.0", "bbob-biobj-mixint_f077_i01_d020 1.0", "bbob-biobj-mixint_f077_i01_d040 1.0", "bbob-biobj-mixint_f077_i01_d080 1.0", "bbob-biobj-mixint_f077_i01_d160 1.0", "bbob-biobj-mixint_f077_i02_d005 1.0", "bbob-biobj-mixint_f077_i02_d010 1.0", "bbob-biobj-mixint_f077_i02_d020 1.0", "bbob-biobj-mixint_f077_i02_d040 1.0", "bbob-biobj-mixint_f077_i02_d080 1.0", "bbob-biobj-mixint_f077_i02_d160 1.0", "bbob-biobj-mixint_f077_i03_d005 1.0", "bbob-biobj-mixint_f077_i03_d010 1.0", "bbob-biobj-mixint_f077_i03_d020 1.0", "bbob-biobj-mixint_f077_i03_d040 1.0", "bbob-biobj-mixint_f077_i03_d080 1.0", "bbob-biobj-mixint_f077_i03_d160 1.0", "bbob-biobj-mixint_f077_i04_d005 1.0", "bbob-biobj-mixint_f077_i04_d010 1.0", "bbob-biobj-mixint_f077_i04_d020 1.0", "bbob-biobj-mixint_f077_i04_d040 1.0", "bbob-biobj-mixint_f077_i04_d080 1.0", "bbob-biobj-mixint_f077_i04_d160 1.0", "bbob-biobj-mixint_f077_i05_d005 1.0", "bbob-biobj-mixint_f077_i05_d010 1.0", "bbob-biobj-mixint_f077_i05_d020 1.0", "bbob-biobj-mixint_f077_i05_d040 1.0", "bbob-biobj-mixint_f077_i05_d080 1.0", "bbob-biobj-mixint_f077_i05_d160 1.0", "bbob-biobj-mixint_f077_i06_d005 1.0", "bbob-biobj-mixint_f077_i06_d010 1.0", "bbob-biobj-mixint_f077_i06_d020 1.0", "bbob-biobj-mixint_f077_i06_d040 1.0", "bbob-biobj-mixint_f077_i06_d080 1.0", "bbob-biobj-mixint_f077_i06_d160 1.0", "bbob-biobj-mixint_f077_i07_d005 1.0", "bbob-biobj-mixint_f077_i07_d010 1.0", "bbob-biobj-mixint_f077_i07_d020 1.0", "bbob-biobj-mixint_f077_i07_d040 1.0", "bbob-biobj-mixint_f077_i07_d080 1.0", "bbob-biobj-mixint_f077_i07_d160 1.0", "bbob-biobj-mixint_f077_i08_d005 1.0", "bbob-biobj-mixint_f077_i08_d010 1.0", "bbob-biobj-mixint_f077_i08_d020 1.0", "bbob-biobj-mixint_f077_i08_d040 1.0", "bbob-biobj-mixint_f077_i08_d080 1.0", "bbob-biobj-mixint_f077_i08_d160 1.0", "bbob-biobj-mixint_f077_i09_d005 1.0", "bbob-biobj-mixint_f077_i09_d010 1.0", "bbob-biobj-mixint_f077_i09_d020 1.0", "bbob-biobj-mixint_f077_i09_d040 1.0", "bbob-biobj-mixint_f077_i09_d080 1.0", "bbob-biobj-mixint_f077_i09_d160 1.0", "bbob-biobj-mixint_f077_i10_d005 1.0", "bbob-biobj-mixint_f077_i10_d010 1.0", "bbob-biobj-mixint_f077_i10_d020 1.0", "bbob-biobj-mixint_f077_i10_d040 1.0", "bbob-biobj-mixint_f077_i10_d080 1.0", "bbob-biobj-mixint_f077_i10_d160 1.0", "bbob-biobj-mixint_f077_i11_d005 1.0", "bbob-biobj-mixint_f077_i11_d010 1.0", "bbob-biobj-mixint_f077_i11_d020 1.0", "bbob-biobj-mixint_f077_i11_d040 1.0", "bbob-biobj-mixint_f077_i11_d080 1.0", "bbob-biobj-mixint_f077_i11_d160 1.0", "bbob-biobj-mixint_f077_i12_d005 1.0", "bbob-biobj-mixint_f077_i12_d010 1.0", "bbob-biobj-mixint_f077_i12_d020 1.0", "bbob-biobj-mixint_f077_i12_d040 1.0", "bbob-biobj-mixint_f077_i12_d080 1.0", "bbob-biobj-mixint_f077_i12_d160 1.0", "bbob-biobj-mixint_f077_i13_d005 1.0", "bbob-biobj-mixint_f077_i13_d010 1.0", "bbob-biobj-mixint_f077_i13_d020 1.0", "bbob-biobj-mixint_f077_i13_d040 1.0", "bbob-biobj-mixint_f077_i13_d080 1.0", "bbob-biobj-mixint_f077_i13_d160 1.0", "bbob-biobj-mixint_f077_i14_d005 1.0", "bbob-biobj-mixint_f077_i14_d010 1.0", "bbob-biobj-mixint_f077_i14_d020 1.0", "bbob-biobj-mixint_f077_i14_d040 1.0", "bbob-biobj-mixint_f077_i14_d080 1.0", "bbob-biobj-mixint_f077_i14_d160 1.0", "bbob-biobj-mixint_f077_i15_d005 1.0", "bbob-biobj-mixint_f077_i15_d010 1.0", "bbob-biobj-mixint_f077_i15_d020 1.0", "bbob-biobj-mixint_f077_i15_d040 1.0", "bbob-biobj-mixint_f077_i15_d080 1.0", "bbob-biobj-mixint_f077_i15_d160 1.0", "bbob-biobj-mixint_f078_i01_d005 1.0", "bbob-biobj-mixint_f078_i01_d010 1.0", "bbob-biobj-mixint_f078_i01_d020 1.0", "bbob-biobj-mixint_f078_i01_d040 1.0", "bbob-biobj-mixint_f078_i01_d080 1.0", "bbob-biobj-mixint_f078_i01_d160 1.0", "bbob-biobj-mixint_f078_i02_d005 1.0", "bbob-biobj-mixint_f078_i02_d010 1.0", "bbob-biobj-mixint_f078_i02_d020 1.0", "bbob-biobj-mixint_f078_i02_d040 1.0", "bbob-biobj-mixint_f078_i02_d080 1.0", "bbob-biobj-mixint_f078_i02_d160 1.0", "bbob-biobj-mixint_f078_i03_d005 1.0", "bbob-biobj-mixint_f078_i03_d010 1.0", "bbob-biobj-mixint_f078_i03_d020 1.0", "bbob-biobj-mixint_f078_i03_d040 1.0", "bbob-biobj-mixint_f078_i03_d080 1.0", "bbob-biobj-mixint_f078_i03_d160 1.0", "bbob-biobj-mixint_f078_i04_d005 1.0", "bbob-biobj-mixint_f078_i04_d010 1.0", "bbob-biobj-mixint_f078_i04_d020 1.0", "bbob-biobj-mixint_f078_i04_d040 1.0", "bbob-biobj-mixint_f078_i04_d080 1.0", "bbob-biobj-mixint_f078_i04_d160 1.0", "bbob-biobj-mixint_f078_i05_d005 1.0", "bbob-biobj-mixint_f078_i05_d010 1.0", "bbob-biobj-mixint_f078_i05_d020 1.0", "bbob-biobj-mixint_f078_i05_d040 1.0", "bbob-biobj-mixint_f078_i05_d080 1.0", "bbob-biobj-mixint_f078_i05_d160 1.0", "bbob-biobj-mixint_f078_i06_d005 1.0", "bbob-biobj-mixint_f078_i06_d010 1.0", "bbob-biobj-mixint_f078_i06_d020 1.0", "bbob-biobj-mixint_f078_i06_d040 1.0", "bbob-biobj-mixint_f078_i06_d080 1.0", "bbob-biobj-mixint_f078_i06_d160 1.0", "bbob-biobj-mixint_f078_i07_d005 1.0", "bbob-biobj-mixint_f078_i07_d010 1.0", "bbob-biobj-mixint_f078_i07_d020 1.0", "bbob-biobj-mixint_f078_i07_d040 1.0", "bbob-biobj-mixint_f078_i07_d080 1.0", "bbob-biobj-mixint_f078_i07_d160 1.0", "bbob-biobj-mixint_f078_i08_d005 1.0", "bbob-biobj-mixint_f078_i08_d010 1.0", "bbob-biobj-mixint_f078_i08_d020 1.0", "bbob-biobj-mixint_f078_i08_d040 1.0", "bbob-biobj-mixint_f078_i08_d080 1.0", "bbob-biobj-mixint_f078_i08_d160 1.0", "bbob-biobj-mixint_f078_i09_d005 1.0", "bbob-biobj-mixint_f078_i09_d010 1.0", "bbob-biobj-mixint_f078_i09_d020 1.0", "bbob-biobj-mixint_f078_i09_d040 1.0", "bbob-biobj-mixint_f078_i09_d080 1.0", "bbob-biobj-mixint_f078_i09_d160 1.0", "bbob-biobj-mixint_f078_i10_d005 1.0", "bbob-biobj-mixint_f078_i10_d010 1.0", "bbob-biobj-mixint_f078_i10_d020 1.0", "bbob-biobj-mixint_f078_i10_d040 1.0", "bbob-biobj-mixint_f078_i10_d080 1.0", "bbob-biobj-mixint_f078_i10_d160 1.0", "bbob-biobj-mixint_f078_i11_d005 1.0", "bbob-biobj-mixint_f078_i11_d010 1.0", "bbob-biobj-mixint_f078_i11_d020 1.0", "bbob-biobj-mixint_f078_i11_d040 1.0", "bbob-biobj-mixint_f078_i11_d080 1.0", "bbob-biobj-mixint_f078_i11_d160 1.0", "bbob-biobj-mixint_f078_i12_d005 1.0", "bbob-biobj-mixint_f078_i12_d010 1.0", "bbob-biobj-mixint_f078_i12_d020 1.0", "bbob-biobj-mixint_f078_i12_d040 1.0", "bbob-biobj-mixint_f078_i12_d080 1.0", "bbob-biobj-mixint_f078_i12_d160 1.0", "bbob-biobj-mixint_f078_i13_d005 1.0", "bbob-biobj-mixint_f078_i13_d010 1.0", "bbob-biobj-mixint_f078_i13_d020 1.0", "bbob-biobj-mixint_f078_i13_d040 1.0", "bbob-biobj-mixint_f078_i13_d080 1.0", "bbob-biobj-mixint_f078_i13_d160 1.0", "bbob-biobj-mixint_f078_i14_d005 1.0", "bbob-biobj-mixint_f078_i14_d010 1.0", "bbob-biobj-mixint_f078_i14_d020 1.0", "bbob-biobj-mixint_f078_i14_d040 1.0", "bbob-biobj-mixint_f078_i14_d080 1.0", "bbob-biobj-mixint_f078_i14_d160 1.0", "bbob-biobj-mixint_f078_i15_d005 1.0", "bbob-biobj-mixint_f078_i15_d010 1.0", "bbob-biobj-mixint_f078_i15_d020 1.0", "bbob-biobj-mixint_f078_i15_d040 1.0", "bbob-biobj-mixint_f078_i15_d080 1.0", "bbob-biobj-mixint_f078_i15_d160 1.0", "bbob-biobj-mixint_f079_i01_d005 1.0", "bbob-biobj-mixint_f079_i01_d010 1.0", "bbob-biobj-mixint_f079_i01_d020 1.0", "bbob-biobj-mixint_f079_i01_d040 1.0", "bbob-biobj-mixint_f079_i01_d080 1.0", "bbob-biobj-mixint_f079_i01_d160 1.0", "bbob-biobj-mixint_f079_i02_d005 1.0", "bbob-biobj-mixint_f079_i02_d010 1.0", "bbob-biobj-mixint_f079_i02_d020 1.0", "bbob-biobj-mixint_f079_i02_d040 1.0", "bbob-biobj-mixint_f079_i02_d080 1.0", "bbob-biobj-mixint_f079_i02_d160 1.0", "bbob-biobj-mixint_f079_i03_d005 1.0", "bbob-biobj-mixint_f079_i03_d010 1.0", "bbob-biobj-mixint_f079_i03_d020 1.0", "bbob-biobj-mixint_f079_i03_d040 1.0", "bbob-biobj-mixint_f079_i03_d080 1.0", "bbob-biobj-mixint_f079_i03_d160 1.0", "bbob-biobj-mixint_f079_i04_d005 1.0", "bbob-biobj-mixint_f079_i04_d010 1.0", "bbob-biobj-mixint_f079_i04_d020 1.0", "bbob-biobj-mixint_f079_i04_d040 1.0", "bbob-biobj-mixint_f079_i04_d080 1.0", "bbob-biobj-mixint_f079_i04_d160 1.0", "bbob-biobj-mixint_f079_i05_d005 1.0", "bbob-biobj-mixint_f079_i05_d010 1.0", "bbob-biobj-mixint_f079_i05_d020 1.0", "bbob-biobj-mixint_f079_i05_d040 1.0", "bbob-biobj-mixint_f079_i05_d080 1.0", "bbob-biobj-mixint_f079_i05_d160 1.0", "bbob-biobj-mixint_f079_i06_d005 1.0", "bbob-biobj-mixint_f079_i06_d010 1.0", "bbob-biobj-mixint_f079_i06_d020 1.0", "bbob-biobj-mixint_f079_i06_d040 1.0", "bbob-biobj-mixint_f079_i06_d080 1.0", "bbob-biobj-mixint_f079_i06_d160 1.0", "bbob-biobj-mixint_f079_i07_d005 1.0", "bbob-biobj-mixint_f079_i07_d010 1.0", "bbob-biobj-mixint_f079_i07_d020 1.0", "bbob-biobj-mixint_f079_i07_d040 1.0", "bbob-biobj-mixint_f079_i07_d080 1.0", "bbob-biobj-mixint_f079_i07_d160 1.0", "bbob-biobj-mixint_f079_i08_d005 1.0", "bbob-biobj-mixint_f079_i08_d010 1.0", "bbob-biobj-mixint_f079_i08_d020 1.0", "bbob-biobj-mixint_f079_i08_d040 1.0", "bbob-biobj-mixint_f079_i08_d080 1.0", "bbob-biobj-mixint_f079_i08_d160 1.0", "bbob-biobj-mixint_f079_i09_d005 1.0", "bbob-biobj-mixint_f079_i09_d010 1.0", "bbob-biobj-mixint_f079_i09_d020 1.0", "bbob-biobj-mixint_f079_i09_d040 1.0", "bbob-biobj-mixint_f079_i09_d080 1.0", "bbob-biobj-mixint_f079_i09_d160 1.0", "bbob-biobj-mixint_f079_i10_d005 1.0", "bbob-biobj-mixint_f079_i10_d010 1.0", "bbob-biobj-mixint_f079_i10_d020 1.0", "bbob-biobj-mixint_f079_i10_d040 1.0", "bbob-biobj-mixint_f079_i10_d080 1.0", "bbob-biobj-mixint_f079_i10_d160 1.0", "bbob-biobj-mixint_f079_i11_d005 1.0", "bbob-biobj-mixint_f079_i11_d010 1.0", "bbob-biobj-mixint_f079_i11_d020 1.0", "bbob-biobj-mixint_f079_i11_d040 1.0", "bbob-biobj-mixint_f079_i11_d080 1.0", "bbob-biobj-mixint_f079_i11_d160 1.0", "bbob-biobj-mixint_f079_i12_d005 1.0", "bbob-biobj-mixint_f079_i12_d010 1.0", "bbob-biobj-mixint_f079_i12_d020 1.0", "bbob-biobj-mixint_f079_i12_d040 1.0", "bbob-biobj-mixint_f079_i12_d080 1.0", "bbob-biobj-mixint_f079_i12_d160 1.0", "bbob-biobj-mixint_f079_i13_d005 1.0", "bbob-biobj-mixint_f079_i13_d010 1.0", "bbob-biobj-mixint_f079_i13_d020 1.0", "bbob-biobj-mixint_f079_i13_d040 1.0", "bbob-biobj-mixint_f079_i13_d080 1.0", "bbob-biobj-mixint_f079_i13_d160 1.0", "bbob-biobj-mixint_f079_i14_d005 1.0", "bbob-biobj-mixint_f079_i14_d010 1.0", "bbob-biobj-mixint_f079_i14_d020 1.0", "bbob-biobj-mixint_f079_i14_d040 1.0", "bbob-biobj-mixint_f079_i14_d080 1.0", "bbob-biobj-mixint_f079_i14_d160 1.0", "bbob-biobj-mixint_f079_i15_d005 1.0", "bbob-biobj-mixint_f079_i15_d010 1.0", "bbob-biobj-mixint_f079_i15_d020 1.0", "bbob-biobj-mixint_f079_i15_d040 1.0", "bbob-biobj-mixint_f079_i15_d080 1.0", "bbob-biobj-mixint_f079_i15_d160 1.0", "bbob-biobj-mixint_f080_i01_d005 1.0", "bbob-biobj-mixint_f080_i01_d010 1.0", "bbob-biobj-mixint_f080_i01_d020 1.0", "bbob-biobj-mixint_f080_i01_d040 1.0", "bbob-biobj-mixint_f080_i01_d080 1.0", "bbob-biobj-mixint_f080_i01_d160 1.0", "bbob-biobj-mixint_f080_i02_d005 1.0", "bbob-biobj-mixint_f080_i02_d010 1.0", "bbob-biobj-mixint_f080_i02_d020 1.0", "bbob-biobj-mixint_f080_i02_d040 1.0", "bbob-biobj-mixint_f080_i02_d080 1.0", "bbob-biobj-mixint_f080_i02_d160 1.0", "bbob-biobj-mixint_f080_i03_d005 1.0", "bbob-biobj-mixint_f080_i03_d010 1.0", "bbob-biobj-mixint_f080_i03_d020 1.0", "bbob-biobj-mixint_f080_i03_d040 1.0", "bbob-biobj-mixint_f080_i03_d080 1.0", "bbob-biobj-mixint_f080_i03_d160 1.0", "bbob-biobj-mixint_f080_i04_d005 1.0", "bbob-biobj-mixint_f080_i04_d010 1.0", "bbob-biobj-mixint_f080_i04_d020 1.0", "bbob-biobj-mixint_f080_i04_d040 1.0", "bbob-biobj-mixint_f080_i04_d080 1.0", "bbob-biobj-mixint_f080_i04_d160 1.0", "bbob-biobj-mixint_f080_i05_d005 1.0", "bbob-biobj-mixint_f080_i05_d010 1.0", "bbob-biobj-mixint_f080_i05_d020 1.0", "bbob-biobj-mixint_f080_i05_d040 1.0", "bbob-biobj-mixint_f080_i05_d080 1.0", "bbob-biobj-mixint_f080_i05_d160 1.0", "bbob-biobj-mixint_f080_i06_d005 1.0", "bbob-biobj-mixint_f080_i06_d010 1.0", "bbob-biobj-mixint_f080_i06_d020 1.0", "bbob-biobj-mixint_f080_i06_d040 1.0", "bbob-biobj-mixint_f080_i06_d080 1.0", "bbob-biobj-mixint_f080_i06_d160 1.0", "bbob-biobj-mixint_f080_i07_d005 1.0", "bbob-biobj-mixint_f080_i07_d010 1.0", "bbob-biobj-mixint_f080_i07_d020 1.0", "bbob-biobj-mixint_f080_i07_d040 1.0", "bbob-biobj-mixint_f080_i07_d080 1.0", "bbob-biobj-mixint_f080_i07_d160 1.0", "bbob-biobj-mixint_f080_i08_d005 1.0", "bbob-biobj-mixint_f080_i08_d010 1.0", "bbob-biobj-mixint_f080_i08_d020 1.0", "bbob-biobj-mixint_f080_i08_d040 1.0", "bbob-biobj-mixint_f080_i08_d080 1.0", "bbob-biobj-mixint_f080_i08_d160 1.0", "bbob-biobj-mixint_f080_i09_d005 1.0", "bbob-biobj-mixint_f080_i09_d010 1.0", "bbob-biobj-mixint_f080_i09_d020 1.0", "bbob-biobj-mixint_f080_i09_d040 1.0", "bbob-biobj-mixint_f080_i09_d080 1.0", "bbob-biobj-mixint_f080_i09_d160 1.0", "bbob-biobj-mixint_f080_i10_d005 1.0", "bbob-biobj-mixint_f080_i10_d010 1.0", "bbob-biobj-mixint_f080_i10_d020 1.0", "bbob-biobj-mixint_f080_i10_d040 1.0", "bbob-biobj-mixint_f080_i10_d080 1.0", "bbob-biobj-mixint_f080_i10_d160 1.0", "bbob-biobj-mixint_f080_i11_d005 1.0", "bbob-biobj-mixint_f080_i11_d010 1.0", "bbob-biobj-mixint_f080_i11_d020 1.0", "bbob-biobj-mixint_f080_i11_d040 1.0", "bbob-biobj-mixint_f080_i11_d080 1.0", "bbob-biobj-mixint_f080_i11_d160 1.0", "bbob-biobj-mixint_f080_i12_d005 1.0", "bbob-biobj-mixint_f080_i12_d010 1.0", "bbob-biobj-mixint_f080_i12_d020 1.0", "bbob-biobj-mixint_f080_i12_d040 1.0", "bbob-biobj-mixint_f080_i12_d080 1.0", "bbob-biobj-mixint_f080_i12_d160 1.0", "bbob-biobj-mixint_f080_i13_d005 1.0", "bbob-biobj-mixint_f080_i13_d010 1.0", "bbob-biobj-mixint_f080_i13_d020 1.0", "bbob-biobj-mixint_f080_i13_d040 1.0", "bbob-biobj-mixint_f080_i13_d080 1.0", "bbob-biobj-mixint_f080_i13_d160 1.0", "bbob-biobj-mixint_f080_i14_d005 1.0", "bbob-biobj-mixint_f080_i14_d010 1.0", "bbob-biobj-mixint_f080_i14_d020 1.0", "bbob-biobj-mixint_f080_i14_d040 1.0", "bbob-biobj-mixint_f080_i14_d080 1.0", "bbob-biobj-mixint_f080_i14_d160 1.0", "bbob-biobj-mixint_f080_i15_d005 1.0", "bbob-biobj-mixint_f080_i15_d010 1.0", "bbob-biobj-mixint_f080_i15_d020 1.0", "bbob-biobj-mixint_f080_i15_d040 1.0", "bbob-biobj-mixint_f080_i15_d080 1.0", "bbob-biobj-mixint_f080_i15_d160 1.0", "bbob-biobj-mixint_f081_i01_d005 1.0", "bbob-biobj-mixint_f081_i01_d010 1.0", "bbob-biobj-mixint_f081_i01_d020 1.0", "bbob-biobj-mixint_f081_i01_d040 1.0", "bbob-biobj-mixint_f081_i01_d080 1.0", "bbob-biobj-mixint_f081_i01_d160 1.0", "bbob-biobj-mixint_f081_i02_d005 1.0", "bbob-biobj-mixint_f081_i02_d010 1.0", "bbob-biobj-mixint_f081_i02_d020 1.0", "bbob-biobj-mixint_f081_i02_d040 1.0", "bbob-biobj-mixint_f081_i02_d080 1.0", "bbob-biobj-mixint_f081_i02_d160 1.0", "bbob-biobj-mixint_f081_i03_d005 1.0", "bbob-biobj-mixint_f081_i03_d010 1.0", "bbob-biobj-mixint_f081_i03_d020 1.0", "bbob-biobj-mixint_f081_i03_d040 1.0", "bbob-biobj-mixint_f081_i03_d080 1.0", "bbob-biobj-mixint_f081_i03_d160 1.0", "bbob-biobj-mixint_f081_i04_d005 1.0", "bbob-biobj-mixint_f081_i04_d010 1.0", "bbob-biobj-mixint_f081_i04_d020 1.0", "bbob-biobj-mixint_f081_i04_d040 1.0", "bbob-biobj-mixint_f081_i04_d080 1.0", "bbob-biobj-mixint_f081_i04_d160 1.0", "bbob-biobj-mixint_f081_i05_d005 1.0", "bbob-biobj-mixint_f081_i05_d010 1.0", "bbob-biobj-mixint_f081_i05_d020 1.0", "bbob-biobj-mixint_f081_i05_d040 1.0", "bbob-biobj-mixint_f081_i05_d080 1.0", "bbob-biobj-mixint_f081_i05_d160 1.0", "bbob-biobj-mixint_f081_i06_d005 1.0", "bbob-biobj-mixint_f081_i06_d010 1.0", "bbob-biobj-mixint_f081_i06_d020 1.0", "bbob-biobj-mixint_f081_i06_d040 1.0", "bbob-biobj-mixint_f081_i06_d080 1.0", "bbob-biobj-mixint_f081_i06_d160 1.0", "bbob-biobj-mixint_f081_i07_d005 1.0", "bbob-biobj-mixint_f081_i07_d010 1.0", "bbob-biobj-mixint_f081_i07_d020 1.0", "bbob-biobj-mixint_f081_i07_d040 1.0", "bbob-biobj-mixint_f081_i07_d080 1.0", "bbob-biobj-mixint_f081_i07_d160 1.0", "bbob-biobj-mixint_f081_i08_d005 1.0", "bbob-biobj-mixint_f081_i08_d010 1.0", "bbob-biobj-mixint_f081_i08_d020 1.0", "bbob-biobj-mixint_f081_i08_d040 1.0", "bbob-biobj-mixint_f081_i08_d080 1.0", "bbob-biobj-mixint_f081_i08_d160 1.0", "bbob-biobj-mixint_f081_i09_d005 1.0", "bbob-biobj-mixint_f081_i09_d010 1.0", "bbob-biobj-mixint_f081_i09_d020 1.0", "bbob-biobj-mixint_f081_i09_d040 1.0", "bbob-biobj-mixint_f081_i09_d080 1.0", "bbob-biobj-mixint_f081_i09_d160 1.0", "bbob-biobj-mixint_f081_i10_d005 1.0", "bbob-biobj-mixint_f081_i10_d010 1.0", "bbob-biobj-mixint_f081_i10_d020 1.0", "bbob-biobj-mixint_f081_i10_d040 1.0", "bbob-biobj-mixint_f081_i10_d080 1.0", "bbob-biobj-mixint_f081_i10_d160 1.0", "bbob-biobj-mixint_f081_i11_d005 1.0", "bbob-biobj-mixint_f081_i11_d010 1.0", "bbob-biobj-mixint_f081_i11_d020 1.0", "bbob-biobj-mixint_f081_i11_d040 1.0", "bbob-biobj-mixint_f081_i11_d080 1.0", "bbob-biobj-mixint_f081_i11_d160 1.0", "bbob-biobj-mixint_f081_i12_d005 1.0", "bbob-biobj-mixint_f081_i12_d010 1.0", "bbob-biobj-mixint_f081_i12_d020 1.0", "bbob-biobj-mixint_f081_i12_d040 1.0", "bbob-biobj-mixint_f081_i12_d080 1.0", "bbob-biobj-mixint_f081_i12_d160 1.0", "bbob-biobj-mixint_f081_i13_d005 1.0", "bbob-biobj-mixint_f081_i13_d010 1.0", "bbob-biobj-mixint_f081_i13_d020 1.0", "bbob-biobj-mixint_f081_i13_d040 1.0", "bbob-biobj-mixint_f081_i13_d080 1.0", "bbob-biobj-mixint_f081_i13_d160 1.0", "bbob-biobj-mixint_f081_i14_d005 1.0", "bbob-biobj-mixint_f081_i14_d010 1.0", "bbob-biobj-mixint_f081_i14_d020 1.0", "bbob-biobj-mixint_f081_i14_d040 1.0", "bbob-biobj-mixint_f081_i14_d080 1.0", "bbob-biobj-mixint_f081_i14_d160 1.0", "bbob-biobj-mixint_f081_i15_d005 1.0", "bbob-biobj-mixint_f081_i15_d010 1.0", "bbob-biobj-mixint_f081_i15_d020 1.0", "bbob-biobj-mixint_f081_i15_d040 1.0", "bbob-biobj-mixint_f081_i15_d080 1.0", "bbob-biobj-mixint_f081_i15_d160 1.0", "bbob-biobj-mixint_f082_i01_d005 1.0", "bbob-biobj-mixint_f082_i01_d010 1.0", "bbob-biobj-mixint_f082_i01_d020 1.0", "bbob-biobj-mixint_f082_i01_d040 1.0", "bbob-biobj-mixint_f082_i01_d080 1.0", "bbob-biobj-mixint_f082_i01_d160 1.0", "bbob-biobj-mixint_f082_i02_d005 1.0", "bbob-biobj-mixint_f082_i02_d010 1.0", "bbob-biobj-mixint_f082_i02_d020 1.0", "bbob-biobj-mixint_f082_i02_d040 1.0", "bbob-biobj-mixint_f082_i02_d080 1.0", "bbob-biobj-mixint_f082_i02_d160 1.0", "bbob-biobj-mixint_f082_i03_d005 1.0", "bbob-biobj-mixint_f082_i03_d010 1.0", "bbob-biobj-mixint_f082_i03_d020 1.0", "bbob-biobj-mixint_f082_i03_d040 1.0", "bbob-biobj-mixint_f082_i03_d080 1.0", "bbob-biobj-mixint_f082_i03_d160 1.0", "bbob-biobj-mixint_f082_i04_d005 1.0", "bbob-biobj-mixint_f082_i04_d010 1.0", "bbob-biobj-mixint_f082_i04_d020 1.0", "bbob-biobj-mixint_f082_i04_d040 1.0", "bbob-biobj-mixint_f082_i04_d080 1.0", "bbob-biobj-mixint_f082_i04_d160 1.0", "bbob-biobj-mixint_f082_i05_d005 1.0", "bbob-biobj-mixint_f082_i05_d010 1.0", "bbob-biobj-mixint_f082_i05_d020 1.0", "bbob-biobj-mixint_f082_i05_d040 1.0", "bbob-biobj-mixint_f082_i05_d080 1.0", "bbob-biobj-mixint_f082_i05_d160 1.0", "bbob-biobj-mixint_f082_i06_d005 1.0", "bbob-biobj-mixint_f082_i06_d010 1.0", "bbob-biobj-mixint_f082_i06_d020 1.0", "bbob-biobj-mixint_f082_i06_d040 1.0", "bbob-biobj-mixint_f082_i06_d080 1.0", "bbob-biobj-mixint_f082_i06_d160 1.0", "bbob-biobj-mixint_f082_i07_d005 1.0", "bbob-biobj-mixint_f082_i07_d010 1.0", "bbob-biobj-mixint_f082_i07_d020 1.0", "bbob-biobj-mixint_f082_i07_d040 1.0", "bbob-biobj-mixint_f082_i07_d080 1.0", "bbob-biobj-mixint_f082_i07_d160 1.0", "bbob-biobj-mixint_f082_i08_d005 1.0", "bbob-biobj-mixint_f082_i08_d010 1.0", "bbob-biobj-mixint_f082_i08_d020 1.0", "bbob-biobj-mixint_f082_i08_d040 1.0", "bbob-biobj-mixint_f082_i08_d080 1.0", "bbob-biobj-mixint_f082_i08_d160 1.0", "bbob-biobj-mixint_f082_i09_d005 1.0", "bbob-biobj-mixint_f082_i09_d010 1.0", "bbob-biobj-mixint_f082_i09_d020 1.0", "bbob-biobj-mixint_f082_i09_d040 1.0", "bbob-biobj-mixint_f082_i09_d080 1.0", "bbob-biobj-mixint_f082_i09_d160 1.0", "bbob-biobj-mixint_f082_i10_d005 1.0", "bbob-biobj-mixint_f082_i10_d010 1.0", "bbob-biobj-mixint_f082_i10_d020 1.0", "bbob-biobj-mixint_f082_i10_d040 1.0", "bbob-biobj-mixint_f082_i10_d080 1.0", "bbob-biobj-mixint_f082_i10_d160 1.0", "bbob-biobj-mixint_f082_i11_d005 1.0", "bbob-biobj-mixint_f082_i11_d010 1.0", "bbob-biobj-mixint_f082_i11_d020 1.0", "bbob-biobj-mixint_f082_i11_d040 1.0", "bbob-biobj-mixint_f082_i11_d080 1.0", "bbob-biobj-mixint_f082_i11_d160 1.0", "bbob-biobj-mixint_f082_i12_d005 1.0", "bbob-biobj-mixint_f082_i12_d010 1.0", "bbob-biobj-mixint_f082_i12_d020 1.0", "bbob-biobj-mixint_f082_i12_d040 1.0", "bbob-biobj-mixint_f082_i12_d080 1.0", "bbob-biobj-mixint_f082_i12_d160 1.0", "bbob-biobj-mixint_f082_i13_d005 1.0", "bbob-biobj-mixint_f082_i13_d010 1.0", "bbob-biobj-mixint_f082_i13_d020 1.0", "bbob-biobj-mixint_f082_i13_d040 1.0", "bbob-biobj-mixint_f082_i13_d080 1.0", "bbob-biobj-mixint_f082_i13_d160 1.0", "bbob-biobj-mixint_f082_i14_d005 1.0", "bbob-biobj-mixint_f082_i14_d010 1.0", "bbob-biobj-mixint_f082_i14_d020 1.0", "bbob-biobj-mixint_f082_i14_d040 1.0", "bbob-biobj-mixint_f082_i14_d080 1.0", "bbob-biobj-mixint_f082_i14_d160 1.0", "bbob-biobj-mixint_f082_i15_d005 1.0", "bbob-biobj-mixint_f082_i15_d010 1.0", "bbob-biobj-mixint_f082_i15_d020 1.0", "bbob-biobj-mixint_f082_i15_d040 1.0", "bbob-biobj-mixint_f082_i15_d080 1.0", "bbob-biobj-mixint_f082_i15_d160 1.0", "bbob-biobj-mixint_f083_i01_d005 1.0", "bbob-biobj-mixint_f083_i01_d010 1.0", "bbob-biobj-mixint_f083_i01_d020 1.0", "bbob-biobj-mixint_f083_i01_d040 1.0", "bbob-biobj-mixint_f083_i01_d080 1.0", "bbob-biobj-mixint_f083_i01_d160 1.0", "bbob-biobj-mixint_f083_i02_d005 1.0", "bbob-biobj-mixint_f083_i02_d010 1.0", "bbob-biobj-mixint_f083_i02_d020 1.0", "bbob-biobj-mixint_f083_i02_d040 1.0", "bbob-biobj-mixint_f083_i02_d080 1.0", "bbob-biobj-mixint_f083_i02_d160 1.0", "bbob-biobj-mixint_f083_i03_d005 1.0", "bbob-biobj-mixint_f083_i03_d010 1.0", "bbob-biobj-mixint_f083_i03_d020 1.0", "bbob-biobj-mixint_f083_i03_d040 1.0", "bbob-biobj-mixint_f083_i03_d080 1.0", "bbob-biobj-mixint_f083_i03_d160 1.0", "bbob-biobj-mixint_f083_i04_d005 1.0", "bbob-biobj-mixint_f083_i04_d010 1.0", "bbob-biobj-mixint_f083_i04_d020 1.0", "bbob-biobj-mixint_f083_i04_d040 1.0", "bbob-biobj-mixint_f083_i04_d080 1.0", "bbob-biobj-mixint_f083_i04_d160 1.0", "bbob-biobj-mixint_f083_i05_d005 1.0", "bbob-biobj-mixint_f083_i05_d010 1.0", "bbob-biobj-mixint_f083_i05_d020 1.0", "bbob-biobj-mixint_f083_i05_d040 1.0", "bbob-biobj-mixint_f083_i05_d080 1.0", "bbob-biobj-mixint_f083_i05_d160 1.0", "bbob-biobj-mixint_f083_i06_d005 1.0", "bbob-biobj-mixint_f083_i06_d010 1.0", "bbob-biobj-mixint_f083_i06_d020 1.0", "bbob-biobj-mixint_f083_i06_d040 1.0", "bbob-biobj-mixint_f083_i06_d080 1.0", "bbob-biobj-mixint_f083_i06_d160 1.0", "bbob-biobj-mixint_f083_i07_d005 1.0", "bbob-biobj-mixint_f083_i07_d010 1.0", "bbob-biobj-mixint_f083_i07_d020 1.0", "bbob-biobj-mixint_f083_i07_d040 1.0", "bbob-biobj-mixint_f083_i07_d080 1.0", "bbob-biobj-mixint_f083_i07_d160 1.0", "bbob-biobj-mixint_f083_i08_d005 1.0", "bbob-biobj-mixint_f083_i08_d010 1.0", "bbob-biobj-mixint_f083_i08_d020 1.0", "bbob-biobj-mixint_f083_i08_d040 1.0", "bbob-biobj-mixint_f083_i08_d080 1.0", "bbob-biobj-mixint_f083_i08_d160 1.0", "bbob-biobj-mixint_f083_i09_d005 1.0", "bbob-biobj-mixint_f083_i09_d010 1.0", "bbob-biobj-mixint_f083_i09_d020 1.0", "bbob-biobj-mixint_f083_i09_d040 1.0", "bbob-biobj-mixint_f083_i09_d080 1.0", "bbob-biobj-mixint_f083_i09_d160 1.0", "bbob-biobj-mixint_f083_i10_d005 1.0", "bbob-biobj-mixint_f083_i10_d010 1.0", "bbob-biobj-mixint_f083_i10_d020 1.0", "bbob-biobj-mixint_f083_i10_d040 1.0", "bbob-biobj-mixint_f083_i10_d080 1.0", "bbob-biobj-mixint_f083_i10_d160 1.0", "bbob-biobj-mixint_f083_i11_d005 1.0", "bbob-biobj-mixint_f083_i11_d010 1.0", "bbob-biobj-mixint_f083_i11_d020 1.0", "bbob-biobj-mixint_f083_i11_d040 1.0", "bbob-biobj-mixint_f083_i11_d080 1.0", "bbob-biobj-mixint_f083_i11_d160 1.0", "bbob-biobj-mixint_f083_i12_d005 1.0", "bbob-biobj-mixint_f083_i12_d010 1.0", "bbob-biobj-mixint_f083_i12_d020 1.0", "bbob-biobj-mixint_f083_i12_d040 1.0", "bbob-biobj-mixint_f083_i12_d080 1.0", "bbob-biobj-mixint_f083_i12_d160 1.0", "bbob-biobj-mixint_f083_i13_d005 1.0", "bbob-biobj-mixint_f083_i13_d010 1.0", "bbob-biobj-mixint_f083_i13_d020 1.0", "bbob-biobj-mixint_f083_i13_d040 1.0", "bbob-biobj-mixint_f083_i13_d080 1.0", "bbob-biobj-mixint_f083_i13_d160 1.0", "bbob-biobj-mixint_f083_i14_d005 1.0", "bbob-biobj-mixint_f083_i14_d010 1.0", "bbob-biobj-mixint_f083_i14_d020 1.0", "bbob-biobj-mixint_f083_i14_d040 1.0", "bbob-biobj-mixint_f083_i14_d080 1.0", "bbob-biobj-mixint_f083_i14_d160 1.0", "bbob-biobj-mixint_f083_i15_d005 1.0", "bbob-biobj-mixint_f083_i15_d010 1.0", "bbob-biobj-mixint_f083_i15_d020 1.0", "bbob-biobj-mixint_f083_i15_d040 1.0", "bbob-biobj-mixint_f083_i15_d080 1.0", "bbob-biobj-mixint_f083_i15_d160 1.0", "bbob-biobj-mixint_f084_i01_d005 1.0", "bbob-biobj-mixint_f084_i01_d010 1.0", "bbob-biobj-mixint_f084_i01_d020 1.0", "bbob-biobj-mixint_f084_i01_d040 1.0", "bbob-biobj-mixint_f084_i01_d080 1.0", "bbob-biobj-mixint_f084_i01_d160 1.0", "bbob-biobj-mixint_f084_i02_d005 1.0", "bbob-biobj-mixint_f084_i02_d010 1.0", "bbob-biobj-mixint_f084_i02_d020 1.0", "bbob-biobj-mixint_f084_i02_d040 1.0", "bbob-biobj-mixint_f084_i02_d080 1.0", "bbob-biobj-mixint_f084_i02_d160 1.0", "bbob-biobj-mixint_f084_i03_d005 1.0", "bbob-biobj-mixint_f084_i03_d010 1.0", "bbob-biobj-mixint_f084_i03_d020 1.0", "bbob-biobj-mixint_f084_i03_d040 1.0", "bbob-biobj-mixint_f084_i03_d080 1.0", "bbob-biobj-mixint_f084_i03_d160 1.0", "bbob-biobj-mixint_f084_i04_d005 1.0", "bbob-biobj-mixint_f084_i04_d010 1.0", "bbob-biobj-mixint_f084_i04_d020 1.0", "bbob-biobj-mixint_f084_i04_d040 1.0", "bbob-biobj-mixint_f084_i04_d080 1.0", "bbob-biobj-mixint_f084_i04_d160 1.0", "bbob-biobj-mixint_f084_i05_d005 1.0", "bbob-biobj-mixint_f084_i05_d010 1.0", "bbob-biobj-mixint_f084_i05_d020 1.0", "bbob-biobj-mixint_f084_i05_d040 1.0", "bbob-biobj-mixint_f084_i05_d080 1.0", "bbob-biobj-mixint_f084_i05_d160 1.0", "bbob-biobj-mixint_f084_i06_d005 1.0", "bbob-biobj-mixint_f084_i06_d010 1.0", "bbob-biobj-mixint_f084_i06_d020 1.0", "bbob-biobj-mixint_f084_i06_d040 1.0", "bbob-biobj-mixint_f084_i06_d080 1.0", "bbob-biobj-mixint_f084_i06_d160 1.0", "bbob-biobj-mixint_f084_i07_d005 1.0", "bbob-biobj-mixint_f084_i07_d010 1.0", "bbob-biobj-mixint_f084_i07_d020 1.0", "bbob-biobj-mixint_f084_i07_d040 1.0", "bbob-biobj-mixint_f084_i07_d080 1.0", "bbob-biobj-mixint_f084_i07_d160 1.0", "bbob-biobj-mixint_f084_i08_d005 1.0", "bbob-biobj-mixint_f084_i08_d010 1.0", "bbob-biobj-mixint_f084_i08_d020 1.0", "bbob-biobj-mixint_f084_i08_d040 1.0", "bbob-biobj-mixint_f084_i08_d080 1.0", "bbob-biobj-mixint_f084_i08_d160 1.0", "bbob-biobj-mixint_f084_i09_d005 1.0", "bbob-biobj-mixint_f084_i09_d010 1.0", "bbob-biobj-mixint_f084_i09_d020 1.0", "bbob-biobj-mixint_f084_i09_d040 1.0", "bbob-biobj-mixint_f084_i09_d080 1.0", "bbob-biobj-mixint_f084_i09_d160 1.0", "bbob-biobj-mixint_f084_i10_d005 1.0", "bbob-biobj-mixint_f084_i10_d010 1.0", "bbob-biobj-mixint_f084_i10_d020 1.0", "bbob-biobj-mixint_f084_i10_d040 1.0", "bbob-biobj-mixint_f084_i10_d080 1.0", "bbob-biobj-mixint_f084_i10_d160 1.0", "bbob-biobj-mixint_f084_i11_d005 1.0", "bbob-biobj-mixint_f084_i11_d010 1.0", "bbob-biobj-mixint_f084_i11_d020 1.0", "bbob-biobj-mixint_f084_i11_d040 1.0", "bbob-biobj-mixint_f084_i11_d080 1.0", "bbob-biobj-mixint_f084_i11_d160 1.0", "bbob-biobj-mixint_f084_i12_d005 1.0", "bbob-biobj-mixint_f084_i12_d010 1.0", "bbob-biobj-mixint_f084_i12_d020 1.0", "bbob-biobj-mixint_f084_i12_d040 1.0", "bbob-biobj-mixint_f084_i12_d080 1.0", "bbob-biobj-mixint_f084_i12_d160 1.0", "bbob-biobj-mixint_f084_i13_d005 1.0", "bbob-biobj-mixint_f084_i13_d010 1.0", "bbob-biobj-mixint_f084_i13_d020 1.0", "bbob-biobj-mixint_f084_i13_d040 1.0", "bbob-biobj-mixint_f084_i13_d080 1.0", "bbob-biobj-mixint_f084_i13_d160 1.0", "bbob-biobj-mixint_f084_i14_d005 1.0", "bbob-biobj-mixint_f084_i14_d010 1.0", "bbob-biobj-mixint_f084_i14_d020 1.0", "bbob-biobj-mixint_f084_i14_d040 1.0", "bbob-biobj-mixint_f084_i14_d080 1.0", "bbob-biobj-mixint_f084_i14_d160 1.0", "bbob-biobj-mixint_f084_i15_d005 1.0", "bbob-biobj-mixint_f084_i15_d010 1.0", "bbob-biobj-mixint_f084_i15_d020 1.0", "bbob-biobj-mixint_f084_i15_d040 1.0", "bbob-biobj-mixint_f084_i15_d080 1.0", "bbob-biobj-mixint_f084_i15_d160 1.0", "bbob-biobj-mixint_f085_i01_d005 1.0", "bbob-biobj-mixint_f085_i01_d010 1.0", "bbob-biobj-mixint_f085_i01_d020 1.0", "bbob-biobj-mixint_f085_i01_d040 1.0", "bbob-biobj-mixint_f085_i01_d080 1.0", "bbob-biobj-mixint_f085_i01_d160 1.0", "bbob-biobj-mixint_f085_i02_d005 1.0", "bbob-biobj-mixint_f085_i02_d010 1.0", "bbob-biobj-mixint_f085_i02_d020 1.0", "bbob-biobj-mixint_f085_i02_d040 1.0", "bbob-biobj-mixint_f085_i02_d080 1.0", "bbob-biobj-mixint_f085_i02_d160 1.0", "bbob-biobj-mixint_f085_i03_d005 1.0", "bbob-biobj-mixint_f085_i03_d010 1.0", "bbob-biobj-mixint_f085_i03_d020 1.0", "bbob-biobj-mixint_f085_i03_d040 1.0", "bbob-biobj-mixint_f085_i03_d080 1.0", "bbob-biobj-mixint_f085_i03_d160 1.0", "bbob-biobj-mixint_f085_i04_d005 1.0", "bbob-biobj-mixint_f085_i04_d010 1.0", "bbob-biobj-mixint_f085_i04_d020 1.0", "bbob-biobj-mixint_f085_i04_d040 1.0", "bbob-biobj-mixint_f085_i04_d080 1.0", "bbob-biobj-mixint_f085_i04_d160 1.0", "bbob-biobj-mixint_f085_i05_d005 1.0", "bbob-biobj-mixint_f085_i05_d010 1.0", "bbob-biobj-mixint_f085_i05_d020 1.0", "bbob-biobj-mixint_f085_i05_d040 1.0", "bbob-biobj-mixint_f085_i05_d080 1.0", "bbob-biobj-mixint_f085_i05_d160 1.0", "bbob-biobj-mixint_f085_i06_d005 1.0", "bbob-biobj-mixint_f085_i06_d010 1.0", "bbob-biobj-mixint_f085_i06_d020 1.0", "bbob-biobj-mixint_f085_i06_d040 1.0", "bbob-biobj-mixint_f085_i06_d080 1.0", "bbob-biobj-mixint_f085_i06_d160 1.0", "bbob-biobj-mixint_f085_i07_d005 1.0", "bbob-biobj-mixint_f085_i07_d010 1.0", "bbob-biobj-mixint_f085_i07_d020 1.0", "bbob-biobj-mixint_f085_i07_d040 1.0", "bbob-biobj-mixint_f085_i07_d080 1.0", "bbob-biobj-mixint_f085_i07_d160 1.0", "bbob-biobj-mixint_f085_i08_d005 1.0", "bbob-biobj-mixint_f085_i08_d010 1.0", "bbob-biobj-mixint_f085_i08_d020 1.0", "bbob-biobj-mixint_f085_i08_d040 1.0", "bbob-biobj-mixint_f085_i08_d080 1.0", "bbob-biobj-mixint_f085_i08_d160 1.0", "bbob-biobj-mixint_f085_i09_d005 1.0", "bbob-biobj-mixint_f085_i09_d010 1.0", "bbob-biobj-mixint_f085_i09_d020 1.0", "bbob-biobj-mixint_f085_i09_d040 1.0", "bbob-biobj-mixint_f085_i09_d080 1.0", "bbob-biobj-mixint_f085_i09_d160 1.0", "bbob-biobj-mixint_f085_i10_d005 1.0", "bbob-biobj-mixint_f085_i10_d010 1.0", "bbob-biobj-mixint_f085_i10_d020 1.0", "bbob-biobj-mixint_f085_i10_d040 1.0", "bbob-biobj-mixint_f085_i10_d080 1.0", "bbob-biobj-mixint_f085_i10_d160 1.0", "bbob-biobj-mixint_f085_i11_d005 1.0", "bbob-biobj-mixint_f085_i11_d010 1.0", "bbob-biobj-mixint_f085_i11_d020 1.0", "bbob-biobj-mixint_f085_i11_d040 1.0", "bbob-biobj-mixint_f085_i11_d080 1.0", "bbob-biobj-mixint_f085_i11_d160 1.0", "bbob-biobj-mixint_f085_i12_d005 1.0", "bbob-biobj-mixint_f085_i12_d010 1.0", "bbob-biobj-mixint_f085_i12_d020 1.0", "bbob-biobj-mixint_f085_i12_d040 1.0", "bbob-biobj-mixint_f085_i12_d080 1.0", "bbob-biobj-mixint_f085_i12_d160 1.0", "bbob-biobj-mixint_f085_i13_d005 1.0", "bbob-biobj-mixint_f085_i13_d010 1.0", "bbob-biobj-mixint_f085_i13_d020 1.0", "bbob-biobj-mixint_f085_i13_d040 1.0", "bbob-biobj-mixint_f085_i13_d080 1.0", "bbob-biobj-mixint_f085_i13_d160 1.0", "bbob-biobj-mixint_f085_i14_d005 1.0", "bbob-biobj-mixint_f085_i14_d010 1.0", "bbob-biobj-mixint_f085_i14_d020 1.0", "bbob-biobj-mixint_f085_i14_d040 1.0", "bbob-biobj-mixint_f085_i14_d080 1.0", "bbob-biobj-mixint_f085_i14_d160 1.0", "bbob-biobj-mixint_f085_i15_d005 1.0", "bbob-biobj-mixint_f085_i15_d010 1.0", "bbob-biobj-mixint_f085_i15_d020 1.0", "bbob-biobj-mixint_f085_i15_d040 1.0", "bbob-biobj-mixint_f085_i15_d080 1.0", "bbob-biobj-mixint_f085_i15_d160 1.0", "bbob-biobj-mixint_f086_i01_d005 1.0", "bbob-biobj-mixint_f086_i01_d010 1.0", "bbob-biobj-mixint_f086_i01_d020 1.0", "bbob-biobj-mixint_f086_i01_d040 1.0", "bbob-biobj-mixint_f086_i01_d080 1.0", "bbob-biobj-mixint_f086_i01_d160 1.0", "bbob-biobj-mixint_f086_i02_d005 1.0", "bbob-biobj-mixint_f086_i02_d010 1.0", "bbob-biobj-mixint_f086_i02_d020 1.0", "bbob-biobj-mixint_f086_i02_d040 1.0", "bbob-biobj-mixint_f086_i02_d080 1.0", "bbob-biobj-mixint_f086_i02_d160 1.0", "bbob-biobj-mixint_f086_i03_d005 1.0", "bbob-biobj-mixint_f086_i03_d010 1.0", "bbob-biobj-mixint_f086_i03_d020 1.0", "bbob-biobj-mixint_f086_i03_d040 1.0", "bbob-biobj-mixint_f086_i03_d080 1.0", "bbob-biobj-mixint_f086_i03_d160 1.0", "bbob-biobj-mixint_f086_i04_d005 1.0", "bbob-biobj-mixint_f086_i04_d010 1.0", "bbob-biobj-mixint_f086_i04_d020 1.0", "bbob-biobj-mixint_f086_i04_d040 1.0", "bbob-biobj-mixint_f086_i04_d080 1.0", "bbob-biobj-mixint_f086_i04_d160 1.0", "bbob-biobj-mixint_f086_i05_d005 1.0", "bbob-biobj-mixint_f086_i05_d010 1.0", "bbob-biobj-mixint_f086_i05_d020 1.0", "bbob-biobj-mixint_f086_i05_d040 1.0", "bbob-biobj-mixint_f086_i05_d080 1.0", "bbob-biobj-mixint_f086_i05_d160 1.0", "bbob-biobj-mixint_f086_i06_d005 1.0", "bbob-biobj-mixint_f086_i06_d010 1.0", "bbob-biobj-mixint_f086_i06_d020 1.0", "bbob-biobj-mixint_f086_i06_d040 1.0", "bbob-biobj-mixint_f086_i06_d080 1.0", "bbob-biobj-mixint_f086_i06_d160 1.0", "bbob-biobj-mixint_f086_i07_d005 1.0", "bbob-biobj-mixint_f086_i07_d010 1.0", "bbob-biobj-mixint_f086_i07_d020 1.0", "bbob-biobj-mixint_f086_i07_d040 1.0", "bbob-biobj-mixint_f086_i07_d080 1.0", "bbob-biobj-mixint_f086_i07_d160 1.0", "bbob-biobj-mixint_f086_i08_d005 1.0", "bbob-biobj-mixint_f086_i08_d010 1.0", "bbob-biobj-mixint_f086_i08_d020 1.0", "bbob-biobj-mixint_f086_i08_d040 1.0", "bbob-biobj-mixint_f086_i08_d080 1.0", "bbob-biobj-mixint_f086_i08_d160 1.0", "bbob-biobj-mixint_f086_i09_d005 1.0", "bbob-biobj-mixint_f086_i09_d010 1.0", "bbob-biobj-mixint_f086_i09_d020 1.0", "bbob-biobj-mixint_f086_i09_d040 1.0", "bbob-biobj-mixint_f086_i09_d080 1.0", "bbob-biobj-mixint_f086_i09_d160 1.0", "bbob-biobj-mixint_f086_i10_d005 1.0", "bbob-biobj-mixint_f086_i10_d010 1.0", "bbob-biobj-mixint_f086_i10_d020 1.0", "bbob-biobj-mixint_f086_i10_d040 1.0", "bbob-biobj-mixint_f086_i10_d080 1.0", "bbob-biobj-mixint_f086_i10_d160 1.0", "bbob-biobj-mixint_f086_i11_d005 1.0", "bbob-biobj-mixint_f086_i11_d010 1.0", "bbob-biobj-mixint_f086_i11_d020 1.0", "bbob-biobj-mixint_f086_i11_d040 1.0", "bbob-biobj-mixint_f086_i11_d080 1.0", "bbob-biobj-mixint_f086_i11_d160 1.0", "bbob-biobj-mixint_f086_i12_d005 1.0", "bbob-biobj-mixint_f086_i12_d010 1.0", "bbob-biobj-mixint_f086_i12_d020 1.0", "bbob-biobj-mixint_f086_i12_d040 1.0", "bbob-biobj-mixint_f086_i12_d080 1.0", "bbob-biobj-mixint_f086_i12_d160 1.0", "bbob-biobj-mixint_f086_i13_d005 1.0", "bbob-biobj-mixint_f086_i13_d010 1.0", "bbob-biobj-mixint_f086_i13_d020 1.0", "bbob-biobj-mixint_f086_i13_d040 1.0", "bbob-biobj-mixint_f086_i13_d080 1.0", "bbob-biobj-mixint_f086_i13_d160 1.0", "bbob-biobj-mixint_f086_i14_d005 1.0", "bbob-biobj-mixint_f086_i14_d010 1.0", "bbob-biobj-mixint_f086_i14_d020 1.0", "bbob-biobj-mixint_f086_i14_d040 1.0", "bbob-biobj-mixint_f086_i14_d080 1.0", "bbob-biobj-mixint_f086_i14_d160 1.0", "bbob-biobj-mixint_f086_i15_d005 1.0", "bbob-biobj-mixint_f086_i15_d010 1.0", "bbob-biobj-mixint_f086_i15_d020 1.0", "bbob-biobj-mixint_f086_i15_d040 1.0", "bbob-biobj-mixint_f086_i15_d080 1.0", "bbob-biobj-mixint_f086_i15_d160 1.0", "bbob-biobj-mixint_f087_i01_d005 1.0", "bbob-biobj-mixint_f087_i01_d010 1.0", "bbob-biobj-mixint_f087_i01_d020 1.0", "bbob-biobj-mixint_f087_i01_d040 1.0", "bbob-biobj-mixint_f087_i01_d080 1.0", "bbob-biobj-mixint_f087_i01_d160 1.0", "bbob-biobj-mixint_f087_i02_d005 1.0", "bbob-biobj-mixint_f087_i02_d010 1.0", "bbob-biobj-mixint_f087_i02_d020 1.0", "bbob-biobj-mixint_f087_i02_d040 1.0", "bbob-biobj-mixint_f087_i02_d080 1.0", "bbob-biobj-mixint_f087_i02_d160 1.0", "bbob-biobj-mixint_f087_i03_d005 1.0", "bbob-biobj-mixint_f087_i03_d010 1.0", "bbob-biobj-mixint_f087_i03_d020 1.0", "bbob-biobj-mixint_f087_i03_d040 1.0", "bbob-biobj-mixint_f087_i03_d080 1.0", "bbob-biobj-mixint_f087_i03_d160 1.0", "bbob-biobj-mixint_f087_i04_d005 1.0", "bbob-biobj-mixint_f087_i04_d010 1.0", "bbob-biobj-mixint_f087_i04_d020 1.0", "bbob-biobj-mixint_f087_i04_d040 1.0", "bbob-biobj-mixint_f087_i04_d080 1.0", "bbob-biobj-mixint_f087_i04_d160 1.0", "bbob-biobj-mixint_f087_i05_d005 1.0", "bbob-biobj-mixint_f087_i05_d010 1.0", "bbob-biobj-mixint_f087_i05_d020 1.0", "bbob-biobj-mixint_f087_i05_d040 1.0", "bbob-biobj-mixint_f087_i05_d080 1.0", "bbob-biobj-mixint_f087_i05_d160 1.0", "bbob-biobj-mixint_f087_i06_d005 1.0", "bbob-biobj-mixint_f087_i06_d010 1.0", "bbob-biobj-mixint_f087_i06_d020 1.0", "bbob-biobj-mixint_f087_i06_d040 1.0", "bbob-biobj-mixint_f087_i06_d080 1.0", "bbob-biobj-mixint_f087_i06_d160 1.0", "bbob-biobj-mixint_f087_i07_d005 1.0", "bbob-biobj-mixint_f087_i07_d010 1.0", "bbob-biobj-mixint_f087_i07_d020 1.0", "bbob-biobj-mixint_f087_i07_d040 1.0", "bbob-biobj-mixint_f087_i07_d080 1.0", "bbob-biobj-mixint_f087_i07_d160 1.0", "bbob-biobj-mixint_f087_i08_d005 1.0", "bbob-biobj-mixint_f087_i08_d010 1.0", "bbob-biobj-mixint_f087_i08_d020 1.0", "bbob-biobj-mixint_f087_i08_d040 1.0", "bbob-biobj-mixint_f087_i08_d080 1.0", "bbob-biobj-mixint_f087_i08_d160 1.0", "bbob-biobj-mixint_f087_i09_d005 1.0", "bbob-biobj-mixint_f087_i09_d010 1.0", "bbob-biobj-mixint_f087_i09_d020 1.0", "bbob-biobj-mixint_f087_i09_d040 1.0", "bbob-biobj-mixint_f087_i09_d080 1.0", "bbob-biobj-mixint_f087_i09_d160 1.0", "bbob-biobj-mixint_f087_i10_d005 1.0", "bbob-biobj-mixint_f087_i10_d010 1.0", "bbob-biobj-mixint_f087_i10_d020 1.0", "bbob-biobj-mixint_f087_i10_d040 1.0", "bbob-biobj-mixint_f087_i10_d080 1.0", "bbob-biobj-mixint_f087_i10_d160 1.0", "bbob-biobj-mixint_f087_i11_d005 1.0", "bbob-biobj-mixint_f087_i11_d010 1.0", "bbob-biobj-mixint_f087_i11_d020 1.0", "bbob-biobj-mixint_f087_i11_d040 1.0", "bbob-biobj-mixint_f087_i11_d080 1.0", "bbob-biobj-mixint_f087_i11_d160 1.0", "bbob-biobj-mixint_f087_i12_d005 1.0", "bbob-biobj-mixint_f087_i12_d010 1.0", "bbob-biobj-mixint_f087_i12_d020 1.0", "bbob-biobj-mixint_f087_i12_d040 1.0", "bbob-biobj-mixint_f087_i12_d080 1.0", "bbob-biobj-mixint_f087_i12_d160 1.0", "bbob-biobj-mixint_f087_i13_d005 1.0", "bbob-biobj-mixint_f087_i13_d010 1.0", "bbob-biobj-mixint_f087_i13_d020 1.0", "bbob-biobj-mixint_f087_i13_d040 1.0", "bbob-biobj-mixint_f087_i13_d080 1.0", "bbob-biobj-mixint_f087_i13_d160 1.0", "bbob-biobj-mixint_f087_i14_d005 1.0", "bbob-biobj-mixint_f087_i14_d010 1.0", "bbob-biobj-mixint_f087_i14_d020 1.0", "bbob-biobj-mixint_f087_i14_d040 1.0", "bbob-biobj-mixint_f087_i14_d080 1.0", "bbob-biobj-mixint_f087_i14_d160 1.0", "bbob-biobj-mixint_f087_i15_d005 1.0", "bbob-biobj-mixint_f087_i15_d010 1.0", "bbob-biobj-mixint_f087_i15_d020 1.0", "bbob-biobj-mixint_f087_i15_d040 1.0", "bbob-biobj-mixint_f087_i15_d080 1.0", "bbob-biobj-mixint_f087_i15_d160 1.0", "bbob-biobj-mixint_f088_i01_d005 1.0", "bbob-biobj-mixint_f088_i01_d010 1.0", "bbob-biobj-mixint_f088_i01_d020 1.0", "bbob-biobj-mixint_f088_i01_d040 1.0", "bbob-biobj-mixint_f088_i01_d080 1.0", "bbob-biobj-mixint_f088_i01_d160 1.0", "bbob-biobj-mixint_f088_i02_d005 1.0", "bbob-biobj-mixint_f088_i02_d010 1.0", "bbob-biobj-mixint_f088_i02_d020 1.0", "bbob-biobj-mixint_f088_i02_d040 1.0", "bbob-biobj-mixint_f088_i02_d080 1.0", "bbob-biobj-mixint_f088_i02_d160 1.0", "bbob-biobj-mixint_f088_i03_d005 1.0", "bbob-biobj-mixint_f088_i03_d010 1.0", "bbob-biobj-mixint_f088_i03_d020 1.0", "bbob-biobj-mixint_f088_i03_d040 1.0", "bbob-biobj-mixint_f088_i03_d080 1.0", "bbob-biobj-mixint_f088_i03_d160 1.0", "bbob-biobj-mixint_f088_i04_d005 1.0", "bbob-biobj-mixint_f088_i04_d010 1.0", "bbob-biobj-mixint_f088_i04_d020 1.0", "bbob-biobj-mixint_f088_i04_d040 1.0", "bbob-biobj-mixint_f088_i04_d080 1.0", "bbob-biobj-mixint_f088_i04_d160 1.0", "bbob-biobj-mixint_f088_i05_d005 1.0", "bbob-biobj-mixint_f088_i05_d010 1.0", "bbob-biobj-mixint_f088_i05_d020 1.0", "bbob-biobj-mixint_f088_i05_d040 1.0", "bbob-biobj-mixint_f088_i05_d080 1.0", "bbob-biobj-mixint_f088_i05_d160 1.0", "bbob-biobj-mixint_f088_i06_d005 1.0", "bbob-biobj-mixint_f088_i06_d010 1.0", "bbob-biobj-mixint_f088_i06_d020 1.0", "bbob-biobj-mixint_f088_i06_d040 1.0", "bbob-biobj-mixint_f088_i06_d080 1.0", "bbob-biobj-mixint_f088_i06_d160 1.0", "bbob-biobj-mixint_f088_i07_d005 1.0", "bbob-biobj-mixint_f088_i07_d010 1.0", "bbob-biobj-mixint_f088_i07_d020 1.0", "bbob-biobj-mixint_f088_i07_d040 1.0", "bbob-biobj-mixint_f088_i07_d080 1.0", "bbob-biobj-mixint_f088_i07_d160 1.0", "bbob-biobj-mixint_f088_i08_d005 1.0", "bbob-biobj-mixint_f088_i08_d010 1.0", "bbob-biobj-mixint_f088_i08_d020 1.0", "bbob-biobj-mixint_f088_i08_d040 1.0", "bbob-biobj-mixint_f088_i08_d080 1.0", "bbob-biobj-mixint_f088_i08_d160 1.0", "bbob-biobj-mixint_f088_i09_d005 1.0", "bbob-biobj-mixint_f088_i09_d010 1.0", "bbob-biobj-mixint_f088_i09_d020 1.0", "bbob-biobj-mixint_f088_i09_d040 1.0", "bbob-biobj-mixint_f088_i09_d080 1.0", "bbob-biobj-mixint_f088_i09_d160 1.0", "bbob-biobj-mixint_f088_i10_d005 1.0", "bbob-biobj-mixint_f088_i10_d010 1.0", "bbob-biobj-mixint_f088_i10_d020 1.0", "bbob-biobj-mixint_f088_i10_d040 1.0", "bbob-biobj-mixint_f088_i10_d080 1.0", "bbob-biobj-mixint_f088_i10_d160 1.0", "bbob-biobj-mixint_f088_i11_d005 1.0", "bbob-biobj-mixint_f088_i11_d010 1.0", "bbob-biobj-mixint_f088_i11_d020 1.0", "bbob-biobj-mixint_f088_i11_d040 1.0", "bbob-biobj-mixint_f088_i11_d080 1.0", "bbob-biobj-mixint_f088_i11_d160 1.0", "bbob-biobj-mixint_f088_i12_d005 1.0", "bbob-biobj-mixint_f088_i12_d010 1.0", "bbob-biobj-mixint_f088_i12_d020 1.0", "bbob-biobj-mixint_f088_i12_d040 1.0", "bbob-biobj-mixint_f088_i12_d080 1.0", "bbob-biobj-mixint_f088_i12_d160 1.0", "bbob-biobj-mixint_f088_i13_d005 1.0", "bbob-biobj-mixint_f088_i13_d010 1.0", "bbob-biobj-mixint_f088_i13_d020 1.0", "bbob-biobj-mixint_f088_i13_d040 1.0", "bbob-biobj-mixint_f088_i13_d080 1.0", "bbob-biobj-mixint_f088_i13_d160 1.0", "bbob-biobj-mixint_f088_i14_d005 1.0", "bbob-biobj-mixint_f088_i14_d010 1.0", "bbob-biobj-mixint_f088_i14_d020 1.0", "bbob-biobj-mixint_f088_i14_d040 1.0", "bbob-biobj-mixint_f088_i14_d080 1.0", "bbob-biobj-mixint_f088_i14_d160 1.0", "bbob-biobj-mixint_f088_i15_d005 1.0", "bbob-biobj-mixint_f088_i15_d010 1.0", "bbob-biobj-mixint_f088_i15_d020 1.0", "bbob-biobj-mixint_f088_i15_d040 1.0", "bbob-biobj-mixint_f088_i15_d080 1.0", "bbob-biobj-mixint_f088_i15_d160 1.0", "bbob-biobj-mixint_f089_i01_d005 1.0", "bbob-biobj-mixint_f089_i01_d010 1.0", "bbob-biobj-mixint_f089_i01_d020 1.0", "bbob-biobj-mixint_f089_i01_d040 1.0", "bbob-biobj-mixint_f089_i01_d080 1.0", "bbob-biobj-mixint_f089_i01_d160 1.0", "bbob-biobj-mixint_f089_i02_d005 1.0", "bbob-biobj-mixint_f089_i02_d010 1.0", "bbob-biobj-mixint_f089_i02_d020 1.0", "bbob-biobj-mixint_f089_i02_d040 1.0", "bbob-biobj-mixint_f089_i02_d080 1.0", "bbob-biobj-mixint_f089_i02_d160 1.0", "bbob-biobj-mixint_f089_i03_d005 1.0", "bbob-biobj-mixint_f089_i03_d010 1.0", "bbob-biobj-mixint_f089_i03_d020 1.0", "bbob-biobj-mixint_f089_i03_d040 1.0", "bbob-biobj-mixint_f089_i03_d080 1.0", "bbob-biobj-mixint_f089_i03_d160 1.0", "bbob-biobj-mixint_f089_i04_d005 1.0", "bbob-biobj-mixint_f089_i04_d010 1.0", "bbob-biobj-mixint_f089_i04_d020 1.0", "bbob-biobj-mixint_f089_i04_d040 1.0", "bbob-biobj-mixint_f089_i04_d080 1.0", "bbob-biobj-mixint_f089_i04_d160 1.0", "bbob-biobj-mixint_f089_i05_d005 1.0", "bbob-biobj-mixint_f089_i05_d010 1.0", "bbob-biobj-mixint_f089_i05_d020 1.0", "bbob-biobj-mixint_f089_i05_d040 1.0", "bbob-biobj-mixint_f089_i05_d080 1.0", "bbob-biobj-mixint_f089_i05_d160 1.0", "bbob-biobj-mixint_f089_i06_d005 1.0", "bbob-biobj-mixint_f089_i06_d010 1.0", "bbob-biobj-mixint_f089_i06_d020 1.0", "bbob-biobj-mixint_f089_i06_d040 1.0", "bbob-biobj-mixint_f089_i06_d080 1.0", "bbob-biobj-mixint_f089_i06_d160 1.0", "bbob-biobj-mixint_f089_i07_d005 1.0", "bbob-biobj-mixint_f089_i07_d010 1.0", "bbob-biobj-mixint_f089_i07_d020 1.0", "bbob-biobj-mixint_f089_i07_d040 1.0", "bbob-biobj-mixint_f089_i07_d080 1.0", "bbob-biobj-mixint_f089_i07_d160 1.0", "bbob-biobj-mixint_f089_i08_d005 1.0", "bbob-biobj-mixint_f089_i08_d010 1.0", "bbob-biobj-mixint_f089_i08_d020 1.0", "bbob-biobj-mixint_f089_i08_d040 1.0", "bbob-biobj-mixint_f089_i08_d080 1.0", "bbob-biobj-mixint_f089_i08_d160 1.0", "bbob-biobj-mixint_f089_i09_d005 1.0", "bbob-biobj-mixint_f089_i09_d010 1.0", "bbob-biobj-mixint_f089_i09_d020 1.0", "bbob-biobj-mixint_f089_i09_d040 1.0", "bbob-biobj-mixint_f089_i09_d080 1.0", "bbob-biobj-mixint_f089_i09_d160 1.0", "bbob-biobj-mixint_f089_i10_d005 1.0", "bbob-biobj-mixint_f089_i10_d010 1.0", "bbob-biobj-mixint_f089_i10_d020 1.0", "bbob-biobj-mixint_f089_i10_d040 1.0", "bbob-biobj-mixint_f089_i10_d080 1.0", "bbob-biobj-mixint_f089_i10_d160 1.0", "bbob-biobj-mixint_f089_i11_d005 1.0", "bbob-biobj-mixint_f089_i11_d010 1.0", "bbob-biobj-mixint_f089_i11_d020 1.0", "bbob-biobj-mixint_f089_i11_d040 1.0", "bbob-biobj-mixint_f089_i11_d080 1.0", "bbob-biobj-mixint_f089_i11_d160 1.0", "bbob-biobj-mixint_f089_i12_d005 1.0", "bbob-biobj-mixint_f089_i12_d010 1.0", "bbob-biobj-mixint_f089_i12_d020 1.0", "bbob-biobj-mixint_f089_i12_d040 1.0", "bbob-biobj-mixint_f089_i12_d080 1.0", "bbob-biobj-mixint_f089_i12_d160 1.0", "bbob-biobj-mixint_f089_i13_d005 1.0", "bbob-biobj-mixint_f089_i13_d010 1.0", "bbob-biobj-mixint_f089_i13_d020 1.0", "bbob-biobj-mixint_f089_i13_d040 1.0", "bbob-biobj-mixint_f089_i13_d080 1.0", "bbob-biobj-mixint_f089_i13_d160 1.0", "bbob-biobj-mixint_f089_i14_d005 1.0", "bbob-biobj-mixint_f089_i14_d010 1.0", "bbob-biobj-mixint_f089_i14_d020 1.0", "bbob-biobj-mixint_f089_i14_d040 1.0", "bbob-biobj-mixint_f089_i14_d080 1.0", "bbob-biobj-mixint_f089_i14_d160 1.0", "bbob-biobj-mixint_f089_i15_d005 1.0", "bbob-biobj-mixint_f089_i15_d010 1.0", "bbob-biobj-mixint_f089_i15_d020 1.0", "bbob-biobj-mixint_f089_i15_d040 1.0", "bbob-biobj-mixint_f089_i15_d080 1.0", "bbob-biobj-mixint_f089_i15_d160 1.0", "bbob-biobj-mixint_f090_i01_d005 1.0", "bbob-biobj-mixint_f090_i01_d010 1.0", "bbob-biobj-mixint_f090_i01_d020 1.0", "bbob-biobj-mixint_f090_i01_d040 1.0", "bbob-biobj-mixint_f090_i01_d080 1.0", "bbob-biobj-mixint_f090_i01_d160 1.0", "bbob-biobj-mixint_f090_i02_d005 1.0", "bbob-biobj-mixint_f090_i02_d010 1.0", "bbob-biobj-mixint_f090_i02_d020 1.0", "bbob-biobj-mixint_f090_i02_d040 1.0", "bbob-biobj-mixint_f090_i02_d080 1.0", "bbob-biobj-mixint_f090_i02_d160 1.0", "bbob-biobj-mixint_f090_i03_d005 1.0", "bbob-biobj-mixint_f090_i03_d010 1.0", "bbob-biobj-mixint_f090_i03_d020 1.0", "bbob-biobj-mixint_f090_i03_d040 1.0", "bbob-biobj-mixint_f090_i03_d080 1.0", "bbob-biobj-mixint_f090_i03_d160 1.0", "bbob-biobj-mixint_f090_i04_d005 1.0", "bbob-biobj-mixint_f090_i04_d010 1.0", "bbob-biobj-mixint_f090_i04_d020 1.0", "bbob-biobj-mixint_f090_i04_d040 1.0", "bbob-biobj-mixint_f090_i04_d080 1.0", "bbob-biobj-mixint_f090_i04_d160 1.0", "bbob-biobj-mixint_f090_i05_d005 1.0", "bbob-biobj-mixint_f090_i05_d010 1.0", "bbob-biobj-mixint_f090_i05_d020 1.0", "bbob-biobj-mixint_f090_i05_d040 1.0", "bbob-biobj-mixint_f090_i05_d080 1.0", "bbob-biobj-mixint_f090_i05_d160 1.0", "bbob-biobj-mixint_f090_i06_d005 1.0", "bbob-biobj-mixint_f090_i06_d010 1.0", "bbob-biobj-mixint_f090_i06_d020 1.0", "bbob-biobj-mixint_f090_i06_d040 1.0", "bbob-biobj-mixint_f090_i06_d080 1.0", "bbob-biobj-mixint_f090_i06_d160 1.0", "bbob-biobj-mixint_f090_i07_d005 1.0", "bbob-biobj-mixint_f090_i07_d010 1.0", "bbob-biobj-mixint_f090_i07_d020 1.0", "bbob-biobj-mixint_f090_i07_d040 1.0", "bbob-biobj-mixint_f090_i07_d080 1.0", "bbob-biobj-mixint_f090_i07_d160 1.0", "bbob-biobj-mixint_f090_i08_d005 1.0", "bbob-biobj-mixint_f090_i08_d010 1.0", "bbob-biobj-mixint_f090_i08_d020 1.0", "bbob-biobj-mixint_f090_i08_d040 1.0", "bbob-biobj-mixint_f090_i08_d080 1.0", "bbob-biobj-mixint_f090_i08_d160 1.0", "bbob-biobj-mixint_f090_i09_d005 1.0", "bbob-biobj-mixint_f090_i09_d010 1.0", "bbob-biobj-mixint_f090_i09_d020 1.0", "bbob-biobj-mixint_f090_i09_d040 1.0", "bbob-biobj-mixint_f090_i09_d080 1.0", "bbob-biobj-mixint_f090_i09_d160 1.0", "bbob-biobj-mixint_f090_i10_d005 1.0", "bbob-biobj-mixint_f090_i10_d010 1.0", "bbob-biobj-mixint_f090_i10_d020 1.0", "bbob-biobj-mixint_f090_i10_d040 1.0", "bbob-biobj-mixint_f090_i10_d080 1.0", "bbob-biobj-mixint_f090_i10_d160 1.0", "bbob-biobj-mixint_f090_i11_d005 1.0", "bbob-biobj-mixint_f090_i11_d010 1.0", "bbob-biobj-mixint_f090_i11_d020 1.0", "bbob-biobj-mixint_f090_i11_d040 1.0", "bbob-biobj-mixint_f090_i11_d080 1.0", "bbob-biobj-mixint_f090_i11_d160 1.0", "bbob-biobj-mixint_f090_i12_d005 1.0", "bbob-biobj-mixint_f090_i12_d010 1.0", "bbob-biobj-mixint_f090_i12_d020 1.0", "bbob-biobj-mixint_f090_i12_d040 1.0", "bbob-biobj-mixint_f090_i12_d080 1.0", "bbob-biobj-mixint_f090_i12_d160 1.0", "bbob-biobj-mixint_f090_i13_d005 1.0", "bbob-biobj-mixint_f090_i13_d010 1.0", "bbob-biobj-mixint_f090_i13_d020 1.0", "bbob-biobj-mixint_f090_i13_d040 1.0", "bbob-biobj-mixint_f090_i13_d080 1.0", "bbob-biobj-mixint_f090_i13_d160 1.0", "bbob-biobj-mixint_f090_i14_d005 1.0", "bbob-biobj-mixint_f090_i14_d010 1.0", "bbob-biobj-mixint_f090_i14_d020 1.0", "bbob-biobj-mixint_f090_i14_d040 1.0", "bbob-biobj-mixint_f090_i14_d080 1.0", "bbob-biobj-mixint_f090_i14_d160 1.0", "bbob-biobj-mixint_f090_i15_d005 1.0", "bbob-biobj-mixint_f090_i15_d010 1.0", "bbob-biobj-mixint_f090_i15_d020 1.0", "bbob-biobj-mixint_f090_i15_d040 1.0", "bbob-biobj-mixint_f090_i15_d080 1.0", "bbob-biobj-mixint_f090_i15_d160 1.0", "bbob-biobj-mixint_f091_i01_d005 1.0", "bbob-biobj-mixint_f091_i01_d010 1.0", "bbob-biobj-mixint_f091_i01_d020 1.0", "bbob-biobj-mixint_f091_i01_d040 1.0", "bbob-biobj-mixint_f091_i01_d080 1.0", "bbob-biobj-mixint_f091_i01_d160 1.0", "bbob-biobj-mixint_f091_i02_d005 1.0", "bbob-biobj-mixint_f091_i02_d010 1.0", "bbob-biobj-mixint_f091_i02_d020 1.0", "bbob-biobj-mixint_f091_i02_d040 1.0", "bbob-biobj-mixint_f091_i02_d080 1.0", "bbob-biobj-mixint_f091_i02_d160 1.0", "bbob-biobj-mixint_f091_i03_d005 1.0", "bbob-biobj-mixint_f091_i03_d010 1.0", "bbob-biobj-mixint_f091_i03_d020 1.0", "bbob-biobj-mixint_f091_i03_d040 1.0", "bbob-biobj-mixint_f091_i03_d080 1.0", "bbob-biobj-mixint_f091_i03_d160 1.0", "bbob-biobj-mixint_f091_i04_d005 1.0", "bbob-biobj-mixint_f091_i04_d010 1.0", "bbob-biobj-mixint_f091_i04_d020 1.0", "bbob-biobj-mixint_f091_i04_d040 1.0", "bbob-biobj-mixint_f091_i04_d080 1.0", "bbob-biobj-mixint_f091_i04_d160 1.0", "bbob-biobj-mixint_f091_i05_d005 1.0", "bbob-biobj-mixint_f091_i05_d010 1.0", "bbob-biobj-mixint_f091_i05_d020 1.0", "bbob-biobj-mixint_f091_i05_d040 1.0", "bbob-biobj-mixint_f091_i05_d080 1.0", "bbob-biobj-mixint_f091_i05_d160 1.0", "bbob-biobj-mixint_f091_i06_d005 1.0", "bbob-biobj-mixint_f091_i06_d010 1.0", "bbob-biobj-mixint_f091_i06_d020 1.0", "bbob-biobj-mixint_f091_i06_d040 1.0", "bbob-biobj-mixint_f091_i06_d080 1.0", "bbob-biobj-mixint_f091_i06_d160 1.0", "bbob-biobj-mixint_f091_i07_d005 1.0", "bbob-biobj-mixint_f091_i07_d010 1.0", "bbob-biobj-mixint_f091_i07_d020 1.0", "bbob-biobj-mixint_f091_i07_d040 1.0", "bbob-biobj-mixint_f091_i07_d080 1.0", "bbob-biobj-mixint_f091_i07_d160 1.0", "bbob-biobj-mixint_f091_i08_d005 1.0", "bbob-biobj-mixint_f091_i08_d010 1.0", "bbob-biobj-mixint_f091_i08_d020 1.0", "bbob-biobj-mixint_f091_i08_d040 1.0", "bbob-biobj-mixint_f091_i08_d080 1.0", "bbob-biobj-mixint_f091_i08_d160 1.0", "bbob-biobj-mixint_f091_i09_d005 1.0", "bbob-biobj-mixint_f091_i09_d010 1.0", "bbob-biobj-mixint_f091_i09_d020 1.0", "bbob-biobj-mixint_f091_i09_d040 1.0", "bbob-biobj-mixint_f091_i09_d080 1.0", "bbob-biobj-mixint_f091_i09_d160 1.0", "bbob-biobj-mixint_f091_i10_d005 1.0", "bbob-biobj-mixint_f091_i10_d010 1.0", "bbob-biobj-mixint_f091_i10_d020 1.0", "bbob-biobj-mixint_f091_i10_d040 1.0", "bbob-biobj-mixint_f091_i10_d080 1.0", "bbob-biobj-mixint_f091_i10_d160 1.0", "bbob-biobj-mixint_f091_i11_d005 1.0", "bbob-biobj-mixint_f091_i11_d010 1.0", "bbob-biobj-mixint_f091_i11_d020 1.0", "bbob-biobj-mixint_f091_i11_d040 1.0", "bbob-biobj-mixint_f091_i11_d080 1.0", "bbob-biobj-mixint_f091_i11_d160 1.0", "bbob-biobj-mixint_f091_i12_d005 1.0", "bbob-biobj-mixint_f091_i12_d010 1.0", "bbob-biobj-mixint_f091_i12_d020 1.0", "bbob-biobj-mixint_f091_i12_d040 1.0", "bbob-biobj-mixint_f091_i12_d080 1.0", "bbob-biobj-mixint_f091_i12_d160 1.0", "bbob-biobj-mixint_f091_i13_d005 1.0", "bbob-biobj-mixint_f091_i13_d010 1.0", "bbob-biobj-mixint_f091_i13_d020 1.0", "bbob-biobj-mixint_f091_i13_d040 1.0", "bbob-biobj-mixint_f091_i13_d080 1.0", "bbob-biobj-mixint_f091_i13_d160 1.0", "bbob-biobj-mixint_f091_i14_d005 1.0", "bbob-biobj-mixint_f091_i14_d010 1.0", "bbob-biobj-mixint_f091_i14_d020 1.0", "bbob-biobj-mixint_f091_i14_d040 1.0", "bbob-biobj-mixint_f091_i14_d080 1.0", "bbob-biobj-mixint_f091_i14_d160 1.0", "bbob-biobj-mixint_f091_i15_d005 1.0", "bbob-biobj-mixint_f091_i15_d010 1.0", "bbob-biobj-mixint_f091_i15_d020 1.0", "bbob-biobj-mixint_f091_i15_d040 1.0", "bbob-biobj-mixint_f091_i15_d080 1.0", "bbob-biobj-mixint_f091_i15_d160 1.0", "bbob-biobj-mixint_f092_i01_d005 1.0", "bbob-biobj-mixint_f092_i01_d010 1.0", "bbob-biobj-mixint_f092_i01_d020 1.0", "bbob-biobj-mixint_f092_i01_d040 1.0", "bbob-biobj-mixint_f092_i01_d080 1.0", "bbob-biobj-mixint_f092_i01_d160 1.0", "bbob-biobj-mixint_f092_i02_d005 1.0", "bbob-biobj-mixint_f092_i02_d010 1.0", "bbob-biobj-mixint_f092_i02_d020 1.0", "bbob-biobj-mixint_f092_i02_d040 1.0", "bbob-biobj-mixint_f092_i02_d080 1.0", "bbob-biobj-mixint_f092_i02_d160 1.0", "bbob-biobj-mixint_f092_i03_d005 1.0", "bbob-biobj-mixint_f092_i03_d010 1.0", "bbob-biobj-mixint_f092_i03_d020 1.0", "bbob-biobj-mixint_f092_i03_d040 1.0", "bbob-biobj-mixint_f092_i03_d080 1.0", "bbob-biobj-mixint_f092_i03_d160 1.0", "bbob-biobj-mixint_f092_i04_d005 1.0", "bbob-biobj-mixint_f092_i04_d010 1.0", "bbob-biobj-mixint_f092_i04_d020 1.0", "bbob-biobj-mixint_f092_i04_d040 1.0", "bbob-biobj-mixint_f092_i04_d080 1.0", "bbob-biobj-mixint_f092_i04_d160 1.0", "bbob-biobj-mixint_f092_i05_d005 1.0", "bbob-biobj-mixint_f092_i05_d010 1.0", "bbob-biobj-mixint_f092_i05_d020 1.0", "bbob-biobj-mixint_f092_i05_d040 1.0", "bbob-biobj-mixint_f092_i05_d080 1.0", "bbob-biobj-mixint_f092_i05_d160 1.0", "bbob-biobj-mixint_f092_i06_d005 1.0", "bbob-biobj-mixint_f092_i06_d010 1.0", "bbob-biobj-mixint_f092_i06_d020 1.0", "bbob-biobj-mixint_f092_i06_d040 1.0", "bbob-biobj-mixint_f092_i06_d080 1.0", "bbob-biobj-mixint_f092_i06_d160 1.0", "bbob-biobj-mixint_f092_i07_d005 1.0", "bbob-biobj-mixint_f092_i07_d010 1.0", "bbob-biobj-mixint_f092_i07_d020 1.0", "bbob-biobj-mixint_f092_i07_d040 1.0", "bbob-biobj-mixint_f092_i07_d080 1.0", "bbob-biobj-mixint_f092_i07_d160 1.0", "bbob-biobj-mixint_f092_i08_d005 1.0", "bbob-biobj-mixint_f092_i08_d010 1.0", "bbob-biobj-mixint_f092_i08_d020 1.0", "bbob-biobj-mixint_f092_i08_d040 1.0", "bbob-biobj-mixint_f092_i08_d080 1.0", "bbob-biobj-mixint_f092_i08_d160 1.0", "bbob-biobj-mixint_f092_i09_d005 1.0", "bbob-biobj-mixint_f092_i09_d010 1.0", "bbob-biobj-mixint_f092_i09_d020 1.0", "bbob-biobj-mixint_f092_i09_d040 1.0", "bbob-biobj-mixint_f092_i09_d080 1.0", "bbob-biobj-mixint_f092_i09_d160 1.0", "bbob-biobj-mixint_f092_i10_d005 1.0", "bbob-biobj-mixint_f092_i10_d010 1.0", "bbob-biobj-mixint_f092_i10_d020 1.0", "bbob-biobj-mixint_f092_i10_d040 1.0", "bbob-biobj-mixint_f092_i10_d080 1.0", "bbob-biobj-mixint_f092_i10_d160 1.0", "bbob-biobj-mixint_f092_i11_d005 1.0", "bbob-biobj-mixint_f092_i11_d010 1.0", "bbob-biobj-mixint_f092_i11_d020 1.0", "bbob-biobj-mixint_f092_i11_d040 1.0", "bbob-biobj-mixint_f092_i11_d080 1.0", "bbob-biobj-mixint_f092_i11_d160 1.0", "bbob-biobj-mixint_f092_i12_d005 1.0", "bbob-biobj-mixint_f092_i12_d010 1.0", "bbob-biobj-mixint_f092_i12_d020 1.0", "bbob-biobj-mixint_f092_i12_d040 1.0", "bbob-biobj-mixint_f092_i12_d080 1.0", "bbob-biobj-mixint_f092_i12_d160 1.0", "bbob-biobj-mixint_f092_i13_d005 1.0", "bbob-biobj-mixint_f092_i13_d010 1.0", "bbob-biobj-mixint_f092_i13_d020 1.0", "bbob-biobj-mixint_f092_i13_d040 1.0", "bbob-biobj-mixint_f092_i13_d080 1.0", "bbob-biobj-mixint_f092_i13_d160 1.0", "bbob-biobj-mixint_f092_i14_d005 1.0", "bbob-biobj-mixint_f092_i14_d010 1.0", "bbob-biobj-mixint_f092_i14_d020 1.0", "bbob-biobj-mixint_f092_i14_d040 1.0", "bbob-biobj-mixint_f092_i14_d080 1.0", "bbob-biobj-mixint_f092_i14_d160 1.0", "bbob-biobj-mixint_f092_i15_d005 1.0", "bbob-biobj-mixint_f092_i15_d010 1.0", "bbob-biobj-mixint_f092_i15_d020 1.0", "bbob-biobj-mixint_f092_i15_d040 1.0", "bbob-biobj-mixint_f092_i15_d080 1.0", "bbob-biobj-mixint_f092_i15_d160 1.0" }; #line 16 "code-experiments/src/suite_biobj_utilities.c" /** * @brief The array of triples biobj_instance - problem1_instance - problem2_instance connecting bi-objective * suite instances to the instances of the bbob suite. * * It should be updated with new instances when/if they are chosen. */ static const size_t suite_biobj_instances[][3] = { { 1, 2, 4 }, { 2, 3, 5 }, { 3, 7, 8 }, { 4, 9, 10 }, { 5, 11, 12 }, { 6, 13, 14 }, { 7, 15, 16 }, { 8, 17, 18 }, { 9, 19, 21 }, { 10, 21, 22 }, { 11, 23, 24 }, { 12, 25, 26 }, { 13, 27, 28 }, { 14, 29, 30 }, { 15, 31, 34 } }; /** * @brief A structure containing information about the new instances. */ typedef struct { size_t **new_instances; /**< @brief A matrix of new instances (equal in form to suite_biobj_instances) that needs to be used only when an instance that is not in suite_biobj_instances is being invoked. */ size_t max_new_instances; /**< @brief The maximal number of new instances. */ } suite_biobj_new_inst_t; /** * @brief Frees the memory of the given suite_biobj_new_inst_t object. */ static void suite_biobj_new_inst_free(void *stuff) { suite_biobj_new_inst_t *data; size_t i; assert(stuff != NULL); data = (suite_biobj_new_inst_t *) stuff; if (data->new_instances) { for (i = 0; i < data->max_new_instances; i++) { if (data->new_instances[i]) { coco_free_memory(data->new_instances[i]); data->new_instances[i] = NULL; } } } coco_free_memory(data->new_instances); data->new_instances = NULL; } /** * @brief Performs a few checks and returns whether the two given problem instances should break the search * for new instances in suite_biobj_get_new_instance(). */ static int suite_biobj_check_inst_consistency(const size_t dimension, size_t function1, size_t instance1, size_t function2, size_t instance2) { coco_problem_t *problem = NULL; coco_problem_t *problem1, *problem2; int break_search = 0; double norm; double *smallest_values_of_interest, *largest_values_of_interest; const double apart_enough = 1e-4; problem1 = coco_get_bbob_problem(function1, dimension, instance1); problem2 = coco_get_bbob_problem(function2, dimension, instance2); /* Set smallest and largest values of interest to some value (not important which, it just needs to be a * vector of doubles of the right dimension) */ smallest_values_of_interest = coco_allocate_vector_with_value(dimension, -100); largest_values_of_interest = coco_allocate_vector_with_value(dimension, 100); problem = coco_problem_stacked_allocate(problem1, problem2, smallest_values_of_interest, largest_values_of_interest); coco_free_memory(smallest_values_of_interest); coco_free_memory(largest_values_of_interest); /* Check whether the ideal and nadir points are too close in the objective space */ norm = mo_get_norm(problem->best_value, problem->nadir_value, 2); if (norm < 1e-1) { /* TODO How to set this value in a sensible manner? */ coco_debug( "suite_biobj_check_inst_consistency(): The ideal and nadir points of %s are too close in the objective space", problem->problem_id); coco_debug("norm = %e, ideal = %e\t%e, nadir = %e\t%e", norm, problem->best_value[0], problem->best_value[1], problem->nadir_value[0], problem->nadir_value[1]); break_search = 1; } /* Check whether the extreme optimal points are too close in the decision space */ norm = mo_get_norm(problem1->best_parameter, problem2->best_parameter, problem->number_of_variables); if (norm < apart_enough) { coco_debug( "suite_biobj_check_inst_consistency(): The extreme points of %s are too close in the decision space", problem->problem_id); coco_debug("norm = %e", norm); break_search = 1; } /* Clean up */ if (problem) { coco_problem_stacked_free(problem); problem = NULL; } return break_search; } /** * @brief Computes the instance number of the second problem/objective so that the resulting bi-objective * problem has more than a single optimal solution. * * Starts by setting instance2 = instance1 + 1 and increases this number until an appropriate instance has * been found (or until a maximum number of tries has been reached, in which case it throws a coco_error). * An appropriate instance is the one for which the resulting bi-objective problem (in any considered * dimension) has the ideal and nadir points apart enough in the objective space and the extreme optimal * points apart enough in the decision space. When the instance has been found, it is output through * coco_warning, so that the user can see it and eventually manually add it to suite_biobj_instances. */ static size_t suite_biobj_get_new_instance(suite_biobj_new_inst_t *new_inst_data, const size_t instance, const size_t instance1, const size_t *bbob_functions, const size_t num_bbob_functions, const size_t *sel_bbob_functions, const size_t num_sel_bbob_functions, const size_t *dimensions, const size_t num_dimensions) { size_t instance2 = 0; size_t num_tries = 0; const size_t max_tries = 1000; int appropriate_instance_found = 0, break_search, warning_produced = 0; size_t d, f1, f2, i; size_t function1, function2, dimension; while ((!appropriate_instance_found) && (num_tries < max_tries)) { num_tries++; instance2 = instance1 + num_tries; break_search = 0; /* An instance is "appropriate" if the ideal and nadir points in the objective space and the two * extreme optimal points in the decisions space are apart enough for all problems (all dimensions * and function combinations); therefore iterate over all dimensions and function combinations */ for (f1 = 0; (f1 < num_bbob_functions-1) && !break_search; f1++) { function1 = bbob_functions[f1]; for (f2 = f1+1; (f2 < num_bbob_functions) && !break_search; f2++) { function2 = bbob_functions[f2]; for (d = 0; (d < num_dimensions) && !break_search; d++) { dimension = dimensions[d]; if (dimension == 0) { if (!warning_produced) coco_warning("suite_biobj_get_new_instance(): remove filtering of dimensions to get generally acceptable instances!"); warning_produced = 1; continue; } break_search = suite_biobj_check_inst_consistency(dimension, function1, instance1, function2, instance2); } } } /* Finally, check all functions (f,f) with f in {f1, f2, f6, f8, f13, f14, f15, f17, f20, f21}: */ for (f1 = 0; (f1 < num_sel_bbob_functions) && !break_search; f1++) { function1 = sel_bbob_functions[f1]; function2 = sel_bbob_functions[f1]; for (d = 0; (d < num_dimensions) && !break_search; d++) { dimension = dimensions[d]; if (dimension == 0) { if (!warning_produced) coco_warning("suite_biobj_get_new_instance(): remove filtering of dimensions to get generally acceptable instances!"); warning_produced = 1; continue; } break_search = suite_biobj_check_inst_consistency(dimension, function1, instance1, function2, instance2); } } if (break_search) { /* The search was broken, continue with next instance2 */ continue; } else { /* An appropriate instance was found */ appropriate_instance_found = 1; coco_info("suite_biobj_get_new_instance(): Instance %lu created from instances %lu and %lu", (unsigned long) instance, (unsigned long) instance1, (unsigned long) instance2); /* Save the instance to new_instances */ for (i = 0; i < new_inst_data->max_new_instances; i++) { if (new_inst_data->new_instances[i][0] == 0) { new_inst_data->new_instances[i][0] = instance; new_inst_data->new_instances[i][1] = instance1; new_inst_data->new_instances[i][2] = instance2; break; }; } } } if (!appropriate_instance_found) { coco_error("suite_biobj_get_new_instance(): Could not find suitable instance %lu in %lu tries", (unsigned long) instance, (unsigned long) num_tries); return 0; /* Never reached */ } return instance2; } /** * @brief Creates and returns a bi-objective problem without needing a suite. * * Useful for creating suites based on the bi-objective problems. * * Creates the bi-objective problem by constructing it from two single-objective problems. If the * invoked instance number is not in suite_biobj_instances, the function uses the following formula * to construct a new appropriate instance: * problem1_instance = 2 * biobj_instance + 1 * problem2_instance = problem1_instance + 1 * * If needed, problem2_instance is increased (see also the explanation in suite_biobj_get_new_instance). * * @param function Function * @param dimension Dimension * @param instance Instance * @param coco_get_problem_function The function that is used to access the single-objective problem. * @param new_inst_data Structure containing information on new instance data. * @param num_new_instances The number of new instances. * @param dimensions An array of dimensions to take into account when creating new instances. * @param num_dimensions The number of dimensions to take into account when creating new instances. * @return The problem that corresponds to the given parameters. */ static coco_problem_t *coco_get_biobj_problem(const size_t function, const size_t dimension, const size_t instance, const coco_get_problem_function_t coco_get_problem_function, suite_biobj_new_inst_t **new_inst_data, const size_t num_new_instances, const size_t *dimensions, const size_t num_dimensions) { /* Selected functions from the bbob suite that are used to construct the original bbob-biobj suite. */ const size_t sel_bbob_functions[] = { 1, 2, 6, 8, 13, 14, 15, 17, 20, 21 }; const size_t num_sel_bbob_functions = 10; /* All functions from the bbob suite for later use during instance generation. */ const size_t all_bbob_functions[] = { 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15, 16, 17, 18, 19, 20, 21, 22, 23, 24 }; const size_t num_all_bbob_functions = 24; coco_problem_t *problem1 = NULL, *problem2 = NULL, *problem = NULL; size_t instance1 = 0, instance2 = 0; size_t function1_idx, function2_idx; const size_t function_idx = function - 1; size_t i, j; const size_t num_existing_instances = sizeof(suite_biobj_instances) / sizeof(suite_biobj_instances[0]); int instance_found = 0; double *smallest_values_of_interest = coco_allocate_vector_with_value(dimension, -100); double *largest_values_of_interest = coco_allocate_vector_with_value(dimension, 100); /* Determine the corresponding single-objective function indices */ if (function_idx < 55) { /* A "magic" formula to compute the BBOB function index from the bi-objective function index */ function1_idx = num_sel_bbob_functions - coco_double_to_size_t( floor(-0.5 + sqrt(0.25 + 2.0 * (double) (55 - function_idx - 1)))) - 1; function2_idx = function_idx - (function1_idx * num_sel_bbob_functions) + (function1_idx * (function1_idx + 1)) / 2; } else if (function_idx == 55) { /* There is not a simple "magic" formula for functions >= 55 */ function1_idx = 0; function2_idx = 2; } else if (function_idx == 56) { function1_idx = 0; function2_idx = 3; } else if (function_idx == 57) { function1_idx = 0; function2_idx = 4; } else if (function_idx == 58) { function1_idx = 1; function2_idx = 2; } else if (function_idx == 59) { function1_idx = 1; function2_idx = 3; } else if (function_idx == 60) { function1_idx = 1; function2_idx = 4; } else if (function_idx == 61) { function1_idx = 2; function2_idx = 3; } else if (function_idx == 62) { function1_idx = 2; function2_idx = 4; } else if (function_idx == 63) { function1_idx = 3; function2_idx = 4; } else if (function_idx == 64) { function1_idx = 5; function2_idx = 6; } else if (function_idx == 65) { function1_idx = 5; function2_idx = 8; } else if (function_idx == 66) { function1_idx = 6; function2_idx = 7; } else if (function_idx == 67) { function1_idx = 6; function2_idx = 8; } else if (function_idx == 68) { function1_idx = 7; function2_idx = 8; } else if (function_idx == 69) { function1_idx = 9; function2_idx = 10; } else if (function_idx == 70) { function1_idx = 9; function2_idx = 11; } else if (function_idx == 71) { function1_idx = 9; function2_idx = 12; } else if (function_idx == 72) { function1_idx = 9; function2_idx = 13; } else if (function_idx == 73) { function1_idx = 10; function2_idx = 11; } else if (function_idx == 74) { function1_idx = 10; function2_idx = 12; } else if (function_idx == 75) { function1_idx = 10; function2_idx = 13; } else if (function_idx == 76) { function1_idx = 11; function2_idx = 12; } else if (function_idx == 77) { function1_idx = 11; function2_idx = 13; } else if (function_idx == 78) { function1_idx = 14; function2_idx = 17; } else if (function_idx == 79) { function1_idx = 14; function2_idx = 18; } else if (function_idx == 80) { function1_idx = 16; function2_idx = 17; } else if (function_idx == 81) { function1_idx = 16; function2_idx = 18; } else if (function_idx == 82) { function1_idx = 17; function2_idx = 18; } else if (function_idx == 83) { function1_idx = 19; function2_idx = 21; } else if (function_idx == 84) { function1_idx = 19; function2_idx = 22; } else if (function_idx == 85) { function1_idx = 19; function2_idx = 23; } else if (function_idx == 86) { function1_idx = 20; function2_idx = 21; } else if (function_idx == 87) { function1_idx = 20; function2_idx = 22; } else if (function_idx == 88) { function1_idx = 20; function2_idx = 23; } else if (function_idx == 89) { function1_idx = 21; function2_idx = 22; } else if (function_idx == 90) { function1_idx = 21; function2_idx = 23; } else if (function_idx == 91) { function1_idx = 22; function2_idx = 23; } else { coco_error("coco_get_biobj_problem(): Invalid function index %i.", function_idx); } /* Determine the instances */ /* First search for the instance in suite_biobj_instances */ for (i = 0; i < num_existing_instances; i++) { if (suite_biobj_instances[i][0] == instance) { /* The instance has been found in suite_biobj_instances */ instance1 = suite_biobj_instances[i][1]; instance2 = suite_biobj_instances[i][2]; instance_found = 1; break; } } if ((!instance_found) && ((*new_inst_data) != NULL)) { /* Next, search for instance in new_instances */ for (i = 0; i < (*new_inst_data)->max_new_instances; i++) { if ((*new_inst_data)->new_instances[i][0] == 0) break; if ((*new_inst_data)->new_instances[i][0] == instance) { /* The instance has been found in new_instances */ instance1 = (*new_inst_data)->new_instances[i][1]; instance2 = (*new_inst_data)->new_instances[i][2]; instance_found = 1; break; } } } if (!instance_found) { /* Finally, if the instance is not found, create a new one */ if ((*new_inst_data) == NULL) { /* Allocate space needed for saving new instances */ (*new_inst_data) = (suite_biobj_new_inst_t *) coco_allocate_memory(sizeof(**new_inst_data)); /* Most often the actual number of new instances will be lower than max_new_instances, because * some of them are already in suite_biobj_instances. However, in order to avoid iterating over * suite_biobj_new_inst_t, the allocation uses max_new_instances. */ (*new_inst_data)->max_new_instances = num_new_instances; (*new_inst_data)->new_instances = (size_t **) coco_allocate_memory((*new_inst_data)->max_new_instances * sizeof(size_t *)); for (i = 0; i < (*new_inst_data)->max_new_instances; i++) { (*new_inst_data)->new_instances[i] = (size_t *) malloc(3 * sizeof(size_t)); for (j = 0; j < 3; j++) { (*new_inst_data)->new_instances[i][j] = 0; } } } /* A simple formula to set the first instance */ instance1 = 2 * instance + 1; instance2 = suite_biobj_get_new_instance((*new_inst_data), instance, instance1, all_bbob_functions, num_all_bbob_functions, sel_bbob_functions, num_sel_bbob_functions, dimensions, num_dimensions); } /* Construct the problem based on the function index and dimension */ if (function_idx < 55) { problem1 = coco_get_problem_function(sel_bbob_functions[function1_idx], dimension, instance1); problem2 = coco_get_problem_function(sel_bbob_functions[function2_idx], dimension, instance2); /* Store function numbers of the underlying problems */ problem1->suite_dep_function = sel_bbob_functions[function1_idx]; problem2->suite_dep_function = sel_bbob_functions[function2_idx]; } else { problem1 = coco_get_problem_function(all_bbob_functions[function1_idx], dimension, instance1); problem2 = coco_get_problem_function(all_bbob_functions[function2_idx], dimension, instance2); problem1->suite_dep_function = all_bbob_functions[function1_idx]; problem2->suite_dep_function = all_bbob_functions[function2_idx]; } problem = coco_problem_stacked_allocate(problem1, problem2, smallest_values_of_interest, largest_values_of_interest); /* Use the standard stacked problem_id as problem_name and construct a new problem_id */ coco_problem_set_name(problem, problem->problem_id); /* Attention! Any change to the problem id affects also archive processing! */ coco_problem_set_id(problem, "bbob-biobj_f%02lu_i%02lu_d%02lu", (unsigned long) function, (unsigned long) instance, (unsigned long) dimension); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem1->problem_type, problem2->problem_type); coco_free_memory(smallest_values_of_interest); coco_free_memory(largest_values_of_interest); return problem; } /** * @brief Returns the best known value for the hypervolume indicator matching the given key if the key is found, and * throws a coco_error otherwise. * * @note This function needs to be updated when a new biobjective suite is added to COCO. */ static double suite_biobj_get_best_hyp_value(const char *suite_name, const char *key) { size_t i, count; double best_value = 0; char *curr_key; if ((strcmp(suite_name, "bbob-biobj") == 0) || (strcmp(suite_name, "bbob-biobj-ext") == 0)) { curr_key = coco_allocate_string(COCO_PATH_MAX + 1); count = sizeof(suite_biobj_best_values_hyp) / sizeof(char *); for (i = 0; i < count; i++) { sscanf(suite_biobj_best_values_hyp[i], "%s %lf", curr_key, &best_value); if (strcmp(curr_key, key) == 0) { coco_free_memory(curr_key); return best_value; } } } else if (strcmp(suite_name, "bbob-biobj-mixint") == 0) { curr_key = coco_allocate_string(COCO_PATH_MAX + 1); count = sizeof(suite_biobj_mixint_best_values_hyp) / sizeof(char *); for (i = 0; i < count; i++) { sscanf(suite_biobj_mixint_best_values_hyp[i], "%s %lf", curr_key, &best_value); if (strcmp(curr_key, key) == 0) { coco_free_memory(curr_key); return best_value; } } } else { coco_error("suite_biobj_get_best_hyp_value(): suite %s not supported", suite_name); return 0; /* Never reached */ } coco_free_memory(curr_key); coco_warning("suite_biobj_get_best_hyp_value(): best value of %s could not be found; set to 1.0", key); return 1.0; } #line 25 "code-experiments/src/suite_biobj.c" #line 26 "code-experiments/src/suite_biobj.c" static coco_suite_t *coco_suite_allocate(const char *suite_name, const size_t number_of_functions, const size_t number_of_dimensions, const size_t *dimensions, const char *default_instances); /** * @brief Sets the dimensions and default instances for the bbob-biobj suites. */ static coco_suite_t *suite_biobj_initialize(const char *suite_name) { coco_suite_t *suite; const size_t dimensions[] = { 2, 3, 5, 10, 20, 40 }; const size_t num_dimensions = sizeof(dimensions) / sizeof(dimensions[0]); if (strcmp(suite_name, "bbob-biobj") == 0) { suite = coco_suite_allocate("bbob-biobj", 55, num_dimensions, dimensions, "instances: 1-15"); } else if (strcmp(suite_name, "bbob-biobj-ext") == 0) { suite = coco_suite_allocate("bbob-biobj-ext", 55+37, num_dimensions, dimensions, "instances: 1-15"); } else { coco_error("suite_biobj_initialize(): unknown problem suite"); return NULL; } suite->data_free_function = suite_biobj_new_inst_free; return suite; } /** * @brief Sets the instances associated with years for the bbob-biobj suites. * * @note The instances of the bi-objective suites generally do not changes with years. */ static const char *suite_biobj_get_instances_by_year(const int year) { if ((year == 2016) || (year == 0000)) { /* test case */ return "1-10"; } else return "1-15"; } /** * @brief Returns the problem from the bbob-biobj suite that corresponds to the given parameters. * * @param suite The COCO suite. * @param function_idx Index of the function (starting from 0). * @param dimension_idx Index of the dimension (starting from 0). * @param instance_idx Index of the instance (starting from 0). * @return The problem that corresponds to the given parameters. */ static coco_problem_t *suite_biobj_get_problem(coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { coco_problem_t *problem = NULL; suite_biobj_new_inst_t *new_inst_data = (suite_biobj_new_inst_t *) suite->data; const size_t function = suite->functions[function_idx]; const size_t dimension = suite->dimensions[dimension_idx]; const size_t instance = suite->instances[instance_idx]; problem = coco_get_biobj_problem(function, dimension, instance, coco_get_bbob_problem, &new_inst_data, suite->number_of_instances, suite->dimensions, suite->number_of_dimensions); problem->suite_dep_function = function; problem->suite_dep_instance = instance; problem->suite_dep_index = coco_suite_encode_problem_index(suite, function_idx, dimension_idx, instance_idx); return problem; } #line 21 "code-experiments/src/coco_suite.c" #line 1 "code-experiments/src/suite_biobj_mixint.c" /** * @file suite_biobj_mixint.c * @brief Implementation of a bi-objective mixed-integer suite. The functions are the same as those * in the bbob-biobj-ext suite with 92 functions, but the large-scale implementations of the * functions are used instead of the original ones for dimensions over 40. */ #line 9 "code-experiments/src/suite_biobj_mixint.c" #line 10 "code-experiments/src/suite_biobj_mixint.c" #line 11 "code-experiments/src/suite_biobj_mixint.c" #line 12 "code-experiments/src/suite_biobj_mixint.c" #line 13 "code-experiments/src/suite_biobj_mixint.c" #line 14 "code-experiments/src/suite_biobj_mixint.c" #line 15 "code-experiments/src/suite_biobj_mixint.c" static coco_suite_t *coco_suite_allocate(const char *suite_name, const size_t number_of_functions, const size_t number_of_dimensions, const size_t *dimensions, const char *default_instances); static void suite_biobj_new_inst_free(void *stuff); /** * @brief Sets the dimensions and default instances for the bbob-biobj-mixint suite. */ static coco_suite_t *suite_biobj_mixint_initialize(void) { coco_suite_t *suite; const size_t dimensions[] = { 5, 10, 20, 40, 80, 160 }; const size_t num_dimensions = sizeof(dimensions) / sizeof(dimensions[0]); suite = coco_suite_allocate("bbob-biobj-mixint", 92, num_dimensions, dimensions, "instances: 1-15"); suite->data_free_function = suite_biobj_new_inst_free; return suite; } /** * @brief Sets the instances associated with years for the bbob-biobj-mixint suites. * * @note The instances of the bi-objective suites generally do not changes with years. */ static const char *suite_biobj_mixint_get_instances_by_year(const int year) { (void) year; /* To get rid of compiler warnings */ return "1-15"; } /** * @brief Creates and returns a mixed-integer bi-objective bbob problem without needing the actual * bbob-mixint suite. * * The problem is constructed by first finding the underlying single-objective continuous problems, * then discretizing the problems, then scaling them to adjust their difficulty and finally stacking * them to get a bi-objective mixed-integer problem. * * @param function Function * @param dimension Dimension * @param instance Instance * @param coco_get_problem_function The function that is used to access the single-objective problem. * @param new_inst_data Structure containing information on new instance data. * @param num_new_instances The number of new instances. * @param dimensions An array of dimensions to take into account when creating new instances. * @param num_dimensions The number of dimensions to take into account when creating new instances. * @return The problem that corresponds to the given parameters. */ static coco_problem_t *coco_get_biobj_mixint_problem(const size_t function, const size_t dimension, const size_t instance, const coco_get_problem_function_t coco_get_problem_function, suite_biobj_new_inst_t **new_inst_data, const size_t num_new_instances, const size_t *dimensions, const size_t num_dimensions) { coco_problem_t *problem_cont = NULL, *problem = NULL; coco_problem_t *problem1, *problem2; coco_problem_t *problem1_mixint, *problem2_mixint; coco_problem_t *problem1_cont, *problem2_cont; double *smallest_values_of_interest = coco_allocate_vector(dimension); double *largest_values_of_interest = coco_allocate_vector(dimension); size_t i, j; size_t num_integer = dimension; /* The cardinality of variables (0 = continuous variables should always come last) */ const size_t variable_cardinality[] = { 2, 4, 8, 16, 0 }; size_t function1, function2; if (dimension % 5 != 0) coco_error("coco_get_biobj_mixint_problem(): dimension %lu not supported for suite_bbob_mixint", dimension); /* First, find the underlying single-objective continuous problems */ problem_cont = coco_get_biobj_problem(function, dimension, instance, coco_get_problem_function, new_inst_data, num_new_instances, dimensions, num_dimensions); assert(problem_cont != NULL); problem1_cont = ((coco_problem_stacked_data_t *) problem_cont->data)->problem1; problem2_cont = ((coco_problem_stacked_data_t *) problem_cont->data)->problem2; problem1 = coco_problem_duplicate(problem1_cont); problem2 = coco_problem_duplicate(problem2_cont); assert(problem1); assert(problem2); /* Copy also the data of the underlying problems and set all pointers in such a way that * problem_cont can be safely freed */ problem1->data = problem1_cont->data; problem2->data = problem2_cont->data; problem1_cont->data = NULL; problem2_cont->data = NULL; problem1_cont->problem_free_function = NULL; problem2_cont->problem_free_function = NULL; coco_problem_free(problem_cont); /* Set the ROI of the outer problem according to the given cardinality of variables and the ROI of the * inner problems to [-4, 4] for variables that will be discretized */ for (i = 0; i < dimension; i++) { j = i / (dimension / 5); if (variable_cardinality[j] == 0) { /* Continuous variables */ /* Outer problem */ smallest_values_of_interest[i] = -100; largest_values_of_interest[i] = 100; if (num_integer == dimension) num_integer = i; } else { /* Outer problem */ smallest_values_of_interest[i] = 0; largest_values_of_interest[i] = (double)variable_cardinality[j] - 1; /* Inner problems */ problem1->smallest_values_of_interest[i] = -4; problem1->largest_values_of_interest[i] = 4; problem2->smallest_values_of_interest[i] = -4; problem2->largest_values_of_interest[i] = 4; } } /* Second, discretize the single-objective problems */ problem1_mixint = transform_vars_discretize(problem1, smallest_values_of_interest, largest_values_of_interest, num_integer); problem2_mixint = transform_vars_discretize(problem2, smallest_values_of_interest, largest_values_of_interest, num_integer); /* Third, scale the objective values */ function1 = coco_problem_get_suite_dep_function(problem1); function2 = coco_problem_get_suite_dep_function(problem2); problem1_mixint = transform_obj_scale(problem1_mixint, suite_bbob_mixint_scaling_factors[function1 - 1]); problem2_mixint = transform_obj_scale(problem2_mixint, suite_bbob_mixint_scaling_factors[function2 - 1]); /* Fourth, combine the problems in a bi-objective mixed-integer problem */ problem = coco_problem_stacked_allocate(problem1_mixint, problem2_mixint, smallest_values_of_interest, largest_values_of_interest); /* Use the standard stacked problem_id as problem_name and construct a new problem_id */ coco_problem_set_name(problem, problem->problem_id); coco_problem_set_id(problem, "bbob-biobj-mixint_f%03lu_i%02lu_d%03lu", (unsigned long) function, (unsigned long) instance, (unsigned long) dimension); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem1->problem_type, problem2->problem_type); coco_free_memory(smallest_values_of_interest); coco_free_memory(largest_values_of_interest); return problem; } /** * @brief Returns the problem from the bbob-biobj-mixint suite that corresponds to the given parameters. * * Uses large-scale bbob functions if dimension is equal or larger than the hard-coded dim_large_scale * value (50). * * @param suite The COCO suite. * @param function_idx Index of the function (starting from 0). * @param dimension_idx Index of the dimension (starting from 0). * @param instance_idx Index of the instance (starting from 0). * @return The problem that corresponds to the given parameters. */ static coco_problem_t *suite_biobj_mixint_get_problem(coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { coco_problem_t *problem = NULL; suite_biobj_new_inst_t *new_inst_data = (suite_biobj_new_inst_t *) suite->data; const size_t dim_large_scale = 50; /* Switch to large-scale functions for dimensions over 50 */ const size_t function = suite->functions[function_idx]; const size_t dimension = suite->dimensions[dimension_idx]; const size_t instance = suite->instances[instance_idx]; if (dimension < dim_large_scale) problem = coco_get_biobj_mixint_problem(function, dimension, instance, coco_get_bbob_problem, &new_inst_data, suite->number_of_instances, suite->dimensions, suite->number_of_dimensions); else problem = coco_get_biobj_mixint_problem(function, dimension, instance, coco_get_largescale_problem, &new_inst_data, suite->number_of_instances, suite->dimensions, suite->number_of_dimensions); problem->suite_dep_function = function; problem->suite_dep_instance = instance; problem->suite_dep_index = coco_suite_encode_problem_index(suite, function_idx, dimension_idx, instance_idx); return problem; } #line 22 "code-experiments/src/coco_suite.c" #line 1 "code-experiments/src/suite_toy.c" /** * @file suite_toy.c * @brief Implementation of a toy suite containing 6 noiseless "basic" single-objective functions in 5 * dimensions. */ #line 8 "code-experiments/src/suite_toy.c" #line 9 "code-experiments/src/suite_toy.c" #line 10 "code-experiments/src/suite_toy.c" #line 11 "code-experiments/src/suite_toy.c" #line 12 "code-experiments/src/suite_toy.c" #line 13 "code-experiments/src/suite_toy.c" #line 14 "code-experiments/src/suite_toy.c" static coco_suite_t *coco_suite_allocate(const char *suite_name, const size_t number_of_functions, const size_t number_of_dimensions, const size_t *dimensions, const char *default_instances); /** * @brief Sets the dimensions and default instances for the toy suite. */ static coco_suite_t *suite_toy_initialize(void) { coco_suite_t *suite; const size_t dimensions[] = { 2, 3, 5, 10, 20 }; const size_t num_dimensions = sizeof(dimensions) / sizeof(dimensions[0]); suite = coco_suite_allocate("toy", 6, num_dimensions, dimensions, "instances: 1"); return suite; } /** * @brief Returns the problem from the toy suite that corresponds to the given parameters. * * @param suite The COCO suite. * @param function_idx Index of the function (starting from 0). * @param dimension_idx Index of the dimension (starting from 0). * @param instance_idx Index of the instance (starting from 0). * @return The problem that corresponds to the given parameters. */ static coco_problem_t *suite_toy_get_problem(coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { coco_problem_t *problem = NULL; const size_t function = suite->functions[function_idx]; const size_t dimension = suite->dimensions[dimension_idx]; const size_t instance = suite->instances[instance_idx]; if (function == 1) { problem = f_sphere_allocate(dimension); } else if (function == 2) { problem = f_ellipsoid_allocate(dimension); } else if (function == 3) { problem = f_rastrigin_allocate(dimension); } else if (function == 4) { problem = f_bueche_rastrigin_allocate(dimension); } else if (function == 5) { double xopt[40] = { 5.0 }; problem = f_linear_slope_allocate(dimension, xopt); } else if (function == 6) { problem = f_rosenbrock_allocate(dimension); } else { coco_error("suite_toy_get_problem(): function %lu does not exist in this suite", (unsigned long) function); return NULL; /* Never reached */ } problem->suite_dep_function = function; problem->suite_dep_instance = instance; problem->suite_dep_index = coco_suite_encode_problem_index(suite, function_idx, dimension_idx, instance_idx); return problem; } #line 23 "code-experiments/src/coco_suite.c" #line 24 "code-experiments/src/coco_suite.c" #line 1 "code-experiments/src/suite_cons_bbob.c" /** * @file suite_cons_bbob.c * @brief Implementation of the constrained bbob suite containing * 54 constrained problems in 6 dimensions. See comments in * "suite_cons_bbob_problems.c" for more details. */ #line 9 "code-experiments/src/suite_cons_bbob.c" #line 1 "code-experiments/src/suite_cons_bbob_problems.c" /** * @file suite_cons_bbob_problems.c * @brief Implementation of the problems in the constrained BBOB suite. * * This suite contains 54 constrained functions in continuous domain * which are derived from combining 8 single-objective functions of the * noiseless bbob test suite with randomly-generated * linear constraints perturbed by nonlinear transformations. * Each one of the 8 functions is combined with 6 different numbers of * constraints: 1, 2, 6, 6+n/2, 6+n and 6+3n. * * We consider constrained optimization problems of the form * * min f(x) s.t. g_i(x) <= 0, i=1,...,l. * * The constrained functions are built in a way such that the * KKT conditions are satisied at the origin, which is the initial * optimal solution. We then translate the constrained function * by a random vector in order to move the optimal solution away * from the origin. * * *************************************************** * General idea for building the constrained functions * *************************************************** * * 1. Choose a bbob function f whose raw version is pseudoconvex * to be the objective function. (see note below) * 2. Remove possible nonlinear transformations from f. (see note below) * 3. In order to make sure that the feasible set is not empty, * we choose a direction p that should be feasible. * Define p as the gradient of f at the origin. * 4. Define the first constraint g_1(x)=a_1'*x by setting its gradient * to a_1 = -p. By definition, g_1(p) < 0. Thus p is feasible * for g_1. * 5. Generate the other constraints randomly while making sure that * p remains feasible for each one. * 6. Apply to the whole constrained function the nonlinear transformations * that were removed from the objective function in Step 2. (see note below) * 7. Choose a random point xopt and move the optimum away from the * origin to xopt by translating the constrained function by -xopt. * * @note The pseudoconvexity in Step 1 guarantees that the KKT conditions * are sufficient for optimality. * * @note The removal of possible nonlinear transformations in Step 2 * and posterior application in Step 6 are necessary to make * sure that the KKT conditions are satisfied in the optimum * - until then the origin. As explained in the documentation, * the application of the nonlinear transformations in Step 6 * does not affect the location of the optimum. * * @note a_1 is set to -p, i.e. the negative gradient of f at the origin, * in order to have the KKT conditions easily satisfied. * * @note Steps 1 and 2 are done within the 'allocate' function of the * objective function, e.g. f_ellipsoid_cons_bbob_problem_allocate(). * * @note Steps 4 and 5 are done within c_linear_cons_bbob_problem_allocate(). * * @note The constrained Rastrigin function's construction differs a bit * from the steps above. Since it is a multimodal function with * well distributed local optima, we choose one of its local optima * to be the global constrained optimum by adding constraints * that pass through that point. * * @note The testbed provides the user an initial solution which is given * by the feasible direction p scaled by some constant. * * ************************************************* * COCO data structure for the constrained functions * ************************************************* * * First, we create a coco_problem_t object for the objective function. * Then, coco_problem_t objects are created for each constraint and * stacked together into a single coco_problem_t object (see "c_linear.c"). * Finally, the coco_problem_t object containing the constraints and * the coco_problem_t object containing the objective function are * stacked together to form the constrained function. * */ #include #line 85 "code-experiments/src/suite_cons_bbob_problems.c" #line 86 "code-experiments/src/suite_cons_bbob_problems.c" #line 87 "code-experiments/src/suite_cons_bbob_problems.c" #line 1 "code-experiments/src/c_linear.c" /** * @file c_linear.c * @brief Implements the linear constraints for the suite of * constrained problems. */ #include #include #include #include #include #line 14 "code-experiments/src/c_linear.c" #line 15 "code-experiments/src/c_linear.c" /** * @brief Data type for the linear constraints. */ typedef struct { double *gradient; double *x; double x_shift_factor; /* shift solution by - factor * gradient */ double gradient_norm; } linear_constraint_data_t; static void c_sum_variables_evaluate(coco_problem_t *self, const double *x, double *y); static void c_linear_single_evaluate(coco_problem_t *self, const double *x, double *y); static coco_problem_t *c_guarantee_feasible_point(coco_problem_t *problem, const double *feasible_point); static void c_linear_gradient_free(void *thing); static coco_problem_t *c_sum_variables_allocate(const size_t number_of_variables); static coco_problem_t *c_linear_transform(coco_problem_t *inner_problem, const double *gradient, const double x_shift_factor); static coco_problem_t *c_linear_single_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t constraint_number, const double factor1, const char *problem_id_template, const char *problem_name_template, double *gradient, double x_shift_factor, const double *feasible_direction); static coco_problem_t *c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_active_constraints, const char *problem_id_template, const char *problem_name_template, const double *feasible_direction); /** * @brief Evaluates the linear constraint with all-ones gradient at * the point 'x' and stores the result into 'y'. */ static void c_sum_variables_evaluate(coco_problem_t *self, const double *x, double *y) { size_t i; assert(self->number_of_constraints == 1); y[0] = 0.0; for (i = 0; i < self->number_of_variables; ++i) /* prevent that the optimal solution is infeasible due to loss of precision when shifted */ if (x[i] > 1e-11 || x[i] < 0) y[0] += x[i]; } /** * @brief Evaluates the linear constraint at the point 'x' and stores * the result in 'y'. */ static void c_linear_single_evaluate(coco_problem_t *self, const double *x, double *y) { size_t i; double factor; linear_constraint_data_t *data; coco_problem_t *inner_problem; data = (linear_constraint_data_t *) coco_problem_transformed_get_data(self); inner_problem = coco_problem_transformed_get_inner_problem(self); assert(self->number_of_constraints == 1); for (i = 0, factor = data->x_shift_factor / data->gradient_norm; i < self->number_of_variables; ++i) data->x[i] = (data->gradient[i]) * (x[i] - factor * data->gradient[i]); coco_evaluate_constraint(inner_problem, data->x, y); inner_problem = NULL; data = NULL; } /** * @brief Guarantees that "feasible_direction" is feasible w.r.t. * the constraint in "problem" and records it as the * initial feasible solution to this coco_problem. */ static coco_problem_t *c_guarantee_feasible_point(coco_problem_t *problem, const double *feasible_direction) { size_t i; linear_constraint_data_t *data; double constraint_value = 0.0; data = (linear_constraint_data_t *) coco_problem_transformed_get_data(problem); assert(problem->number_of_constraints == 1); /* Let p be the gradient of the constraint in "problem". * Check whether p' * (feasible_direction) <= 0. */ coco_evaluate_constraint(problem, feasible_direction, &constraint_value); /* Flip the constraint in "problem" if feasible_direction * is not feasible w.r.t. the constraint in "problem". */ if (constraint_value > 0) for (i = 0; i < problem->number_of_variables; ++i) data->gradient[i] *= -1.0; problem->initial_solution = coco_duplicate_vector(feasible_direction, problem->number_of_variables); data = NULL; return problem; } /** * @brief Frees the data object. */ static void c_linear_gradient_free(void *thing) { linear_constraint_data_t *data = (linear_constraint_data_t *) thing; coco_free_memory(data->gradient); coco_free_memory(data->x); } /** * @brief Allocates a linear constraint coco_problem_t with all-ones gradient. */ static coco_problem_t *c_sum_variables_allocate(const size_t number_of_variables) { size_t i; coco_problem_t *problem = coco_problem_allocate(number_of_variables, 0, 1); problem->evaluate_constraint = c_sum_variables_evaluate; coco_problem_set_id(problem, "%s_d%02lu", "linearconstraint", number_of_variables); for (i = 0; i < number_of_variables; ++i) { problem->smallest_values_of_interest[i] = -5.0; problem->largest_values_of_interest[i] = 5.0; } return problem; } /** * @brief Transforms a linear constraint with all-ones gradient * into a linear constraint whose gradient is passed * as argument and with the feasible domain extended by * shift_factor. */ static coco_problem_t *c_linear_transform(coco_problem_t *inner_problem, const double *gradient, const double shift_factor) { linear_constraint_data_t *data; coco_problem_t *self; double gradient_norm = coco_vector_norm(gradient, inner_problem->number_of_variables); if (gradient_norm <= 0) coco_error("c_linear_transform(): gradient norm %f<=0 zero", gradient_norm); data = coco_allocate_memory(sizeof(*data)); data->gradient = coco_duplicate_vector(gradient, inner_problem->number_of_variables); data->x = coco_allocate_vector(inner_problem->number_of_variables); data->x_shift_factor = shift_factor; data->gradient_norm = gradient_norm; self = coco_problem_transformed_allocate(inner_problem, data, c_linear_gradient_free, "gradient_linear_constraint"); self->evaluate_constraint = c_linear_single_evaluate; return self; } /** * @brief Builds a coco_problem_t containing one single linear constraint. * * This function is called by c_linear_cons_bbob_problem_allocate(), * the central function that stacks all the constraints built by * c_linear_single_cons_bbob_problem_allocate() into one single * coco_problem_t object. */ static coco_problem_t *c_linear_single_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t constraint_number, const double factor1, const char *problem_id_template, const char *problem_name_template, double *gradient, const double x_shift_factor, const double *feasible_direction) { size_t i; double *gradient_linear_constraint = NULL; coco_problem_t *problem = NULL; coco_random_state_t *random_generator; long seed_cons_i; double factor2; problem = c_sum_variables_allocate(dimension); seed_cons_i = (long)(function + 10000 * instance + 50000 * constraint_number); random_generator = coco_random_new((uint32_t) seed_cons_i); /* The constraints gradients are scaled with random numbers * 10**U[0,1] and 10**U_i[0,2], where U[a, b] is uniform in [a,b] * and only U_i is drawn for each constraint individually. * The random number 10**U[0,1] is given by the variable 'factor1' * while the random number 10**U_i[0,2] is calculated below and * stored as 'factor2'. (The exception is when the number of * constraints is n+1, in which case 'factor2' defines a random * number 10**U_i[0,1]) */ factor2 = pow(100.0, coco_random_uniform(random_generator)); /* Set the gradient of the linear constraint if it is given. * This should be the case of the construction of the first * linear constraint only. */ if(gradient) { coco_vector_scale(gradient, dimension, factor1 * factor2, coco_vector_norm(gradient, dimension)); problem = c_linear_transform(problem, gradient, x_shift_factor); } else{ /* Randomly generate the gradient of the linear constraint */ gradient_linear_constraint = coco_allocate_vector(dimension); /* Generate a pseudorandom vector with distribution N_i(0, I) * and scale it with 'factor1' and 'factor2' (see comments above) */ for (i = 0; i < dimension; ++i) gradient_linear_constraint[i] = factor1 * coco_random_normal(random_generator) * factor2 / sqrt((double)dimension); problem = c_linear_transform(problem, gradient_linear_constraint, x_shift_factor); coco_free_memory(gradient_linear_constraint); } /* Guarantee that the vector feasible_point is feasible w.r.t. to * this constraint and set it as the initial solution. * The initial solution will be copied later to the constrained function * coco_problem_t object once the objective function and the constraint(s) * are stacked together in coco_problem_stacked_allocate(). */ if(feasible_direction) problem = c_guarantee_feasible_point(problem, feasible_direction); coco_problem_set_id(problem, problem_id_template, function, instance, dimension); coco_problem_set_name(problem, problem_name_template, function, instance, dimension); coco_problem_set_type(problem, "linear"); coco_random_free(random_generator); return problem; } /** * @brief helper function to successively compute a linear combination of * constraint gradients, add current gradient if weight is != 0. * */ static void con_update_linear_combination(double *linear_combination, const coco_problem_t *problem, double weight) { size_t i; linear_constraint_data_t *data; data = (linear_constraint_data_t *) coco_problem_transformed_get_data(problem); if (data->gradient == NULL) { if (weight != 0) { coco_error("con_update_linear_combination(): gradient of constraint was zero"); } else { coco_warning("con_update_linear_combination(): gradient of constraint was zero"); } } else { if (data->x_shift_factor != 0) coco_warning("Inactive constraint passed to update_linear_combination, x_shift_factor=%f", data->x_shift_factor); if (weight == 0) return; /* nothing to add */ if (weight < 0) coco_warning("con_update_linear_combination: weight=%f < 0, should be > 0", weight); for (i = 0; i < problem->number_of_variables; ++i) linear_combination[i] += weight * data->gradient[i]; } } /** * @brief Builds a coco_problem_t containing all the linear constraints * by stacking them all. * * The constraints' gradients are randomly generated with distribution * 10**U[0,1] * N_i(0, I) * 10**U_i[0,2], where U[a, b] is uniform * in [a,b] and only U_i is drawn for each constraint individually. * The exception is the first constraint, whose gradient is given by * 10**U[0,1] * (-feasible_direction) * 10**U_i[0,2]. * * Each constraint is built by calling the function * c_linear_single_cons_bbob_problem_allocate(), which returns a * coco_problem_t object that defines the constraint. The resulting * coco_problem_t objects are then stacked together into one single * coco_problem_t object that is returned by the function. */ static coco_problem_t *c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_active_constraints, const char *problem_id_template, const char *problem_name_template, const double *feasible_direction) { const double global_scaling_factor = 100.; size_t i, j; coco_problem_t *problem_c = NULL; coco_problem_t *problem_c2 = NULL; coco_random_state_t *random_generator; coco_random_state_t *random_generator2; double *gradient_c1 = NULL; double *gradient; double *linear_combination; linear_constraint_data_t *first_constraint_data = NULL; double shift_factor; long seed_cons; double fac, norm, factor1; size_t number_of_linear_constraints; size_t inactive_constraints_left = number_of_active_constraints / 2; /* TODO: decide whether this should go into the interface */ int disguise_gradient = 1; if (strncmp(problem_id_template, "bbob-constrained-active-only", 28) == 0) inactive_constraints_left = 0; if (strncmp(problem_id_template, "bbob-constrained-no-disguise", 28) == 0) disguise_gradient = 0; number_of_linear_constraints = number_of_active_constraints + inactive_constraints_left; gradient_c1 = coco_allocate_vector(dimension); linear_combination = coco_allocate_vector_with_value(dimension, 0.0); for (i = 0; i < dimension; ++i) gradient_c1[i] = -feasible_direction[i]; /* Build a coco_problem_t object for each constraint. * The constraints' gradients are generated randomly with * distribution 10**U[0,1] * N_i(0, I/n) * 10**U_i[0,2] * where U[a, b] is uniform in [a,b] and only U_i is drawn * for each constraint individually. */ /* Calculate the first random factor 10**U[0,1]. */ seed_cons = (long)(function + 10000 * instance); random_generator = coco_random_new((uint32_t) seed_cons); random_generator2 = coco_random_new((uint32_t) seed_cons); factor1 = global_scaling_factor * pow(10.0, coco_random_uniform(random_generator)); /* Build the first linear constraint using 'gradient_c1' to build * its gradient. */ /* set gradient depending on instance number */ gradient = instance % number_of_active_constraints ? NULL : gradient_c1; problem_c = c_linear_single_cons_bbob_problem_allocate(function, dimension, instance, 1, factor1, problem_id_template, problem_name_template, gradient, 0.0, feasible_direction); if (gradient != NULL) /* preserve the constraint based on function gradient */ first_constraint_data = (linear_constraint_data_t *) coco_problem_transformed_get_data(problem_c); else con_update_linear_combination(linear_combination, problem_c, coco_random_uniform(random_generator2)); /* Instantiate the other linear constraints (if any) and stack them * all into problem_c */ for (j = 2, i = 1; j <= number_of_linear_constraints; ++j) { /* Instantiate a new problem containing one linear constraint only */ /* set gradient depending on instance number */ if (i < number_of_active_constraints && coco_random_uniform(random_generator) + 1e-23 > (double) inactive_constraints_left / (double) number_of_linear_constraints ) { /* create an active constraint */ gradient = (++i - 1 + instance) % number_of_active_constraints ? NULL : gradient_c1; shift_factor = 0.0; } else { /* create an inactive (shifted) constraint */ if (inactive_constraints_left-- <= 0) coco_error("c_linear_cons_bbob_problem_allocate(): no inactive left i=%d j=%d nb_act=%ul nb_con=%ul", i, j, number_of_active_constraints, number_of_linear_constraints); gradient = NULL; shift_factor = 0.01 + 2.0 * coco_random_uniform(random_generator); } problem_c2 = c_linear_single_cons_bbob_problem_allocate(function, dimension, instance, i <= number_of_active_constraints ? i : number_of_linear_constraints - inactive_constraints_left, factor1, problem_id_template, problem_name_template, gradient, shift_factor, feasible_direction); if (shift_factor == 0) { /* active constraint */ if (gradient != NULL) { /* preserve the constraint based on function gradient */ if (first_constraint_data) coco_warning("c_linear_cons_bbob_problem_allocate(): first_constraint_data already assigned, this is probably a bug"); first_constraint_data = (linear_constraint_data_t *) coco_problem_transformed_get_data(problem_c2); } else con_update_linear_combination(linear_combination, problem_c2, coco_random_uniform(random_generator2)); } problem_c = coco_problem_stacked_allocate(problem_c, problem_c2, problem_c2->smallest_values_of_interest, problem_c2->largest_values_of_interest); /* Use the standard stacked problem_id as problem_name and * construct a new suite-specific problem_id */ coco_problem_set_name(problem_c, problem_c->problem_id); coco_problem_set_id(problem_c, "bbob-constrained_f%02lu_i%02lu_d%02lu", (unsigned long)function, (unsigned long)instance, (unsigned long)dimension); /* Construct problem type */ coco_problem_set_type(problem_c, "%s_%s", problem_c2->problem_type, problem_c2->problem_type); } /* Modify first constraint without changing the feasible solution, * thereby disguising the gradient of the function */ if (number_of_active_constraints > 1 && disguise_gradient) { norm = first_constraint_data->gradient_norm; /* for reading convenience only */ gradient = first_constraint_data->gradient; /* ditto */ fac = coco_vector_scalar_product(linear_combination, gradient, dimension); if (fac < 0) coco_error("scalar product between first constraint and linear combination = %f < 0 should be > 0", fac); fac = fac <= 0 ? (double) dimension : coco_double_min((double) dimension, norm * norm / fac); fac *= (1 + coco_random_uniform(random_generator2)) / (2 + 1. / (double) dimension); /* bound to <1 and >1/3 */ for (i = 0; i < dimension; ++i) gradient[i] -= fac * linear_combination[i]; fac = coco_vector_norm(gradient, dimension); /* new gradient norm */ if (fac == 0) /* make sure that gradient did not become zero */ coco_error("new vector norm = %f == 0, should be > 0", fac); coco_vector_scale(gradient, dimension, norm, fac); /* restore original norm */ } coco_free_memory(linear_combination); coco_free_memory(gradient_c1); coco_random_free(random_generator); coco_random_free(random_generator2); return problem_c; } #line 88 "code-experiments/src/suite_cons_bbob_problems.c" #line 89 "code-experiments/src/suite_cons_bbob_problems.c" #line 90 "code-experiments/src/suite_cons_bbob_problems.c" #line 91 "code-experiments/src/suite_cons_bbob_problems.c" #line 92 "code-experiments/src/suite_cons_bbob_problems.c" #line 93 "code-experiments/src/suite_cons_bbob_problems.c" #line 94 "code-experiments/src/suite_cons_bbob_problems.c" #line 1 "code-experiments/src/transform_vars_composed.c" /** * @file transform_vars_composed.c * @brief Implementation of inverse transformation composed by tasy and tosz. * @author Paul Dufosse */ #line 8 "code-experiments/src/transform_vars_composed.c" #line 9 "code-experiments/src/transform_vars_composed.c" /** * @brief Inverse of composed non-linear transformation tcomp_uv obtained with brentq. */ static double tcomp_uv_inv(double yi, tasy_data *dasy, tosz_data *dosz) { double xi; xi = brentinv((callback_type) &tasy_uv, yi, dasy); xi = brentinv((callback_type) &tosz_uv, xi, dosz); return xi; } /** * @brief Applies the inverse of the composed transformation tasy to the initial solution. * * Takes xopt as input to check the solution remains in the bounds * If not, a curve search is performed * xopt is needed because transform_vars_shift is not yet called * in f_{function}_rotated_c_linear_cons_bbob_problem_allocate */ static void transform_inv_initial_composed(coco_problem_t *problem, const double *xopt) { size_t i; size_t j; int is_in_bounds; double di; double xi; double *sol = NULL; double halving_factor = .5; transform_vars_asymmetric_data_t *data_asy; tasy_data *dasy; transform_vars_oscillate_data_t *data_osz; tosz_data *dosz; coco_problem_t *inner_problem; inner_problem = coco_problem_transformed_get_inner_problem(problem); sol = coco_allocate_vector(problem->number_of_variables); dasy = coco_allocate_memory(sizeof(*dasy)); dosz = coco_allocate_memory(sizeof(*dosz)); data_asy = (transform_vars_asymmetric_data_t *) coco_problem_transformed_get_data(inner_problem); data_osz = (transform_vars_oscillate_data_t *) coco_problem_transformed_get_data(problem); dasy->beta = data_asy->beta; dasy->n = problem->number_of_variables; dosz->alpha = data_osz->alpha; j = 0; while (1) { for (i = 0; i < problem->number_of_variables; ++i) { dasy->i = i; di = tcomp_uv_inv(problem->initial_solution[i] * pow(halving_factor, (double) (long) j), dasy, dosz); xi = di + xopt[i]; is_in_bounds = (int) (-5.0 < xi && xi < 5.0); /* Line search for the inverse-transformed feasible initial solution to remain within the bounds */ if (!is_in_bounds) { j = j + 1; break; } sol[i] = di; } if (!is_in_bounds && !coco_is_nan(di)){ continue; } else { break; } } if (!coco_vector_contains_nan(sol, problem->number_of_variables)) { for (i = 0; i < problem->number_of_variables; ++i) { problem->initial_solution[i] = sol[i]; } } coco_free_memory(dasy); coco_free_memory(dosz); coco_free_memory(sol); } #line 96 "code-experiments/src/suite_cons_bbob_problems.c" /** * @brief Calculates the objective function type based on the value * of "function" */ static size_t obj_function_type(const size_t function) { size_t problems_per_obj_function_type = 6; return (size_t)ceil((double)function/(double)problems_per_obj_function_type); } /** * @brief Returns the number of linear constraints associated to the * value of "function" */ static size_t nb_of_linear_constraints(const size_t function, const size_t dimension) { int problems_per_obj_function_type = 6; int p; /* Map "function" value into {1, ..., problems_per_obj_function_type} */ p = (((int)function - 1) % problems_per_obj_function_type) + 1; if (p == 1) return 1; else if (p == 2) return 2; else if (p == 3) return 6; else if (p == 4) return 6 + dimension/2; else if (p == 5) return 6 + dimension; else return 6 + 3*dimension; } /** * @brief Scale feasible direction depending on xopt such that * xopt + feasible_direction remains in [-5, 5]. * * */ static void feasible_direction_set_length(double * feasible_direction, const double *xopt, size_t dimension, long rseed) { const long seed_offset = 412; /* was sampled uniform in 0-999 */ const double feas_shrink = 0.75; /* scale randomly between 0.75 and 1.0 */ const double feas_bound = 5.0; size_t i; double r[1], maxabs, maxrel; maxabs = maxrel = 0.0; for (i = 0; i < dimension; ++i) { maxabs = coco_double_max(maxabs, fabs(xopt[i])); maxrel = coco_double_max(maxrel, feasible_direction[i] / (feas_bound - xopt[i])); maxrel = coco_double_max(maxrel, feasible_direction[i] / (-feas_bound - xopt[i])); } if (maxabs > 4.01) coco_warning("feasible_direction_set_length: a component of fabs(xopt) was greater than 4.01"); if (maxabs > 5.0) coco_error("feasible_direction_set_length: a component of fabs(xopt) was greater than 5.0"); bbob2009_unif(r, 1, rseed + seed_offset); coco_vector_scale(feasible_direction, dimension, feas_shrink + r[0] * (1 - feas_shrink), /* nominator */ maxrel); /* denominator */ } /** * @brief Objective function: sphere * Constraint(s): linear */ static coco_problem_t *f_sphere_c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_linear_constraints, const long rseed, double *feasible_direction, const double *xopt, const char *problem_id_template, const char *problem_name_template) { size_t i; coco_problem_t *problem = NULL; coco_problem_t *problem_c = NULL; char *problem_type_temp = NULL; double *all_zeros = NULL; all_zeros = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) all_zeros[i] = 0.0; /* Create the objective function */ problem = f_sphere_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); bbob_evaluate_gradient(problem, all_zeros, feasible_direction); feasible_direction_set_length(feasible_direction, xopt, dimension, rseed); /* Create the constraints. Use the gradient of the objective * function at the origin to build the first constraint. */ problem_c = c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, problem_id_template, problem_name_template, feasible_direction); problem_type_temp = coco_strdup(problem->problem_type); problem = coco_problem_stacked_allocate(problem, problem_c, problem_c->smallest_values_of_interest, problem_c->largest_values_of_interest); /* Define problem->best_parameter as the origin and store its * objective function value into problem->best_value. */ for (i = 0; i < dimension; ++i) problem->best_parameter[i] = 0.0; assert(problem->evaluate_function != NULL); problem->evaluate_function(problem, problem->best_parameter, problem->best_value); /* To be sure that everything is correct, reset the f-evaluations * and g-evaluations counters to zero. */ problem->evaluations = 0; problem->evaluations_constraints = 0; /* Apply a translation to the whole problem so that the constrained * minimum is no longer at the origin. */ problem = transform_vars_shift(problem, xopt, 0); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem_type_temp, problem_c->problem_type); coco_free_memory(problem_type_temp); coco_free_memory(all_zeros); return problem; } /** * @brief Objective function: ellipsoid * Constraint(s): linear */ static coco_problem_t *f_ellipsoid_c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_linear_constraints, const long rseed, double *feasible_direction, const double *xopt, const char *problem_id_template, const char *problem_name_template) { size_t i; coco_problem_t *problem = NULL; coco_problem_t *problem_c = NULL; char *problem_type_temp = NULL; double *all_zeros = NULL; all_zeros = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) all_zeros[i] = 0.0; /* Create the objective function */ problem = f_ellipsoid_cons_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); bbob_evaluate_gradient(problem, all_zeros, feasible_direction); feasible_direction_set_length(feasible_direction, xopt, dimension, rseed); /* Create the constraints. Use the gradient of the objective * function at the origin to build the first constraint. */ problem_c = c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, problem_id_template, problem_name_template, feasible_direction); problem_type_temp = coco_strdup(problem->problem_type); /* Build the final constrained function by stacking the objective * function and the constraints into one coco_problem_t type. */ problem = coco_problem_stacked_allocate(problem, problem_c, problem_c->smallest_values_of_interest, problem_c->largest_values_of_interest); /* Define problem->best_parameter as the origin and store its * objective function value into problem->best_value. */ for (i = 0; i < dimension; ++i) problem->best_parameter[i] = 0.0; assert(problem->evaluate_function != NULL); problem->evaluate_function(problem, problem->best_parameter, problem->best_value); /* To be sure that everything is correct, reset the f-evaluations * and g-evaluations counters to zero. */ problem->evaluations = 0; problem->evaluations_constraints = 0; problem = transform_vars_oscillate(problem); transform_inv_initial_oscillate(problem, xopt); /* Apply a translation to the whole problem so that the constrained * minimum is no longer at the origin. */ problem = transform_vars_shift(problem, xopt, 0); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem_type_temp, problem_c->problem_type); coco_free_memory(problem_type_temp); coco_free_memory(all_zeros); return problem; } /** * @brief Objective function: rotated ellipsoid * Constraint(s): linear */ static coco_problem_t *f_ellipsoid_rotated_c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_linear_constraints, const long rseed, double *feasible_direction, const double *xopt, const char *problem_id_template, const char *problem_name_template) { size_t i; coco_problem_t *problem = NULL; coco_problem_t *problem_c = NULL; char *problem_type_temp = NULL; double *all_zeros = NULL; all_zeros = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) all_zeros[i] = 0.0; /* Create the objective function */ problem = f_ellipsoid_rotated_cons_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); bbob_evaluate_gradient(problem, all_zeros, feasible_direction); feasible_direction_set_length(feasible_direction, xopt, dimension, rseed); /* Create the constraints. Use the gradient of the objective * function at the origin to build the first constraint. */ problem_c = c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, problem_id_template, problem_name_template, feasible_direction); problem_type_temp = coco_strdup(problem->problem_type); /* Build the final constrained function by stacking the objective * function and the constraints into one coco_problem_t type. */ problem = coco_problem_stacked_allocate(problem, problem_c, problem_c->smallest_values_of_interest, problem_c->largest_values_of_interest); /* Define problem->best_parameter as the origin and store its * objective function value into problem->best_value. */ for (i = 0; i < dimension; ++i) problem->best_parameter[i] = 0.0; assert(problem->evaluate_function != NULL); problem->evaluate_function(problem, problem->best_parameter, problem->best_value); /* To be sure that everything is correct, reset the f-evaluations * and g-evaluations counters to zero. */ problem->evaluations = 0; problem->evaluations_constraints = 0; problem = transform_vars_oscillate(problem); transform_inv_initial_oscillate(problem, xopt); /* Apply a translation to the whole problem so that the constrained * minimum is no longer at the origin . */ problem = transform_vars_shift(problem, xopt, 0); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem_type_temp, problem_c->problem_type); coco_free_memory(problem_type_temp); coco_free_memory(all_zeros); return problem; } /** * @brief Objective function: linear slope * Constraint(s): linear */ static coco_problem_t *f_linear_slope_c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_linear_constraints, const long rseed, double *feasible_direction, const double *xopt, const char *problem_id_template, const char *problem_name_template) { size_t i; coco_problem_t *problem = NULL; coco_problem_t *problem_c = NULL; char *problem_type_temp = NULL; double *all_zeros = NULL; all_zeros = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) all_zeros[i] = 0.0; /* Create the objective function */ problem = f_linear_slope_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); bbob_evaluate_gradient(problem, all_zeros, feasible_direction); feasible_direction_set_length(feasible_direction, xopt, dimension, rseed); /* Create the constraints. Use the gradient of the objective * function at the origin to build the first constraint. */ problem_c = c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, problem_id_template, problem_name_template, feasible_direction); problem_type_temp = coco_strdup(problem->problem_type); /* Build the final constrained function by stacking the objective * function and the constraints into one coco_problem_t type. */ problem = coco_problem_stacked_allocate(problem, problem_c, problem_c->smallest_values_of_interest, problem_c->largest_values_of_interest); /* Define problem->best_parameter as the origin and store its * objective function value into problem->best_value. */ for (i = 0; i < dimension; ++i) problem->best_parameter[i] = 0.0; /* Apply a translation to the whole problem so that the constrained * minimum is no longer at the origin. */ problem = transform_vars_shift(problem, xopt, 1); assert(problem->evaluate_function != NULL); problem->evaluate_function(problem, problem->best_parameter, problem->best_value); /* To be sure that everything is correct, reset the f-evaluations * and g-evaluations counters to zero. */ problem->evaluations = 0; problem->evaluations_constraints = 0; /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem_type_temp, problem_c->problem_type); coco_free_memory(problem_type_temp); coco_free_memory(all_zeros); return problem; } /** * @brief Objective function: discus * Constraint(s): linear */ static coco_problem_t *f_discus_c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_linear_constraints, const long rseed, double *feasible_direction, const double *xopt, const char *problem_id_template, const char *problem_name_template) { size_t i; coco_problem_t *problem = NULL; coco_problem_t *problem_c = NULL; char *problem_type_temp = NULL; double *all_zeros = NULL; all_zeros = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) all_zeros[i] = 0.0; /* Create the objective function */ problem = f_discus_cons_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); bbob_evaluate_gradient(problem, all_zeros, feasible_direction); feasible_direction_set_length(feasible_direction, xopt, dimension, rseed); /* Create the constraints. Use the gradient of the objective * function at the origin to build the first constraint. */ problem_c = c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, problem_id_template, problem_name_template, feasible_direction); problem_type_temp = coco_strdup(problem->problem_type); /* Build the final constrained function by stacking the objective * function and the constraints into one coco_problem_t type. */ problem = coco_problem_stacked_allocate(problem, problem_c, problem_c->smallest_values_of_interest, problem_c->largest_values_of_interest); /* Define problem->best_parameter as the origin and store its * objective function value into problem->best_value */ for (i = 0; i < dimension; ++i) problem->best_parameter[i] = 0.0; assert(problem->evaluate_function != NULL); problem->evaluate_function(problem, problem->best_parameter, problem->best_value); /* To be sure that everything is correct, reset the f-evaluations * and g-evaluations counters to zero. */ problem->evaluations = 0; problem->evaluations_constraints = 0; problem = transform_vars_oscillate(problem); transform_inv_initial_oscillate(problem, xopt); /* Apply a translation to the whole problem so that the constrained * minimum is no longer at the origin. */ problem = transform_vars_shift(problem, xopt, 0); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem_type_temp, problem_c->problem_type); coco_free_memory(problem_type_temp); coco_free_memory(all_zeros); return problem; } /** * @brief Objective function: bent cigar * Constraint(s): linear */ static coco_problem_t *f_bent_cigar_c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_linear_constraints, const long rseed, double *feasible_direction, const double *xopt, const char *problem_id_template, const char *problem_name_template) { size_t i; coco_problem_t *problem = NULL; coco_problem_t *problem_c = NULL; char *problem_type_temp = NULL; double *all_zeros = NULL; all_zeros = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) all_zeros[i] = 0.0; /* Create the objective function */ problem = f_bent_cigar_cons_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); bbob_evaluate_gradient(problem, all_zeros, feasible_direction); feasible_direction_set_length(feasible_direction, xopt, dimension, rseed); /* Create the constraints. Use the gradient of the objective * function at the origin to build the first constraint. */ problem_c = c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, problem_id_template, problem_name_template, feasible_direction); problem_type_temp = coco_strdup(problem->problem_type); /* Build the final constrained function by stacking the objective * function and the constraints into one coco_problem_t type. */ problem = coco_problem_stacked_allocate(problem, problem_c, problem_c->smallest_values_of_interest, problem_c->largest_values_of_interest); /* Define problem->best_parameter as the origin and store its * objective function value into problem->best_value. */ for (i = 0; i < dimension; ++i) problem->best_parameter[i] = 0.0; assert(problem->evaluate_function != NULL); problem->evaluate_function(problem, problem->best_parameter, problem->best_value); /* To be sure that everything is correct, reset the f-evaluations * and g-evaluations counters to zero. */ problem->evaluations = 0; problem->evaluations_constraints = 0; problem = transform_vars_asymmetric(problem, 0.2); transform_inv_initial_asymmetric(problem, xopt); /* Apply a translation to the whole problem so that the constrained * minimum is no longer at the origin. */ problem = transform_vars_shift(problem, xopt, 0); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem_type_temp, problem_c->problem_type); coco_free_memory(problem_type_temp); coco_free_memory(all_zeros); return problem; } /** * @brief Objective function: different powers * Constraint(s): linear */ static coco_problem_t *f_different_powers_c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_linear_constraints, const long rseed, double *feasible_direction, const double *xopt, const char *problem_id_template, const char *problem_name_template) { size_t i; coco_problem_t *problem = NULL; coco_problem_t *problem_c = NULL; char *problem_type_temp = NULL; double *all_zeros = NULL; all_zeros = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) all_zeros[i] = 0.0; /* Create the objective function */ problem = f_different_powers_bbob_constrained_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); bbob_evaluate_gradient(problem, all_zeros, feasible_direction); feasible_direction_set_length(feasible_direction, xopt, dimension, rseed); /* Create the constraints. Use the gradient of the objective * function at the origin to build the first constraint. */ problem_c = c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, problem_id_template, problem_name_template, feasible_direction); problem_type_temp = coco_strdup(problem->problem_type); /* Build the final constrained function by stacking the objective * function and the constraints into one coco_problem_t type. */ problem = coco_problem_stacked_allocate(problem, problem_c, problem_c->smallest_values_of_interest, problem_c->largest_values_of_interest); /* Define problem->best_parameter as the origin and store its * objective function value into problem->best_value. */ for (i = 0; i < dimension; ++i) problem->best_parameter[i] = 0.0; assert(problem->evaluate_function != NULL); problem->evaluate_function(problem, problem->best_parameter, problem->best_value); /* To be sure that everything is correct, reset the f-evaluations * and g-evaluations counters to zero. */ problem->evaluations = 0; problem->evaluations_constraints = 0; /* Apply a translation to the whole problem so that the constrained * minimum is no longer at the origin. */ problem = transform_vars_shift(problem, xopt, 0); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem_type_temp, problem_c->problem_type); coco_free_memory(problem_type_temp); coco_free_memory(all_zeros); return problem; } /** * @brief Objective function: rastrigin * Constraint(s): linear */ static coco_problem_t *f_rastrigin_c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_linear_constraints, const long rseed, double *feasible_direction, const double *xopt, const char *problem_id_template, const char *problem_name_template) { size_t i; coco_problem_t *problem = NULL; coco_problem_t *problem_c = NULL; double *all_zeros = NULL; char *problem_type_temp = NULL; all_zeros = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) all_zeros[i] = 0.0; /* Create the objective function */ problem = f_rastrigin_cons_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); bbob_evaluate_gradient(problem, all_zeros, feasible_direction); feasible_direction_set_length(feasible_direction, xopt, dimension, rseed); /* Create the constraints. Use the feasible direction above * to build the first constraint. */ problem_c = c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, problem_id_template, problem_name_template, feasible_direction); problem_type_temp = coco_strdup(problem->problem_type); /* Build the final constrained function by stacking the objective * function and the constraints into one coco_problem_t type. */ problem = coco_problem_stacked_allocate(problem, problem_c, problem_c->smallest_values_of_interest, problem_c->largest_values_of_interest); /* Define problem->best_parameter as the origin and store its * objective function value into problem->best_value. */ for (i = 0; i < dimension; ++i) problem->best_parameter[i] = 0.0; assert(problem->evaluate_function != NULL); problem->evaluate_function(problem, problem->best_parameter, problem->best_value); /* To be sure that everything is correct, reset the f-evaluations * and g-evaluations counters to zero. */ problem->evaluations = 0; problem->evaluations_constraints = 0; problem = transform_vars_asymmetric(problem, 0.2); problem = transform_vars_oscillate(problem); transform_inv_initial_composed(problem, xopt); /* Apply a translation to the whole problem so that the constrained * minimum is no longer at the origin. */ problem = transform_vars_shift(problem, xopt, 0); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem_type_temp, problem_c->problem_type); coco_free_memory(problem_type_temp); coco_free_memory(all_zeros); return problem; } /** * @brief Objective function: rastrigin * Constraint(s): linear */ static coco_problem_t *f_rastrigin_rotated_c_linear_cons_bbob_problem_allocate(const size_t function, const size_t dimension, const size_t instance, const size_t number_of_linear_constraints, const long rseed, double *feasible_direction, const double *xopt, const char *problem_id_template, const char *problem_name_template) { size_t i; coco_problem_t *problem = NULL; coco_problem_t *problem_c = NULL; double *all_zeros = NULL; char *problem_type_temp = NULL; all_zeros = coco_allocate_vector(dimension); for (i = 0; i < dimension; ++i) all_zeros[i] = 0.0; /* Create the objective function */ problem = f_rastrigin_rotated_cons_bbob_problem_allocate(function, dimension, instance, rseed, problem_id_template, problem_name_template); bbob_evaluate_gradient(problem, all_zeros, feasible_direction); feasible_direction_set_length(feasible_direction, xopt, dimension, rseed); /* Create the constraints. Use the feasible direction above * to build the first constraint. */ problem_c = c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, problem_id_template, problem_name_template, feasible_direction); problem_type_temp = coco_strdup(problem->problem_type); /* Build the final constrained function by stacking the objective * function and the constraints into one coco_problem_t type. */ problem = coco_problem_stacked_allocate(problem, problem_c, problem_c->smallest_values_of_interest, problem_c->largest_values_of_interest); /* Define problem->best_parameter as the origin and store its * objective function value into problem->best_value. */ for (i = 0; i < dimension; ++i) problem->best_parameter[i] = 0.0; assert(problem->evaluate_function != NULL); problem->evaluate_function(problem, problem->best_parameter, problem->best_value); /* To be sure that everything is correct, reset the f-evaluations * and g-evaluations counters to zero. */ problem->evaluations = 0; problem->evaluations_constraints = 0; problem = transform_vars_asymmetric(problem, 0.2); problem = transform_vars_oscillate(problem); transform_inv_initial_composed(problem, xopt); /* Apply a translation to the whole problem so that the constrained * minimum is no longer at the origin. */ problem = transform_vars_shift(problem, xopt, 0); /* Construct problem type */ coco_problem_set_type(problem, "%s_%s", problem_type_temp, problem_c->problem_type); coco_free_memory(problem_type_temp); coco_free_memory(all_zeros); return problem; } #line 10 "code-experiments/src/suite_cons_bbob.c" #line 11 "code-experiments/src/suite_cons_bbob.c" static coco_suite_t *coco_suite_allocate(const char *suite_name, const size_t number_of_functions, const size_t number_of_dimensions, const size_t *dimensions, const char *default_instances); /** * @brief Sets the dimensions and default instances for the bbob suite. */ static coco_suite_t *suite_cons_bbob_initialize(const char *suite_name) { coco_suite_t *suite; const size_t dimensions[] = { 2, 3, 5, 10, 20, 40 }; const size_t num_dimensions = sizeof(dimensions) / sizeof(dimensions[0]); /* IMPORTANT: Make sure to change the default instance for every new workshop! */ suite = coco_suite_allocate(suite_name, 54, num_dimensions, dimensions, "year: 2022"); return suite; } /** * @brief Sets the instances associated with years for the constrained * bbob suite. */ static const char *suite_cons_bbob_get_instances_by_year(const int year) { if ((year >= 2022) || (year == 0)) { return "1-15"; } else if ((year >= 2009)) { return "1-15"; } else { coco_error("suite_cons_bbob_get_instances_by_year(): year %d not defined for suite_cons_bbob", year); return NULL; } } /** * @brief Creates and returns a constrained BBOB problem. */ static coco_problem_t *coco_get_cons_bbob_problem(const char *suite_name, const size_t function, const size_t dimension, const size_t instance) { size_t number_of_linear_constraints; coco_problem_t *problem = NULL; double *feasible_direction = coco_allocate_vector(dimension); double *xopt = coco_allocate_vector(dimension); long rseed = (long) (function + 10000 * instance); const char *problem_id_template = "bbob-constrained_f%03lu_i%02lu_d%02lu"; const char *problem_name_template = "bbob-constrained suite problem f%lu instance %lu in %luD"; if (strcmp(suite_name, "bbob-constrained-active-only") == 0) { /* CAVEAT: the first 28 chars of this ID are used in c_linear_cons_bbob_problem_allocate() * in c_linear.c to make the decision whether inactive constraints are added */ problem_id_template = "bbob-constrained-active-only_f%03lu_i%02lu_d%02lu"; problem_name_template = "bbob-constrained-active-only suite problem f%lu instance %lu in %luD"; } if (strcmp(suite_name, "bbob-constrained-no-disguise") == 0) { /* First trick as above, by chance same number of characters * Both options at the same time not supported */ problem_id_template = "bbob-constrained-no-disguise_f%03lu_i%02lu_d%02lu"; problem_name_template = "bbob-constrained-no-disguise suite problem f%lu instance %lu in %luD"; } /* Seed value used for shifting the whole constrained problem */ bbob2009_compute_xopt(xopt, rseed, dimension); /* Choose a different seed value for building the objective function */ rseed = (long) (function + 20000 * instance); number_of_linear_constraints = nb_of_linear_constraints(function, dimension); if (obj_function_type(function) == 1) { problem = f_sphere_c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, rseed, feasible_direction, xopt, problem_id_template, problem_name_template); problem = transform_obj_scale(problem, 10.); /* move initial feasible point to a delta-f between 100 and 10000 */ } else if (obj_function_type(function) == 2) { problem = f_ellipsoid_c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, rseed, feasible_direction, xopt, problem_id_template, problem_name_template); problem = transform_obj_scale(problem, 1e-4); /* move initial feasible point to a delta-f between 100 and 10000 */ } else if (obj_function_type(function) == 3) { problem = f_linear_slope_c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, rseed, feasible_direction, xopt, problem_id_template, problem_name_template); problem = transform_obj_scale(problem, 10.); /* move initial feasible point to a delta-f between 100 and 10000 */ } else if (obj_function_type(function) == 4) { problem = f_ellipsoid_rotated_c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, rseed, feasible_direction, xopt, problem_id_template, problem_name_template); problem = transform_obj_scale(problem, 1e-4); /* move initial feasible point to a delta-f between 100 and 10000 */ } else if (obj_function_type(function) == 5) { problem = f_discus_c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, rseed, feasible_direction, xopt, problem_id_template, problem_name_template); problem = transform_obj_scale(problem, 1e-4); /* move initial feasible point to a delta-f between 100 and 10000 */ } else if (obj_function_type(function) == 6) { problem = f_bent_cigar_c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, rseed, feasible_direction, xopt, problem_id_template, problem_name_template); problem = transform_obj_scale(problem, 1e-4); /* move initial feasible point to a delta-f between 100 and 100,000 */ } else if (obj_function_type(function) == 7) { problem = f_different_powers_c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, rseed, feasible_direction, xopt, problem_id_template, problem_name_template); problem = transform_obj_scale(problem, 1e2); /* move initial feasible point to a delta-f between 100 and 1000 */ } else if (obj_function_type(function) == 8) { problem = f_rastrigin_c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, rseed, feasible_direction, xopt, problem_id_template, problem_name_template); problem = transform_obj_scale(problem, 10.); /* move initial feasible point to a delta-f between 100 and 10000 */ } else if (obj_function_type(function) == 9) { problem = f_rastrigin_rotated_c_linear_cons_bbob_problem_allocate(function, dimension, instance, number_of_linear_constraints, rseed, feasible_direction, xopt, problem_id_template, problem_name_template); problem = transform_obj_scale(problem, 10.); /* move initial feasible point to a delta-f between 100 and 10000 */ } else { coco_free_memory(xopt); coco_free_memory(feasible_direction); coco_error("get_cons_bbob_problem(): cannot retrieve problem f%lu instance %lu in %luD", function, instance, dimension); return NULL; /* Never reached */ } coco_free_memory(xopt); coco_free_memory(feasible_direction); return problem; } /** * @brief Returns the problem from the constrained bbob suite that * corresponds to the given parameters. * * @param suite The COCO suite. * @param function_idx Index of the function (starting from 0). * @param dimension_idx Index of the dimension (starting from 0). * @param instance_idx Index of the instance (starting from 0). * @return The problem that corresponds to the given parameters. */ static coco_problem_t *suite_cons_bbob_get_problem(coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { coco_problem_t *problem = NULL; const size_t function = suite->functions[function_idx]; const size_t dimension = suite->dimensions[dimension_idx]; const size_t instance = suite->instances[instance_idx]; problem = coco_get_cons_bbob_problem(suite->suite_name, function, dimension, instance); problem->suite_dep_function = function; problem->suite_dep_instance = instance; problem->suite_dep_index = coco_suite_encode_problem_index(suite, function_idx, dimension_idx, instance_idx); /* Use the standard stacked problem_id as problem_name and * construct a new suite-specific problem_id */ coco_problem_set_id(problem, "%s_f%03lu_i%02lu_d%02lu", suite->suite_name, (unsigned long)function, (unsigned long)instance, (unsigned long)dimension); coco_problem_set_name(problem, "%s suite problem f%lu instance %lu in %luD", suite->suite_name, (unsigned long)function, (unsigned long)instance, (unsigned long)dimension); return problem; } #line 25 "code-experiments/src/coco_suite.c" /** @brief The maximum number of different instances in a suite. */ #define COCO_MAX_INSTANCES 1000 /** * @brief Calls the initializer of the given suite. * * @note This function needs to be updated when a new suite is added to COCO. */ static coco_suite_t *coco_suite_intialize(const char *suite_name) { coco_suite_t *suite; if (strcmp(suite_name, "toy") == 0) { suite = suite_toy_initialize(); } else if (strcmp(suite_name, "bbob") == 0) { suite = suite_bbob_initialize(); } else if ((strcmp(suite_name, "bbob-biobj") == 0) || (strcmp(suite_name, "bbob-biobj-ext") == 0)) { suite = suite_biobj_initialize(suite_name); } else if (strcmp(suite_name, "bbob-largescale") == 0) { suite = suite_largescale_initialize(); } else if (strncmp(suite_name, "bbob-constrained", 16) == 0) { suite = suite_cons_bbob_initialize(suite_name); } else if (strcmp(suite_name, "bbob-mixint") == 0) { suite = suite_bbob_mixint_initialize(suite_name); } else if (strcmp(suite_name, "bbob-biobj-mixint") == 0) { suite = suite_biobj_mixint_initialize(); } else { coco_error("coco_suite_intialize(): unknown problem suite"); return NULL; } return suite; } /** * @brief Calls the function that sets the instanced by year for the given suite. * * @note This function needs to be updated when a new suite is added to COCO. */ static const char *coco_suite_get_instances_by_year(const coco_suite_t *suite, const int year) { const char *year_string; if (strcmp(suite->suite_name, "bbob") == 0) { year_string = suite_bbob_get_instances_by_year(year); } else if ((strcmp(suite->suite_name, "bbob-biobj") == 0) || (strcmp(suite->suite_name, "bbob-biobj-ext") == 0)) { year_string = suite_biobj_get_instances_by_year(year); } else if (strncmp(suite->suite_name, "bbob-constrained", 16) == 0) { year_string = suite_cons_bbob_get_instances_by_year(year); } else if (strcmp(suite->suite_name, "bbob-largescale") == 0) { year_string = suite_largescale_get_instances_by_year(year); } else if (strcmp(suite->suite_name, "bbob-mixint") == 0) { year_string = suite_bbob_mixint_get_instances_by_year(year); } else if (strcmp(suite->suite_name, "bbob-biobj-mixint") == 0) { year_string = suite_biobj_mixint_get_instances_by_year(year); } else { coco_error("coco_suite_get_instances_by_year(): suite '%s' has no years defined", suite->suite_name); return NULL; } return year_string; } /** * @brief Calls the function that returns the problem corresponding to the given suite, function index, * dimension index and instance index. If the indices don't correspond to a problem because of suite * filtering, it returns NULL. * * @note This function needs to be updated when a new suite is added to COCO. */ static coco_problem_t *coco_suite_get_problem_from_indices(coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { coco_problem_t *problem; if ((suite->functions[function_idx] == 0) || (suite->dimensions[dimension_idx] == 0) || (suite->instances[instance_idx] == 0)) { return NULL; } if (strcmp(suite->suite_name, "toy") == 0) { problem = suite_toy_get_problem(suite, function_idx, dimension_idx, instance_idx); } else if (strcmp(suite->suite_name, "bbob") == 0) { problem = suite_bbob_get_problem(suite, function_idx, dimension_idx, instance_idx); } else if ((strcmp(suite->suite_name, "bbob-biobj") == 0) || (strcmp(suite->suite_name, "bbob-biobj-ext") == 0)) { problem = suite_biobj_get_problem(suite, function_idx, dimension_idx, instance_idx); } else if (strncmp(suite->suite_name, "bbob-constrained", 16) == 0) { problem = suite_cons_bbob_get_problem(suite, function_idx, dimension_idx, instance_idx); } else if (strcmp(suite->suite_name, "bbob-largescale") == 0) { problem = suite_largescale_get_problem(suite, function_idx, dimension_idx, instance_idx); } else if (strcmp(suite->suite_name, "bbob-mixint") == 0) { problem = suite_bbob_mixint_get_problem(suite, function_idx, dimension_idx, instance_idx); } else if (strcmp(suite->suite_name, "bbob-biobj-mixint") == 0) { problem = suite_biobj_mixint_get_problem(suite, function_idx, dimension_idx, instance_idx); } else { coco_error("coco_suite_get_problem_from_indices(): unknown problem suite"); return NULL; } coco_problem_set_suite(problem, suite); return problem; } /** * @brief Returns the best indicator value for the given problem. */ static double coco_suite_get_best_indicator_value(const coco_suite_t *suite, const coco_problem_t *problem, const char *indicator_name) { double result = 0; if (strcmp(indicator_name, "hyp") == 0) { result = suite_biobj_get_best_hyp_value(suite->suite_name, problem->problem_id); } else { coco_error("coco_suite_get_best_indicator_value(): indicator %s not supported", indicator_name); return 0; /* Never reached */ } return result; } /** * @note: While a suite can contain multiple problems with equal function, dimension and instance, this * function always returns the first problem in the suite with the given function, dimension and instance * values. If the given values don't correspond to a problem, the function returns NULL. */ coco_problem_t *coco_suite_get_problem_by_function_dimension_instance(coco_suite_t *suite, const size_t function, const size_t dimension, const size_t instance) { size_t i; int function_idx, dimension_idx, instance_idx; int found; found = 0; for (i = 0; i < suite->number_of_functions; i++) { if (suite->functions[i] == function) { function_idx = (int) i; found = 1; break; } } if (!found) return NULL; found = 0; for (i = 0; i < suite->number_of_dimensions; i++) { if (suite->dimensions[i] == dimension) { dimension_idx = (int) i; found = 1; break; } } if (!found) return NULL; found = 0; for (i = 0; i < suite->number_of_instances; i++) { if (suite->instances[i] == instance) { instance_idx = (int) i; found = 1; break; } } if (!found) return NULL; return coco_suite_get_problem_from_indices(suite, (size_t) function_idx, (size_t) dimension_idx, (size_t) instance_idx); } /** * @brief Allocates the space for a coco_suite_t instance. * * This function sets the functions and dimensions contained in the suite, while the instances are set by * the function coco_suite_set_instance. */ static coco_suite_t *coco_suite_allocate(const char *suite_name, const size_t number_of_functions, const size_t number_of_dimensions, const size_t *dimensions, const char *default_instances) { coco_suite_t *suite; size_t i; suite = (coco_suite_t *) coco_allocate_memory(sizeof(*suite)); suite->suite_name = coco_strdup(suite_name); suite->number_of_dimensions = number_of_dimensions; assert(number_of_dimensions > 0); suite->dimensions = coco_allocate_vector_size_t(suite->number_of_dimensions); for (i = 0; i < suite->number_of_dimensions; i++) { suite->dimensions[i] = dimensions[i]; } suite->number_of_functions = number_of_functions; assert(number_of_functions > 0); suite->functions = coco_allocate_vector_size_t(suite->number_of_functions); for (i = 0; i < suite->number_of_functions; i++) { suite->functions[i] = i + 1; } assert(strlen(default_instances) > 0); suite->default_instances = coco_strdup(default_instances); /* Will be set to the first valid dimension index before the constructor ends */ suite->current_dimension_idx = -1; /* Will be set to the first valid function index before the constructor ends */ suite->current_function_idx = -1; suite->current_instance_idx = -1; suite->current_problem = NULL; /* To be set in coco_suite_set_instance() */ suite->number_of_instances = 0; suite->instances = NULL; /* To be set in particular suites if needed */ suite->data = NULL; suite->data_free_function = NULL; return suite; } /** * @brief Sets the suite instance to the given instance_numbers. */ static void coco_suite_set_instance(coco_suite_t *suite, const size_t *instance_numbers) { size_t i; if (!instance_numbers) { coco_error("coco_suite_set_instance(): no instance given"); return; } suite->number_of_instances = coco_count_numbers(instance_numbers, COCO_MAX_INSTANCES, "suite instance numbers"); suite->instances = coco_allocate_vector_size_t(suite->number_of_instances); for (i = 0; i < suite->number_of_instances; i++) { suite->instances[i] = instance_numbers[i]; } } /** * @brief Filters the given items w.r.t. the given indices (starting from 1). * * Sets items[i - 1] to 0 for every i that cannot be found in indices (this function performs the conversion * from user-friendly indices starting from 1 to C-friendly indices starting from 0). */ static void coco_suite_filter_indices(size_t *items, const size_t number_of_items, const size_t *indices, const char *name) { size_t i, j; size_t count = coco_count_numbers(indices, COCO_MAX_INSTANCES, name); int found; for (i = 1; i <= number_of_items; i++) { found = 0; for (j = 0; j < count; j++) { if (i == indices[j]) { found = 1; break; } } if (!found) items[i - 1] = 0; } } /** * @brief Filters dimensions w.r.t. the given dimension_numbers. * * Sets suite->dimensions[i] to 0 for every dimension value that cannot be found in dimension_numbers. */ static void coco_suite_filter_dimensions(coco_suite_t *suite, const size_t *dimension_numbers) { size_t i, j; size_t count = coco_count_numbers(dimension_numbers, COCO_MAX_INSTANCES, "dimensions"); int found; for (i = 0; i < suite->number_of_dimensions; i++) { found = 0; for (j = 0; j < count; j++) { if (suite->dimensions[i] == dimension_numbers[j]) found = 1; } if (!found) suite->dimensions[i] = 0; } } /** * @param suite The given suite. * @param function_idx The index of the function in question (starting from 0). * * @return The function number in position function_idx in the suite. If the function has been filtered out * through suite_options in the coco_suite function, the result is 0. */ size_t coco_suite_get_function_from_function_index(const coco_suite_t *suite, const size_t function_idx) { if (function_idx >= suite->number_of_functions) { coco_error("coco_suite_get_function_from_function_index(): function index exceeding the number of functions in the suite"); return 0; /* Never reached*/ } return suite->functions[function_idx]; } /** * @param suite The given suite. * @param dimension_idx The index of the dimension in question (starting from 0). * * @return The dimension number in position dimension_idx in the suite. If the dimension has been filtered out * through suite_options in the coco_suite function, the result is 0. */ size_t coco_suite_get_dimension_from_dimension_index(const coco_suite_t *suite, const size_t dimension_idx) { if (dimension_idx >= suite->number_of_dimensions) { coco_error("coco_suite_get_dimension_from_dimension_index(): dimensions index exceeding the number of dimensions in the suite"); return 0; /* Never reached*/ } return suite->dimensions[dimension_idx]; } /** * @param suite The given suite. * @param instance_idx The index of the instance in question (starting from 0). * * @return The instance number in position instance_idx in the suite. If the instance has been filtered out * through suite_options in the coco_suite function, the result is 0. */ size_t coco_suite_get_instance_from_instance_index(const coco_suite_t *suite, const size_t instance_idx) { if (instance_idx >= suite->number_of_instances) { coco_error("coco_suite_get_instance_from_instance_index(): instance index exceeding the number of instances in the suite"); return 0; /* Never reached*/ } return suite->functions[instance_idx]; } void coco_suite_free(coco_suite_t *suite) { if (suite != NULL) { if (suite->suite_name) { coco_free_memory(suite->suite_name); suite->suite_name = NULL; } if (suite->dimensions) { coco_free_memory(suite->dimensions); suite->dimensions = NULL; } if (suite->functions) { coco_free_memory(suite->functions); suite->functions = NULL; } if (suite->instances) { coco_free_memory(suite->instances); suite->instances = NULL; } if (suite->default_instances) { coco_free_memory(suite->default_instances); suite->default_instances = NULL; } if (suite->current_problem) { coco_problem_free(suite->current_problem); suite->current_problem = NULL; } if (suite->data != NULL) { if (suite->data_free_function != NULL) { suite->data_free_function(suite->data); } coco_free_memory(suite->data); suite->data = NULL; } coco_free_memory(suite); suite = NULL; } } /** * Note that the problem_index depends on the number of instances a suite is defined with. * * @param suite The given suite. * @param problem_index The index of the problem to be returned. * * @return The problem of the suite defined by problem_index (NULL if this problem has been filtered out * from the suite). */ coco_problem_t *coco_suite_get_problem(coco_suite_t *suite, const size_t problem_index) { size_t function_idx = 0, instance_idx = 0, dimension_idx = 0; coco_suite_decode_problem_index(suite, problem_index, &function_idx, &dimension_idx, &instance_idx); return coco_suite_get_problem_from_indices(suite, function_idx, dimension_idx, instance_idx); } /** * The number of problems in the suite is computed as a product of the number of instances, number of * functions and number of dimensions and therefore doesn't account for any filtering done through the * suite_options parameter of the coco_suite function. * * @param suite The given suite. * * @return The number of problems in the suite. */ size_t coco_suite_get_number_of_problems(const coco_suite_t *suite) { return (suite->number_of_instances * suite->number_of_functions * suite->number_of_dimensions); } /** * @brief Returns the instances read from either a "year: YEAR" or "instances: NUMBERS" string. * * If both "year" and "instances" are given, the second is ignored (and a warning is raised). See the * coco_suite function for more information about the required format. */ static size_t *coco_suite_get_instance_indices(const coco_suite_t *suite, const char *suite_instance) { int year = -1; char *instances = NULL; const char *year_string = NULL; long year_found, instances_found; int parse_year = 1, parse_instances = 1; size_t *result = NULL; if (suite_instance == NULL) return NULL; year_found = coco_strfind(suite_instance, "year"); instances_found = coco_strfind(suite_instance, "instances"); if ((year_found < 0) && (instances_found < 0)) return NULL; if ((year_found > 0) && (instances_found > 0)) { if (year_found < instances_found) { parse_instances = 0; coco_warning("coco_suite_get_instance_indices(): 'instances' suite option ignored because it follows 'year'"); } else { parse_year = 0; coco_warning("coco_suite_get_instance_indices(): 'year' suite option ignored because it follows 'instances'"); } } if ((year_found >= 0) && (parse_year == 1)) { if (coco_options_read_int(suite_instance, "year", &(year)) != 0) { year_string = coco_suite_get_instances_by_year(suite, year); result = coco_string_parse_ranges(year_string, 1, 0, "instances", COCO_MAX_INSTANCES); } else { coco_warning("coco_suite_get_instance_indices(): problems parsing the 'year' suite_instance option, ignored"); } } instances = coco_allocate_string(COCO_MAX_INSTANCES); if ((instances_found >= 0) && (parse_instances == 1)) { if (coco_options_read_values(suite_instance, "instances", instances) > 0) { result = coco_string_parse_ranges(instances, 1, 0, "instances", COCO_MAX_INSTANCES); } else { coco_warning("coco_suite_get_instance_indices(): problems parsing the 'instance' suite_instance option, ignored"); } } coco_free_memory(instances); return result; } /** * @brief Iterates through the items from the current_item_id position on in search for the next positive * item. * * If such an item is found, current_item_id points to this item and the method returns 1. If such an * item cannot be found, current_item_id points to the first positive item and the method returns 0. */ static int coco_suite_is_next_item_found(const size_t *items, const size_t number_of_items, long *current_item_id) { if ((*current_item_id) != (long) number_of_items - 1) { /* Not the last item, iterate through items */ do { (*current_item_id)++; } while (((*current_item_id) < (long) number_of_items - 1) && (items[*current_item_id] == 0)); assert((*current_item_id) < (long) number_of_items); if (items[*current_item_id] != 0) { /* Next item is found, return true */ return 1; } } /* Next item cannot be found, move to the first good item and return false */ *current_item_id = -1; do { (*current_item_id)++; } while ((*current_item_id < (long) number_of_items - 1) && (items[*current_item_id] == 0)); if (items[*current_item_id] == 0) coco_error("coco_suite_is_next_item_found(): the chosen suite has no valid (positive) items"); return 0; } /** * @brief Iterates through the instances of the given suite from the current_instance_idx position on in * search for the next positive instance. * * If such an instance is found, current_instance_idx points to this instance and the method returns 1. If * such an instance cannot be found, current_instance_idx points to the first positive instance and the * method returns 0. */ static int coco_suite_is_next_instance_found(coco_suite_t *suite) { return coco_suite_is_next_item_found(suite->instances, suite->number_of_instances, &suite->current_instance_idx); } /** * @brief Iterates through the functions of the given suite from the current_function_idx position on in * search for the next positive function. * * If such a function is found, current_function_idx points to this function and the method returns 1. If * such a function cannot be found, current_function_idx points to the first positive function, * current_instance_idx points to the first positive instance and the method returns 0. */ static int coco_suite_is_next_function_found(coco_suite_t *suite) { int result = coco_suite_is_next_item_found(suite->functions, suite->number_of_functions, &suite->current_function_idx); if (!result) { /* Reset the instances */ suite->current_instance_idx = -1; coco_suite_is_next_instance_found(suite); } return result; } /** * @brief Iterates through the dimensions of the given suite from the current_dimension_idx position on in * search for the next positive dimension. * * If such a dimension is found, current_dimension_idx points to this dimension and the method returns 1. If * such a dimension cannot be found, current_dimension_idx points to the first positive dimension and the * method returns 0. */ static int coco_suite_is_next_dimension_found(coco_suite_t *suite) { return coco_suite_is_next_item_found(suite->dimensions, suite->number_of_dimensions, &suite->current_dimension_idx); } /** * Currently, seven suites are supported: * - "bbob" contains 24 * single-objective functions in 6 dimensions (2, 3, 5, 10, 20, 40) * - "bbob-biobj" contains 55 bi-objective * functions in 6 dimensions (2, 3, 5, 10, 20, 40) * - "bbob-biobj-ext" as an extension of "bbob-biobj" contains 92 * bi-objective functions in 6 dimensions * (2, 3, 5, 10, 20, 40) * - "bbob-largescale" contains 24 * single-objective functions in 6 large dimensions (40, 80, 160, 320, 640, 1280) * - "bbob-constrained" contains 54 linearly-constrained problems, which are combinations of 8 single * objective functions with 6 different numbers of active linear constraints (1, 2, 10, dimension/2, dimension-1, * dimension+1), in 6 dimensions (2, 3, 5, 10, 20, 40). * - "bbob-mixint" contains mixed-integer single-objective functions in 6 dimensions (2, 3, 5, 10, 20, 40) * - "bbob-biobj-mixint" contains 92 mixed-integer bi-objective functions in 6 dimensions (2, 3, 5, 10, 20, 40) * - "toy" contains 6 * single-objective functions in 5 dimensions (2, 3, 5, 10, 20) * * Only the suite_name parameter needs to be non-empty. The suite_instance and suite_options can be "" or * NULL. In this case, default values are taken (default instances of a suite are those used in the last year * and the suite is not filtered by default). * * @param suite_name A string containing the name of the suite. Currently supported suite names are "bbob", * "bbob-biobj", "bbob-biobj-ext", "bbob-largescale", "bbob-constrained", and "toy". * @param suite_instance A string used for defining the suite instances. Two ways are supported: * - "year: YEAR", where YEAR is the year of the BBOB workshop, includes the instances (to be) used in that * year's workshop; * - "instances: VALUES", where VALUES are instance numbers from 1 on written as a comma-separated list or a * range m-n. * @param suite_options A string of pairs "key: value" used to filter the suite (especially useful for * parallelizing the experiments). Supported options: * - "dimensions: LIST", where LIST is the list of dimensions to keep in the suite (range-style syntax is * not allowed here), * - "dimension_indices: VALUES", where VALUES is a list or a range of dimension indices (starting from 1) to keep * in the suite, and * - "function_indices: VALUES", where VALUES is a list or a range of function indices (starting from 1) to keep * in the suite, and * - "instance_indices: VALUES", where VALUES is a list or a range of instance indices (starting from 1) to keep * in the suite. * * @return The constructed suite object. */ coco_suite_t *coco_suite(const char *suite_name, const char *suite_instance, const char *suite_options) { coco_suite_t *suite; size_t *instances; char *option_string = NULL; char *ptr; size_t *indices = NULL; size_t *dimensions = NULL; long dim_found, dim_idx_found; int parce_dim = 1, parce_dim_idx = 1; coco_option_keys_t *known_option_keys, *given_option_keys, *redundant_option_keys; /* Sets the valid keys for suite options and suite instance */ const char *known_keys_o[] = { "dimensions", "dimension_indices", "function_indices", "instance_indices" }; const char *known_keys_i[] = { "year", "instances" }; /* Initialize the suite */ suite = coco_suite_intialize(suite_name); /* Set the instance */ if ((!suite_instance) || (strlen(suite_instance) == 0)) instances = coco_suite_get_instance_indices(suite, suite->default_instances); else { instances = coco_suite_get_instance_indices(suite, suite_instance); if (!instances) { /* Something wrong in the suite_instance string, use default instead */ instances = coco_suite_get_instance_indices(suite, suite->default_instances); } /* Check for redundant option keys for suite instance */ known_option_keys = coco_option_keys_allocate(sizeof(known_keys_i) / sizeof(char *), known_keys_i); given_option_keys = coco_option_keys(suite_instance); if (given_option_keys) { redundant_option_keys = coco_option_keys_get_redundant(known_option_keys, given_option_keys); if ((redundant_option_keys != NULL) && (redundant_option_keys->count > 0)) { /* Warn the user that some of given options are being ignored and output the valid options */ char *output_redundant = coco_option_keys_get_output_string(redundant_option_keys, "coco_suite(): Some keys in suite instance were ignored:\n"); char *output_valid = coco_option_keys_get_output_string(known_option_keys, "Valid keys for suite instance are:\n"); coco_warning("%s%s", output_redundant, output_valid); coco_free_memory(output_redundant); coco_free_memory(output_valid); } coco_option_keys_free(given_option_keys); coco_option_keys_free(redundant_option_keys); } coco_option_keys_free(known_option_keys); } coco_suite_set_instance(suite, instances); coco_free_memory(instances); /* Apply filter if any given by the suite_options */ if ((suite_options) && (strlen(suite_options) > 0)) { option_string = coco_allocate_string(COCO_PATH_MAX + 1); if (coco_options_read_values(suite_options, "function_indices", option_string) > 0) { indices = coco_string_parse_ranges(option_string, 1, suite->number_of_functions, "function_indices", COCO_MAX_INSTANCES); if (indices != NULL) { coco_suite_filter_indices(suite->functions, suite->number_of_functions, indices, "function_indices"); coco_free_memory(indices); } } coco_free_memory(option_string); option_string = coco_allocate_string(COCO_PATH_MAX + 1); if (coco_options_read_values(suite_options, "instance_indices", option_string) > 0) { indices = coco_string_parse_ranges(option_string, 1, suite->number_of_instances, "instance_indices", COCO_MAX_INSTANCES); if (indices != NULL) { coco_suite_filter_indices(suite->instances, suite->number_of_instances, indices, "instance_indices"); coco_free_memory(indices); } } coco_free_memory(option_string); dim_found = coco_strfind(suite_options, "dimensions"); dim_idx_found = coco_strfind(suite_options, "dimension_indices"); if ((dim_found > 0) && (dim_idx_found > 0)) { if (dim_found < dim_idx_found) { parce_dim_idx = 0; coco_warning("coco_suite(): 'dimension_indices' suite option ignored because it follows 'dimensions'"); } else { parce_dim = 0; coco_warning("coco_suite(): 'dimensions' suite option ignored because it follows 'dimension_indices'"); } } option_string = coco_allocate_string(COCO_PATH_MAX + 1); if ((dim_idx_found >= 0) && (parce_dim_idx == 1) && (coco_options_read_values(suite_options, "dimension_indices", option_string) > 0)) { indices = coco_string_parse_ranges(option_string, 1, suite->number_of_dimensions, "dimension_indices", COCO_MAX_INSTANCES); if (indices != NULL) { coco_suite_filter_indices(suite->dimensions, suite->number_of_dimensions, indices, "dimension_indices"); coco_free_memory(indices); } } coco_free_memory(option_string); option_string = coco_allocate_string(COCO_PATH_MAX + 1); if ((dim_found >= 0) && (parce_dim == 1) && (coco_options_read_values(suite_options, "dimensions", option_string) > 0)) { ptr = option_string; /* Check for disallowed characters */ while (*ptr != '\0') { if ((*ptr != ',') && !isdigit((unsigned char )*ptr)) { coco_warning("coco_suite(): 'dimensions' suite option ignored because of disallowed characters"); return NULL; } else ptr++; } dimensions = coco_string_parse_ranges(option_string, suite->dimensions[0], suite->dimensions[suite->number_of_dimensions - 1], "dimensions", COCO_MAX_INSTANCES); if (dimensions != NULL) { coco_suite_filter_dimensions(suite, dimensions); coco_free_memory(dimensions); } } coco_free_memory(option_string); /* Check for redundant option keys for suite options */ known_option_keys = coco_option_keys_allocate(sizeof(known_keys_o) / sizeof(char *), known_keys_o); given_option_keys = coco_option_keys(suite_options); if (given_option_keys) { redundant_option_keys = coco_option_keys_get_redundant(known_option_keys, given_option_keys); if ((redundant_option_keys != NULL) && (redundant_option_keys->count > 0)) { /* Warn the user that some of given options are being ignored and output the valid options */ char *output_redundant = coco_option_keys_get_output_string(redundant_option_keys, "coco_suite(): Some keys in suite options were ignored:\n"); char *output_valid = coco_option_keys_get_output_string(known_option_keys, "Valid keys for suite options are:\n"); coco_warning("%s%s", output_redundant, output_valid); coco_free_memory(output_redundant); coco_free_memory(output_valid); } coco_option_keys_free(given_option_keys); coco_option_keys_free(redundant_option_keys); } coco_option_keys_free(known_option_keys); } /* Check that there are enough dimensions, functions and instances left */ if ((suite->number_of_dimensions < 1) || (suite->number_of_functions < 1) || (suite->number_of_instances < 1)) { coco_error("coco_suite(): the suite does not contain at least one dimension, function and instance"); return NULL; } /* Set the starting values of the current indices in such a way, that when the instance_idx is incremented, * this results in a valid problem */ coco_suite_is_next_function_found(suite); coco_suite_is_next_dimension_found(suite); return suite; } /** * Iterates through the suite first by instances, then by functions and finally by dimensions. * The instances/functions/dimensions that have been filtered out using the suite_options of the coco_suite * function are skipped. Outputs some information regarding the current place in the iteration. The returned * problem is wrapped with the observer. If the observer is NULL, the returned problem is unobserved. * * @param suite The given suite. * @param observer The observer used to wrap the problem. If NULL, the problem is returned unobserved. * * @returns The next problem of the suite or NULL if there is no next problem left. */ coco_problem_t *coco_suite_get_next_problem(coco_suite_t *suite, coco_observer_t *observer) { size_t function_idx; size_t dimension_idx; size_t instance_idx; coco_problem_t *problem; long previous_function_idx; long previous_dimension_idx; long previous_instance_idx; assert(suite != NULL); previous_function_idx = suite->current_function_idx; previous_dimension_idx = suite->current_dimension_idx; previous_instance_idx = suite->current_instance_idx; /* Iterate through the suite by instances, then functions and lastly dimensions in search for the next * problem. Note that these functions set the values of suite fields current_instance_idx, * current_function_idx and current_dimension_idx. */ if (!coco_suite_is_next_instance_found(suite) && !coco_suite_is_next_function_found(suite) && !coco_suite_is_next_dimension_found(suite)) { coco_info_partial("done\n"); return NULL; } if (suite->current_problem) { coco_problem_free(suite->current_problem); } assert(suite->current_function_idx >= 0); assert(suite->current_dimension_idx >= 0); assert(suite->current_instance_idx >= 0); function_idx = (size_t) suite->current_function_idx; dimension_idx = (size_t) suite->current_dimension_idx; instance_idx = (size_t) suite->current_instance_idx; problem = coco_suite_get_problem_from_indices(suite, function_idx, dimension_idx, instance_idx); if (observer != NULL) problem = coco_problem_add_observer(problem, observer); suite->current_problem = problem; /* Output information regarding the current place in the iteration */ if (coco_log_level >= COCO_INFO) { if (((long) dimension_idx != previous_dimension_idx) || (previous_instance_idx < 0)) { /* A new dimension started */ char *time_string = coco_current_time_get_string(); if (dimension_idx > 0) coco_info_partial("done\n"); else coco_info_partial("\n"); coco_info_partial("COCO INFO: %s, d=%lu, running: f%02lu", time_string, (unsigned long) suite->dimensions[dimension_idx], (unsigned long) suite->functions[function_idx]); coco_free_memory(time_string); } else if ((long) function_idx != previous_function_idx){ /* A new function started */ coco_info_partial("f%02lu", (unsigned long) suite->functions[function_idx]); } /* One dot for each instance */ coco_info_partial(".", suite->instances[instance_idx]); } return problem; } /* See coco.h for more information on encoding and decoding problem index */ /** * @param suite The suite. * @param function_idx Index of the function (starting with 0). * @param dimension_idx Index of the dimension (starting with 0). * @param instance_idx Index of the instance (starting with 0). * * @return The problem index in the suite computed from function_idx, dimension_idx and instance_idx. */ size_t coco_suite_encode_problem_index(const coco_suite_t *suite, const size_t function_idx, const size_t dimension_idx, const size_t instance_idx) { return instance_idx + (function_idx * suite->number_of_instances) + (dimension_idx * suite->number_of_instances * suite->number_of_functions); } /** * @param suite The suite. * @param problem_index Index of the problem in the suite (starting with 0). * @param function_idx Pointer to the index of the function, which is set by this function. * @param dimension_idx Pointer to the index of the dimension, which is set by this function. * @param instance_idx Pointer to the index of the instance, which is set by this function. */ void coco_suite_decode_problem_index(const coco_suite_t *suite, const size_t problem_index, size_t *function_idx, size_t *dimension_idx, size_t *instance_idx) { if (problem_index > (suite->number_of_instances * suite->number_of_functions * suite->number_of_dimensions) - 1) { coco_warning("coco_suite_decode_problem_index(): problem_index too large"); function_idx = 0; instance_idx = 0; dimension_idx = 0; return; } *instance_idx = problem_index % suite->number_of_instances; *function_idx = (problem_index / suite->number_of_instances) % suite->number_of_functions; *dimension_idx = problem_index / (suite->number_of_instances * suite->number_of_functions); } #line 1 "code-experiments/src/coco_observer.c" /** * @file coco_observer.c * @brief Definitions of functions regarding COCO observers. */ #line 7 "code-experiments/src/coco_observer.c" #line 8 "code-experiments/src/coco_observer.c" #include #include #include /** * @brief The type for triggers based on target values. * * The target values that trigger logging are at every 10**(exponent/number_of_triggers) from positive * infinity down to precision, at 0, and from -precision on with step -10**(exponent/number_of_triggers) until * negative infinity. */ typedef struct { int exponent; /**< @brief Value used to compare with the previously hit target. */ double value; /**< @brief Value of the currently hit target. */ size_t number_of_triggers; /**< @brief Number of target triggers between 10**i and 10**(i+1) for any i. */ double precision; /**< @brief Minimal precision of interest. */ } coco_observer_targets_t; /** * @brief The type for triggers based on numbers of evaluations. * * The numbers of evaluations that trigger logging are any of the two: * - every 10**(exponent1/number_of_triggers) for exponent1 >= 0 * - every base_evaluation * dimension * (10**exponent2) for exponent2 >= 0 */ typedef struct { /* First trigger */ size_t value1; /**< @brief The next value for the first trigger. */ size_t exponent1; /**< @brief Exponent used to compute the first trigger. */ size_t number_of_triggers; /**< @brief Number of target triggers between 10**i and 10**(i+1) for any i. */ /* Second trigger */ size_t value2; /**< @brief The next value for the second trigger. */ size_t exponent2; /**< @brief Exponent used to compute the second trigger. */ size_t *base_evaluations; /**< @brief The base evaluation numbers used to compute the actual evaluation numbers that trigger logging. */ size_t base_count; /**< @brief The number of base evaluations. */ size_t base_index; /**< @brief The next index of the base evaluations. */ size_t dimension; /**< @brief Dimension used in the calculation of the first trigger. */ } coco_observer_evaluations_t; /** * @brief The maximum number of evaluations to trigger logging. * * @note This is not the maximal evaluation number to be logged, but the maximal number of times logging is * triggered by the number of evaluations. */ #define COCO_MAX_EVALS_TO_LOG 1000 /***********************************************************************************************************/ /** * @name Methods regarding triggers based on target values */ /**@{*/ /** * @brief Creates and returns a structure containing information on targets. * * @param number_of_targets The number of targets between 10**(i/n) and 10**((i+1)/n) for each i. * @param precision Minimal precision of interest. */ static coco_observer_targets_t *coco_observer_targets(const size_t number_of_targets, const double precision) { coco_observer_targets_t *targets = (coco_observer_targets_t *) coco_allocate_memory(sizeof(*targets)); targets->exponent = INT_MAX; targets->value = DBL_MAX; targets->number_of_triggers = number_of_targets; targets->precision = precision; return targets; } /** * @brief Computes and returns whether the given value should trigger logging. */ static int coco_observer_targets_trigger(coco_observer_targets_t *targets, const double given_value) { int update_performed = 0; const double number_of_targets_double = (double) (long) targets->number_of_triggers; double verified_value = 0; int current_exponent = 0; int adjusted_exponent = 0; assert(targets != NULL); /* The given_value is positive or zero */ if (given_value >= 0) { if (given_value == 0) { /* If zero, use even smaller value than precision */ verified_value = targets->precision / 10.0; } else if (given_value < targets->precision) { /* If close to zero, use precision instead of the given_value*/ verified_value = targets->precision; } else { verified_value = given_value; } current_exponent = (int) (ceil(log10(verified_value) * number_of_targets_double)); if (current_exponent < targets->exponent) { /* Update the target information */ targets->exponent = current_exponent; if (given_value == 0) targets->value = 0; else targets->value = pow(10, (double) current_exponent / number_of_targets_double); update_performed = 1; } } /* The given_value is negative, therefore adjustments need to be made */ else { /* If close to zero, use precision instead of the given_value*/ if (given_value > -targets->precision) { verified_value = targets->precision; } else { verified_value = -given_value; } /* Adjustment: use floor instead of ceil! */ current_exponent = (int) (floor(log10(verified_value) * number_of_targets_double)); /* Compute the adjusted_exponent in such a way, that it is always diminishing in value. The adjusted * exponent can only be used to verify if a new target has been hit. To compute the actual target * value, the current_exponent needs to be used. */ adjusted_exponent = 2 * (int) (ceil(log10(targets->precision / 10.0) * number_of_targets_double)) - current_exponent - 1; if (adjusted_exponent < targets->exponent) { /* Update the target information */ targets->exponent = adjusted_exponent; targets->value = - pow(10, (double) current_exponent / number_of_targets_double); update_performed = 1; } } return update_performed; } /**@}*/ /***********************************************************************************************************/ /** * @name Methods regarding triggers based on numbers of evaluations. */ /**@{*/ /** * @brief Creates and returns a structure containing information on triggers based on evaluation numbers. * * The numbers of evaluations that trigger logging are any of the two: * - every 10**(exponent1/number_of_triggers) for exponent1 >= 0 * - every base_evaluation * dimension * (10**exponent2) for exponent2 >= 0 * * @note The coco_observer_evaluations_t object instances need to be freed using the * coco_observer_evaluations_free function! * * @param base_evaluations Evaluation numbers formatted as a string, which are used as the base to compute * the second trigger. For example, if base_evaluations = "1,2,5", the logger will be triggered by * evaluations dim*1, dim*2, dim*5, 10*dim*1, 10*dim*2, 10*dim*5, 100*dim*1, 100*dim*2, 100*dim*5, ... */ static coco_observer_evaluations_t *coco_observer_evaluations(const char *base_evaluations, const size_t dimension) { coco_observer_evaluations_t *evaluations = (coco_observer_evaluations_t *) coco_allocate_memory( sizeof(*evaluations)); /* First trigger */ evaluations->value1 = 1; evaluations->exponent1 = 0; evaluations->number_of_triggers = 20; /* Second trigger */ evaluations->base_evaluations = coco_string_parse_ranges(base_evaluations, 1, 0, "base_evaluations", COCO_MAX_EVALS_TO_LOG); evaluations->dimension = dimension; evaluations->base_count = coco_count_numbers(evaluations->base_evaluations, COCO_MAX_EVALS_TO_LOG, "base_evaluations"); evaluations->base_index = 0; evaluations->value2 = dimension * evaluations->base_evaluations[0]; evaluations->exponent2 = 0; return evaluations; } /** * @brief Computes and returns whether the given evaluation number triggers the first condition of the * logging based on the number of evaluations. * * The second condition is: * evaluation_number == 10**(exponent1/number_of_triggers) */ static int coco_observer_evaluations_trigger_first(coco_observer_evaluations_t *evaluations, const size_t evaluation_number) { assert(evaluations != NULL); if (evaluation_number >= evaluations->value1) { /* Compute the next value for the first trigger */ while (coco_double_to_size_t(floor(pow(10, (double) evaluations->exponent1 / (double) evaluations->number_of_triggers))) <= evaluations->value1) { evaluations->exponent1++; } evaluations->value1 = coco_double_to_size_t(floor(pow(10, (double) evaluations->exponent1 / (double) evaluations->number_of_triggers))); return 1; } return 0; } /** * @brief Computes and returns whether the given evaluation number triggers the second condition of the * logging based on the number of evaluations. * * The second condition is: * evaluation_number == base_evaluation[base_index] * dimension * (10**exponent2) */ static int coco_observer_evaluations_trigger_second(coco_observer_evaluations_t *evaluations, const size_t evaluation_number) { assert(evaluations != NULL); if (evaluation_number >= evaluations->value2) { /* Compute the next value for the second trigger */ if (evaluations->base_index < evaluations->base_count - 1) { evaluations->base_index++; } else { evaluations->base_index = 0; evaluations->exponent2++; } evaluations->value2 = coco_double_to_size_t(pow(10, (double) evaluations->exponent2) * (double) (long) evaluations->dimension * (double) (long) evaluations->base_evaluations[evaluations->base_index]); return 1; } return 0; } /** * @brief Returns 1 if any of the two triggers based on the number of evaluations equal 1 and 0 otherwise. * * The numbers of evaluations that trigger logging are any of the two: * - every 10**(exponent1/number_of_triggers) for exponent1 >= 0 * - every base_evaluation * dimension * (10**exponent2) for exponent2 >= 0 */ static int coco_observer_evaluations_trigger(coco_observer_evaluations_t *evaluations, const size_t evaluation_number) { /* Both functions need to be called so that both triggers are correctly updated */ int first = coco_observer_evaluations_trigger_first(evaluations, evaluation_number); int second = coco_observer_evaluations_trigger_second(evaluations, evaluation_number); return (first + second > 0) ? 1: 0; } /** * @brief Frees the given evaluations object. */ static void coco_observer_evaluations_free(coco_observer_evaluations_t *evaluations) { assert(evaluations != NULL); coco_free_memory(evaluations->base_evaluations); coco_free_memory(evaluations); } /**@}*/ /***********************************************************************************************************/ /** * @brief Allocates memory for a coco_observer_t instance. */ static coco_observer_t *coco_observer_allocate(const char *result_folder, const char *observer_name, const char *algorithm_name, const char *algorithm_info, const size_t number_target_triggers, const double target_precision, const size_t number_evaluation_triggers, const char *base_evaluation_triggers, const int precision_x, const int precision_f, const int precision_g, const int log_discrete_as_int) { coco_observer_t *observer; observer = (coco_observer_t *) coco_allocate_memory(sizeof(*observer)); /* Initialize fields to sane/safe defaults */ observer->result_folder = coco_strdup(result_folder); observer->observer_name = coco_strdup(observer_name); observer->algorithm_name = coco_strdup(algorithm_name); observer->algorithm_info = coco_strdup(algorithm_info); observer->number_target_triggers = number_target_triggers; observer->target_precision = target_precision; observer->number_evaluation_triggers = number_evaluation_triggers; observer->base_evaluation_triggers = coco_strdup(base_evaluation_triggers); observer->precision_x = precision_x; observer->precision_f = precision_f; observer->precision_g = precision_g; observer->log_discrete_as_int = log_discrete_as_int; observer->data = NULL; observer->data_free_function = NULL; observer->logger_allocate_function = NULL; observer->logger_free_function = NULL; observer->is_active = 1; return observer; } void coco_observer_free(coco_observer_t *observer) { if (observer != NULL) { observer->is_active = 0; if (observer->observer_name != NULL) coco_free_memory(observer->observer_name); if (observer->result_folder != NULL) coco_free_memory(observer->result_folder); if (observer->algorithm_name != NULL) coco_free_memory(observer->algorithm_name); if (observer->algorithm_info != NULL) coco_free_memory(observer->algorithm_info); if (observer->base_evaluation_triggers != NULL) coco_free_memory(observer->base_evaluation_triggers); if (observer->data != NULL) { if (observer->data_free_function != NULL) { observer->data_free_function(observer->data); } coco_free_memory(observer->data); observer->data = NULL; } observer->logger_allocate_function = NULL; observer->logger_free_function = NULL; coco_free_memory(observer); observer = NULL; } } #line 1 "code-experiments/src/logger_bbob.c" /** * @file logger_bbob.c * @brief Implementation of the bbob logger. * * Logs the performance of a single-objective optimizer on noisy or noiseless problems. * It produces four kinds of files: * - The "info" files ... * - The "dat" files ... * - The "tdat" files ... * - The "rdat" files ... */ /* TODO: Document this file in doxygen style! */ #include #include #include #include #include #include #line 23 "code-experiments/src/logger_bbob.c" #line 25 "code-experiments/src/logger_bbob.c" #line 26 "code-experiments/src/logger_bbob.c" #line 27 "code-experiments/src/logger_bbob.c" #line 1 "code-experiments/src/observer_bbob.c" /** * @file observer_bbob.c * @brief Implementation of the bbob observer. */ #line 7 "code-experiments/src/observer_bbob.c" #line 8 "code-experiments/src/observer_bbob.c" static coco_problem_t *logger_bbob(coco_observer_t *observer, coco_problem_t *problem); static void logger_bbob_free(void *logger); /** * @brief The bbob observer data type. */ typedef struct { /* TODO: Can be used to store variables that need to be accessible during one run (i.e. for multiple * problems). For example, the following global variables from logger_bbob.c could be stored here: */ size_t current_dim; size_t current_fun_id; /* ... and others */ } observer_bbob_data_t; /** * @brief Initializes the bbob observer. */ static void observer_bbob(coco_observer_t *observer, const char *options, coco_option_keys_t **option_keys) { observer->logger_allocate_function = logger_bbob; observer->logger_free_function = logger_bbob_free; observer->data_free_function = NULL; observer->data = NULL; *option_keys = NULL; (void) options; /* To silence the compiler */ } #line 28 "code-experiments/src/logger_bbob.c" static const double fvalue_logged_for_infinite = 3e21; /* value used for logging try */ static const double fvalue_logged_for_nan = 2e21; /* static const double fvalue_logged_for_infeasible = 1e21; only in first evaluation */ static const double weight_constraints = 1e0; /* factor used in logged indicator (f-f*)^+ + sum_i g_i^+ in front of the sum */ /*static const size_t bbob_nbpts_nbevals = 20; Wassim: tentative, are now observer options with these default values*/ /*static const size_t bbob_nbpts_fval = 5;*/ static size_t bbob_current_dim = 0; static size_t bbob_current_funId = 0; static size_t bbob_infoFile_firstInstance = 0; char *bbob_infoFile_firstInstance_char; /* a possible solution: have a list of dims that are already in the file, if the ones we're about to log * is != bbob_current_dim and the funId is currend_funId, create a new .info file with as suffix the * number of the first instance */ static const int bbob_number_of_dimensions = 6; static size_t bbob_dimensions_in_current_infoFile[6] = { 0, 0, 0, 0, 0, 0 }; /* TODO should use dimensions from the suite */ /* The current_... mechanism fails if several problems are open. * For the time being this should lead to an error. * * A possible solution: bbob_logger_is_open becomes a reference * counter and as long as another logger is open, always a new info * file is generated. * TODO: Shouldn't the new way of handling observers already fix this? */ static int bbob_logger_is_open = 0; /* this could become lock-list of .info files */ /* TODO: add possibility of adding a prefix to the index files (easy to do through observer options) */ /** * @brief The bbob logger data type. */ typedef struct { coco_observer_t *observer; int is_initialized; /*char *path;// relative path to the data folder. //Wassim: now fetched from the observer */ /*const char *alg_name; the alg name, for now, temporarily the same as the path. Wassim: Now in the observer */ FILE *index_file; /* index file */ FILE *fdata_file; /* function value aligned data file */ FILE *tdata_file; /* number of function evaluations aligned data file */ FILE *rdata_file; /* restart info data file */ size_t number_of_evaluations; size_t number_of_evaluations_constraints; double best_fvalue; double last_fvalue; short written_last_eval; /* allows writing the data of the final fun eval in the .tdat file if not already written by the t_trigger*/ double *best_solution; /* The following are to only pass data as a parameter in the free function. The * interface should probably be the same for all free functions so passing the * problem as a second parameter is not an option even though we need info * form it.*/ size_t function_id; /*TODO: consider changing name*/ size_t instance_id; size_t number_of_variables; size_t number_of_integer_variables; int log_discrete_as_int; /**< @brief Whether to output discrete variables in int or double format. */ double optimal_fvalue; char *suite_name; coco_observer_targets_t *targets; /**< @brief Triggers based on target values. */ coco_observer_evaluations_t *evaluations; /**< @brief Triggers based on the number of evaluations. */ } logger_bbob_data_t; /** * @brief Discretized constraint value, ~8 + log10(c), in a single digit. * * -\infty..0 -> 0 * 0..1e-7 -> 1 * 1e-7..1e-6 -> 2 * ... * 1e-1..1 -> 8 * >1 -> 9 */ static int single_digit_constraint_value(const double c) { const double limits[9] = {0, 1e-7, 1e-6, 1e-5, 1e-4, 1e-3, 1e-2, 1e-1, 1}; int i; for (i = 0; i < 9; ++i) if (c <= limits[i]) return i; return 9; } /* was (old): * function evaluation | * noise-free fitness - Fopt (7.948000000000e+01) | * best noise-free fitness - Fopt | * measured fitness | * best measured fitness | * x1 | x2... was (bbob-new): "f evaluations | " "g evaluations | " "best noise-free fitness - Fopt | " "noise-free fitness - Fopt (%13.12e) | " "measured fitness | " "best measured fitness | " "x1 | " "x2...\n"; */ static const char *bbob_file_header_str = "%% " "f evaluations | " "g evaluations | " "best noise-free fitness - Fopt (%13.12e) + sum g_i+ | " "measured fitness | " "best measured fitness or single-digit g-values | " "x1 | " "x2...\n"; static const char *logger_name = "bbob"; static const char *data_format = "bbob-new2"; /* back to 5 columns, 5-th column writes single digit constraint values */ /** * adds a formated line to a data file */ static void logger_bbob_write_data(FILE *target_file, size_t number_of_f_evaluations, size_t number_of_cons_evaluations, double fvalue, double best_fvalue, double best_value, const double *x, size_t number_of_variables, size_t number_of_integer_variables, const double *constraints, size_t number_of_constraints, const int log_discrete_as_int) { size_t i; /* for some reason, it's %.0f in the old code instead of the 10.9e * in the documentation */ fprintf(target_file, "%lu %lu %+10.9e %+10.9e ", (unsigned long) number_of_f_evaluations, (unsigned long) number_of_cons_evaluations, best_fvalue - best_value, fvalue); if (number_of_constraints > 0) for (i = 0; i < number_of_constraints; ++i) fprintf(target_file, "%d", constraints ? single_digit_constraint_value(constraints[i]) : (int) (i % 10)); /* print 01234567890123..., may happen in last line of .tdat */ else fprintf(target_file, "%+10.9e", best_fvalue); if ((number_of_variables - number_of_integer_variables) < 22) { for (i = 0; i < number_of_variables; i++) { if ((i < number_of_integer_variables) && (log_discrete_as_int)) fprintf(target_file, " %d", coco_double_to_int(x[i])); else fprintf(target_file, " %+5.4e", x[i]); } } fprintf(target_file, "\n"); /* Flush output so that impatient users can see progress. * Otherwise it can take a long time until the output appears. */ fflush(target_file); } /** * Error when trying to create the file "path" */ static void logger_bbob_error_io(FILE *path, int errnum) { const char *error_format = "Error opening file: %s\n "; coco_error(error_format, strerror(errnum), path); } /** * Creates the data files or simply opens it */ /* calling sequence: logger_bbob_open_dataFile(&(logger->fdata_file), logger->observer->output_folder, dataFile_path, ".dat"); */ static void logger_bbob_open_dataFile(FILE **target_file, const char *path, const char *dataFile_path, const char *file_extension) { char file_path[COCO_PATH_MAX + 2] = { 0 }; char relative_filePath[COCO_PATH_MAX + 2] = { 0 }; int errnum; strncpy(relative_filePath, dataFile_path, COCO_PATH_MAX - strlen(relative_filePath) - 1); strncat(relative_filePath, file_extension, COCO_PATH_MAX - strlen(relative_filePath) - 1); coco_join_path(file_path, sizeof(file_path), path, relative_filePath, NULL); if (*target_file == NULL) { *target_file = fopen(file_path, "a+"); errnum = errno; if (*target_file == NULL) { logger_bbob_error_io(*target_file, errnum); } } } /* static void logger_bbob_open_dataFile(FILE **target_file, const char *path, const char *dataFile_path, const char *file_extension) { char file_path[COCO_PATH_MAX + 2] = { 0 }; char relative_filePath[COCO_PATH_MAX + 2] = { 0 }; int errnum; strncpy(relative_filePath, dataFile_path, COCO_PATH_MAX - strlen(relative_filePath) - 1); strncat(relative_filePath, file_extension, COCO_PATH_MAX - strlen(relative_filePath) - 1); coco_join_path(file_path, sizeof(file_path), path, relative_filePath, NULL); if (*target_file == NULL) { *target_file = fopen(file_path, "a+"); errnum = errno; if (*target_file == NULL) { _bbob_logger_error_io(*target_file, errnum); } } }*/ /** * Creates the index file fileName_prefix+problem_id+file_extension in * folder_path */ static void logger_bbob_openIndexFile(logger_bbob_data_t *logger, const char *folder_path, const char *indexFile_prefix, const char *function_id, const char *dataFile_path, const char *suite_name) { /* to add the instance number TODO: this should be done outside to avoid redoing this for the .*dat files */ char used_dataFile_path[COCO_PATH_MAX + 2] = { 0 }; int errnum, newLine = 0; /* newLine is at 1 if we need a new line in the info file */ char *function_id_char; /* TODO: consider adding them to logger */ char file_name[COCO_PATH_MAX + 2] = { 0 }; char file_path[COCO_PATH_MAX + 2] = { 0 }; FILE **target_file; FILE *tmp_file; strncpy(used_dataFile_path, dataFile_path, COCO_PATH_MAX - strlen(used_dataFile_path) - 1); if (bbob_infoFile_firstInstance == 0) { bbob_infoFile_firstInstance = logger->instance_id; } function_id_char = coco_strdupf("%lu", (unsigned long) logger->function_id); bbob_infoFile_firstInstance_char = coco_strdupf("%lu", (unsigned long) bbob_infoFile_firstInstance); target_file = &(logger->index_file); tmp_file = NULL; /* to check whether the file already exists. Don't want to use target_file */ strncpy(file_name, indexFile_prefix, COCO_PATH_MAX - strlen(file_name) - 1); strncat(file_name, "_f", COCO_PATH_MAX - strlen(file_name) - 1); strncat(file_name, function_id_char, COCO_PATH_MAX - strlen(file_name) - 1); strncat(file_name, "_i", COCO_PATH_MAX - strlen(file_name) - 1); strncat(file_name, bbob_infoFile_firstInstance_char, COCO_PATH_MAX - strlen(file_name) - 1); strncat(file_name, ".info", COCO_PATH_MAX - strlen(file_name) - 1); coco_join_path(file_path, sizeof(file_path), folder_path, file_name, NULL); if (*target_file == NULL) { tmp_file = fopen(file_path, "r"); /* to check for existence */ if ((tmp_file) && (bbob_current_dim == logger->number_of_variables) && (bbob_current_funId == logger->function_id)) { /* new instance of current funId and current dim */ *target_file = fopen(file_path, "a+"); if (*target_file == NULL) { errnum = errno; logger_bbob_error_io(*target_file, errnum); } fclose(tmp_file); } else { /* either file doesn't exist (new funId) or new Dim */ /* check that the dim was not already present earlier in the file, if so, create a new info file */ if (bbob_current_dim != logger->number_of_variables) { int i, j; for (i = 0; i < bbob_number_of_dimensions && bbob_dimensions_in_current_infoFile[i] != 0 && bbob_dimensions_in_current_infoFile[i] != logger->number_of_variables; i++) { ; /* checks whether dimension already present in the current infoFile */ } if (i < bbob_number_of_dimensions && bbob_dimensions_in_current_infoFile[i] == 0) { /* new dimension seen for the first time */ bbob_dimensions_in_current_infoFile[i] = logger->number_of_variables; newLine = 1; } else { if (i < bbob_number_of_dimensions) { /* dimension already present, need to create a new file */ newLine = 0; file_path[strlen(file_path) - strlen(bbob_infoFile_firstInstance_char) - 7] = 0; /* truncate the instance part */ bbob_infoFile_firstInstance = logger->instance_id; coco_free_memory(bbob_infoFile_firstInstance_char); bbob_infoFile_firstInstance_char = coco_strdupf("%lu", (unsigned long) bbob_infoFile_firstInstance); strncat(file_path, "_i", COCO_PATH_MAX - strlen(file_name) - 1); strncat(file_path, bbob_infoFile_firstInstance_char, COCO_PATH_MAX - strlen(file_name) - 1); strncat(file_path, ".info", COCO_PATH_MAX - strlen(file_name) - 1); } else { /* we have all dimensions */ newLine = 1; } for (j = 0; j < bbob_number_of_dimensions; j++) { /* new info file, reinitialize list of dims */ bbob_dimensions_in_current_infoFile[j] = 0; } bbob_dimensions_in_current_infoFile[i] = logger->number_of_variables; } } else { if ( bbob_current_funId != logger->function_id ) { /*new function in the same file */ newLine = 1; } } *target_file = fopen(file_path, "a+"); /* in any case, we append */ if (*target_file == NULL) { errnum = errno; logger_bbob_error_io(*target_file, errnum); } if (tmp_file) { /* File already exists, new dim so just a new line. Also, close the tmp_file */ if (newLine) { fprintf(*target_file, "\n"); } fclose(tmp_file); } /* data_format = coco_strdup("bbob-constrained"); */ fprintf(*target_file, "suite = '%s', funcId = %d, DIM = %lu, Precision = %.3e, algId = '%s', coco_version = '%s', logger = '%s', data_format = '%s'\n", suite_name, (int) strtol(function_id, NULL, 10), (unsigned long) logger->number_of_variables, pow(10, -8), logger->observer->algorithm_name, coco_version, logger_name, data_format); fprintf(*target_file, "%%\n"); strncat(used_dataFile_path, "_i", COCO_PATH_MAX - strlen(used_dataFile_path) - 1); strncat(used_dataFile_path, bbob_infoFile_firstInstance_char, COCO_PATH_MAX - strlen(used_dataFile_path) - 1); fprintf(*target_file, "%s.dat", used_dataFile_path); /* dataFile_path does not have the extension */ bbob_current_dim = logger->number_of_variables; bbob_current_funId = logger->function_id; } } coco_free_memory(function_id_char); } /** * Generates the different files and folder needed by the logger to store the * data if these don't already exist */ static void logger_bbob_initialize(logger_bbob_data_t *logger, coco_problem_t *inner_problem) { /* Creates/opens the data and index files */ char dataFile_path[COCO_PATH_MAX + 2] = { 0 }; /* relative path to the .dat file from where the .info file is */ char folder_path[COCO_PATH_MAX + 2] = { 0 }; char *tmpc_funId; /* serves to extract the function id as a char *. There should be a better way of doing this! */ char *tmpc_dim; /* serves to extract the dimension as a char *. There should be a better way of doing this! */ char indexFile_prefix[10] = "bbobexp"; /* TODO (minor): make the prefix bbobexp a parameter that the user can modify */ assert(logger != NULL); assert(inner_problem != NULL); assert(inner_problem->problem_id != NULL); tmpc_funId = coco_strdupf("%lu", (unsigned long) coco_problem_get_suite_dep_function(inner_problem)); tmpc_dim = coco_strdupf("%lu", (unsigned long) inner_problem->number_of_variables); /* prepare paths and names */ strncpy(dataFile_path, "data_f", COCO_PATH_MAX); strncat(dataFile_path, tmpc_funId, COCO_PATH_MAX - strlen(dataFile_path) - 1); coco_join_path(folder_path, sizeof(folder_path), logger->observer->result_folder, dataFile_path, NULL); coco_create_directory(folder_path); strncat(dataFile_path, "/bbobexp_f", COCO_PATH_MAX - strlen(dataFile_path) - 1); strncat(dataFile_path, tmpc_funId, COCO_PATH_MAX - strlen(dataFile_path) - 1); strncat(dataFile_path, "_DIM", COCO_PATH_MAX - strlen(dataFile_path) - 1); strncat(dataFile_path, tmpc_dim, COCO_PATH_MAX - strlen(dataFile_path) - 1); /* index/info file */ assert(coco_problem_get_suite(inner_problem)); logger_bbob_openIndexFile(logger, logger->observer->result_folder, indexFile_prefix, tmpc_funId, dataFile_path, coco_problem_get_suite(inner_problem)->suite_name); fprintf(logger->index_file, ", %lu", (unsigned long) coco_problem_get_suite_dep_instance(inner_problem)); /* data files */ /* TODO: definitely improvable but works for now */ strncat(dataFile_path, "_i", COCO_PATH_MAX - strlen(dataFile_path) - 1); strncat(dataFile_path, bbob_infoFile_firstInstance_char, COCO_PATH_MAX - strlen(dataFile_path) - 1); logger_bbob_open_dataFile(&(logger->fdata_file), logger->observer->result_folder, dataFile_path, ".dat"); fprintf(logger->fdata_file, bbob_file_header_str, logger->optimal_fvalue); logger_bbob_open_dataFile(&(logger->tdata_file), logger->observer->result_folder, dataFile_path, ".tdat"); fprintf(logger->tdata_file, bbob_file_header_str, logger->optimal_fvalue); logger_bbob_open_dataFile(&(logger->rdata_file), logger->observer->result_folder, dataFile_path, ".rdat"); fprintf(logger->rdata_file, bbob_file_header_str, logger->optimal_fvalue); logger->is_initialized = 1; coco_free_memory(tmpc_dim); coco_free_memory(tmpc_funId); coco_free_memory(bbob_infoFile_firstInstance_char); } /** * Layer added to the transformed-problem evaluate_function by the logger */ static void logger_bbob_evaluate(coco_problem_t *problem, const double *x, double *y) { size_t i; double y_logged, max_fvalue, sum_cons; double *cons = NULL; logger_bbob_data_t *logger = (logger_bbob_data_t *) coco_problem_transformed_get_data(problem); coco_problem_t *inner_problem = coco_problem_transformed_get_inner_problem(problem); const int is_feasible = problem->number_of_constraints <= 0 || coco_is_feasible(inner_problem, x, NULL); if (!logger->is_initialized) { logger_bbob_initialize(logger, inner_problem); } if ((coco_log_level >= COCO_DEBUG) && logger->number_of_evaluations == 0) { coco_debug("%4lu: ", (unsigned long) inner_problem->suite_dep_index); coco_debug("on problem %s ... ", coco_problem_get_id(inner_problem)); } coco_evaluate_function(inner_problem, x, y); /* fulfill contract as "being" a coco evaluate function */ logger->number_of_evaluations_constraints = coco_problem_get_evaluations_constraints(problem); logger->number_of_evaluations++; /* could be != coco_problem_get_evaluations(problem) for non-anytime logging? */ logger->written_last_eval = 0; /* flag whether the current evaluation was logged? */ logger->last_fvalue = y[0]; /* asma: should be: max(y[0], logger->optimal_fvalue) */ y_logged = y[0]; if (coco_is_nan(y_logged)) y_logged = fvalue_logged_for_nan; else if (coco_is_inf(y_logged)) y_logged = fvalue_logged_for_infinite; /* do sanity check */ if (is_feasible) /* infeasible solutions can have much better y0 values */ assert(y_logged + 1e-13 >= logger->optimal_fvalue); /* Evaluate the constraints */ if (problem->number_of_constraints > 0) { cons = coco_allocate_vector(problem->number_of_constraints); inner_problem->evaluate_constraint(inner_problem, x, cons); } /* Compute the sum of positive constraint values */ sum_cons = 0; for (i = 0; i < problem->number_of_constraints; ++i) { if (cons[i] > 0) sum_cons += cons[i]; } sum_cons *= weight_constraints; /* do this before the checks */ if (coco_is_nan(sum_cons)) sum_cons = fvalue_logged_for_nan; else if (coco_is_inf(sum_cons)) sum_cons = fvalue_logged_for_infinite; max_fvalue = y_logged > logger->optimal_fvalue ? y_logged : logger->optimal_fvalue; /* Update logger state. * at logger->number_of_evaluations == 1 the logger->best_fvalue is not initialized, * also compare to y_logged to not potentially be thrown off by weird values in y[0] */ if (logger->number_of_evaluations == 1 || (max_fvalue + sum_cons < logger->best_fvalue)) { logger->best_fvalue = max_fvalue + sum_cons; for (i = 0; i < problem->number_of_variables; i++) logger->best_solution[i] = x[i]; /* may well be infeasible */ /* Add a line in the .dat file for each logging target reached * by a feasible solution and always at evaluation one */ if (logger->number_of_evaluations == 1 || coco_observer_targets_trigger(logger->targets, logger->best_fvalue - logger->optimal_fvalue)) { logger_bbob_write_data( logger->fdata_file, logger->number_of_evaluations, logger->number_of_evaluations_constraints, y_logged, logger->best_fvalue, logger->optimal_fvalue, x, problem->number_of_variables, problem->number_of_integer_variables, cons, problem->number_of_constraints, logger->log_discrete_as_int); } } /* Add a line in the .tdat file each time an fevals trigger is reached.*/ if (coco_observer_evaluations_trigger(logger->evaluations, logger->number_of_evaluations + logger->number_of_evaluations_constraints)) { logger_bbob_write_data( logger->tdata_file, logger->number_of_evaluations, logger->number_of_evaluations_constraints, y_logged, logger->best_fvalue, logger->optimal_fvalue, x, problem->number_of_variables, problem->number_of_integer_variables, cons, problem->number_of_constraints, logger->log_discrete_as_int); logger->written_last_eval = 1; } /* Free allocated memory */ if (problem->number_of_constraints > 0) coco_free_memory(cons); } /* end logger_bbob_evaluate */ /** * Also serves as a finalize run method so. Must be called at the end * of Each run to correctly fill the index file * * TODO: make sure it is called at the end of each run or move the * writing into files to another function */ static void logger_bbob_free(void *stuff) { /* TODO: do all the "non simply freeing" stuff in another function * that can have problem as input */ logger_bbob_data_t *logger = (logger_bbob_data_t *) stuff; if (stuff == NULL) return; if ((coco_log_level >= COCO_DEBUG) && logger && logger->number_of_evaluations > 0) { coco_debug("best f=%e after %lu fevals (done observing)\n", logger->best_fvalue, (unsigned long) logger->number_of_evaluations); } if (logger->index_file != NULL) { fprintf(logger->index_file, ":%lu|%.1e", (unsigned long) logger->number_of_evaluations, logger->best_fvalue - logger->optimal_fvalue); fclose(logger->index_file); logger->index_file = NULL; } if (logger->fdata_file != NULL) { fclose(logger->fdata_file); logger->fdata_file = NULL; } if (logger->tdata_file != NULL) { /* TODO: make sure it handles restarts well. i.e., it writes * at the end of a single run, not all the runs on a given * instance. Maybe start with forcing it to generate a new * "instance" of problem for each restart in the beginning */ if (!logger->written_last_eval) { logger_bbob_write_data(logger->tdata_file, logger->number_of_evaluations, logger->number_of_evaluations_constraints, logger->best_fvalue, logger->best_fvalue, logger->optimal_fvalue, logger->best_solution, logger->number_of_variables, logger->number_of_integer_variables, NULL, 0, logger->log_discrete_as_int); } fclose(logger->tdata_file); logger->tdata_file = NULL; } if (logger->rdata_file != NULL) { fclose(logger->rdata_file); logger->rdata_file = NULL; } if (logger->best_solution != NULL) { coco_free_memory(logger->best_solution); logger->best_solution = NULL; } if (logger->targets != NULL){ coco_free_memory(logger->targets); logger->targets = NULL; } if (logger->evaluations != NULL){ coco_observer_evaluations_free(logger->evaluations); logger->evaluations = NULL; } bbob_logger_is_open = 0; } static coco_problem_t *logger_bbob(coco_observer_t *observer, coco_problem_t *inner_problem) { logger_bbob_data_t *logger_data; coco_problem_t *problem; logger_data = (logger_bbob_data_t *) coco_allocate_memory(sizeof(*logger_data)); logger_data->observer = observer; if (inner_problem->number_of_objectives != 1) { coco_warning("logger_bbob(): The bbob logger shouldn't be used to log a problem with %d objectives", inner_problem->number_of_objectives); } if (bbob_logger_is_open) coco_error("The current bbob_logger (observer) must be closed before a new one is opened"); /* This is the name of the folder which happens to be the algName */ /*logger->path = coco_strdup(observer->output_folder);*/ logger_data->index_file = NULL; logger_data->fdata_file = NULL; logger_data->tdata_file = NULL; logger_data->rdata_file = NULL; logger_data->number_of_variables = inner_problem->number_of_variables; logger_data->number_of_integer_variables = inner_problem->number_of_integer_variables; if (inner_problem->best_value == NULL) { /* coco_error("Optimal f value must be defined for each problem in order for the logger to work properly"); */ /* Setting the value to 0 results in the assertion y>=optimal_fvalue being susceptible to failure */ coco_warning("undefined optimal f value. Set to 0"); logger_data->optimal_fvalue = 0; } else { logger_data->optimal_fvalue = *(inner_problem->best_value); } logger_data->number_of_evaluations = 0; logger_data->number_of_evaluations_constraints = 0; logger_data->best_solution = coco_allocate_vector(inner_problem->number_of_variables); /* TODO: the following inits are just to be in the safe side and * should eventually be removed. Some fields of the bbob_logger struct * might be useless */ logger_data->function_id = coco_problem_get_suite_dep_function(inner_problem); logger_data->instance_id = coco_problem_get_suite_dep_instance(inner_problem); logger_data->written_last_eval = 0; logger_data->last_fvalue = DBL_MAX; logger_data->is_initialized = 0; logger_data->log_discrete_as_int = observer->log_discrete_as_int; /* Initialize triggers based on target values and number of evaluations */ logger_data->targets = coco_observer_targets(observer->number_target_triggers, observer->target_precision); logger_data->evaluations = coco_observer_evaluations(observer->base_evaluation_triggers, inner_problem->number_of_variables); problem = coco_problem_transformed_allocate(inner_problem, logger_data, logger_bbob_free, observer->observer_name); problem->evaluate_function = logger_bbob_evaluate; bbob_logger_is_open = 1; return problem; } #line 357 "code-experiments/src/coco_observer.c" #line 1 "code-experiments/src/logger_biobj.c" /** * @file logger_biobj.c * @brief Implementation of the bbob-biobj logger. * * Logs the values of the implemented indicators and archives nondominated solutions. * Produces four kinds of files: * - The "info" files contain high-level information on the performed experiment. One .info file is created * for each problem group (and indicator type) and contains information on all the problems in that problem * group (and indicator type). * - The "dat" files contain function evaluations, indicator values and target hits for every target hit as * well as for the last evaluation. One .dat file is created for each problem function and dimension (and * indicator type) and contains information for all instances of that problem (and indicator type). * - The "tdat" files contain function evaluation and indicator values for every predefined evaluation * number as well as for the last evaluation. One .tdat file is created for each problem function and * dimension (and indicator type) and contains information for all instances of that problem (and indicator * type). * - The "adat" files are archive files that contain function evaluations, 2 objectives and dim variables * for every nondominated solution. Whether these files are created, at what point in time the logger writes * nondominated solutions to the archive and whether the decision variables are output or not depends on * the values of log_nondom_mode and log_nondom_mode. See the bi-objective observer constructor * observer_biobj() for more information. One .adat file is created for each problem function, dimension * and instance. * * @note Whenever in this file a ROI is mentioned, it means the (normalized) region of interest in the * objective space. The non-normalized ROI is a rectangle with the ideal and nadir points as its two * opposite vertices, while the normalized ROI is the square [0, 1]^2. If not specifically mentioned, the * normalized ROI is assumed. * * @note This logger can handle both the original bbob-biobj test suite with 55 and the extended * bbob-biobj-ext test suite with 96 functions. */ #include #include #include #line 38 "code-experiments/src/logger_biobj.c" #line 39 "code-experiments/src/logger_biobj.c" #line 41 "code-experiments/src/logger_biobj.c" #line 42 "code-experiments/src/logger_biobj.c" #line 43 "code-experiments/src/logger_biobj.c" #line 1 "code-experiments/src/mo_avl_tree.c" /***************************************************************************** avl.c - Source code for libavl Copyright (c) 1998 Michael H. Buselli Copyright (c) 2000-2009 Wessel Dankers This file is part of libavl. libavl is free software: you can redistribute it and/or modify it under the terms of the GNU Lesser General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version. libavl is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU Lesser General Public License for more details. You should have received a copy of the GNU General Public License and a copy of the GNU Lesser General Public License along with libavl. If not, see . Augmented AVL-tree. Original by Michael H. Buselli . Modified by Wessel Dankers to add a bunch of bloat to the source code, change the interface and replace a few bugs. Mail him if you find any new bugs. Renamed and additionally modified by BOBBies to fit the COCO platform. *****************************************************************************/ #include #include #include /* In order to easily (un)comment unused functions */ #define AVL_TREE_COMMENT_UNUSED 1 /* We need either depths, counts or both (the latter being the default) */ #if !defined(AVL_DEPTH) && !defined(AVL_COUNT) #define AVL_DEPTH #define AVL_COUNT #endif /* User supplied function to compare two items like strcmp() does. * For example: compare(a,b) will return: * -1 if a < b * 0 if a = b * 1 if a > b */ typedef int (*avl_compare_t)(const void *a, const void *b, void *userdata); /* User supplied function to delete an item when a node is free()d. * If NULL, the item is not free()d. */ typedef void (*avl_free_t)(void *item, void *userdata); #define AVL_CMP(a,b) ((a) < (b) ? -1 : (a) != (b)) #if defined(AVL_COUNT) && defined(AVL_DEPTH) #define AVL_NODE_INITIALIZER(item) { 0, 0, 0, 0, 0, (item), 0, 0 } #else #define AVL_NODE_INITIALIZER(item) { 0, 0, 0, 0, 0, (item), 0 } #endif typedef struct avl_node { struct avl_node *prev; struct avl_node *next; struct avl_node *parent; struct avl_node *left; struct avl_node *right; void *item; #ifdef AVL_COUNT unsigned long count; #endif #ifdef AVL_DEPTH unsigned char depth; #endif } avl_node_t; #define AVL_TREE_INITIALIZER(cmp, free) { 0, 0, 0, (cmp), (free), {0}, 0, 0 } typedef struct avl_tree { avl_node_t *top; avl_node_t *head; avl_node_t *tail; avl_compare_t cmpitem; avl_free_t freeitem; void *userdata; struct avl_allocator *allocator; } avl_tree_t; #define AVL_ALLOCATOR_INITIALIZER(alloc, dealloc) { (alloc), (dealloc) } typedef avl_node_t *(*avl_allocate_t)(struct avl_allocator *); typedef void (*avl_deallocate_t)(struct avl_allocator *, avl_node_t *); typedef struct avl_allocator { avl_allocate_t allocate; avl_deallocate_t deallocate; } avl_allocator_t; static void avl_rebalance(avl_tree_t *, avl_node_t *); static avl_node_t *avl_node_insert_after(avl_tree_t *avltree, avl_node_t *node, avl_node_t *newnode); #ifdef AVL_COUNT #define AVL_NODE_COUNT(n) ((n) ? (n)->count : 0) #define AVL_L_COUNT(n) (AVL_NODE_COUNT((n)->left)) #define AVL_R_COUNT(n) (AVL_NODE_COUNT((n)->right)) #define AVL_CALC_COUNT(n) (AVL_L_COUNT(n) + AVL_R_COUNT(n) + 1) #endif #ifdef AVL_DEPTH #define AVL_NODE_DEPTH(n) ((n) ? (n)->depth : 0) #define AVL_L_DEPTH(n) (AVL_NODE_DEPTH((n)->left)) #define AVL_R_DEPTH(n) (AVL_NODE_DEPTH((n)->right)) #define AVL_CALC_DEPTH(n) ((unsigned char)((AVL_L_DEPTH(n) > AVL_R_DEPTH(n) ? AVL_L_DEPTH(n) : AVL_R_DEPTH(n)) + 1)) #endif const avl_node_t avl_node_0 = { 0, 0, 0, 0, 0, 0, 0, 0 }; const avl_tree_t avl_tree_0 = { 0, 0, 0, 0, 0, 0, 0 }; const avl_allocator_t avl_allocator_0 = { 0, 0 }; #define AVL_CONST_NODE(x) ((avl_node_t *)(x)) #define AVL_CONST_ITEM(x) ((void *)(x)) static int avl_check_balance(avl_node_t *avlnode) { #ifdef AVL_DEPTH int d; d = AVL_R_DEPTH(avlnode) - AVL_L_DEPTH(avlnode); return d < -1 ? -1 : d > 1; #else /* int d; * d = ffs(AVL_R_COUNT(avl_node)) - ffs(AVL_L_COUNT(avl_node)); * d = d < -1 ? -1 : d > 1; */ #ifdef AVL_COUNT int pl, r; pl = ffs(AVL_L_COUNT(avlnode)); r = AVL_R_COUNT(avlnode); if (r >> pl + 1) return 1; if (pl < 2 || r >> pl - 2) return 0; return -1; #else #error No balancing possible. #endif #endif } #ifdef AVL_COUNT static unsigned long avl_count(const avl_tree_t *avltree) { if (!avltree) return 0; return AVL_NODE_COUNT(avltree->top); } #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_at(const avl_tree_t *avltree, unsigned long index) { avl_node_t *avlnode; unsigned long c; if (!avltree) return NULL; avlnode = avltree->top; while (avlnode) { c = AVL_L_COUNT(avlnode); if (index < c) { avlnode = avlnode->left; } else if (index > c) { avlnode = avlnode->right; index -= c + 1; } else { return avlnode; } } return NULL; } #endif #if (!AVL_TREE_COMMENT_UNUSED) static unsigned long avl_index(const avl_node_t *avlnode) { avl_node_t *next; unsigned long c; if (!avlnode) return 0; c = AVL_L_COUNT(avlnode); while ((next = avlnode->parent)) { if (avlnode == next->right) c += AVL_L_COUNT(next) + 1; avlnode = next; } return c; } #endif #endif #if (!AVL_TREE_COMMENT_UNUSED) static const avl_node_t *avl_search_leftmost_equal(const avl_tree_t *tree, const avl_node_t *node, const void *item) { avl_compare_t cmp = tree->cmpitem; void *userdata = tree->userdata; const avl_node_t *r = node; for (;;) { for (;;) { node = node->left; if (!node) return r; if (cmp(item, node->item, userdata)) break; r = node; } for (;;) { node = node->right; if (!node) return r; if (!cmp(item, node->item, userdata)) break; } r = node; } return NULL; /* To silence the compiler */ } #endif static const avl_node_t *avl_search_rightmost_equal(const avl_tree_t *tree, const avl_node_t *node, const void *item) { avl_compare_t cmp = tree->cmpitem; void *userdata = tree->userdata; const avl_node_t *r = node; for (;;) { for (;;) { node = node->right; if (!node) return r; if (cmp(item, node->item, userdata)) break; r = node; } for (;;) { node = node->left; if (!node) return r; if (!cmp(item, node->item, userdata)) break; } r = node; } return NULL; /* To silence the compiler */ } /* Searches for an item, returning either some exact * match, or (if no exact match could be found) the first (leftmost) * of the nodes that have an item larger than the search item. * If exact is not NULL, *exact will be set to: * 0 if the returned node is unequal or NULL * 1 if the returned node is equal * Returns NULL if no equal or larger element could be found. * O(lg n) */ #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_search_leftish(const avl_tree_t *tree, const void *item, int *exact) { avl_node_t *node; avl_compare_t cmp; void *userdata; int c; if (!exact) exact = &c; if (!tree) return *exact = 0, (avl_node_t *) NULL; node = tree->top; if (!node) return *exact = 0, (avl_node_t *) NULL; cmp = tree->cmpitem; userdata = tree->userdata; for (;;) { c = cmp(item, node->item, userdata); if (c < 0) { if (node->left) node = node->left; else return *exact = 0, node; } else if (c > 0) { if (node->right) node = node->right; else return *exact = 0, node->next; } else { return *exact = 1, node; } } return NULL; /* To silence the compiler */ } #endif /* Searches for an item, returning either some exact * match, or (if no exact match could be found) the last (rightmost) * of the nodes that have an item smaller than the search item. * If exact is not NULL, *exact will be set to: * 0 if the returned node is unequal or NULL * 1 if the returned node is equal * Returns NULL if no equal or smaller element could be found. * O(lg n) */ static avl_node_t *avl_search_rightish(const avl_tree_t *tree, const void *item, int *exact) { avl_node_t *node; avl_compare_t cmp; void *userdata; int c; if (!exact) exact = &c; if (!tree) return *exact = 0, (avl_node_t *) NULL; node = tree->top; if (!node) return *exact = 0, (avl_node_t *) NULL; cmp = tree->cmpitem; userdata = tree->userdata; for (;;) { c = cmp(item, node->item, userdata); if (c < 0) { if (node->left) node = node->left; else return *exact = 0, node->prev; } else if (c > 0) { if (node->right) node = node->right; else return *exact = 0, node; } else { return *exact = 1, node; } } return NULL; /* To silence the compiler */ } #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_item_search_left(const avl_tree_t *tree, const void *item, int *exact) { avl_node_t *node; int c; if (!exact) exact = &c; if (!tree) return *exact = 0, (avl_node_t *) NULL; node = avl_search_leftish(tree, item, exact); if (*exact) return AVL_CONST_NODE(avl_search_leftmost_equal(tree, node, item)); return AVL_CONST_NODE(node); } #endif /* Searches for an item, returning either the last (rightmost) exact * match, or (if no exact match could be found) the last (rightmost) * of the nodes that have an item smaller than the search item. * If exact is not NULL, *exact will be set to: * 0 if the returned node is inequal or NULL * 1 if the returned node is equal * Returns NULL if no equal or smaller element could be found. * O(lg n) */ static avl_node_t *avl_item_search_right(const avl_tree_t *tree, const void *item, int *exact) { const avl_node_t *node; int c; if (!exact) exact = &c; node = avl_search_rightish(tree, item, exact); if (*exact) return AVL_CONST_NODE(avl_search_rightmost_equal(tree, node, item)); return AVL_CONST_NODE(node); } /* Searches for the item in the tree and returns a matching node if found * or NULL if not. * O(lg n) */ static avl_node_t *avl_item_search(const avl_tree_t *avltree, const void *item) { int c; avl_node_t *n; n = avl_search_rightish(avltree, item, &c); return c ? n : NULL; } /* Initializes a new tree for elements that will be ordered using * the supplied strcmp()-like function. * Returns the value of avltree (even if it's NULL). * O(1) */ static avl_tree_t *avl_tree_init(avl_tree_t *avltree, avl_compare_t cmp, avl_free_t free_item) { if (avltree) { avltree->head = NULL; avltree->tail = NULL; avltree->top = NULL; avltree->cmpitem = cmp; avltree->freeitem = free_item; avltree->userdata = NULL; avltree->allocator = NULL; } return avltree; } /* Allocates and initializes a new tree for elements that will be * ordered using the supplied strcmp()-like function. * Returns NULL if memory could not be allocated. * O(1) */ static avl_tree_t *avl_tree_construct(avl_compare_t cmp, avl_free_t free_item) { return avl_tree_init((avl_tree_t *) malloc(sizeof(avl_tree_t)), cmp, free_item); } /* Reinitializes the tree structure for reuse. Nothing is free()d. * Compare and free functions are left alone. * Returns the value of avltree (even if it's NULL). * O(1) */ static avl_tree_t *avl_tree_clear(avl_tree_t *avltree) { if (avltree) avltree->top = avltree->head = avltree->tail = NULL; return avltree; } static void avl_node_free(avl_tree_t *avltree, avl_node_t *node) { avl_allocator_t *allocator; avl_deallocate_t deallocate; allocator = avltree->allocator; if (allocator) { deallocate = allocator->deallocate; if (deallocate) deallocate(allocator, node); } else { free(node); } } /* Free()s all nodes in the tree but leaves the tree itself. * If the tree's free is not NULL it will be invoked on every item. * Returns the value of avltree (even if it's NULL). * O(n) */ static avl_tree_t *avl_tree_purge(avl_tree_t *avltree) { avl_node_t *node, *next; avl_free_t func; avl_allocator_t *allocator; avl_deallocate_t deallocate; void *userdata; if (!avltree) return NULL; userdata = avltree->userdata; func = avltree->freeitem; allocator = avltree->allocator; deallocate = allocator ? allocator->deallocate : (avl_deallocate_t) NULL; for (node = avltree->head; node; node = next) { next = node->next; if (func) func(node->item, userdata); if (allocator) { if (deallocate) deallocate(allocator, node); } else { free(node); } } return avl_tree_clear(avltree); } /* Frees the entire tree efficiently. Nodes will be free()d. * If the tree's free is not NULL it will be invoked on every item. * O(n) */ static void avl_tree_destruct(avl_tree_t *avltree) { if (!avltree) return; (void) avl_tree_purge(avltree); free(avltree); } static void avl_node_clear(avl_node_t *newnode) { newnode->left = newnode->right = NULL; # ifdef AVL_COUNT newnode->count = 1; # endif # ifdef AVL_DEPTH newnode->depth = 1; # endif } /* Initializes memory for use as a node. * Returns the value of avlnode (even if it's NULL). * O(1) */ static avl_node_t *avl_node_init(avl_node_t *newnode, const void *item) { if (newnode) newnode->item = AVL_CONST_ITEM(item); return newnode; } /* Allocates and initializes memory for use as a node. * Returns the value of avlnode (or NULL if the allocation failed). * O(1) */ static avl_node_t *avl_alloc(avl_tree_t *avltree, const void *item) { avl_node_t *newnode; avl_allocator_t *allocator = avltree ? avltree->allocator : (avl_allocator_t *) NULL; avl_allocate_t allocate; if (allocator) { allocate = allocator->allocate; if (allocator) { newnode = allocate(allocator); } else { errno = ENOSYS; newnode = NULL; } } else { newnode = (avl_node_t *) malloc(sizeof *newnode); } return avl_node_init(newnode, item); } /* Insert a node in an empty tree. If avl_node is NULL, the tree will be * cleared and ready for re-use. * If the tree is not empty, the old nodes are left dangling. * O(1) */ static avl_node_t *avl_insert_top(avl_tree_t *avltree, avl_node_t *newnode) { avl_node_clear(newnode); newnode->prev = newnode->next = newnode->parent = NULL; avltree->head = avltree->tail = avltree->top = newnode; return newnode; } /* Insert a node before another node. Returns the new node. * If old is NULL, the item is appended to the tree. * O(lg n) */ static avl_node_t *avl_node_insert_before(avl_tree_t *avltree, avl_node_t *node, avl_node_t *newnode) { if (!avltree || !newnode) return NULL; if (!node) return avltree->tail ? avl_node_insert_after(avltree, avltree->tail, newnode) : avl_insert_top(avltree, newnode); if (node->left) return avl_node_insert_after(avltree, node->prev, newnode); avl_node_clear(newnode); newnode->next = node; newnode->parent = node; newnode->prev = node->prev; if (node->prev) node->prev->next = newnode; else avltree->head = newnode; node->prev = newnode; node->left = newnode; avl_rebalance(avltree, node); return newnode; } /* Insert a node after another node. Returns the new node. * If old is NULL, the item is prepended to the tree. * O(lg n) */ static avl_node_t *avl_node_insert_after(avl_tree_t *avltree, avl_node_t *node, avl_node_t *newnode) { if (!avltree || !newnode) return NULL; if (!node) return avltree->head ? avl_node_insert_before(avltree, avltree->head, newnode) : avl_insert_top(avltree, newnode); if (node->right) return avl_node_insert_before(avltree, node->next, newnode); avl_node_clear(newnode); newnode->prev = node; newnode->parent = node; newnode->next = node->next; if (node->next) node->next->prev = newnode; else avltree->tail = newnode; node->next = newnode; node->right = newnode; avl_rebalance(avltree, node); return newnode; } /* Insert a node into the tree and return it. * Returns NULL if an equal node is already in the tree. * O(lg n) */ static avl_node_t *avl_node_insert(avl_tree_t *avltree, avl_node_t *newnode) { avl_node_t *node; int c; node = avl_search_rightish(avltree, newnode->item, &c); return c ? NULL : avl_node_insert_after(avltree, node, newnode); } #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_node_insert_left(avl_tree_t *avltree, avl_node_t *newnode) { return avl_node_insert_before(avltree, avl_item_search_left(avltree, newnode->item, NULL), newnode); } #endif #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_node_insert_right(avl_tree_t *avltree, avl_node_t *newnode) { return avl_node_insert_after(avltree, avl_item_search_right(avltree, newnode->item, NULL), newnode); } #endif #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_node_insert_somewhere(avl_tree_t *avltree, avl_node_t *newnode) { return avl_node_insert_after(avltree, avl_search_rightish(avltree, newnode->item, NULL), newnode); } #endif /* Insert an item into the tree and return the new node. * Returns NULL and sets errno if memory for the new node could not be * allocated or if the node is already in the tree (EEXIST). * O(lg n) */ static avl_node_t *avl_item_insert(avl_tree_t *avltree, const void *item) { avl_node_t *newnode; if (!avltree) return errno = EFAULT, (avl_node_t *) NULL; newnode = avl_alloc(avltree, item); if (newnode) { if (avl_node_insert(avltree, newnode)) return newnode; avl_node_free(avltree, newnode); errno = EEXIST; } return NULL; } #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_item_insert_somewhere(avl_tree_t *avltree, const void *item) { avl_node_t *newnode; if (!avltree) return errno = EFAULT, (avl_node_t *) NULL; newnode = avl_alloc(avltree, item); if (newnode) return avl_node_insert_somewhere(avltree, newnode); return NULL; } #endif #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_item_insert_before(avl_tree_t *avltree, avl_node_t *node, const void *item) { avl_node_t *newnode; if (!avltree) return errno = EFAULT, (avl_node_t *) NULL; newnode = avl_alloc(avltree, item); if (newnode) return avl_node_insert_before(avltree, node, newnode); return NULL; } #endif #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_item_insert_after(avl_tree_t *avltree, avl_node_t *node, const void *item) { avl_node_t *newnode; if (!avltree) return errno = EFAULT, (avl_node_t *) NULL; newnode = avl_alloc(avltree, item); if (newnode) return avl_node_insert_after(avltree, node, newnode); return NULL; } #endif #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_item_insert_left(avl_tree_t *avltree, const void *item) { avl_node_t *newnode; if (!avltree) return errno = EFAULT, (avl_node_t *) NULL; newnode = avl_alloc(avltree, item); if (newnode) return avl_node_insert_left(avltree, newnode); return NULL; } #endif #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_item_insert_right(avl_tree_t *avltree, const void *item) { avl_node_t *newnode; if (!avltree) return errno = EFAULT, (avl_node_t *) NULL; newnode = avl_alloc(avltree, item); if (newnode) return avl_node_insert_right(avltree, newnode); return NULL; } #endif /* Deletes a node from the tree. * Returns the value of the node (even if it's NULL). * The item will NOT be free()d regardless of the tree's free handler. * This function comes in handy if you need to update the search key. * O(lg n) */ static avl_node_t *avl_node_unlink(avl_tree_t *avltree, avl_node_t *avlnode) { avl_node_t *parent; avl_node_t **superparent; avl_node_t *subst, *left, *right; avl_node_t *balnode; if (!avltree || !avlnode) return NULL; if (avlnode->prev) avlnode->prev->next = avlnode->next; else avltree->head = avlnode->next; if (avlnode->next) avlnode->next->prev = avlnode->prev; else avltree->tail = avlnode->prev; parent = avlnode->parent; superparent = parent ? avlnode == parent->left ? &parent->left : &parent->right : &avltree->top; left = avlnode->left; right = avlnode->right; if (!left) { *superparent = right; if (right) right->parent = parent; balnode = parent; } else if (!right) { *superparent = left; left->parent = parent; balnode = parent; } else { subst = avlnode->prev; if (subst == left) { balnode = subst; } else { balnode = subst->parent; balnode->right = subst->left; if (balnode->right) balnode->right->parent = balnode; subst->left = left; left->parent = subst; } subst->right = right; subst->parent = parent; right->parent = subst; *superparent = subst; } avl_rebalance(avltree, balnode); return avlnode; } /* Deletes a node from the tree. Returns immediately if the node is NULL. * If the tree's free is not NULL, it is invoked on the item. * If it is, returns the item. In all other cases returns NULL. * O(lg n) */ static void *avl_node_delete(avl_tree_t *avltree, avl_node_t *avlnode) { void *item = NULL; if (avlnode) { item = avlnode->item; (void) avl_node_unlink(avltree, avlnode); if (avltree->freeitem) avltree->freeitem(item, avltree->userdata); avl_node_free(avltree, avlnode); } return item; } /* Searches for an item in the tree and deletes it if found. * If the tree's free is not NULL, it is invoked on the item. * If it is, returns the item. In all other cases returns NULL. * O(lg n) */ static void *avl_item_delete(avl_tree_t *avltree, const void *item) { return avl_node_delete(avltree, avl_item_search(avltree, item)); } #if (!AVL_TREE_COMMENT_UNUSED) static avl_node_t *avl_node_fixup(avl_tree_t *avltree, avl_node_t *newnode) { avl_node_t *oldnode = NULL, *node; if (!avltree || !newnode) return NULL; node = newnode->prev; if (node) { oldnode = node->next; node->next = newnode; } else { avltree->head = newnode; } node = newnode->next; if (node) { oldnode = node->prev; node->prev = newnode; } else { avltree->tail = newnode; } node = newnode->parent; if (node) { if (node->left == oldnode) node->left = newnode; else node->right = newnode; } else { oldnode = avltree->top; avltree->top = newnode; } return oldnode; } #endif /** * avl_rebalance: * Rebalances the tree if one side becomes too heavy. This function * assumes that both subtrees are AVL-trees with consistent data. The * function has the additional side effect of recalculating the count of * the tree at this node. It should be noted that at the return of this * function, if a rebalance takes place, the top of this subtree is no * longer going to be the same node. */ static void avl_rebalance(avl_tree_t *avltree, avl_node_t *avlnode) { avl_node_t *child; avl_node_t *gchild; avl_node_t *parent; avl_node_t **superparent; while (avlnode) { parent = avlnode->parent; superparent = parent ? avlnode == parent->left ? &parent->left : &parent->right : &avltree->top; switch (avl_check_balance(avlnode)) { case -1: child = avlnode->left; # ifdef AVL_DEPTH if (AVL_L_DEPTH(child) >= AVL_R_DEPTH(child)) { # else # ifdef AVL_COUNT if (AVL_L_COUNT(child) >= AVL_R_COUNT(child)) { # else # error No balancing possible. # endif # endif avlnode->left = child->right; if (avlnode->left) avlnode->left->parent = avlnode; child->right = avlnode; avlnode->parent = child; *superparent = child; child->parent = parent; # ifdef AVL_COUNT avlnode->count = AVL_CALC_COUNT(avlnode); child->count = AVL_CALC_COUNT(child); # endif # ifdef AVL_DEPTH avlnode->depth = AVL_CALC_DEPTH(avlnode); child->depth = AVL_CALC_DEPTH(child); # endif } else { gchild = child->right; avlnode->left = gchild->right; if (avlnode->left) avlnode->left->parent = avlnode; child->right = gchild->left; if (child->right) child->right->parent = child; gchild->right = avlnode; if (gchild->right) gchild->right->parent = gchild; gchild->left = child; if (gchild->left) gchild->left->parent = gchild; *superparent = gchild; gchild->parent = parent; # ifdef AVL_COUNT avlnode->count = AVL_CALC_COUNT(avlnode); child->count = AVL_CALC_COUNT(child); gchild->count = AVL_CALC_COUNT(gchild); # endif # ifdef AVL_DEPTH avlnode->depth = AVL_CALC_DEPTH(avlnode); child->depth = AVL_CALC_DEPTH(child); gchild->depth = AVL_CALC_DEPTH(gchild); # endif } break; case 1: child = avlnode->right; # ifdef AVL_DEPTH if (AVL_R_DEPTH(child) >= AVL_L_DEPTH(child)) { # else # ifdef AVL_COUNT if (AVL_R_COUNT(child) >= AVL_L_COUNT(child)) { # else # error No balancing possible. # endif # endif avlnode->right = child->left; if (avlnode->right) avlnode->right->parent = avlnode; child->left = avlnode; avlnode->parent = child; *superparent = child; child->parent = parent; # ifdef AVL_COUNT avlnode->count = AVL_CALC_COUNT(avlnode); child->count = AVL_CALC_COUNT(child); # endif # ifdef AVL_DEPTH avlnode->depth = AVL_CALC_DEPTH(avlnode); child->depth = AVL_CALC_DEPTH(child); # endif } else { gchild = child->left; avlnode->right = gchild->left; if (avlnode->right) avlnode->right->parent = avlnode; child->left = gchild->right; if (child->left) child->left->parent = child; gchild->left = avlnode; if (gchild->left) gchild->left->parent = gchild; gchild->right = child; if (gchild->right) gchild->right->parent = gchild; *superparent = gchild; gchild->parent = parent; # ifdef AVL_COUNT avlnode->count = AVL_CALC_COUNT(avlnode); child->count = AVL_CALC_COUNT(child); gchild->count = AVL_CALC_COUNT(gchild); # endif # ifdef AVL_DEPTH avlnode->depth = AVL_CALC_DEPTH(avlnode); child->depth = AVL_CALC_DEPTH(child); gchild->depth = AVL_CALC_DEPTH(gchild); # endif } break; default: # ifdef AVL_COUNT avlnode->count = AVL_CALC_COUNT(avlnode); # endif # ifdef AVL_DEPTH avlnode->depth = AVL_CALC_DEPTH(avlnode); # endif } avlnode = parent; } } #line 44 "code-experiments/src/logger_biobj.c" #line 1 "code-experiments/src/observer_biobj.c" /** * @file observer_biobj.c * @brief Implementation of the bbob-biobj observer. */ #line 7 "code-experiments/src/observer_biobj.c" #line 8 "code-experiments/src/observer_biobj.c" #line 10 "code-experiments/src/observer_biobj.c" #line 11 "code-experiments/src/observer_biobj.c" /** @brief Enum for denoting the way in which the nondominated solutions are treated. */ typedef enum { LOG_NONDOM_NONE, LOG_NONDOM_FINAL, LOG_NONDOM_ALL, LOG_NONDOM_READ } observer_biobj_log_nondom_e; /** @brief Enum for denoting when the decision variables are logged. */ typedef enum { LOG_VARS_NEVER, LOG_VARS_LOW_DIM, LOG_VARS_ALWAYS } observer_biobj_log_vars_e; /** * @brief The bbob-biobj observer data type. */ typedef struct { observer_biobj_log_nondom_e log_nondom_mode; /**< @brief Handling of the nondominated solutions. */ observer_biobj_log_vars_e log_vars_mode; /**< @brief When the decision variables are logged. */ int compute_indicators; /**< @brief Whether to compute indicators. */ int produce_all_data; /**< @brief Whether to produce all data. */ long previous_function; /**< @brief Function of the previous logged problem. */ long previous_dimension; /**< @brief Dimension of the previous logged problem */ } observer_biobj_data_t; static coco_problem_t *logger_biobj(coco_observer_t *observer, coco_problem_t *problem); static void logger_biobj_free(void *logger); /** * @brief Initializes the bi-objective observer. * * Possible options: * * - "log_nondominated: STRING" determines how the nondominated solutions are handled. STRING can take on the * values "none" (don't log nondominated solutions), "final" (log only the final nondominated solutions), * "all" (log every solution that is nondominated at creation time) and "read" (the nondominated solutions * are not logged, but are passed to the logger as input - this is a functionality needed in pre-processing * of the data). The default value is "all". * * - "log_decision_variables: STRING" determines whether the decision variables are to be logged in addition * to the objective variables in the output of nondominated solutions. STRING can take on the values "none" * (don't output decision variables), "low_dim"(output decision variables only for dimensions lower or equal * to 5) and "all" (output all decision variables). The default value is "low_dim". * * - "compute_indicators: VALUE" determines whether to compute and output performance indicators (1) or not * (0). The default value is 1. * * - "produce_all_data: VALUE" determines whether to produce all data required for the workshop. If set to 1, * it overwrites some other options and is equivalent to setting "log_nondominated: all", * "log_decision_variables: low_dim" and "compute_indicators: 1". If set to 0, it does not change the values * of the other options. The default value is 0. */ static void observer_biobj(coco_observer_t *observer, const char *options, coco_option_keys_t **option_keys) { observer_biobj_data_t *observer_data; char string_value[COCO_PATH_MAX + 1]; /* Sets the valid keys for bbob-biobj observer options * IMPORTANT: This list should be up-to-date with the code and the documentation */ const char *known_keys[] = { "log_nondominated", "log_decision_variables", "compute_indicators", "produce_all_data" }; *option_keys = coco_option_keys_allocate(sizeof(known_keys) / sizeof(char *), known_keys); observer_data = (observer_biobj_data_t *) coco_allocate_memory(sizeof(*observer_data)); observer_data->log_nondom_mode = LOG_NONDOM_ALL; if (coco_options_read_string(options, "log_nondominated", string_value) > 0) { if (strcmp(string_value, "none") == 0) observer_data->log_nondom_mode = LOG_NONDOM_NONE; else if (strcmp(string_value, "final") == 0) observer_data->log_nondom_mode = LOG_NONDOM_FINAL; else if (strcmp(string_value, "all") == 0) observer_data->log_nondom_mode = LOG_NONDOM_ALL; else if (strcmp(string_value, "read") == 0) observer_data->log_nondom_mode = LOG_NONDOM_READ; } observer_data->log_vars_mode = LOG_VARS_LOW_DIM; if (coco_options_read_string(options, "log_decision_variables", string_value) > 0) { if (strcmp(string_value, "none") == 0) observer_data->log_vars_mode = LOG_VARS_NEVER; else if (strcmp(string_value, "all") == 0) observer_data->log_vars_mode = LOG_VARS_ALWAYS; else if (strcmp(string_value, "low_dim") == 0) observer_data->log_vars_mode = LOG_VARS_LOW_DIM; } if (coco_options_read_int(options, "compute_indicators", &(observer_data->compute_indicators)) == 0) observer_data->compute_indicators = 1; if (coco_options_read_int(options, "produce_all_data", &(observer_data->produce_all_data)) == 0) observer_data->produce_all_data = 0; if (observer_data->produce_all_data) { observer_data->compute_indicators = 1; observer_data->log_nondom_mode = LOG_NONDOM_ALL; observer_data->log_vars_mode = LOG_VARS_LOW_DIM; } if (observer_data->compute_indicators) { observer_data->previous_function = -1; observer_data->previous_dimension = -1; } observer->logger_allocate_function = logger_biobj; observer->logger_free_function = logger_biobj_free; observer->data_free_function = NULL; observer->data = observer_data; if ((observer_data->log_nondom_mode == LOG_NONDOM_NONE) && (!observer_data->compute_indicators)) { /* No logging required */ observer->is_active = 0; } } #line 45 "code-experiments/src/logger_biobj.c" #line 47 "code-experiments/src/logger_biobj.c" /** @brief Number of implemented indicators */ #define LOGGER_BIOBJ_NUMBER_OF_INDICATORS 1 /** @brief Names of implemented indicators * * "hyp" stands for the hypervolume indicator. * */ const char *logger_biobj_indicators[LOGGER_BIOBJ_NUMBER_OF_INDICATORS] = { "hyp" }; /** * @brief The indicator type. * * The hypervolume indicator ("hyp") * * The hypervolume indicator measures the volume of the portion of the ROI in the objective space that is * dominated by the current Pareto front approximation. Instead of logging the hypervolume indicator value, * this implementation logs the difference between the best know hypervolume indicator (a value stored in * best_value) and the hypervolume indicator of the current Pareto front approximation (current_value). The * current_value equals 0 if no solution is located in the ROI. In order to be able to register the * performance of an optimizer even before the ROI is reached, an additional value is computed when no * solutions are located inside the ROI. This value is stored in additional_penalty and equals the * normalized distance to the ROI of the solution closest to the ROI (additional_penalty is set to 0 as * soon as a solution reaches the ROI). The final value to be logged (overall_value) is therefore computed * in the following way: * * overall_value = best_value - current_value + additional_penalty * * @note Other indicators are yet to be implemented. */ typedef struct { char *name; /**< @brief Name of the indicator used for identification and the output. */ FILE *dat_file; /**< @brief File for logging indicator values at predefined values. */ FILE *tdat_file; /**< @brief File for logging indicator values at predefined evaluations. */ FILE *info_file; /**< @brief File for logging summary information on algorithm performance. */ int target_hit; /**< @brief Whether the target was hit in the latest evaluation. */ coco_observer_targets_t *targets; /**< @brief Triggers based on target values. */ int evaluation_logged; /**< @brief Whether the whether the latest evaluation was logged. */ coco_observer_evaluations_t *evaluations; /**< @brief Triggers based on numbers of evaluations. */ double best_value; /**< @brief The best known indicator value for this problem. */ double current_value; /**< @brief The current indicator value. */ double additional_penalty; /**< @brief Additional penalty for solutions outside the ROI. */ double overall_value; /**< @brief The overall value of the indicator tested for target hits. */ double previous_value; /**< @brief The previous overall value of the indicator. */ } logger_biobj_indicator_t; /** * @brief The bi-objective logger data type. * * @note Some fields from the observers (coco_observer as well as observer_biobj) need to be copied here * because the observers can be deleted before the logger is finalized and we need these fields for * finalization. */ typedef struct { observer_biobj_log_nondom_e log_nondom_mode; /**< @brief Mode for archiving nondominated solutions. */ FILE *adat_file; /**< @brief File for archiving nondominated solutions (all or final). */ int log_vars; /**< @brief Whether to log the decision values. */ int precision_x; /**< @brief Precision for outputting decision values. */ int precision_f; /**< @brief Precision for outputting objective values. */ int log_discrete_as_int; /**< @brief Whether to output discrete variables in int or double format. */ size_t number_of_evaluations; /**< @brief The number of evaluations performed so far. */ size_t number_of_variables; /**< @brief Dimension of the problem. */ size_t number_of_integer_variables; /**< @brief Number of integer variables. */ size_t number_of_objectives; /**< @brief Number of objectives (clearly equal to 2). */ size_t suite_dep_instance; /**< @brief Suite-dependent instance number of the observed problem. */ size_t previous_evaluations; /**< @brief The number of evaluations from the previous call to the logger. */ avl_tree_t *archive_tree; /**< @brief The tree keeping currently non-dominated solutions. */ avl_tree_t *buffer_tree; /**< @brief The tree with pointers to nondominated solutions that haven't been logged yet. */ /* Indicators (TODO: Implement others!) */ int compute_indicators; /**< @brief Whether to compute the indicators. */ logger_biobj_indicator_t *indicators[LOGGER_BIOBJ_NUMBER_OF_INDICATORS]; /**< @brief The implemented indicators. */ } logger_biobj_data_t; /** * @brief The type for the node's item in the AVL tree as used by the bi-objective logger. * * Contains information on the exact objective values (y) and their rounded normalized values (normalized_y). * The exact values are used for output, while archive update and indicator computation use the normalized * values. */ typedef struct { double *x; /**< @brief The decision values of this solution. */ double *y; /**< @brief The values of objectives of this solution. */ double *normalized_y; /**< @brief The values of normalized objectives of this solution. */ size_t evaluation_number; /**< @brief The evaluation number of when the solution was created. */ double indicator_contribution[LOGGER_BIOBJ_NUMBER_OF_INDICATORS]; /**< @brief The contribution of this solution to the overall indicator values. */ int within_ROI; /**< @brief Whether the solution is within the region of interest (ROI). */ } logger_biobj_avl_item_t; /** * @brief Creates and returns the information on the solution in the form of a node's item in the AVL tree. */ static logger_biobj_avl_item_t* logger_biobj_node_create(const coco_problem_t *problem, const double *x, const double *y, const size_t evaluation_number, const size_t dim, const size_t num_obj) { size_t i; /* Allocate memory to hold the data structure logger_biobj_node_t */ logger_biobj_avl_item_t *item = (logger_biobj_avl_item_t*) coco_allocate_memory(sizeof(*item)); /* Allocate memory to store the (copied) data of the new node */ item->x = coco_allocate_vector(dim); item->y = coco_allocate_vector(num_obj); /* Copy the data */ for (i = 0; i < dim; i++) item->x[i] = x[i]; for (i = 0; i < num_obj; i++) item->y[i] = y[i]; /* Compute the normalized y */ item->normalized_y = mo_normalize(item->y, problem->best_value, problem->nadir_value, num_obj); item->within_ROI = mo_is_within_ROI(item->normalized_y, num_obj); item->evaluation_number = evaluation_number; for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) item->indicator_contribution[i] = 0; return item; } /** * @brief Frees the data of the given logger_biobj_avl_item_t. */ static void logger_biobj_node_free(logger_biobj_avl_item_t *item, void *userdata) { coco_free_memory(item->x); coco_free_memory(item->y); coco_free_memory(item->normalized_y); coco_free_memory(item); (void) userdata; /* To silence the compiler */ } /** * @brief Defines the ordering of AVL tree nodes based on the value of the last objective. * * @note This ordering is used by the archive_tree. */ static int avl_tree_compare_by_last_objective(const logger_biobj_avl_item_t *item1, const logger_biobj_avl_item_t *item2, void *userdata) { (void) userdata; /* To silence the compiler */ if (coco_double_almost_equal(item1->normalized_y[1], item2->normalized_y[1], mo_precision)) return 0; else if (item1->normalized_y[1] < item2->normalized_y[1]) return -1; else return 1; } /** * @brief Defines the ordering of AVL tree nodes based on the evaluation number (the time when the nodes were * created). * * @note This ordering is used by the buffer_tree. */ static int avl_tree_compare_by_eval_number(const logger_biobj_avl_item_t *item1, const logger_biobj_avl_item_t *item2, void *userdata) { (void) userdata; /* To silence the compiler */ if (item1->evaluation_number < item2->evaluation_number) return -1; else if (item1->evaluation_number > item2->evaluation_number) return 1; else return 0; } /** * @brief Outputs the AVL tree to the given file. Returns the number of nodes in the tree. */ static size_t logger_biobj_tree_output(FILE *file, const avl_tree_t *tree, const size_t dim, const size_t num_int_vars, const size_t num_obj, const int log_vars, const int precision_x, const int precision_f, const int log_discrete_as_int) { avl_node_t *solution; size_t i; size_t j; size_t number_of_nodes = 0; if (tree->tail) { /* There is at least a solution in the tree to output */ solution = tree->head; while (solution != NULL) { fprintf(file, "%lu\t", (unsigned long) ((logger_biobj_avl_item_t*) solution->item)->evaluation_number); for (j = 0; j < num_obj; j++) fprintf(file, "%.*e\t", precision_f, ((logger_biobj_avl_item_t*) solution->item)->y[j]); if (log_vars) { for (i = 0; i < dim; i++) if ((i < num_int_vars) && (log_discrete_as_int)) fprintf(file, "%d\t", coco_double_to_int(((logger_biobj_avl_item_t*) solution->item)->x[i])); else fprintf(file, "%.*e\t", precision_x, ((logger_biobj_avl_item_t*) solution->item)->x[i]); } fprintf(file, "\n"); solution = solution->next; number_of_nodes++; } } return number_of_nodes; } /** * @brief Updates the archive and buffer trees with the given node. * * Checks for domination and updates the archive tree and the values of the indicators if the given node is * not weakly dominated by existing nodes in the archive tree. This is where the main computation of * indicator values takes place. * * @return 1 if the update was performed and 0 otherwise. */ static int logger_biobj_tree_update(logger_biobj_data_t *logger, logger_biobj_avl_item_t *node_item) { avl_node_t *node, *next_node, *new_node; int trigger_update = 0; int dominance; size_t i; int previous_unavailable = 0; /* Find the first point that is not worse than the new point (NULL if such point does not exist) */ node = avl_item_search_right(logger->archive_tree, node_item, NULL); if (node == NULL) { /* The new point is an extreme point */ trigger_update = 1; next_node = logger->archive_tree->head; } else { dominance = mo_get_dominance(node_item->normalized_y, ((logger_biobj_avl_item_t*) node->item)->normalized_y, logger->number_of_objectives); if (dominance > -1) { trigger_update = 1; next_node = node->next; if (dominance == 1) { /* The new point dominates the next point, remove the next point */ if (logger->compute_indicators) { for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) { logger->indicators[i]->current_value -= ((logger_biobj_avl_item_t*) node->item)->indicator_contribution[i]; } } avl_item_delete(logger->buffer_tree, node->item); avl_node_delete(logger->archive_tree, node); } } else { /* The new point is dominated or equal to an existing one, nothing more to do */ trigger_update = 0; } } if (!trigger_update) { logger_biobj_node_free(node_item, NULL); } else { /* Perform tree update */ while (next_node != NULL) { /* Check the dominance relation between the new node and the next node. There are only two possibilities: * dominance = 0: the new node and the next node are nondominated * dominance = 1: the new node dominates the next node */ node = next_node; dominance = mo_get_dominance(node_item->normalized_y, ((logger_biobj_avl_item_t*) node->item)->normalized_y, logger->number_of_objectives); if (dominance == 1) { /* The new point dominates the next point, remove the next point */ if (logger->compute_indicators) { for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) { logger->indicators[i]->current_value -= ((logger_biobj_avl_item_t*) node->item)->indicator_contribution[i]; } } next_node = node->next; avl_item_delete(logger->buffer_tree, node->item); avl_node_delete(logger->archive_tree, node); } else { break; } } new_node = avl_item_insert(logger->archive_tree, node_item); assert(new_node != NULL); avl_item_insert(logger->buffer_tree, node_item); if (logger->compute_indicators) { if (node_item->within_ROI) { /* Compute indicator value for new node and update the indicator value of the affected nodes */ logger_biobj_avl_item_t *next_item, *previous_item; if (new_node->next != NULL) { next_item = (logger_biobj_avl_item_t*) new_node->next->item; if (next_item->within_ROI) { for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) { logger->indicators[i]->current_value -= next_item->indicator_contribution[i]; if (strcmp(logger->indicators[i]->name, "hyp") == 0) { next_item->indicator_contribution[i] = (node_item->normalized_y[0] - next_item->normalized_y[0]) * (1 - next_item->normalized_y[1]); assert(next_item->indicator_contribution[i] >= 0); } else { coco_error( "logger_biobj_tree_update(): Indicator computation not implemented yet for indicator %s", logger->indicators[i]->name); } logger->indicators[i]->current_value += next_item->indicator_contribution[i]; } } } previous_unavailable = 0; if (new_node->prev != NULL) { previous_item = (logger_biobj_avl_item_t*) new_node->prev->item; if (previous_item->within_ROI) { for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) { if (strcmp(logger->indicators[i]->name, "hyp") == 0) { node_item->indicator_contribution[i] = (previous_item->normalized_y[0] - node_item->normalized_y[0]) * (1 - node_item->normalized_y[1]); assert(node_item->indicator_contribution[i] >= 0); } else { coco_error( "logger_biobj_tree_update(): Indicator computation not implemented yet for indicator %s", logger->indicators[i]->name); } } } else { previous_unavailable = 1; } } else { previous_unavailable = 1; } if (previous_unavailable) { /* Previous item does not exist or is out of ROI, use reference point instead */ for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) { if (strcmp(logger->indicators[i]->name, "hyp") == 0) { node_item->indicator_contribution[i] = (1 - node_item->normalized_y[0]) * (1 - node_item->normalized_y[1]); assert(node_item->indicator_contribution[i] >= 0); } else { coco_error( "logger_biobj_tree_update(): Indicator computation not implemented yet for indicator %s", logger->indicators[i]->name); } } } for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) { if (strcmp(logger->indicators[i]->name, "hyp") == 0) { assert(node_item->indicator_contribution[i] >= 0); logger->indicators[i]->current_value += node_item->indicator_contribution[i]; } } } } } return trigger_update; } /** * @brief Initializes the indicator with name indicator_name. * * Opens files for writing and resets counters. */ static logger_biobj_indicator_t *logger_biobj_indicator(const logger_biobj_data_t *logger, const coco_observer_t *observer, const coco_problem_t *problem, const char *indicator_name) { observer_biobj_data_t *observer_data; logger_biobj_indicator_t *indicator; char *prefix, *file_name, *path_name; int info_file_exists = 0; indicator = (logger_biobj_indicator_t *) coco_allocate_memory(sizeof(*indicator)); assert(observer); assert(observer->data); observer_data = (observer_biobj_data_t *) observer->data; indicator->name = coco_strdup(indicator_name); assert(problem->suite); indicator->best_value = coco_suite_get_best_indicator_value(problem->suite, problem, indicator->name); indicator->target_hit = 0; indicator->evaluation_logged = 0; indicator->current_value = 0; indicator->additional_penalty = DBL_MAX; indicator->overall_value = 0; indicator->previous_value = 0; indicator->targets = coco_observer_targets(observer->number_target_triggers, observer->target_precision); indicator->evaluations = coco_observer_evaluations(observer->base_evaluation_triggers, problem->number_of_variables); /* Prepare the info file */ path_name = coco_allocate_string(COCO_PATH_MAX + 1); memcpy(path_name, observer->result_folder, strlen(observer->result_folder) + 1); coco_create_directory(path_name); file_name = coco_strdupf("%s_%s.info", problem->problem_type, indicator_name); coco_join_path(path_name, COCO_PATH_MAX, file_name, NULL); info_file_exists = coco_file_exists(path_name); indicator->info_file = fopen(path_name, "a"); if (indicator->info_file == NULL) { coco_error("logger_biobj_indicator() failed to open file '%s'.", path_name); return NULL; /* Never reached */ } coco_free_memory(file_name); coco_free_memory(path_name); /* Prepare the tdat file */ path_name = coco_allocate_string(COCO_PATH_MAX + 1); memcpy(path_name, observer->result_folder, strlen(observer->result_folder) + 1); coco_join_path(path_name, COCO_PATH_MAX, problem->problem_type, NULL); coco_create_directory(path_name); prefix = coco_remove_from_string(problem->problem_id, "_i", "_d"); file_name = coco_strdupf("%s_%s.tdat", prefix, indicator_name); coco_join_path(path_name, COCO_PATH_MAX, file_name, NULL); indicator->tdat_file = fopen(path_name, "a"); if (indicator->tdat_file == NULL) { coco_error("logger_biobj_indicator() failed to open file '%s'.", path_name); return NULL; /* Never reached */ } coco_free_memory(file_name); coco_free_memory(path_name); /* Prepare the dat file */ path_name = coco_allocate_string(COCO_PATH_MAX + 1); memcpy(path_name, observer->result_folder, strlen(observer->result_folder) + 1); coco_join_path(path_name, COCO_PATH_MAX, problem->problem_type, NULL); coco_create_directory(path_name); file_name = coco_strdupf("%s_%s.dat", prefix, indicator_name); coco_join_path(path_name, COCO_PATH_MAX, file_name, NULL); indicator->dat_file = fopen(path_name, "a"); if (indicator->dat_file == NULL) { coco_error("logger_biobj_indicator() failed to open file '%s'.", path_name); return NULL; /* Never reached */ } /* Output header information to the info file */ if (!info_file_exists) { /* Output algorithm name */ assert(problem->suite); fprintf(indicator->info_file, "suite = '%s', algorithm = '%s', indicator = '%s', folder = '%s', coco_version = '%s'\n%% %s", problem->suite->suite_name, observer->algorithm_name, indicator_name, problem->problem_type, coco_version, observer->algorithm_info); if (logger->log_nondom_mode == LOG_NONDOM_READ) fprintf(indicator->info_file, " (reconstructed)"); } if ((observer_data->previous_function != (long) problem->suite_dep_function) || (observer_data->previous_dimension != (long) problem->number_of_variables)) { fprintf(indicator->info_file, "\nfunction = %2lu, ", (unsigned long) problem->suite_dep_function); fprintf(indicator->info_file, "dim = %2lu, ", (unsigned long) problem->number_of_variables); fprintf(indicator->info_file, "%s", file_name); } coco_free_memory(prefix); coco_free_memory(file_name); coco_free_memory(path_name); /* Output header information to the dat file */ fprintf(indicator->dat_file, "%%\n%% index = %lu, name = %s\n", (unsigned long) problem->suite_dep_index, problem->problem_name); fprintf(indicator->dat_file, "%% instance = %lu, reference value = %.*e\n", (unsigned long) problem->suite_dep_instance, logger->precision_f, indicator->best_value); fprintf(indicator->dat_file, "%% function evaluation | indicator value | target hit\n"); /* Output header information to the tdat file */ fprintf(indicator->tdat_file, "%%\n%% index = %lu, name = %s\n", (unsigned long) problem->suite_dep_index, problem->problem_name); fprintf(indicator->tdat_file, "%% instance = %lu, reference value = %.*e\n", (unsigned long) problem->suite_dep_instance, logger->precision_f, indicator->best_value); fprintf(indicator->tdat_file, "%% function evaluation | indicator value\n"); return indicator; } /** * @brief Outputs the final information about this indicator. */ static void logger_biobj_indicator_finalize(logger_biobj_indicator_t *indicator, const logger_biobj_data_t *logger) { /* Log the last eval_number in the dat file if wasn't already logged */ if (!indicator->target_hit) { fprintf(indicator->dat_file, "%lu\t%.*e\t%.*e\n", (unsigned long) logger->number_of_evaluations, logger->precision_f, indicator->overall_value, logger->precision_f, ((coco_observer_targets_t *) indicator->targets)->value); } /* Log the last eval_number in the tdat file if wasn't already logged */ if (!indicator->evaluation_logged) { fprintf(indicator->tdat_file, "%lu\t%.*e\n", (unsigned long) logger->number_of_evaluations, logger->precision_f, indicator->overall_value); } /* Log the information in the info file */ fprintf(indicator->info_file, ", %lu:%lu|%.1e", (unsigned long) logger->suite_dep_instance, (unsigned long) logger->number_of_evaluations, indicator->overall_value); fflush(indicator->info_file); } /** * @brief Frees the memory of the given indicator. */ static void logger_biobj_indicator_free(void *stuff) { logger_biobj_indicator_t *indicator; assert(stuff != NULL); indicator = (logger_biobj_indicator_t *) stuff; if (indicator->name != NULL) { coco_free_memory(indicator->name); indicator->name = NULL; } if (indicator->dat_file != NULL) { fclose(indicator->dat_file); indicator->dat_file = NULL; } if (indicator->tdat_file != NULL) { fclose(indicator->tdat_file); indicator->tdat_file = NULL; } if (indicator->info_file != NULL) { fclose(indicator->info_file); indicator->info_file = NULL; } if (indicator->targets != NULL){ coco_free_memory(indicator->targets); indicator->targets = NULL; } if (indicator->evaluations != NULL){ coco_observer_evaluations_free(indicator->evaluations); indicator->evaluations = NULL; } coco_free_memory(stuff); } /* * @brief Outputs the information according to the observer options. * * Outputs to the: * - dat file, if the archive was updated and a new target was reached for an indicator; * - tdat file, if the number of evaluations matches one of the predefined numbers. * * Note that a target is reached when * best_value - current_value + additional_penalty <= relative_target_value * * The relative_target_value is a target for indicator difference, not the actual indicator value! */ static void logger_biobj_output(logger_biobj_data_t *logger, const int update_performed, const logger_biobj_avl_item_t *node_item) { size_t i, j; logger_biobj_indicator_t *indicator; if (logger->compute_indicators) { for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) { indicator = logger->indicators[i]; indicator->target_hit = 0; indicator->previous_value = indicator->overall_value; /* If the update was performed, update the overall indicator value */ if (update_performed) { /* Compute the overall_value of an indicator */ if (strcmp(indicator->name, "hyp") == 0) { if (coco_double_almost_equal(indicator->current_value, 0, mo_precision)) { /* Update the additional penalty for hypervolume (the minimal distance from the nondominated set * to the ROI) */ double new_distance = mo_get_distance_to_ROI(node_item->normalized_y, logger->number_of_objectives); indicator->additional_penalty = coco_double_min(indicator->additional_penalty, new_distance); assert(indicator->additional_penalty >= 0); } else { indicator->additional_penalty = 0; } indicator->overall_value = indicator->best_value - indicator->current_value + indicator->additional_penalty; } else { coco_error("logger_biobj_evaluate(): Indicator computation not implemented yet for indicator %s", indicator->name); } /* Check whether a target was hit */ indicator->target_hit = coco_observer_targets_trigger(indicator->targets, indicator->overall_value); } /* Log to the dat file if a target was hit */ if (indicator->target_hit) { fprintf(indicator->dat_file, "%lu\t%.*e\t%.*e\n", (unsigned long) logger->number_of_evaluations, logger->precision_f, indicator->overall_value, logger->precision_f, ((coco_observer_targets_t *) indicator->targets)->value); } if (logger->log_nondom_mode == LOG_NONDOM_READ) { /* Log to the tdat file the previous indicator value if any evaluation number between the previous and * this one matches one of the predefined evaluation numbers. */ for (j = logger->previous_evaluations + 1; j < logger->number_of_evaluations; j++) { indicator->evaluation_logged = coco_observer_evaluations_trigger(indicator->evaluations, j); if (indicator->evaluation_logged) { fprintf(indicator->tdat_file, "%lu\t%.*e\n", (unsigned long) j, logger->precision_f, indicator->previous_value); } } } /* Log to the tdat file if the number of evaluations matches one of the predefined numbers */ indicator->evaluation_logged = coco_observer_evaluations_trigger(indicator->evaluations, logger->number_of_evaluations); if (indicator->evaluation_logged) { fprintf(indicator->tdat_file, "%lu\t%.*e\n", (unsigned long) logger->number_of_evaluations, logger->precision_f, indicator->overall_value); } } } } /** * @brief Evaluates the function, increases the number of evaluations and outputs information according to * observer options. */ static void logger_biobj_evaluate(coco_problem_t *problem, const double *x, double *y) { logger_biobj_data_t *logger; logger_biobj_avl_item_t *node_item; int update_performed; coco_problem_t *inner_problem; logger = (logger_biobj_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); /* Evaluate function */ coco_evaluate_function(inner_problem, x, y); logger->number_of_evaluations++; node_item = logger_biobj_node_create(inner_problem, x, y, logger->number_of_evaluations, logger->number_of_variables, logger->number_of_objectives); /* Update the archive with the new solution, if it is not dominated by or equal to existing solutions in * the archive */ update_performed = logger_biobj_tree_update(logger, node_item); /* If the archive was updated and you need to log all nondominated solutions, output the new solution to * nondom_file */ if (update_performed && (logger->log_nondom_mode == LOG_NONDOM_ALL)) { logger_biobj_tree_output(logger->adat_file, logger->buffer_tree, logger->number_of_variables, logger->number_of_integer_variables, logger->number_of_objectives, logger->log_vars, logger->precision_x, logger->precision_f, logger->log_discrete_as_int); avl_tree_purge(logger->buffer_tree); /* Flush output so that impatient users can see progress. */ fflush(logger->adat_file); } /* Output according to observer options */ logger_biobj_output(logger, update_performed, node_item); } /** * Sets the number of evaluations, adds the objective vector to the archive and outputs information according * to observer options (but does not output the archive). * * @note Vector y must point to a correctly sized allocated memory region and the given evaluation number must * be larger than the existing one. * * @param problem The given COCO problem. * @param evaluation The number of evaluations. * @param y The objective vector. * @return 1 if archive was updated was done and 0 otherwise. */ int coco_logger_biobj_feed_solution(coco_problem_t *problem, const size_t evaluation, const double *y) { logger_biobj_data_t *logger; logger_biobj_avl_item_t *node_item; int update_performed; coco_problem_t *inner_problem; double *x; size_t i; assert(problem != NULL); logger = (logger_biobj_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); assert(logger->log_nondom_mode == LOG_NONDOM_READ); /* Set the number of evaluations */ logger->previous_evaluations = logger->number_of_evaluations; if (logger->previous_evaluations >= evaluation) coco_error("coco_logger_biobj_reconstruct(): Evaluation %lu came before evaluation %lu. Note that " "the evaluations need to be always increasing.", logger->previous_evaluations, evaluation); logger->number_of_evaluations = evaluation; /* Update the archive with the new solution */ x = coco_allocate_vector(problem->number_of_variables); for (i = 0; i < problem->number_of_variables; i++) x[i] = 0; node_item = logger_biobj_node_create(inner_problem, x, y, logger->number_of_evaluations, logger->number_of_variables, logger->number_of_objectives); coco_free_memory(x); /* Update the archive */ update_performed = logger_biobj_tree_update(logger, node_item); /* Output according to observer options */ logger_biobj_output(logger, update_performed, node_item); return update_performed; } /** * @brief Outputs the final nondominated solutions to the archive file. */ static void logger_biobj_finalize(logger_biobj_data_t *logger) { avl_tree_t *resorted_tree; avl_node_t *solution; /* Re-sort archive_tree according to time stamp and then output it */ resorted_tree = avl_tree_construct((avl_compare_t) avl_tree_compare_by_eval_number, NULL); if (logger->archive_tree->tail) { /* There is at least a solution in the tree to output */ solution = logger->archive_tree->head; while (solution != NULL) { avl_item_insert(resorted_tree, solution->item); solution = solution->next; } } logger_biobj_tree_output(logger->adat_file, resorted_tree, logger->number_of_variables, logger->number_of_integer_variables, logger->number_of_objectives, logger->log_vars, logger->precision_x, logger->precision_f, logger->log_discrete_as_int); avl_tree_destruct(resorted_tree); } /** * @brief Frees the memory of the given biobjective logger. */ static void logger_biobj_free(void *stuff) { logger_biobj_data_t *logger; size_t i; assert(stuff != NULL); logger = (logger_biobj_data_t *) stuff; if (logger->log_nondom_mode == LOG_NONDOM_FINAL) { logger_biobj_finalize(logger); } if (logger->compute_indicators) { for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) { logger_biobj_indicator_finalize(logger->indicators[i], logger); logger_biobj_indicator_free(logger->indicators[i]); } } if (((logger->log_nondom_mode == LOG_NONDOM_ALL) || (logger->log_nondom_mode == LOG_NONDOM_FINAL)) && (logger->adat_file != NULL)) { fprintf(logger->adat_file, "%% evaluations = %lu\n", (unsigned long) logger->number_of_evaluations); fclose(logger->adat_file); logger->adat_file = NULL; } avl_tree_destruct(logger->archive_tree); avl_tree_destruct(logger->buffer_tree); } /** * @brief Initializes the biobjective logger. * * Copies all observer field values that are needed after initialization into logger field values for two * reasons: * - If the observer is deleted before the suite, the observer is not available anymore when the logger * is finalized. * - This reduces function calls. */ static coco_problem_t *logger_biobj(coco_observer_t *observer, coco_problem_t *inner_problem) { coco_problem_t *problem; logger_biobj_data_t *logger_data; observer_biobj_data_t *observer_data; const char nondom_folder_name[] = "archive"; char *path_name, *file_name = NULL; size_t i; if (inner_problem->number_of_objectives != 2) { coco_error("logger_biobj(): The bi-objective logger cannot log a problem with %d objective(s)", inner_problem->number_of_objectives); return NULL; /* Never reached. */ } logger_data = (logger_biobj_data_t *) coco_allocate_memory(sizeof(*logger_data)); logger_data->number_of_evaluations = 0; logger_data->previous_evaluations = 0; logger_data->number_of_variables = inner_problem->number_of_variables; logger_data->number_of_integer_variables = inner_problem->number_of_integer_variables; logger_data->number_of_objectives = inner_problem->number_of_objectives; logger_data->suite_dep_instance = inner_problem->suite_dep_instance; observer_data = (observer_biobj_data_t *) observer->data; /* Copy values from the observes that you might need even if they do not exist any more */ logger_data->log_nondom_mode = observer_data->log_nondom_mode; logger_data->compute_indicators = observer_data->compute_indicators; logger_data->precision_x = observer->precision_x; logger_data->precision_f = observer->precision_f; logger_data->log_discrete_as_int = observer->log_discrete_as_int; if (((observer_data->log_vars_mode == LOG_VARS_LOW_DIM) && (inner_problem->number_of_variables > 5)) || (observer_data->log_vars_mode == LOG_VARS_NEVER)) logger_data->log_vars = 0; else logger_data->log_vars = 1; /* Initialize logging of nondominated solutions into the archive file */ if ((logger_data->log_nondom_mode == LOG_NONDOM_ALL) || (logger_data->log_nondom_mode == LOG_NONDOM_FINAL)) { /* Create the path to the file */ path_name = coco_allocate_string(COCO_PATH_MAX + 1); memcpy(path_name, observer->result_folder, strlen(observer->result_folder) + 1); coco_join_path(path_name, COCO_PATH_MAX, nondom_folder_name, NULL); coco_create_directory(path_name); /* Construct file name */ if (logger_data->log_nondom_mode == LOG_NONDOM_ALL) file_name = coco_strdupf("%s_nondom_all.adat", inner_problem->problem_id); else if (logger_data->log_nondom_mode == LOG_NONDOM_FINAL) file_name = coco_strdupf("%s_nondom_final.adat", inner_problem->problem_id); coco_join_path(path_name, COCO_PATH_MAX, file_name, NULL); coco_free_memory(file_name); /* Open and initialize the archive file */ logger_data->adat_file = fopen(path_name, "a"); if (logger_data->adat_file == NULL) { coco_error("logger_biobj() failed to open file '%s'.", path_name); return NULL; /* Never reached */ } coco_free_memory(path_name); /* Output header information */ fprintf(logger_data->adat_file, "%% instance = %lu, name = %s\n", (unsigned long) inner_problem->suite_dep_instance, inner_problem->problem_name); if (logger_data->log_vars) { fprintf(logger_data->adat_file, "%% function evaluation | %lu objectives | %lu variables\n", (unsigned long) inner_problem->number_of_objectives, (unsigned long) inner_problem->number_of_variables); } else { fprintf(logger_data->adat_file, "%% function evaluation | %lu objectives \n", (unsigned long) inner_problem->number_of_objectives); } } /* Initialize the AVL trees */ logger_data->archive_tree = avl_tree_construct((avl_compare_t) avl_tree_compare_by_last_objective, (avl_free_t) logger_biobj_node_free); logger_data->buffer_tree = avl_tree_construct((avl_compare_t) avl_tree_compare_by_eval_number, NULL); /* Initialize the indicators */ if (logger_data->compute_indicators) { for (i = 0; i < LOGGER_BIOBJ_NUMBER_OF_INDICATORS; i++) logger_data->indicators[i] = logger_biobj_indicator(logger_data, observer, inner_problem, logger_biobj_indicators[i]); observer_data->previous_function = (long) inner_problem->suite_dep_function; observer_data->previous_dimension = (long) inner_problem->number_of_variables; } problem = coco_problem_transformed_allocate(inner_problem, logger_data, logger_biobj_free, observer->observer_name); problem->evaluate_function = logger_biobj_evaluate; return problem; } #line 358 "code-experiments/src/coco_observer.c" #line 1 "code-experiments/src/logger_toy.c" /** * @file logger_toy.c * @brief Implementation of the toy logger. * * Logs the evaluation number, function value the target hit and all the variables each time a target has * been hit. */ #include #include #line 13 "code-experiments/src/logger_toy.c" #line 15 "code-experiments/src/logger_toy.c" #line 16 "code-experiments/src/logger_toy.c" #line 17 "code-experiments/src/logger_toy.c" #line 1 "code-experiments/src/observer_toy.c" /** * @file observer_toy.c * @brief Implementation of the toy observer. */ #line 7 "code-experiments/src/observer_toy.c" #line 8 "code-experiments/src/observer_toy.c" static coco_problem_t *logger_toy(coco_observer_t *observer, coco_problem_t *problem); static void logger_toy_free(void *logger); /** * @brief The toy observer data type. */ typedef struct { FILE *log_file; /**< @brief File used for logging. */ } observer_toy_data_t; /** * @brief Frees memory of the toy observer data structure. */ static void observer_toy_free(void *stuff) { observer_toy_data_t *data; assert(stuff != NULL); data = (observer_toy_data_t *) stuff; if (data->log_file != NULL) { fclose(data->log_file); data->log_file = NULL; } } /** * @brief Initializes the toy observer. * * Possible options: * - file_name: string (name of the output file; default value is "first_hitting_times.dat") */ static void observer_toy(coco_observer_t *observer, const char *options, coco_option_keys_t **option_keys) { observer_toy_data_t *observer_data; char *string_value; char *file_name; /* Sets the valid keys for toy observer options * IMPORTANT: This list should be up-to-date with the code and the documentation */ const char *known_keys[] = { "file_name" }; *option_keys = coco_option_keys_allocate(sizeof(known_keys) / sizeof(char *), known_keys); observer_data = (observer_toy_data_t *) coco_allocate_memory(sizeof(*observer_data)); /* Read file_name and number_of_targets from the options and use them to initialize the observer */ string_value = coco_allocate_string(COCO_PATH_MAX + 1); if (coco_options_read_string(options, "file_name", string_value) == 0) { strcpy(string_value, "first_hitting_times.dat"); } /* Open log_file */ file_name = coco_allocate_string(COCO_PATH_MAX + 1); memcpy(file_name, observer->result_folder, strlen(observer->result_folder) + 1); coco_create_directory(file_name); coco_join_path(file_name, COCO_PATH_MAX, string_value, NULL); observer_data->log_file = fopen(file_name, "a"); if (observer_data->log_file == NULL) { coco_error("observer_toy(): failed to open file %s.", file_name); return; /* Never reached */ } coco_free_memory(string_value); coco_free_memory(file_name); observer->logger_allocate_function = logger_toy; observer->logger_free_function = logger_toy_free; observer->data_free_function = observer_toy_free; observer->data = observer_data; } #line 18 "code-experiments/src/logger_toy.c" /** * @brief The toy logger data type. */ typedef struct { FILE *log_file; /**< @brief Pointer to the file already prepared for logging. */ coco_observer_targets_t *targets; /**< @brief Triggers based on target values. */ size_t number_of_evaluations; /**< @brief The number of evaluations performed so far. */ int precision_x; /**< @brief Precision for outputting decision values. */ int precision_f; /**< @brief Precision for outputting objective values. */ } logger_toy_data_t; /** * @brief Frees the memory of the given toy logger. */ static void logger_toy_free(void *stuff) { logger_toy_data_t *logger; assert(stuff != NULL); logger = (logger_toy_data_t *) stuff; if (logger->targets != NULL){ coco_free_memory(logger->targets); logger->targets = NULL; } } /** * @brief Evaluates the function, increases the number of evaluations and outputs information based on the * targets that have been hit. */ static void logger_toy_evaluate(coco_problem_t *problem, const double *x, double *y) { logger_toy_data_t *logger = (logger_toy_data_t *) coco_problem_transformed_get_data(problem); size_t i; coco_evaluate_function(coco_problem_transformed_get_inner_problem(problem), x, y); logger->number_of_evaluations++; /* Output the solution when a new target that has been hit */ if (coco_observer_targets_trigger(logger->targets, y[0])) { fprintf(logger->log_file, "%lu\t%.*e\t%.*e", (unsigned long) logger->number_of_evaluations, logger->precision_f, y[0], logger->precision_f, logger->targets->value); for (i = 0; i < problem->number_of_variables; i++) { fprintf(logger->log_file, "\t%.*e", logger->precision_x, x[i]); } fprintf(logger->log_file, "\n"); } /* Flush output so that impatient users can see the progress */ fflush(logger->log_file); } /** * @brief Initializes the toy logger. */ static coco_problem_t *logger_toy(coco_observer_t *observer, coco_problem_t *inner_problem) { logger_toy_data_t *logger_data; coco_problem_t *problem; if (inner_problem->number_of_objectives != 1) { coco_warning("logger_toy(): The toy logger shouldn't be used to log a problem with %d objectives", inner_problem->number_of_objectives); } /* Initialize the logger_toy_data_t object instance */ logger_data = (logger_toy_data_t *) coco_allocate_memory(sizeof(*logger_data)); logger_data->number_of_evaluations = 0; logger_data->targets = coco_observer_targets(observer->number_target_triggers, observer->target_precision); logger_data->log_file = ((observer_toy_data_t *) observer->data)->log_file; logger_data->precision_x = observer->precision_x; logger_data->precision_f = observer->precision_f; problem = coco_problem_transformed_allocate(inner_problem, logger_data, logger_toy_free, observer->observer_name); problem->evaluate_function = logger_toy_evaluate; /* Output initial information */ assert(coco_problem_get_suite(inner_problem)); fprintf(logger_data->log_file, "\n"); fprintf(logger_data->log_file, "suite = '%s', problem_id = '%s', problem_name = '%s', coco_version = '%s'\n", coco_problem_get_suite(inner_problem)->suite_name, coco_problem_get_id(inner_problem), coco_problem_get_name(inner_problem), coco_version); fprintf(logger_data->log_file, "%% evaluation number | function value | target hit | %lu variables \n", (unsigned long) inner_problem->number_of_variables); return problem; } #line 359 "code-experiments/src/coco_observer.c" #line 1 "code-experiments/src/logger_rw.c" /** * @file logger_rw.c * @brief Implementation of the real-world logger. * * Can be used to log all (or just those that are better than the preceding) solutions with information * about objectives, decision variables (optional) and constraints (optional). See observer_rw() for * more information on the options. Produces one "txt" file for each problem function, dimension and * instance. * * @note This logger can be used with single- and multi-objective problems, but in the multi-objective * case, all solutions are always logged. */ #include #include #include #line 19 "code-experiments/src/logger_rw.c" #line 20 "code-experiments/src/logger_rw.c" #line 22 "code-experiments/src/logger_rw.c" #line 23 "code-experiments/src/logger_rw.c" #line 24 "code-experiments/src/logger_rw.c" #line 1 "code-experiments/src/observer_rw.c" /** * @file observer_rw.c * @brief Implementation of an observer for real-world problems. */ #line 7 "code-experiments/src/observer_rw.c" #line 8 "code-experiments/src/observer_rw.c" #line 10 "code-experiments/src/observer_rw.c" /** @brief Enum for denoting when the decision variables and constraints are logged. */ typedef enum { LOG_NEVER, LOG_LOW_DIM, LOG_ALWAYS } observer_rw_log_e; /** * @brief The real-world observer data type. */ typedef struct { observer_rw_log_e log_vars_mode; /**< @brief When the decision variables are logged. */ observer_rw_log_e log_cons_mode; /**< @brief When the constraints are logged. */ size_t low_dim_vars; /**< @brief "Low dimension" for decision variables. */ size_t low_dim_cons; /**< @brief "Low dimension" for constraints. */ int log_only_better; /**< @brief Whether to log only solutions that are better than previous ones (only for the single-objective problems). */ int log_time; /**< @brief Whether to log time. */ } observer_rw_data_t; static coco_problem_t *logger_rw(coco_observer_t *observer, coco_problem_t *problem); static void logger_rw_free(void *logger); /** * @brief Initializes the observer for real-world problems. * * Possible options: * * - "log_variables: STRING" determines whether the decision variables are to be logged. STRING can take on * the values "none" (don't output decision variables), "low_dim"(output decision variables only for * dimensions lower or equal to low_dim_vars) and "all" (output all decision variables). The default value * is "all". * * - "log_constraints: STRING" determines whether the constraints are to be logged. STRING can take on the * values "none" (don't output constraints), "low_dim"(output constraints only for dimensions lower or equal * to low_dim_cons) and "all" (output all constraints). The default value is "all". * * - "low_dim_vars: VALUE" determines the value used to define "low_dim" for decision variables. The default * value is 10. * * - "low_dim_cons: VALUE" determines the value used to define "low_dim" for constraints. The default value * is 10. * * - "log_only_better: 0/1" determines whether all solutions are logged (0) or only the ones that are better * than previous ones (1). This is applicable only for the single-objective problems, where the default value * is 0. For multi-objective problems, all solutions are always logged. * * - "log_time: 0/1" determines whether the time needed to evaluate each solution is logged (0) or not (1). * The default value is 0. */ static void observer_rw(coco_observer_t *observer, const char *options, coco_option_keys_t **option_keys) { observer_rw_data_t *observer_data; char string_value[COCO_PATH_MAX + 1]; /* Sets the valid keys for rw observer options * IMPORTANT: This list should be up-to-date with the code and the documentation */ const char *known_keys[] = { "log_variables", "log_constraints", "low_dim_vars", "low_dim_cons", "log_only_better", "log_time" }; *option_keys = coco_option_keys_allocate(sizeof(known_keys) / sizeof(char *), known_keys); observer_data = (observer_rw_data_t *) coco_allocate_memory(sizeof(*observer_data)); observer_data->log_vars_mode = LOG_ALWAYS; if (coco_options_read_string(options, "log_variables", string_value) > 0) { if (strcmp(string_value, "none") == 0) observer_data->log_vars_mode = LOG_NEVER; else if (strcmp(string_value, "all") == 0) observer_data->log_vars_mode = LOG_ALWAYS; else if (strcmp(string_value, "low_dim") == 0) observer_data->log_vars_mode = LOG_LOW_DIM; } observer_data->log_cons_mode = LOG_ALWAYS; if (coco_options_read_string(options, "log_constraints", string_value) > 0) { if (strcmp(string_value, "none") == 0) observer_data->log_cons_mode = LOG_NEVER; else if (strcmp(string_value, "all") == 0) observer_data->log_cons_mode = LOG_ALWAYS; else if (strcmp(string_value, "low_dim") == 0) observer_data->log_cons_mode = LOG_LOW_DIM; } if (coco_options_read_size_t(options, "low_dim_vars", &(observer_data->low_dim_vars)) == 0) observer_data->low_dim_vars = 10; if (coco_options_read_size_t(options, "low_dim_cons", &(observer_data->low_dim_cons)) == 0) observer_data->low_dim_cons = 10; if (coco_options_read_int(options, "log_only_better", &(observer_data->log_only_better)) == 0) observer_data->log_only_better = 0; if (coco_options_read_int(options, "log_time", &(observer_data->log_time)) == 0) observer_data->log_time = 0; observer->logger_allocate_function = logger_rw; observer->logger_free_function = logger_rw_free; observer->data_free_function = NULL; observer->data = observer_data; } #line 25 "code-experiments/src/logger_rw.c" /** * @brief The rw logger data type. * * @note Some fields from the observers (coco_observer as well as observer_rw) need to be copied here * because the observers can be deleted before the logger is finalized and we need these fields for * finalization. */ typedef struct { FILE *out_file; /**< @brief File for logging. */ size_t number_of_evaluations; /**< @brief The number of evaluations performed so far. */ double best_value; /**< @brief The best-so-far value. */ double current_value; /**< @brief The current value. */ int log_vars; /**< @brief Whether to log the decision values. */ int log_cons; /**< @brief Whether to log the constraints. */ int log_only_better; /**< @brief Whether to log only solutions that are better than previous ones. */ int log_time; /**< @brief Whether to log evaluation time. */ int precision_x; /**< @brief Precision for outputting decision values. */ int precision_f; /**< @brief Precision for outputting objective values. */ int precision_g; /**< @brief Precision for outputting constraint values. */ int log_discrete_as_int; /**< @brief Whether to output discrete variables in int or double format. */ } logger_rw_data_t; /** * @brief Evaluates the function and constraints and outputs the information according to the * observer options. */ static void logger_rw_evaluate(coco_problem_t *problem, const double *x, double *y) { logger_rw_data_t *logger; coco_problem_t *inner_problem; double *constraints = NULL; size_t i; int log_this_time = 1; time_t start, end; logger = (logger_rw_data_t *) coco_problem_transformed_get_data(problem); inner_problem = coco_problem_transformed_get_inner_problem(problem); /* Time the evaluations */ if (logger->log_time) time(&start); /* Evaluate the objective(s) */ coco_evaluate_function(inner_problem, x, y); logger->number_of_evaluations++; if (problem->number_of_objectives == 1) logger->current_value = y[0]; /* Evaluate the constraints */ if (problem->number_of_constraints > 0) { constraints = coco_allocate_vector(problem->number_of_constraints); inner_problem->evaluate_constraint(inner_problem, x, constraints); } /* Time the evaluations */ if (logger->log_time) time(&end); /* Log to the output file */ if ((problem->number_of_objectives == 1) && (logger->current_value < logger->best_value)) logger->best_value = logger->current_value; else log_this_time = !logger->log_only_better; if (log_this_time) { fprintf(logger->out_file, "%lu\t", (unsigned long) logger->number_of_evaluations); for (i = 0; i < problem->number_of_objectives; i++) fprintf(logger->out_file, "%.*e\t", logger->precision_f, y[i]); if (logger->log_vars) { for (i = 0; i < problem->number_of_variables; i++) { if ((i < problem->number_of_integer_variables) && (logger->log_discrete_as_int)) fprintf(logger->out_file, " %d", coco_double_to_int(x[i])); fprintf(logger->out_file, "%.*e\t", logger->precision_x, x[i]); } } if (logger->log_cons) { for (i = 0; i < problem->number_of_constraints; i++) fprintf(logger->out_file, "%.*e\t", logger->precision_g, constraints[i]); } /* Log time in seconds */ if (logger->log_time) fprintf(logger->out_file, "%.0f\t", difftime(end, start)); fprintf(logger->out_file, "\n"); } fflush(logger->out_file); if (problem->number_of_constraints > 0) coco_free_memory(constraints); } /** * @brief Frees the memory of the given rw logger. */ static void logger_rw_free(void *stuff) { logger_rw_data_t *logger; assert(stuff != NULL); logger = (logger_rw_data_t *) stuff; if (logger->out_file != NULL) { fclose(logger->out_file); logger->out_file = NULL; } } /** * @brief Initializes the rw logger. * * Copies all observer field values that are needed after initialization into logger field values for two * reasons: * - If the observer is deleted before the suite, the observer is not available anymore when the logger * is finalized. * - This reduces function calls. */ static coco_problem_t *logger_rw(coco_observer_t *observer, coco_problem_t *inner_problem) { coco_problem_t *problem; logger_rw_data_t *logger_data; observer_rw_data_t *observer_data; char *path_name, *file_name = NULL; logger_data = (logger_rw_data_t *) coco_allocate_memory(sizeof(*logger_data)); logger_data->number_of_evaluations = 0; observer_data = (observer_rw_data_t *) observer->data; /* Copy values from the observes that you might need even if they do not exist any more */ logger_data->precision_x = observer->precision_x; logger_data->precision_f = observer->precision_f; logger_data->precision_g = observer->precision_g; logger_data->log_discrete_as_int = observer->log_discrete_as_int; if (((observer_data->log_vars_mode == LOG_LOW_DIM) && (inner_problem->number_of_variables > observer_data->low_dim_vars)) || (observer_data->log_vars_mode == LOG_NEVER)) logger_data->log_vars = 0; else logger_data->log_vars = 1; if (((observer_data->log_cons_mode == LOG_LOW_DIM) && (inner_problem->number_of_constraints > observer_data->low_dim_cons)) || (observer_data->log_cons_mode == LOG_NEVER) || (inner_problem->number_of_constraints == 0)) logger_data->log_cons = 0; else logger_data->log_cons = 1; logger_data->log_only_better = (observer_data->log_only_better) && (inner_problem->number_of_objectives == 1); logger_data->log_time = observer_data->log_time; logger_data->best_value = DBL_MAX; logger_data->current_value = DBL_MAX; /* Construct file name */ path_name = coco_allocate_string(COCO_PATH_MAX + 1); memcpy(path_name, observer->result_folder, strlen(observer->result_folder) + 1); coco_create_directory(path_name); file_name = coco_strdupf("%s_rw.txt", coco_problem_get_id(inner_problem)); coco_join_path(path_name, COCO_PATH_MAX, file_name, NULL); /* Open and initialize the output file */ logger_data->out_file = fopen(path_name, "a"); if (logger_data->out_file == NULL) { coco_error("logger_rw() failed to open file '%s'.", path_name); return NULL; /* Never reached */ } coco_free_memory(path_name); coco_free_memory(file_name); /* Output header information */ fprintf(logger_data->out_file, "\n%% suite = '%s', problem_id = '%s', problem_name = '%s', coco_version = '%s'\n", coco_problem_get_suite(inner_problem)->suite_name, coco_problem_get_id(inner_problem), coco_problem_get_name(inner_problem), coco_version); fprintf(logger_data->out_file, "%% evaluation | %lu objective", (unsigned long) inner_problem->number_of_objectives); if (inner_problem->number_of_objectives > 1) fprintf(logger_data->out_file, "s"); if (logger_data->log_vars) fprintf(logger_data->out_file, " | %lu variable", (unsigned long) inner_problem->number_of_variables); if (inner_problem->number_of_variables > 1) fprintf(logger_data->out_file, "s"); if (logger_data->log_cons) fprintf(logger_data->out_file, " | %lu constraint", (unsigned long) inner_problem->number_of_constraints); if (inner_problem->number_of_constraints > 1) fprintf(logger_data->out_file, "s"); if (logger_data->log_time) fprintf(logger_data->out_file, " | evaluation time (s)"); fprintf(logger_data->out_file, "\n"); problem = coco_problem_transformed_allocate(inner_problem, logger_data, logger_rw_free, observer->observer_name); problem->evaluate_function = logger_rw_evaluate; return problem; } #line 360 "code-experiments/src/coco_observer.c" /** * Currently, three observers are supported: * - "bbob" is the observer for single-objective (both noisy and noiseless) problems with known optima, which * creates *.info, *.dat, *.tdat and *.rdat files and logs the distance to the optimum. * - "bbob-biobj" is the observer for bi-objective problems, which creates *.info, *.dat and *.tdat files for * the given indicators, as well as an archive folder with *.adat files containing nondominated solutions. * - "toy" is a simple observer that logs when a target has been hit. * * @param observer_name A string containing the name of the observer. Currently supported observer names are * "bbob", "bbob-biobj", "toy". Strings "no_observer", "" or NULL return NULL. * @param observer_options A string of pairs "key: value" used to pass the options to the observer. Some * observer options are general, while others are specific to some observers. Here we list only the general * options, see observer_bbob, observer_biobj and observer_toy for options of the specific observers. * - "result_folder: NAME" determines the folder within the "exdata" folder into which the results will be * output. If the folder with the given name already exists, first NAME_001 will be tried, then NAME_002 and * so on. The default value is "default". * - "algorithm_name: NAME", where NAME is a short name of the algorithm that will be used in plots (no * spaces are allowed). The default value is "ALG". * - "algorithm_info: STRING" stores the description of the algorithm. If it contains spaces, it must be * surrounded by double quotes. The default value is "" (no description). * - "number_target_triggers: VALUE" defines the number of targets between each 10**i and 10**(i+1) * (equally spaced in the logarithmic scale) that trigger logging. The default value is 100. * - "target_precision: VALUE" defines the precision used for targets (there are no targets for * abs(values) < target_precision). The default value is 1e-8. * - "number_evaluation_triggers: VALUE" defines the number of evaluations to be logged between each 10**i * and 10**(i+1). The default value is 20. * - "base_evaluation_triggers: VALUES" defines the base evaluations used to produce an additional * evaluation-based logging. The numbers of evaluations that trigger logging are every * base_evaluation * dimension * (10**i). For example, if base_evaluation_triggers = "1,2,5", the logger will * be triggered by evaluations dim*1, dim*2, dim*5, 10*dim*1, 10*dim*2, 10*dim*5, 100*dim*1, 100*dim*2, * 100*dim*5, ... The default value is "1,2,5". * - "precision_x: VALUE" defines the precision used when outputting variables and corresponds to the number * of digits to be printed after the decimal point. The default value is 8. * - "precision_f: VALUE" defines the precision used when outputting f values and corresponds to the number of * digits to be printed after the decimal point. The default value is 15. * - "precision_g: VALUE" defines the precision used when outputting constraints and corresponds to the number * of digits to be printed after the decimal point. The default value is 3. * - "log_discrete_as_int: VALUE" determines whether the values of integer variables (in mixed-integer problems) * are logged as integers (1) or not (0 - in this case they are logged as doubles). The default value is 0. * * @return The constructed observer object or NULL if observer_name equals NULL, "" or "no_observer". */ coco_observer_t *coco_observer(const char *observer_name, const char *observer_options) { coco_observer_t *observer; char *path, *result_folder, *algorithm_name, *algorithm_info; const char *outer_folder_name = "exdata"; int precision_x, precision_f, precision_g, log_discrete_as_int; size_t number_target_triggers; size_t number_evaluation_triggers; double target_precision; char *base_evaluation_triggers; coco_option_keys_t *known_option_keys, *given_option_keys, *additional_option_keys, *redundant_option_keys; /* Sets the valid keys for observer options * IMPORTANT: This list should be up-to-date with the code and the documentation */ const char *known_keys[] = { "result_folder", "algorithm_name", "algorithm_info", "number_target_triggers", "target_precision", "number_evaluation_triggers", "base_evaluation_triggers", "precision_x", "precision_f", "precision_g", "log_discrete_as_int" }; additional_option_keys = NULL; /* To be set by the chosen observer */ if (0 == strcmp(observer_name, "no_observer")) { return NULL; } else if (strlen(observer_name) == 0) { coco_warning("Empty observer_name has no effect. To prevent this warning use 'no_observer' instead"); return NULL; } result_folder = coco_allocate_string(COCO_PATH_MAX + 1); algorithm_name = coco_allocate_string(COCO_PATH_MAX + 1); algorithm_info = coco_allocate_string(5 * COCO_PATH_MAX); /* Read result_folder, algorithm_name and algorithm_info from the observer_options and use * them to initialize the observer */ if (coco_options_read_string(observer_options, "result_folder", result_folder) == 0) { strcpy(result_folder, "default"); } /* Create the result_folder inside the "exdata" folder */ path = coco_allocate_string(COCO_PATH_MAX + 1); memcpy(path, outer_folder_name, strlen(outer_folder_name) + 1); coco_join_path(path, COCO_PATH_MAX, result_folder, NULL); coco_create_unique_directory(&path); coco_info("Results will be output to folder %s", path); if (coco_options_read_string(observer_options, "algorithm_name", algorithm_name) == 0) { strcpy(algorithm_name, "ALG"); } if (coco_options_read_string(observer_options, "algorithm_info", algorithm_info) == 0) { strcpy(algorithm_info, ""); } number_target_triggers = 100; if (coco_options_read_size_t(observer_options, "number_target_triggers", &number_target_triggers) != 0) { if (number_target_triggers == 0) number_target_triggers = 100; } target_precision = 1e-8; if (coco_options_read_double(observer_options, "target_precision", &target_precision) != 0) { if ((target_precision > 1) || (target_precision <= 0)) target_precision = 1e-8; } number_evaluation_triggers = 20; if (coco_options_read_size_t(observer_options, "number_evaluation_triggers", &number_evaluation_triggers) != 0) { if (number_evaluation_triggers < 4) number_evaluation_triggers = 20; } base_evaluation_triggers = coco_allocate_string(COCO_PATH_MAX); if (coco_options_read_string(observer_options, "base_evaluation_triggers", base_evaluation_triggers) == 0) { strcpy(base_evaluation_triggers, "1,2,5"); } precision_x = 8; if (coco_options_read_int(observer_options, "precision_x", &precision_x) != 0) { if ((precision_x < 1) || (precision_x > 32)) precision_x = 8; } precision_f = 15; if (coco_options_read_int(observer_options, "precision_f", &precision_f) != 0) { if ((precision_f < 1) || (precision_f > 32)) precision_f = 15; } precision_g = 3; if (coco_options_read_int(observer_options, "precision_g", &precision_g) != 0) { if ((precision_g < 1) || (precision_g > 32)) precision_g = 3; } log_discrete_as_int = 0; if (coco_options_read_int(observer_options, "log_discrete_as_int", &log_discrete_as_int) != 0) { if ((log_discrete_as_int < 0) || (log_discrete_as_int > 1)) log_discrete_as_int = 0; } observer = coco_observer_allocate(path, observer_name, algorithm_name, algorithm_info, number_target_triggers, target_precision, number_evaluation_triggers, base_evaluation_triggers, precision_x, precision_f, precision_g, log_discrete_as_int); coco_free_memory(path); coco_free_memory(result_folder); coco_free_memory(algorithm_name); coco_free_memory(algorithm_info); coco_free_memory(base_evaluation_triggers); /* Here each observer must have an entry - a call to a specific function that sets the additional_option_keys * and the following observer fields: * - logger_allocate_function * - logger_free_function * - data_free_function * - data */ if (0 == strcmp(observer_name, "toy")) { observer_toy(observer, observer_options, &additional_option_keys); } else if (0 == strcmp(observer_name, "bbob")) { observer_bbob(observer, observer_options, &additional_option_keys); } else if (0 == strcmp(observer_name, "bbob-biobj")) { observer_biobj(observer, observer_options, &additional_option_keys); } else if (0 == strcmp(observer_name, "bbob-biobj-ext")) { observer_biobj(observer, observer_options, &additional_option_keys); } else if (0 == strncmp(observer_name, "bbob-constrained", 16)) { observer_bbob(observer, observer_options, &additional_option_keys); } else if (0 == strcmp(observer_name, "bbob-largescale")) { observer_bbob(observer, observer_options, &additional_option_keys); } else if (0 == strcmp(observer_name, "bbob-mixint")) { observer_bbob(observer, observer_options, &additional_option_keys); } else if (0 == strcmp(observer_name, "bbob-biobj-mixint")) { observer_biobj(observer, observer_options, &additional_option_keys); } else if (0 == strcmp(observer_name, "rw")) { observer_rw(observer, observer_options, &additional_option_keys); } else { coco_observer_free(observer); coco_warning("Unknown observer!"); return NULL; } /* Check for redundant option keys */ known_option_keys = coco_option_keys_allocate(sizeof(known_keys) / sizeof(char *), known_keys); coco_option_keys_add(&known_option_keys, additional_option_keys); given_option_keys = coco_option_keys(observer_options); if (given_option_keys) { redundant_option_keys = coco_option_keys_get_redundant(known_option_keys, given_option_keys); if ((redundant_option_keys != NULL) && (redundant_option_keys->count > 0)) { /* Warn the user that some of given options are being ignored and output the valid options */ char *output_redundant = coco_option_keys_get_output_string(redundant_option_keys, "coco_observer(): Some keys in observer options were ignored:\n"); char *output_valid = coco_option_keys_get_output_string(known_option_keys, "Valid keys for observer options are:\n"); coco_warning("%s%s", output_redundant, output_valid); coco_free_memory(output_redundant); coco_free_memory(output_valid); } coco_option_keys_free(given_option_keys); coco_option_keys_free(redundant_option_keys); } coco_option_keys_free(known_option_keys); coco_option_keys_free(additional_option_keys); return observer; } /** * Wraps the observer's logger around the problem if the observer is not NULL and invokes the initialization * of this logger. * * @param problem The given COCO problem. * @param observer The COCO observer, whose logger will wrap the problem. * * @return The observed problem in the form of a new COCO problem instance or the same problem if the * observer is NULL. */ coco_problem_t *coco_problem_add_observer(coco_problem_t *problem, coco_observer_t *observer) { if (problem == NULL) return NULL; if ((observer == NULL) || (observer->is_active == 0)) { coco_warning("The problem will not be observed. %s", observer == NULL ? "(observer == NULL)" : "(observer not active)"); return problem; } assert(observer->logger_allocate_function); return observer->logger_allocate_function(observer, problem); } /** * Frees the observer's logger and returns the inner problem. * * @param problem The observed COCO problem. * @param observer The COCO observer, whose logger was wrapping the problem. * * @return The unobserved problem as a pointer to the inner problem or the same problem if the problem * was not observed. */ coco_problem_t *coco_problem_remove_observer(coco_problem_t *problem, coco_observer_t *observer) { coco_problem_t *problem_unobserved; char *prefix; if ((observer == NULL) || (observer->is_active == 0)) { coco_warning("The problem was not observed. %s", observer == NULL ? "(observer == NULL)" : "(observer not active)"); return problem; } /* Check that we are removing the observer that is actually wrapping the problem. * * This is a hack - it assumes that the name of the problem is formatted as "observer_name(problem_name)". * While not elegant, it does the job and is better than nothing. */ prefix = coco_remove_from_string(problem->problem_name, "(", ""); if (strcmp(prefix, observer->observer_name) != 0) { coco_error("coco_problem_remove_observer(): trying to remove observer %s instead of %s", observer->observer_name, prefix); } coco_free_memory(prefix); /* Keep the inner problem and remove the logger data */ problem_unobserved = coco_problem_transformed_get_inner_problem(problem); coco_problem_transformed_free_data(problem); problem = NULL; return problem_unobserved; } /** * Get the result folder name, which is a unique folder name constructed * from the result_folder option. * * @param observer The COCO observer, whose logger may be wrapping a problem. * * @return The result folder name, where the logger writes its output. */ const char *coco_observer_get_result_folder(const coco_observer_t *observer) { if (observer == NULL) { coco_warning("coco_observer_get_result_folder: no observer to get result_folder from"); return ""; } else if (observer->is_active == 0) { coco_warning("coco_observer_get_result_folder: observer is not active, returning empty string"); return ""; } return observer->result_folder; } #line 1 "code-experiments/src/coco_archive.c" /** * @file coco_archive.c * @brief Definitions of functions regarding COCO archives. * * COCO archives are used to do some pre-processing on the bi-objective archive files. Namely, through a * wrapper written in Python, these functions are used to merge archives and compute their hypervolumes. */ #line 10 "code-experiments/src/coco_archive.c" #line 11 "code-experiments/src/coco_archive.c" #line 12 "code-experiments/src/coco_archive.c" #line 13 "code-experiments/src/coco_archive.c" /** * @brief The COCO archive structure. * * The archive structure is used for pre-processing archives of non-dominated solutions. */ struct coco_archive_s { avl_tree_t *tree; /**< @brief The AVL tree with non-dominated solutions. */ double *ideal; /**< @brief The ideal point. */ double *nadir; /**< @brief The nadir point. */ size_t number_of_objectives; /**< @brief Number of objectives (clearly equal to 2). */ int is_up_to_date; /**< @brief Whether archive fields have been updated since last addition. */ size_t number_of_solutions; /**< @brief Number of solutions in the archive. */ double hypervolume; /**< @brief Hypervolume of the solutions in the archive. */ avl_node_t *current_solution; /**< @brief Current solution (to return). */ avl_node_t *extreme1; /**< @brief Pointer to the first extreme solution. */ avl_node_t *extreme2; /**< @brief Pointer to the second extreme solution. */ int extremes_already_returned; /**< @brief Whether the extreme solutions have already been returned. */ }; /** * @brief The type for the node's item in the AVL tree used by the archive. * * Contains information on the rounded normalized objective values (normalized_y), which are used for * computing the indicators and the text, which is used for output. */ typedef struct { double *normalized_y; /**< @brief The values of normalized objectives of this solution. */ char *text; /**< @brief The text describing the solution (the whole line of the archive). */ } coco_archive_avl_item_t; /** * @brief Creates and returns the information on the solution in the form of a node's item in the AVL tree. */ static coco_archive_avl_item_t* coco_archive_node_item_create(const double *y, const double *ideal, const double *nadir, const size_t num_obj, const char *text) { /* Allocate memory to hold the data structure coco_archive_avl_item_t */ coco_archive_avl_item_t *item = (coco_archive_avl_item_t*) coco_allocate_memory(sizeof(*item)); /* Compute the normalized y */ item->normalized_y = mo_normalize(y, ideal, nadir, num_obj); item->text = coco_strdup(text); return item; } /** * @brief Frees the data of the given coco_archive_avl_item_t. */ static void coco_archive_node_item_free(coco_archive_avl_item_t *item, void *userdata) { coco_free_memory(item->normalized_y); coco_free_memory(item->text); coco_free_memory(item); (void) userdata; /* To silence the compiler */ } /** * @brief Defines the ordering of AVL tree nodes based on the value of the last objective. */ static int coco_archive_compare_by_last_objective(const coco_archive_avl_item_t *item1, const coco_archive_avl_item_t *item2, void *userdata) { (void) userdata; /* To silence the compiler */ if (coco_double_almost_equal(item1->normalized_y[1], item2->normalized_y[1], mo_precision)) return 0; else if (item1->normalized_y[1] < item2->normalized_y[1]) return -1; else return 1; } /** * @brief Allocates memory for the archive and initializes its fields. */ static coco_archive_t *coco_archive_allocate(void) { /* Allocate memory to hold the data structure coco_archive_t */ coco_archive_t *archive = (coco_archive_t*) coco_allocate_memory(sizeof(*archive)); /* Initialize the AVL tree */ archive->tree = avl_tree_construct((avl_compare_t) coco_archive_compare_by_last_objective, (avl_free_t) coco_archive_node_item_free); archive->ideal = NULL; /* To be allocated in coco_archive() */ archive->nadir = NULL; /* To be allocated in coco_archive() */ archive->number_of_objectives = 2; archive->is_up_to_date = 0; archive->number_of_solutions = 0; archive->hypervolume = 0.0; archive->current_solution = NULL; archive->extreme1 = NULL; /* To be set in coco_archive() */ archive->extreme2 = NULL; /* To be set in coco_archive() */ archive->extremes_already_returned = 0; return archive; } /** * The archive always contains the two extreme solutions */ coco_archive_t *coco_archive(const char *suite_name, const size_t function, const size_t dimension, const size_t instance) { coco_archive_t *archive = coco_archive_allocate(); int output_precision = 15; coco_suite_t *suite; char *suite_instance = coco_strdupf("instances: %lu", (unsigned long) instance); char *suite_options = coco_strdupf("dimensions: %lu function_indices: %lu", (unsigned long) dimension, (unsigned long) function); coco_problem_t *problem; char *text; int update; suite = coco_suite(suite_name, suite_instance, suite_options); if (suite == NULL) { coco_error("coco_archive(): cannot create suite '%s'", suite_name); return NULL; /* Never reached */ } problem = coco_suite_get_next_problem(suite, NULL); if (problem == NULL) { coco_error("coco_archive(): cannot create problem f%02lu_i%02lu_d%02lu in suite '%s'", (unsigned long) function, (unsigned long) instance, (unsigned long) dimension, suite_name); return NULL; /* Never reached */ } /* Store the ideal and nadir points */ archive->ideal = coco_duplicate_vector(problem->best_value, 2); archive->nadir = coco_duplicate_vector(problem->nadir_value, 2); /* Add the extreme points to the archive */ text = coco_strdupf("0\t%.*e\t%.*e\n", output_precision, archive->nadir[0], output_precision, archive->ideal[1]); update = coco_archive_add_solution(archive, archive->nadir[0], archive->ideal[1], text); coco_free_memory(text); assert(update == 1); text = coco_strdupf("0\t%.*e\t%.*e\n", output_precision, archive->ideal[0], output_precision, archive->nadir[1]); update = coco_archive_add_solution(archive, archive->ideal[0], archive->nadir[1], text); coco_free_memory(text); assert(update == 1); archive->extreme1 = archive->tree->head; archive->extreme2 = archive->tree->tail; assert(archive->extreme1 != archive->extreme2); coco_free_memory(suite_instance); coco_free_memory(suite_options); coco_suite_free(suite); (void) update; /* To silence compiler warnings */ return archive; } int coco_archive_add_solution(coco_archive_t *archive, const double y1, const double y2, const char *text) { coco_archive_avl_item_t* insert_item; avl_node_t *node, *next_node; int update = 0; int dominance; double *y = coco_allocate_vector(2); y[0] = y1; y[1] = y2; insert_item = coco_archive_node_item_create(y, archive->ideal, archive->nadir, archive->number_of_objectives, text); coco_free_memory(y); /* Find the first point that is not worse than the new point (NULL if such point does not exist) */ node = avl_item_search_right(archive->tree, insert_item, NULL); if (node == NULL) { /* The new point is an extreme point */ update = 1; next_node = archive->tree->head; } else { dominance = mo_get_dominance(insert_item->normalized_y, ((coco_archive_avl_item_t*) node->item)->normalized_y, archive->number_of_objectives); if (dominance > -1) { update = 1; next_node = node->next; if (dominance == 1) { /* The new point dominates the next point, remove the next point */ assert((node != archive->extreme1) && (node != archive->extreme2)); avl_node_delete(archive->tree, node); } } else { /* The new point is dominated or equal to an existing one, ignore */ update = 0; } } if (!update) { coco_archive_node_item_free(insert_item, NULL); } else { /* Perform tree update */ while (next_node != NULL) { /* Check the dominance relation between the new node and the next node. There are only two possibilities: * dominance = 0: the new node and the next node are nondominated * dominance = 1: the new node dominates the next node */ node = next_node; dominance = mo_get_dominance(insert_item->normalized_y, ((coco_archive_avl_item_t*) node->item)->normalized_y, archive->number_of_objectives); if (dominance == 1) { next_node = node->next; /* The new point dominates the next point, remove the next point */ assert((node != archive->extreme1) && (node != archive->extreme2)); avl_node_delete(archive->tree, node); } else { break; } } if(avl_item_insert(archive->tree, insert_item) == NULL) { coco_archive_node_item_free(insert_item, NULL); coco_warning("Solution %s did not update the archive", text); update = 0; } archive->is_up_to_date = 0; } return update; } /** * @brief Updates the archive fields returned by the getters. */ static void coco_archive_update(coco_archive_t *archive) { double hyp; if (!archive->is_up_to_date) { avl_node_t *node, *left_node; coco_archive_avl_item_t *node_item, *left_node_item; /* Updates number_of_solutions */ archive->number_of_solutions = avl_count(archive->tree); /* Updates hypervolume */ node = archive->tree->head; archive->hypervolume = 0; /* Hypervolume of the extreme point equals 0 */ while (node->next) { /* Add hypervolume contributions of the other points that are within ROI */ left_node = node->next; node_item = (coco_archive_avl_item_t *) node->item; left_node_item = (coco_archive_avl_item_t *) left_node->item; if (mo_is_within_ROI(left_node_item->normalized_y, archive->number_of_objectives)) { if (mo_is_within_ROI(node_item->normalized_y, archive->number_of_objectives)) hyp = (node_item->normalized_y[0] - left_node_item->normalized_y[0]) * (1 - left_node_item->normalized_y[1]); else hyp = (1 - left_node_item->normalized_y[0]) * (1 - left_node_item->normalized_y[1]); assert(hyp >= 0); archive->hypervolume += hyp; } node = left_node; } archive->is_up_to_date = 1; archive->current_solution = NULL; archive->extremes_already_returned = 0; } } const char *coco_archive_get_next_solution_text(coco_archive_t *archive) { char *text; coco_archive_update(archive); if (!archive->extremes_already_returned) { if (archive->current_solution == NULL) { /* Return the first extreme */ text = ((coco_archive_avl_item_t *) archive->extreme1->item)->text; archive->current_solution = archive->extreme2; return text; } if (archive->current_solution == archive->extreme2) { /* Return the second extreme */ text = ((coco_archive_avl_item_t *) archive->extreme2->item)->text; archive->extremes_already_returned = 1; archive->current_solution = archive->tree->head; return text; } } else { if (archive->current_solution == NULL) return ""; if ((archive->current_solution == archive->extreme1) || (archive->current_solution == archive->extreme2)) { /* Skip this one */ archive->current_solution = archive->current_solution->next; return coco_archive_get_next_solution_text(archive); } /* Return the current solution and move to the next */ text = ((coco_archive_avl_item_t *) archive->current_solution->item)->text; archive->current_solution = archive->current_solution->next; return text; } return NULL; /* This point should never be reached. */ } size_t coco_archive_get_number_of_solutions(coco_archive_t *archive) { coco_archive_update(archive); return archive->number_of_solutions; } double coco_archive_get_hypervolume(coco_archive_t *archive) { coco_archive_update(archive); return archive->hypervolume; } void coco_archive_free(coco_archive_t *archive) { assert(archive != NULL); avl_tree_destruct(archive->tree); coco_free_memory(archive->ideal); coco_free_memory(archive->nadir); coco_free_memory(archive); } #line 1 "code-experiments/src/coco_runtime_c.c" /** * @file coco_runtime_c.c * @brief Generic COCO runtime implementation for the C language. * * Other language interfaces might want to replace this so that memory allocation and error handling go * through the respective language runtime. */ #include #include #include #line 14 "code-experiments/src/coco_runtime_c.c" #line 15 "code-experiments/src/coco_runtime_c.c" void coco_error(const char *message, ...) { va_list args; fprintf(stderr, "COCO FATAL ERROR: "); va_start(args, message); vfprintf(stderr, message, args); va_end(args); fprintf(stderr, "\n"); exit(EXIT_FAILURE); } void coco_warning(const char *message, ...) { va_list args; if (coco_log_level >= COCO_WARNING) { fprintf(stderr, "COCO WARNING: "); va_start(args, message); vfprintf(stderr, message, args); va_end(args); fprintf(stderr, "\n"); } } void coco_info(const char *message, ...) { va_list args; if (coco_log_level >= COCO_INFO) { fprintf(stdout, "COCO INFO: "); va_start(args, message); vfprintf(stdout, message, args); va_end(args); fprintf(stdout, "\n"); fflush(stdout); } } /** * A function similar to coco_info that prints only the given message without any prefix and without * adding a new line. */ void coco_info_partial(const char *message, ...) { va_list args; if (coco_log_level >= COCO_INFO) { va_start(args, message); vfprintf(stdout, message, args); va_end(args); fflush(stdout); } } void coco_debug(const char *message, ...) { va_list args; if (coco_log_level >= COCO_DEBUG) { fprintf(stdout, "COCO DEBUG: "); va_start(args, message); vfprintf(stdout, message, args); va_end(args); fprintf(stdout, "\n"); fflush(stdout); } } void *coco_allocate_memory(const size_t size) { void *data; if (size == 0) { coco_error("coco_allocate_memory() called with 0 size."); return NULL; /* never reached */ } data = malloc(size); if (data == NULL) coco_error("coco_allocate_memory() failed."); return data; } void coco_free_memory(void *data) { free(data); }