//===-- lib/fp_compare_impl.inc - Floating-point comparison -------*- C -*-===// // // Part of the LLVM Project, under the Apache License v2.0 with LLVM Exceptions. // See https://llvm.org/LICENSE.txt for license information. // SPDX-License-Identifier: Apache-2.0 WITH LLVM-exception // //===----------------------------------------------------------------------===// #include "fp_lib.h" // GCC uses long (at least for x86_64) as the return type of the comparison // functions. We need to ensure that the return value is sign-extended in the // same way as GCC expects (since otherwise GCC-generated __builtin_isinf // returns true for finite 128-bit floating-point numbers). #ifdef __aarch64__ // AArch64 GCC overrides libgcc_cmp_return to use int instead of long. typedef int CMP_RESULT; #elif __SIZEOF_POINTER__ == 8 && __SIZEOF_LONG__ == 4 // LLP64 ABIs use long long instead of long. typedef long long CMP_RESULT; #elif __AVR__ // AVR uses a single byte for the return value. typedef char CMP_RESULT; #else // Otherwise the comparison functions return long. typedef long CMP_RESULT; #endif #if !defined(__clang__) && defined(__GNUC__) // GCC uses a special __libgcc_cmp_return__ mode to define the return type, so // check that we are ABI-compatible when compiling the builtins with GCC. typedef int GCC_CMP_RESULT __attribute__((__mode__(__libgcc_cmp_return__))); _Static_assert(sizeof(GCC_CMP_RESULT) == sizeof(CMP_RESULT), "SOFTFP ABI not compatible with GCC"); #endif enum { LE_LESS = -1, LE_EQUAL = 0, LE_GREATER = 1, LE_UNORDERED = 1, }; static inline CMP_RESULT __leXf2__(fp_t a, fp_t b) { const srep_t aInt = toRep(a); const srep_t bInt = toRep(b); const rep_t aAbs = aInt & absMask; const rep_t bAbs = bInt & absMask; // If either a or b is NaN, they are unordered. if (aAbs > infRep || bAbs > infRep) return LE_UNORDERED; // If a and b are both zeros, they are equal. if ((aAbs | bAbs) == 0) return LE_EQUAL; // If at least one of a and b is positive, we get the same result comparing // a and b as signed integers as we would with a floating-point compare. if ((aInt & bInt) >= 0) { if (aInt < bInt) return LE_LESS; else if (aInt == bInt) return LE_EQUAL; else return LE_GREATER; } else { // Otherwise, both are negative, so we need to flip the sense of the // comparison to get the correct result. (This assumes a twos- or ones- // complement integer representation; if integers are represented in a // sign-magnitude representation, then this flip is incorrect). if (aInt > bInt) return LE_LESS; else if (aInt == bInt) return LE_EQUAL; else return LE_GREATER; } } enum { GE_LESS = -1, GE_EQUAL = 0, GE_GREATER = 1, GE_UNORDERED = -1 // Note: different from LE_UNORDERED }; static inline CMP_RESULT __geXf2__(fp_t a, fp_t b) { const srep_t aInt = toRep(a); const srep_t bInt = toRep(b); const rep_t aAbs = aInt & absMask; const rep_t bAbs = bInt & absMask; if (aAbs > infRep || bAbs > infRep) return GE_UNORDERED; if ((aAbs | bAbs) == 0) return GE_EQUAL; if ((aInt & bInt) >= 0) { if (aInt < bInt) return GE_LESS; else if (aInt == bInt) return GE_EQUAL; else return GE_GREATER; } else { if (aInt > bInt) return GE_LESS; else if (aInt == bInt) return GE_EQUAL; else return GE_GREATER; } } static inline CMP_RESULT __unordXf2__(fp_t a, fp_t b) { const rep_t aAbs = toRep(a) & absMask; const rep_t bAbs = toRep(b) & absMask; return aAbs > infRep || bAbs > infRep; }