//===-- sanitizer_allocator.h -----------------------------------*- C++ -*-===// // // The LLVM Compiler Infrastructure // // This file is distributed under the University of Illinois Open Source // License. See LICENSE.TXT for details. // //===----------------------------------------------------------------------===// // // Specialized memory allocator for ThreadSanitizer, MemorySanitizer, etc. // //===----------------------------------------------------------------------===// #ifndef SANITIZER_ALLOCATOR_H #define SANITIZER_ALLOCATOR_H #include "sanitizer_internal_defs.h" #include "sanitizer_common.h" #include "sanitizer_libc.h" #include "sanitizer_list.h" #include "sanitizer_mutex.h" #include "sanitizer_lfstack.h" namespace __sanitizer { // Prints error message and kills the program. void NORETURN ReportAllocatorCannotReturnNull(); // SizeClassMap maps allocation sizes into size classes and back. // Class 0 corresponds to size 0. // Classes 1 - 16 correspond to sizes 16 to 256 (size = class_id * 16). // Next 4 classes: 256 + i * 64 (i = 1 to 4). // Next 4 classes: 512 + i * 128 (i = 1 to 4). // ... // Next 4 classes: 2^k + i * 2^(k-2) (i = 1 to 4). // Last class corresponds to kMaxSize = 1 << kMaxSizeLog. // // This structure of the size class map gives us: // - Efficient table-free class-to-size and size-to-class functions. // - Difference between two consequent size classes is betweed 14% and 25% // // This class also gives a hint to a thread-caching allocator about the amount // of chunks that need to be cached per-thread: // - kMaxNumCached is the maximal number of chunks per size class. // - (1 << kMaxBytesCachedLog) is the maximal number of bytes per size class. // // Part of output of SizeClassMap::Print(): // c00 => s: 0 diff: +0 00% l 0 cached: 0 0; id 0 // c01 => s: 16 diff: +16 00% l 4 cached: 256 4096; id 1 // c02 => s: 32 diff: +16 100% l 5 cached: 256 8192; id 2 // c03 => s: 48 diff: +16 50% l 5 cached: 256 12288; id 3 // c04 => s: 64 diff: +16 33% l 6 cached: 256 16384; id 4 // c05 => s: 80 diff: +16 25% l 6 cached: 256 20480; id 5 // c06 => s: 96 diff: +16 20% l 6 cached: 256 24576; id 6 // c07 => s: 112 diff: +16 16% l 6 cached: 256 28672; id 7 // // c08 => s: 128 diff: +16 14% l 7 cached: 256 32768; id 8 // c09 => s: 144 diff: +16 12% l 7 cached: 256 36864; id 9 // c10 => s: 160 diff: +16 11% l 7 cached: 256 40960; id 10 // c11 => s: 176 diff: +16 10% l 7 cached: 256 45056; id 11 // c12 => s: 192 diff: +16 09% l 7 cached: 256 49152; id 12 // c13 => s: 208 diff: +16 08% l 7 cached: 256 53248; id 13 // c14 => s: 224 diff: +16 07% l 7 cached: 256 57344; id 14 // c15 => s: 240 diff: +16 07% l 7 cached: 256 61440; id 15 // // c16 => s: 256 diff: +16 06% l 8 cached: 256 65536; id 16 // c17 => s: 320 diff: +64 25% l 8 cached: 204 65280; id 17 // c18 => s: 384 diff: +64 20% l 8 cached: 170 65280; id 18 // c19 => s: 448 diff: +64 16% l 8 cached: 146 65408; id 19 // // c20 => s: 512 diff: +64 14% l 9 cached: 128 65536; id 20 // c21 => s: 640 diff: +128 25% l 9 cached: 102 65280; id 21 // c22 => s: 768 diff: +128 20% l 9 cached: 85 65280; id 22 // c23 => s: 896 diff: +128 16% l 9 cached: 73 65408; id 23 // // c24 => s: 1024 diff: +128 14% l 10 cached: 64 65536; id 24 // c25 => s: 1280 diff: +256 25% l 10 cached: 51 65280; id 25 // c26 => s: 1536 diff: +256 20% l 10 cached: 42 64512; id 26 // c27 => s: 1792 diff: +256 16% l 10 cached: 36 64512; id 27 // // ... // // c48 => s: 65536 diff: +8192 14% l 16 cached: 1 65536; id 48 // c49 => s: 81920 diff: +16384 25% l 16 cached: 1 81920; id 49 // c50 => s: 98304 diff: +16384 20% l 16 cached: 1 98304; id 50 // c51 => s: 114688 diff: +16384 16% l 16 cached: 1 114688; id 51 // // c52 => s: 131072 diff: +16384 14% l 17 cached: 1 131072; id 52 template class SizeClassMap { static const uptr kMinSizeLog = 4; static const uptr kMidSizeLog = kMinSizeLog + 4; static const uptr kMinSize = 1 << kMinSizeLog; static const uptr kMidSize = 1 << kMidSizeLog; static const uptr kMidClass = kMidSize / kMinSize; static const uptr S = 2; static const uptr M = (1 << S) - 1; public: static const uptr kMaxNumCached = kMaxNumCachedT; // We transfer chunks between central and thread-local free lists in batches. // For small size classes we allocate batches separately. // For large size classes we use one of the chunks to store the batch. struct TransferBatch { TransferBatch *next; uptr count; void *batch[kMaxNumCached]; }; static const uptr kMaxSize = 1UL << kMaxSizeLog; static const uptr kNumClasses = kMidClass + ((kMaxSizeLog - kMidSizeLog) << S) + 1; COMPILER_CHECK(kNumClasses >= 32 && kNumClasses <= 256); static const uptr kNumClassesRounded = kNumClasses == 32 ? 32 : kNumClasses <= 64 ? 64 : kNumClasses <= 128 ? 128 : 256; static uptr Size(uptr class_id) { if (class_id <= kMidClass) return kMinSize * class_id; class_id -= kMidClass; uptr t = kMidSize << (class_id >> S); return t + (t >> S) * (class_id & M); } static uptr ClassID(uptr size) { if (size <= kMidSize) return (size + kMinSize - 1) >> kMinSizeLog; if (size > kMaxSize) return 0; uptr l = MostSignificantSetBitIndex(size); uptr hbits = (size >> (l - S)) & M; uptr lbits = size & ((1 << (l - S)) - 1); uptr l1 = l - kMidSizeLog; return kMidClass + (l1 << S) + hbits + (lbits > 0); } static uptr MaxCached(uptr class_id) { if (class_id == 0) return 0; uptr n = (1UL << kMaxBytesCachedLog) / Size(class_id); return Max(1, Min(kMaxNumCached, n)); } static void Print() { uptr prev_s = 0; uptr total_cached = 0; for (uptr i = 0; i < kNumClasses; i++) { uptr s = Size(i); if (s >= kMidSize / 2 && (s & (s - 1)) == 0) Printf("\n"); uptr d = s - prev_s; uptr p = prev_s ? (d * 100 / prev_s) : 0; uptr l = s ? MostSignificantSetBitIndex(s) : 0; uptr cached = MaxCached(i) * s; Printf("c%02zd => s: %zd diff: +%zd %02zd%% l %zd " "cached: %zd %zd; id %zd\n", i, Size(i), d, p, l, MaxCached(i), cached, ClassID(s)); total_cached += cached; prev_s = s; } Printf("Total cached: %zd\n", total_cached); } static bool SizeClassRequiresSeparateTransferBatch(uptr class_id) { return Size(class_id) < sizeof(TransferBatch) - sizeof(uptr) * (kMaxNumCached - MaxCached(class_id)); } static void Validate() { for (uptr c = 1; c < kNumClasses; c++) { // Printf("Validate: c%zd\n", c); uptr s = Size(c); CHECK_NE(s, 0U); CHECK_EQ(ClassID(s), c); if (c != kNumClasses - 1) CHECK_EQ(ClassID(s + 1), c + 1); CHECK_EQ(ClassID(s - 1), c); if (c) CHECK_GT(Size(c), Size(c-1)); } CHECK_EQ(ClassID(kMaxSize + 1), 0); for (uptr s = 1; s <= kMaxSize; s++) { uptr c = ClassID(s); // Printf("s%zd => c%zd\n", s, c); CHECK_LT(c, kNumClasses); CHECK_GE(Size(c), s); if (c > 0) CHECK_LT(Size(c-1), s); } } }; typedef SizeClassMap<17, 128, 16> DefaultSizeClassMap; typedef SizeClassMap<17, 64, 14> CompactSizeClassMap; template struct SizeClassAllocatorLocalCache; // Memory allocator statistics enum AllocatorStat { AllocatorStatAllocated, AllocatorStatMapped, AllocatorStatCount }; typedef uptr AllocatorStatCounters[AllocatorStatCount]; // Per-thread stats, live in per-thread cache. class AllocatorStats { public: void Init() { internal_memset(this, 0, sizeof(*this)); } void InitLinkerInitialized() {} void Add(AllocatorStat i, uptr v) { v += atomic_load(&stats_[i], memory_order_relaxed); atomic_store(&stats_[i], v, memory_order_relaxed); } void Sub(AllocatorStat i, uptr v) { v = atomic_load(&stats_[i], memory_order_relaxed) - v; atomic_store(&stats_[i], v, memory_order_relaxed); } void Set(AllocatorStat i, uptr v) { atomic_store(&stats_[i], v, memory_order_relaxed); } uptr Get(AllocatorStat i) const { return atomic_load(&stats_[i], memory_order_relaxed); } private: friend class AllocatorGlobalStats; AllocatorStats *next_; AllocatorStats *prev_; atomic_uintptr_t stats_[AllocatorStatCount]; }; // Global stats, used for aggregation and querying. class AllocatorGlobalStats : public AllocatorStats { public: void InitLinkerInitialized() { next_ = this; prev_ = this; } void Init() { internal_memset(this, 0, sizeof(*this)); InitLinkerInitialized(); } void Register(AllocatorStats *s) { SpinMutexLock l(&mu_); s->next_ = next_; s->prev_ = this; next_->prev_ = s; next_ = s; } void Unregister(AllocatorStats *s) { SpinMutexLock l(&mu_); s->prev_->next_ = s->next_; s->next_->prev_ = s->prev_; for (int i = 0; i < AllocatorStatCount; i++) Add(AllocatorStat(i), s->Get(AllocatorStat(i))); } void Get(AllocatorStatCounters s) const { internal_memset(s, 0, AllocatorStatCount * sizeof(uptr)); SpinMutexLock l(&mu_); const AllocatorStats *stats = this; for (;;) { for (int i = 0; i < AllocatorStatCount; i++) s[i] += stats->Get(AllocatorStat(i)); stats = stats->next_; if (stats == this) break; } // All stats must be non-negative. for (int i = 0; i < AllocatorStatCount; i++) s[i] = ((sptr)s[i]) >= 0 ? s[i] : 0; } private: mutable SpinMutex mu_; }; // Allocators call these callbacks on mmap/munmap. struct NoOpMapUnmapCallback { void OnMap(uptr p, uptr size) const { } void OnUnmap(uptr p, uptr size) const { } }; // Callback type for iterating over chunks. typedef void (*ForEachChunkCallback)(uptr chunk, void *arg); // SizeClassAllocator64 -- allocator for 64-bit address space. // // Space: a portion of address space of kSpaceSize bytes starting at SpaceBeg. // If kSpaceBeg is ~0 then SpaceBeg is chosen dynamically my mmap. // Otherwise SpaceBeg=kSpaceBeg (fixed address). // kSpaceSize is a power of two. // At the beginning the entire space is mprotect-ed, then small parts of it // are mapped on demand. // // Region: a part of Space dedicated to a single size class. // There are kNumClasses Regions of equal size. // // UserChunk: a piece of memory returned to user. // MetaChunk: kMetadataSize bytes of metadata associated with a UserChunk. // // A Region looks like this: // UserChunk1 ... UserChunkN MetaChunkN ... MetaChunk1 template class SizeClassAllocator64 { public: typedef typename SizeClassMap::TransferBatch Batch; typedef SizeClassAllocator64 ThisT; typedef SizeClassAllocatorLocalCache AllocatorCache; void Init() { uptr TotalSpaceSize = kSpaceSize + AdditionalSize(); if (kUsingConstantSpaceBeg) { CHECK_EQ(kSpaceBeg, reinterpret_cast( MmapFixedNoAccess(kSpaceBeg, TotalSpaceSize))); } else { NonConstSpaceBeg = reinterpret_cast(MmapNoAccess(TotalSpaceSize)); CHECK_NE(NonConstSpaceBeg, ~(uptr)0); } MapWithCallback(SpaceEnd(), AdditionalSize()); } void MapWithCallback(uptr beg, uptr size) { CHECK_EQ(beg, reinterpret_cast(MmapFixedOrDie(beg, size))); MapUnmapCallback().OnMap(beg, size); } void UnmapWithCallback(uptr beg, uptr size) { MapUnmapCallback().OnUnmap(beg, size); UnmapOrDie(reinterpret_cast(beg), size); } static bool CanAllocate(uptr size, uptr alignment) { return size <= SizeClassMap::kMaxSize && alignment <= SizeClassMap::kMaxSize; } NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c, uptr class_id) { CHECK_LT(class_id, kNumClasses); RegionInfo *region = GetRegionInfo(class_id); Batch *b = region->free_list.Pop(); if (!b) b = PopulateFreeList(stat, c, class_id, region); region->n_allocated += b->count; return b; } NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) { RegionInfo *region = GetRegionInfo(class_id); CHECK_GT(b->count, 0); region->free_list.Push(b); region->n_freed += b->count; } bool PointerIsMine(const void *p) { uptr P = reinterpret_cast(p); if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0) return P / kSpaceSize == kSpaceBeg / kSpaceSize; return P >= SpaceBeg() && P < SpaceEnd(); } uptr GetSizeClass(const void *p) { if (kUsingConstantSpaceBeg && (kSpaceBeg % kSpaceSize) == 0) return ((reinterpret_cast(p)) / kRegionSize) % kNumClassesRounded; return ((reinterpret_cast(p) - SpaceBeg()) / kRegionSize) % kNumClassesRounded; } void *GetBlockBegin(const void *p) { uptr class_id = GetSizeClass(p); uptr size = SizeClassMap::Size(class_id); if (!size) return nullptr; uptr chunk_idx = GetChunkIdx((uptr)p, size); uptr reg_beg = (uptr)p & ~(kRegionSize - 1); uptr beg = chunk_idx * size; uptr next_beg = beg + size; if (class_id >= kNumClasses) return nullptr; RegionInfo *region = GetRegionInfo(class_id); if (region->mapped_user >= next_beg) return reinterpret_cast(reg_beg + beg); return nullptr; } uptr GetActuallyAllocatedSize(void *p) { CHECK(PointerIsMine(p)); return SizeClassMap::Size(GetSizeClass(p)); } uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); } void *GetMetaData(const void *p) { uptr class_id = GetSizeClass(p); uptr size = SizeClassMap::Size(class_id); uptr chunk_idx = GetChunkIdx(reinterpret_cast(p), size); return reinterpret_cast(SpaceBeg() + (kRegionSize * (class_id + 1)) - (1 + chunk_idx) * kMetadataSize); } uptr TotalMemoryUsed() { uptr res = 0; for (uptr i = 0; i < kNumClasses; i++) res += GetRegionInfo(i)->allocated_user; return res; } // Test-only. void TestOnlyUnmap() { UnmapWithCallback(SpaceBeg(), kSpaceSize + AdditionalSize()); } void PrintStats() { uptr total_mapped = 0; uptr n_allocated = 0; uptr n_freed = 0; for (uptr class_id = 1; class_id < kNumClasses; class_id++) { RegionInfo *region = GetRegionInfo(class_id); total_mapped += region->mapped_user; n_allocated += region->n_allocated; n_freed += region->n_freed; } Printf("Stats: SizeClassAllocator64: %zdM mapped in %zd allocations; " "remains %zd\n", total_mapped >> 20, n_allocated, n_allocated - n_freed); for (uptr class_id = 1; class_id < kNumClasses; class_id++) { RegionInfo *region = GetRegionInfo(class_id); if (region->mapped_user == 0) continue; Printf(" %02zd (%zd): total: %zd K allocs: %zd remains: %zd\n", class_id, SizeClassMap::Size(class_id), region->mapped_user >> 10, region->n_allocated, region->n_allocated - region->n_freed); } } // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone // introspection API. void ForceLock() { for (uptr i = 0; i < kNumClasses; i++) { GetRegionInfo(i)->mutex.Lock(); } } void ForceUnlock() { for (int i = (int)kNumClasses - 1; i >= 0; i--) { GetRegionInfo(i)->mutex.Unlock(); } } // Iterate over all existing chunks. // The allocator must be locked when calling this function. void ForEachChunk(ForEachChunkCallback callback, void *arg) { for (uptr class_id = 1; class_id < kNumClasses; class_id++) { RegionInfo *region = GetRegionInfo(class_id); uptr chunk_size = SizeClassMap::Size(class_id); uptr region_beg = SpaceBeg() + class_id * kRegionSize; for (uptr chunk = region_beg; chunk < region_beg + region->allocated_user; chunk += chunk_size) { // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk)); callback(chunk, arg); } } } static uptr AdditionalSize() { return RoundUpTo(sizeof(RegionInfo) * kNumClassesRounded, GetPageSizeCached()); } typedef SizeClassMap SizeClassMapT; static const uptr kNumClasses = SizeClassMap::kNumClasses; static const uptr kNumClassesRounded = SizeClassMap::kNumClassesRounded; private: static const uptr kRegionSize = kSpaceSize / kNumClassesRounded; static const bool kUsingConstantSpaceBeg = kSpaceBeg != ~(uptr)0; uptr NonConstSpaceBeg; uptr SpaceBeg() const { return kUsingConstantSpaceBeg ? kSpaceBeg : NonConstSpaceBeg; } uptr SpaceEnd() const { return SpaceBeg() + kSpaceSize; } // kRegionSize must be >= 2^32. COMPILER_CHECK((kRegionSize) >= (1ULL << (SANITIZER_WORDSIZE / 2))); // Populate the free list with at most this number of bytes at once // or with one element if its size is greater. static const uptr kPopulateSize = 1 << 14; // Call mmap for user memory with at least this size. static const uptr kUserMapSize = 1 << 16; // Call mmap for metadata memory with at least this size. static const uptr kMetaMapSize = 1 << 16; struct RegionInfo { BlockingMutex mutex; LFStack free_list; uptr allocated_user; // Bytes allocated for user memory. uptr allocated_meta; // Bytes allocated for metadata. uptr mapped_user; // Bytes mapped for user memory. uptr mapped_meta; // Bytes mapped for metadata. uptr n_allocated, n_freed; // Just stats. }; COMPILER_CHECK(sizeof(RegionInfo) >= kCacheLineSize); RegionInfo *GetRegionInfo(uptr class_id) { CHECK_LT(class_id, kNumClasses); RegionInfo *regions = reinterpret_cast(SpaceBeg() + kSpaceSize); return ®ions[class_id]; } static uptr GetChunkIdx(uptr chunk, uptr size) { uptr offset = chunk % kRegionSize; // Here we divide by a non-constant. This is costly. // size always fits into 32-bits. If the offset fits too, use 32-bit div. if (offset >> (SANITIZER_WORDSIZE / 2)) return offset / size; return (u32)offset / (u32)size; } NOINLINE Batch* PopulateFreeList(AllocatorStats *stat, AllocatorCache *c, uptr class_id, RegionInfo *region) { BlockingMutexLock l(®ion->mutex); Batch *b = region->free_list.Pop(); if (b) return b; uptr size = SizeClassMap::Size(class_id); uptr count = size < kPopulateSize ? SizeClassMap::MaxCached(class_id) : 1; uptr beg_idx = region->allocated_user; uptr end_idx = beg_idx + count * size; uptr region_beg = SpaceBeg() + kRegionSize * class_id; if (end_idx + size > region->mapped_user) { // Do the mmap for the user memory. uptr map_size = kUserMapSize; while (end_idx + size > region->mapped_user + map_size) map_size += kUserMapSize; CHECK_GE(region->mapped_user + map_size, end_idx); MapWithCallback(region_beg + region->mapped_user, map_size); stat->Add(AllocatorStatMapped, map_size); region->mapped_user += map_size; } uptr total_count = (region->mapped_user - beg_idx - size) / size / count * count; region->allocated_meta += total_count * kMetadataSize; if (region->allocated_meta > region->mapped_meta) { uptr map_size = kMetaMapSize; while (region->allocated_meta > region->mapped_meta + map_size) map_size += kMetaMapSize; // Do the mmap for the metadata. CHECK_GE(region->mapped_meta + map_size, region->allocated_meta); MapWithCallback(region_beg + kRegionSize - region->mapped_meta - map_size, map_size); region->mapped_meta += map_size; } CHECK_LE(region->allocated_meta, region->mapped_meta); if (region->mapped_user + region->mapped_meta > kRegionSize) { Printf("%s: Out of memory. Dying. ", SanitizerToolName); Printf("The process has exhausted %zuMB for size class %zu.\n", kRegionSize / 1024 / 1024, size); Die(); } for (;;) { if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch))); else b = (Batch*)(region_beg + beg_idx); b->count = count; for (uptr i = 0; i < count; i++) b->batch[i] = (void*)(region_beg + beg_idx + i * size); region->allocated_user += count * size; CHECK_LE(region->allocated_user, region->mapped_user); beg_idx += count * size; if (beg_idx + count * size + size > region->mapped_user) break; CHECK_GT(b->count, 0); region->free_list.Push(b); } return b; } }; // Maps integers in rage [0, kSize) to u8 values. template class FlatByteMap { public: void TestOnlyInit() { internal_memset(map_, 0, sizeof(map_)); } void set(uptr idx, u8 val) { CHECK_LT(idx, kSize); CHECK_EQ(0U, map_[idx]); map_[idx] = val; } u8 operator[] (uptr idx) { CHECK_LT(idx, kSize); // FIXME: CHECK may be too expensive here. return map_[idx]; } private: u8 map_[kSize]; }; // TwoLevelByteMap maps integers in range [0, kSize1*kSize2) to u8 values. // It is implemented as a two-dimensional array: array of kSize1 pointers // to kSize2-byte arrays. The secondary arrays are mmaped on demand. // Each value is initially zero and can be set to something else only once. // Setting and getting values from multiple threads is safe w/o extra locking. template class TwoLevelByteMap { public: void TestOnlyInit() { internal_memset(map1_, 0, sizeof(map1_)); mu_.Init(); } void TestOnlyUnmap() { for (uptr i = 0; i < kSize1; i++) { u8 *p = Get(i); if (!p) continue; MapUnmapCallback().OnUnmap(reinterpret_cast(p), kSize2); UnmapOrDie(p, kSize2); } } uptr size() const { return kSize1 * kSize2; } uptr size1() const { return kSize1; } uptr size2() const { return kSize2; } void set(uptr idx, u8 val) { CHECK_LT(idx, kSize1 * kSize2); u8 *map2 = GetOrCreate(idx / kSize2); CHECK_EQ(0U, map2[idx % kSize2]); map2[idx % kSize2] = val; } u8 operator[] (uptr idx) const { CHECK_LT(idx, kSize1 * kSize2); u8 *map2 = Get(idx / kSize2); if (!map2) return 0; return map2[idx % kSize2]; } private: u8 *Get(uptr idx) const { CHECK_LT(idx, kSize1); return reinterpret_cast( atomic_load(&map1_[idx], memory_order_acquire)); } u8 *GetOrCreate(uptr idx) { u8 *res = Get(idx); if (!res) { SpinMutexLock l(&mu_); if (!(res = Get(idx))) { res = (u8*)MmapOrDie(kSize2, "TwoLevelByteMap"); MapUnmapCallback().OnMap(reinterpret_cast(res), kSize2); atomic_store(&map1_[idx], reinterpret_cast(res), memory_order_release); } } return res; } atomic_uintptr_t map1_[kSize1]; StaticSpinMutex mu_; }; // SizeClassAllocator32 -- allocator for 32-bit address space. // This allocator can theoretically be used on 64-bit arch, but there it is less // efficient than SizeClassAllocator64. // // [kSpaceBeg, kSpaceBeg + kSpaceSize) is the range of addresses which can // be returned by MmapOrDie(). // // Region: // a result of a single call to MmapAlignedOrDie(kRegionSize, kRegionSize). // Since the regions are aligned by kRegionSize, there are exactly // kNumPossibleRegions possible regions in the address space and so we keep // a ByteMap possible_regions to store the size classes of each Region. // 0 size class means the region is not used by the allocator. // // One Region is used to allocate chunks of a single size class. // A Region looks like this: // UserChunk1 .. UserChunkN MetaChunkN .. MetaChunk1 // // In order to avoid false sharing the objects of this class should be // chache-line aligned. template class SizeClassAllocator32 { public: typedef typename SizeClassMap::TransferBatch Batch; typedef SizeClassAllocator32 ThisT; typedef SizeClassAllocatorLocalCache AllocatorCache; void Init() { possible_regions.TestOnlyInit(); internal_memset(size_class_info_array, 0, sizeof(size_class_info_array)); } void *MapWithCallback(uptr size) { size = RoundUpTo(size, GetPageSizeCached()); void *res = MmapOrDie(size, "SizeClassAllocator32"); MapUnmapCallback().OnMap((uptr)res, size); return res; } void UnmapWithCallback(uptr beg, uptr size) { MapUnmapCallback().OnUnmap(beg, size); UnmapOrDie(reinterpret_cast(beg), size); } static bool CanAllocate(uptr size, uptr alignment) { return size <= SizeClassMap::kMaxSize && alignment <= SizeClassMap::kMaxSize; } void *GetMetaData(const void *p) { CHECK(PointerIsMine(p)); uptr mem = reinterpret_cast(p); uptr beg = ComputeRegionBeg(mem); uptr size = SizeClassMap::Size(GetSizeClass(p)); u32 offset = mem - beg; uptr n = offset / (u32)size; // 32-bit division uptr meta = (beg + kRegionSize) - (n + 1) * kMetadataSize; return reinterpret_cast(meta); } NOINLINE Batch* AllocateBatch(AllocatorStats *stat, AllocatorCache *c, uptr class_id) { CHECK_LT(class_id, kNumClasses); SizeClassInfo *sci = GetSizeClassInfo(class_id); SpinMutexLock l(&sci->mutex); if (sci->free_list.empty()) PopulateFreeList(stat, c, sci, class_id); CHECK(!sci->free_list.empty()); Batch *b = sci->free_list.front(); sci->free_list.pop_front(); return b; } NOINLINE void DeallocateBatch(AllocatorStats *stat, uptr class_id, Batch *b) { CHECK_LT(class_id, kNumClasses); SizeClassInfo *sci = GetSizeClassInfo(class_id); SpinMutexLock l(&sci->mutex); CHECK_GT(b->count, 0); sci->free_list.push_front(b); } bool PointerIsMine(const void *p) { uptr mem = reinterpret_cast(p); if (mem < kSpaceBeg || mem >= kSpaceBeg + kSpaceSize) return false; return GetSizeClass(p) != 0; } uptr GetSizeClass(const void *p) { return possible_regions[ComputeRegionId(reinterpret_cast(p))]; } void *GetBlockBegin(const void *p) { CHECK(PointerIsMine(p)); uptr mem = reinterpret_cast(p); uptr beg = ComputeRegionBeg(mem); uptr size = SizeClassMap::Size(GetSizeClass(p)); u32 offset = mem - beg; u32 n = offset / (u32)size; // 32-bit division uptr res = beg + (n * (u32)size); return reinterpret_cast(res); } uptr GetActuallyAllocatedSize(void *p) { CHECK(PointerIsMine(p)); return SizeClassMap::Size(GetSizeClass(p)); } uptr ClassID(uptr size) { return SizeClassMap::ClassID(size); } uptr TotalMemoryUsed() { // No need to lock here. uptr res = 0; for (uptr i = 0; i < kNumPossibleRegions; i++) if (possible_regions[i]) res += kRegionSize; return res; } void TestOnlyUnmap() { for (uptr i = 0; i < kNumPossibleRegions; i++) if (possible_regions[i]) UnmapWithCallback((i * kRegionSize), kRegionSize); } // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone // introspection API. void ForceLock() { for (uptr i = 0; i < kNumClasses; i++) { GetSizeClassInfo(i)->mutex.Lock(); } } void ForceUnlock() { for (int i = kNumClasses - 1; i >= 0; i--) { GetSizeClassInfo(i)->mutex.Unlock(); } } // Iterate over all existing chunks. // The allocator must be locked when calling this function. void ForEachChunk(ForEachChunkCallback callback, void *arg) { for (uptr region = 0; region < kNumPossibleRegions; region++) if (possible_regions[region]) { uptr chunk_size = SizeClassMap::Size(possible_regions[region]); uptr max_chunks_in_region = kRegionSize / (chunk_size + kMetadataSize); uptr region_beg = region * kRegionSize; for (uptr chunk = region_beg; chunk < region_beg + max_chunks_in_region * chunk_size; chunk += chunk_size) { // Too slow: CHECK_EQ((void *)chunk, GetBlockBegin((void *)chunk)); callback(chunk, arg); } } } void PrintStats() { } static uptr AdditionalSize() { return 0; } typedef SizeClassMap SizeClassMapT; static const uptr kNumClasses = SizeClassMap::kNumClasses; private: static const uptr kRegionSize = 1 << kRegionSizeLog; static const uptr kNumPossibleRegions = kSpaceSize / kRegionSize; struct SizeClassInfo { SpinMutex mutex; IntrusiveList free_list; char padding[kCacheLineSize - sizeof(uptr) - sizeof(IntrusiveList)]; }; COMPILER_CHECK(sizeof(SizeClassInfo) == kCacheLineSize); uptr ComputeRegionId(uptr mem) { uptr res = mem >> kRegionSizeLog; CHECK_LT(res, kNumPossibleRegions); return res; } uptr ComputeRegionBeg(uptr mem) { return mem & ~(kRegionSize - 1); } uptr AllocateRegion(AllocatorStats *stat, uptr class_id) { CHECK_LT(class_id, kNumClasses); uptr res = reinterpret_cast(MmapAlignedOrDie(kRegionSize, kRegionSize, "SizeClassAllocator32")); MapUnmapCallback().OnMap(res, kRegionSize); stat->Add(AllocatorStatMapped, kRegionSize); CHECK_EQ(0U, (res & (kRegionSize - 1))); possible_regions.set(ComputeRegionId(res), static_cast(class_id)); return res; } SizeClassInfo *GetSizeClassInfo(uptr class_id) { CHECK_LT(class_id, kNumClasses); return &size_class_info_array[class_id]; } void PopulateFreeList(AllocatorStats *stat, AllocatorCache *c, SizeClassInfo *sci, uptr class_id) { uptr size = SizeClassMap::Size(class_id); uptr reg = AllocateRegion(stat, class_id); uptr n_chunks = kRegionSize / (size + kMetadataSize); uptr max_count = SizeClassMap::MaxCached(class_id); Batch *b = nullptr; for (uptr i = reg; i < reg + n_chunks * size; i += size) { if (!b) { if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) b = (Batch*)c->Allocate(this, SizeClassMap::ClassID(sizeof(Batch))); else b = (Batch*)i; b->count = 0; } b->batch[b->count++] = (void*)i; if (b->count == max_count) { CHECK_GT(b->count, 0); sci->free_list.push_back(b); b = nullptr; } } if (b) { CHECK_GT(b->count, 0); sci->free_list.push_back(b); } } ByteMap possible_regions; SizeClassInfo size_class_info_array[kNumClasses]; }; // Objects of this type should be used as local caches for SizeClassAllocator64 // or SizeClassAllocator32. Since the typical use of this class is to have one // object per thread in TLS, is has to be POD. template struct SizeClassAllocatorLocalCache { typedef SizeClassAllocator Allocator; static const uptr kNumClasses = SizeClassAllocator::kNumClasses; void Init(AllocatorGlobalStats *s) { stats_.Init(); if (s) s->Register(&stats_); } void Destroy(SizeClassAllocator *allocator, AllocatorGlobalStats *s) { Drain(allocator); if (s) s->Unregister(&stats_); } void *Allocate(SizeClassAllocator *allocator, uptr class_id) { CHECK_NE(class_id, 0UL); CHECK_LT(class_id, kNumClasses); stats_.Add(AllocatorStatAllocated, SizeClassMap::Size(class_id)); PerClass *c = &per_class_[class_id]; if (UNLIKELY(c->count == 0)) Refill(allocator, class_id); void *res = c->batch[--c->count]; PREFETCH(c->batch[c->count - 1]); return res; } void Deallocate(SizeClassAllocator *allocator, uptr class_id, void *p) { CHECK_NE(class_id, 0UL); CHECK_LT(class_id, kNumClasses); // If the first allocator call on a new thread is a deallocation, then // max_count will be zero, leading to check failure. InitCache(); stats_.Sub(AllocatorStatAllocated, SizeClassMap::Size(class_id)); PerClass *c = &per_class_[class_id]; CHECK_NE(c->max_count, 0UL); if (UNLIKELY(c->count == c->max_count)) Drain(allocator, class_id); c->batch[c->count++] = p; } void Drain(SizeClassAllocator *allocator) { for (uptr class_id = 0; class_id < kNumClasses; class_id++) { PerClass *c = &per_class_[class_id]; while (c->count > 0) Drain(allocator, class_id); } } // private: typedef typename SizeClassAllocator::SizeClassMapT SizeClassMap; typedef typename SizeClassMap::TransferBatch Batch; struct PerClass { uptr count; uptr max_count; void *batch[2 * SizeClassMap::kMaxNumCached]; }; PerClass per_class_[kNumClasses]; AllocatorStats stats_; void InitCache() { if (per_class_[1].max_count) return; for (uptr i = 0; i < kNumClasses; i++) { PerClass *c = &per_class_[i]; c->max_count = 2 * SizeClassMap::MaxCached(i); } } NOINLINE void Refill(SizeClassAllocator *allocator, uptr class_id) { InitCache(); PerClass *c = &per_class_[class_id]; Batch *b = allocator->AllocateBatch(&stats_, this, class_id); CHECK_GT(b->count, 0); for (uptr i = 0; i < b->count; i++) c->batch[i] = b->batch[i]; c->count = b->count; if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) Deallocate(allocator, SizeClassMap::ClassID(sizeof(Batch)), b); } NOINLINE void Drain(SizeClassAllocator *allocator, uptr class_id) { InitCache(); PerClass *c = &per_class_[class_id]; Batch *b; if (SizeClassMap::SizeClassRequiresSeparateTransferBatch(class_id)) b = (Batch*)Allocate(allocator, SizeClassMap::ClassID(sizeof(Batch))); else b = (Batch*)c->batch[0]; uptr cnt = Min(c->max_count / 2, c->count); for (uptr i = 0; i < cnt; i++) { b->batch[i] = c->batch[i]; c->batch[i] = c->batch[i + c->max_count / 2]; } b->count = cnt; c->count -= cnt; CHECK_GT(b->count, 0); allocator->DeallocateBatch(&stats_, class_id, b); } }; // This class can (de)allocate only large chunks of memory using mmap/unmap. // The main purpose of this allocator is to cover large and rare allocation // sizes not covered by more efficient allocators (e.g. SizeClassAllocator64). template class LargeMmapAllocator { public: void InitLinkerInitialized(bool may_return_null) { page_size_ = GetPageSizeCached(); atomic_store(&may_return_null_, may_return_null, memory_order_relaxed); } void Init(bool may_return_null) { internal_memset(this, 0, sizeof(*this)); InitLinkerInitialized(may_return_null); } void *Allocate(AllocatorStats *stat, uptr size, uptr alignment) { CHECK(IsPowerOfTwo(alignment)); uptr map_size = RoundUpMapSize(size); if (alignment > page_size_) map_size += alignment; // Overflow. if (map_size < size) return ReturnNullOrDie(); uptr map_beg = reinterpret_cast( MmapOrDie(map_size, "LargeMmapAllocator")); CHECK(IsAligned(map_beg, page_size_)); MapUnmapCallback().OnMap(map_beg, map_size); uptr map_end = map_beg + map_size; uptr res = map_beg + page_size_; if (res & (alignment - 1)) // Align. res += alignment - (res & (alignment - 1)); CHECK(IsAligned(res, alignment)); CHECK(IsAligned(res, page_size_)); CHECK_GE(res + size, map_beg); CHECK_LE(res + size, map_end); Header *h = GetHeader(res); h->size = size; h->map_beg = map_beg; h->map_size = map_size; uptr size_log = MostSignificantSetBitIndex(map_size); CHECK_LT(size_log, ARRAY_SIZE(stats.by_size_log)); { SpinMutexLock l(&mutex_); uptr idx = n_chunks_++; chunks_sorted_ = false; CHECK_LT(idx, kMaxNumChunks); h->chunk_idx = idx; chunks_[idx] = h; stats.n_allocs++; stats.currently_allocated += map_size; stats.max_allocated = Max(stats.max_allocated, stats.currently_allocated); stats.by_size_log[size_log]++; stat->Add(AllocatorStatAllocated, map_size); stat->Add(AllocatorStatMapped, map_size); } return reinterpret_cast(res); } void *ReturnNullOrDie() { if (atomic_load(&may_return_null_, memory_order_acquire)) return nullptr; ReportAllocatorCannotReturnNull(); } void SetMayReturnNull(bool may_return_null) { atomic_store(&may_return_null_, may_return_null, memory_order_release); } void Deallocate(AllocatorStats *stat, void *p) { Header *h = GetHeader(p); { SpinMutexLock l(&mutex_); uptr idx = h->chunk_idx; CHECK_EQ(chunks_[idx], h); CHECK_LT(idx, n_chunks_); chunks_[idx] = chunks_[n_chunks_ - 1]; chunks_[idx]->chunk_idx = idx; n_chunks_--; chunks_sorted_ = false; stats.n_frees++; stats.currently_allocated -= h->map_size; stat->Sub(AllocatorStatAllocated, h->map_size); stat->Sub(AllocatorStatMapped, h->map_size); } MapUnmapCallback().OnUnmap(h->map_beg, h->map_size); UnmapOrDie(reinterpret_cast(h->map_beg), h->map_size); } uptr TotalMemoryUsed() { SpinMutexLock l(&mutex_); uptr res = 0; for (uptr i = 0; i < n_chunks_; i++) { Header *h = chunks_[i]; CHECK_EQ(h->chunk_idx, i); res += RoundUpMapSize(h->size); } return res; } bool PointerIsMine(const void *p) { return GetBlockBegin(p) != nullptr; } uptr GetActuallyAllocatedSize(void *p) { return RoundUpTo(GetHeader(p)->size, page_size_); } // At least page_size_/2 metadata bytes is available. void *GetMetaData(const void *p) { // Too slow: CHECK_EQ(p, GetBlockBegin(p)); if (!IsAligned(reinterpret_cast(p), page_size_)) { Printf("%s: bad pointer %p\n", SanitizerToolName, p); CHECK(IsAligned(reinterpret_cast(p), page_size_)); } return GetHeader(p) + 1; } void *GetBlockBegin(const void *ptr) { uptr p = reinterpret_cast(ptr); SpinMutexLock l(&mutex_); uptr nearest_chunk = 0; // Cache-friendly linear search. for (uptr i = 0; i < n_chunks_; i++) { uptr ch = reinterpret_cast(chunks_[i]); if (p < ch) continue; // p is at left to this chunk, skip it. if (p - ch < p - nearest_chunk) nearest_chunk = ch; } if (!nearest_chunk) return nullptr; Header *h = reinterpret_cast
(nearest_chunk); CHECK_GE(nearest_chunk, h->map_beg); CHECK_LT(nearest_chunk, h->map_beg + h->map_size); CHECK_LE(nearest_chunk, p); if (h->map_beg + h->map_size <= p) return nullptr; return GetUser(h); } // This function does the same as GetBlockBegin, but is much faster. // Must be called with the allocator locked. void *GetBlockBeginFastLocked(void *ptr) { mutex_.CheckLocked(); uptr p = reinterpret_cast(ptr); uptr n = n_chunks_; if (!n) return nullptr; if (!chunks_sorted_) { // Do one-time sort. chunks_sorted_ is reset in Allocate/Deallocate. SortArray(reinterpret_cast(chunks_), n); for (uptr i = 0; i < n; i++) chunks_[i]->chunk_idx = i; chunks_sorted_ = true; min_mmap_ = reinterpret_cast(chunks_[0]); max_mmap_ = reinterpret_cast(chunks_[n - 1]) + chunks_[n - 1]->map_size; } if (p < min_mmap_ || p >= max_mmap_) return nullptr; uptr beg = 0, end = n - 1; // This loop is a log(n) lower_bound. It does not check for the exact match // to avoid expensive cache-thrashing loads. while (end - beg >= 2) { uptr mid = (beg + end) / 2; // Invariant: mid >= beg + 1 if (p < reinterpret_cast(chunks_[mid])) end = mid - 1; // We are not interested in chunks_[mid]. else beg = mid; // chunks_[mid] may still be what we want. } if (beg < end) { CHECK_EQ(beg + 1, end); // There are 2 chunks left, choose one. if (p >= reinterpret_cast(chunks_[end])) beg = end; } Header *h = chunks_[beg]; if (h->map_beg + h->map_size <= p || p < h->map_beg) return nullptr; return GetUser(h); } void PrintStats() { Printf("Stats: LargeMmapAllocator: allocated %zd times, " "remains %zd (%zd K) max %zd M; by size logs: ", stats.n_allocs, stats.n_allocs - stats.n_frees, stats.currently_allocated >> 10, stats.max_allocated >> 20); for (uptr i = 0; i < ARRAY_SIZE(stats.by_size_log); i++) { uptr c = stats.by_size_log[i]; if (!c) continue; Printf("%zd:%zd; ", i, c); } Printf("\n"); } // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone // introspection API. void ForceLock() { mutex_.Lock(); } void ForceUnlock() { mutex_.Unlock(); } // Iterate over all existing chunks. // The allocator must be locked when calling this function. void ForEachChunk(ForEachChunkCallback callback, void *arg) { for (uptr i = 0; i < n_chunks_; i++) callback(reinterpret_cast(GetUser(chunks_[i])), arg); } private: static const int kMaxNumChunks = 1 << FIRST_32_SECOND_64(15, 18); struct Header { uptr map_beg; uptr map_size; uptr size; uptr chunk_idx; }; Header *GetHeader(uptr p) { CHECK(IsAligned(p, page_size_)); return reinterpret_cast(p - page_size_); } Header *GetHeader(const void *p) { return GetHeader(reinterpret_cast(p)); } void *GetUser(Header *h) { CHECK(IsAligned((uptr)h, page_size_)); return reinterpret_cast(reinterpret_cast(h) + page_size_); } uptr RoundUpMapSize(uptr size) { return RoundUpTo(size, page_size_) + page_size_; } uptr page_size_; Header *chunks_[kMaxNumChunks]; uptr n_chunks_; uptr min_mmap_, max_mmap_; bool chunks_sorted_; struct Stats { uptr n_allocs, n_frees, currently_allocated, max_allocated, by_size_log[64]; } stats; atomic_uint8_t may_return_null_; SpinMutex mutex_; }; // This class implements a complete memory allocator by using two // internal allocators: // PrimaryAllocator is efficient, but may not allocate some sizes (alignments). // When allocating 2^x bytes it should return 2^x aligned chunk. // PrimaryAllocator is used via a local AllocatorCache. // SecondaryAllocator can allocate anything, but is not efficient. template // NOLINT class CombinedAllocator { public: void InitCommon(bool may_return_null) { primary_.Init(); atomic_store(&may_return_null_, may_return_null, memory_order_relaxed); } void InitLinkerInitialized(bool may_return_null) { secondary_.InitLinkerInitialized(may_return_null); stats_.InitLinkerInitialized(); InitCommon(may_return_null); } void Init(bool may_return_null) { secondary_.Init(may_return_null); stats_.Init(); InitCommon(may_return_null); } void *Allocate(AllocatorCache *cache, uptr size, uptr alignment, bool cleared = false, bool check_rss_limit = false) { // Returning 0 on malloc(0) may break a lot of code. if (size == 0) size = 1; if (size + alignment < size) return ReturnNullOrDie(); if (check_rss_limit && RssLimitIsExceeded()) return ReturnNullOrDie(); if (alignment > 8) size = RoundUpTo(size, alignment); void *res; bool from_primary = primary_.CanAllocate(size, alignment); if (from_primary) res = cache->Allocate(&primary_, primary_.ClassID(size)); else res = secondary_.Allocate(&stats_, size, alignment); if (alignment > 8) CHECK_EQ(reinterpret_cast(res) & (alignment - 1), 0); if (cleared && res && from_primary) internal_bzero_aligned16(res, RoundUpTo(size, 16)); return res; } bool MayReturnNull() const { return atomic_load(&may_return_null_, memory_order_acquire); } void *ReturnNullOrDie() { if (MayReturnNull()) return nullptr; ReportAllocatorCannotReturnNull(); } void SetMayReturnNull(bool may_return_null) { secondary_.SetMayReturnNull(may_return_null); atomic_store(&may_return_null_, may_return_null, memory_order_release); } bool RssLimitIsExceeded() { return atomic_load(&rss_limit_is_exceeded_, memory_order_acquire); } void SetRssLimitIsExceeded(bool rss_limit_is_exceeded) { atomic_store(&rss_limit_is_exceeded_, rss_limit_is_exceeded, memory_order_release); } void Deallocate(AllocatorCache *cache, void *p) { if (!p) return; if (primary_.PointerIsMine(p)) cache->Deallocate(&primary_, primary_.GetSizeClass(p), p); else secondary_.Deallocate(&stats_, p); } void *Reallocate(AllocatorCache *cache, void *p, uptr new_size, uptr alignment) { if (!p) return Allocate(cache, new_size, alignment); if (!new_size) { Deallocate(cache, p); return nullptr; } CHECK(PointerIsMine(p)); uptr old_size = GetActuallyAllocatedSize(p); uptr memcpy_size = Min(new_size, old_size); void *new_p = Allocate(cache, new_size, alignment); if (new_p) internal_memcpy(new_p, p, memcpy_size); Deallocate(cache, p); return new_p; } bool PointerIsMine(void *p) { if (primary_.PointerIsMine(p)) return true; return secondary_.PointerIsMine(p); } bool FromPrimary(void *p) { return primary_.PointerIsMine(p); } void *GetMetaData(const void *p) { if (primary_.PointerIsMine(p)) return primary_.GetMetaData(p); return secondary_.GetMetaData(p); } void *GetBlockBegin(const void *p) { if (primary_.PointerIsMine(p)) return primary_.GetBlockBegin(p); return secondary_.GetBlockBegin(p); } // This function does the same as GetBlockBegin, but is much faster. // Must be called with the allocator locked. void *GetBlockBeginFastLocked(void *p) { if (primary_.PointerIsMine(p)) return primary_.GetBlockBegin(p); return secondary_.GetBlockBeginFastLocked(p); } uptr GetActuallyAllocatedSize(void *p) { if (primary_.PointerIsMine(p)) return primary_.GetActuallyAllocatedSize(p); return secondary_.GetActuallyAllocatedSize(p); } uptr TotalMemoryUsed() { return primary_.TotalMemoryUsed() + secondary_.TotalMemoryUsed(); } void TestOnlyUnmap() { primary_.TestOnlyUnmap(); } void InitCache(AllocatorCache *cache) { cache->Init(&stats_); } void DestroyCache(AllocatorCache *cache) { cache->Destroy(&primary_, &stats_); } void SwallowCache(AllocatorCache *cache) { cache->Drain(&primary_); } void GetStats(AllocatorStatCounters s) const { stats_.Get(s); } void PrintStats() { primary_.PrintStats(); secondary_.PrintStats(); } // ForceLock() and ForceUnlock() are needed to implement Darwin malloc zone // introspection API. void ForceLock() { primary_.ForceLock(); secondary_.ForceLock(); } void ForceUnlock() { secondary_.ForceUnlock(); primary_.ForceUnlock(); } // Iterate over all existing chunks. // The allocator must be locked when calling this function. void ForEachChunk(ForEachChunkCallback callback, void *arg) { primary_.ForEachChunk(callback, arg); secondary_.ForEachChunk(callback, arg); } private: PrimaryAllocator primary_; SecondaryAllocator secondary_; AllocatorGlobalStats stats_; atomic_uint8_t may_return_null_; atomic_uint8_t rss_limit_is_exceeded_; }; // Returns true if calloc(size, n) should return 0 due to overflow in size*n. bool CallocShouldReturnNullDueToOverflow(uptr size, uptr n); } // namespace __sanitizer #endif // SANITIZER_ALLOCATOR_H