
Coppers - A Rust Test Framework That Measures
Energy Consumption Over Time

Katja Schmahl
Delft University of Technology

Delft, The Netherlands
K.G.Schmahl@student.tudelft.nl

Thijs Raymakers
Delft University of Technology

Delft, The Netherlands
T.Raijmakers@student.tudelft.nl

Jeffrey Bouman
Delft University of Technology

Delft, The Netherlands
J.Q.Bouman@student.tudelft.nl

Abstract—By 2030, IT is expected to consume about a third
of the global energy demand [14]. However, case studies have
shown that developers do not take energy efficiency into account
when programming, mostly due to not having access to good
measurement tools [6, 7, 8]. We introduce Coppers [12], a custom
test harness for Rust that enables developers to measure the
energy usage of their programs and visualize the results over
time to see potential energy efficiency regressions. We show that
it is easy to integrate with existing Rust projects and do a case
study using Coppers with a popular library.

Index Terms—sustainable software engineering, energy effi-
ciency, Rust, software testing

I. INTRODUCTION

IT was expected to consume more than 14% of all energy
produced world wide in the year 2020 [9]. In 2030, it is
estimated to already be a third of global demand [14]. This
shows the importance of more energy efficient hardware, as
well as software. In the last decade, green software design
has become more of a core value in software development
[7]. All software projects, small and large, can be run many
times on many different machines worldwide, consuming huge
amounts of energy. Every piece of code written can positively
or negatively impact the footprint of an application.

To take away the hurdles towards more energy-aware soft-
ware development, better tools are required. In this report we
present Coppers, a possible solution for this problem when de-
veloping software using the Rust language on Linux machines.
Coppers is a simple tool, designed for developers to see the
energy usage of their project in a user-friendly way. It utilizes
their previously written tests, and integrates with the existing
test workflow of Rust. When adding Coppers to an existing
Rust project, it will extend the regular testing process with an
additional feature. The Coppers testing harness calculates the
power consumed during the tests. It will compare these results
to old executions of the tests done with the Coppers testing
harness. It utilizes this data to show how the changes made
to the code, just now or further in the past, have impacted
the energy usage. These energy results will be displayed
graphically to give programmers more insight in the energy
impact of their code.

II. PROBLEM

More than 80% of the developers in an online survey done
by Pang et al. did not take energy consumption into account

when developing. Most of them did however consider the
energy consumption an important factor in decisions [8]. A
different case study showed that many developers would feel
more comfortable incorporating energy consumption into their
project, if they had dedicated tools and would be able to set
measurable objectives [7]. Similar results were found in an
empirical study by Manotas et al., showing the importance
of better intuition and targets, also during maintenance. The
field of software engineering has great tools that can measure
or estimate energy consumption. However, developers are
generally not aware of the existence of these tools or don’t
have a way to easily integrate it into their own systems [7].

To be able to develop more energy efficient, software
companies and developers need be more aware of their energy
footprint and have more guidelines on how to reduce this. This
will have direct benefits such as prolonged battery life and less
hardware or cooling required, but also have long-term climate
consequences by reducing carbon emissions.

III. IMPLEMENTATION

A. Using the Rust programming language

The Coppers framework is written in and for Rust [12]. One
of the main goals of this project was to make it is as easy
as possible to integrate the energy consumption measurement
tools with existing systems, because then developers are more
likely to experiment with these kinds of tools. This is one of
the reasons why this project focuses on the Rust ecosystem.
Almost all Rust projects can be built, tested and executed in
the same manner. Extending this familiar workflow reduces the
barrier of entry and allows them to test the energy consumption
measurement tool on their own code base within minutes.
Besides that, the Rust community is also quite serious about
the run-time performance of their projects [2]. Solving the
same problem in a shorter amount of time can have an positive
impact on the energy consumption of a program. This makes
the Rust community a good target demographic for our project.

B. Technical details

The project uses a project’s existing test suite in order
to calculate its power consumption. Normally, Rust uses a
default testing harness. This is a program that is responsible
for executing all the tests and verifying their results. This
testing harness can be replaced by a custom one. Coppers



is such a custom test harness. It reuses the existing test
cases that developers have written to measure the energy
consumption of specific parts of the code, without requiring
major modifications to an existing code base. The energy
consumption is measured with the help of Intel’s Running
Average Power Limit (RAPL). RAPL is a tool that is used
to measure the energy consumption, which was shown to
closely match the measurements from the power plug [5]. In
the Copper test harness, the values reported by RAPL are
read right before and after each test. These values can be
used to calculate the energy usage of the system during the
execution of a test. Additionally, the values reported by RAPL
are measured before and after all tests are executed. This is
used to determine the overhead of the testing framework itself.
All results are reported on a test-by-test basis, both in human
readable and machine readable formats. The results contain
information about which test was executed, the amount of
energy that test used during execution and the timestamp. It
also contains the version of the software that was tested, in
the form of a git hash. The latter can be used to compare the
results of different software versions with each other, to see
whether the energy consumption has improved or degraded
over time.

A human readable report is generated with the help of a
Python script using the Plotly [10] library for interactive data
visualization and using Jinja2 [13] for HTML templates. In
order to minimize the amount of friction in the user experience,
this script is run within Rust as well using the bindings for
Rust provided by PyO3 [11].

C. Usage details

Our goal was to minimize the amount of changes a de-
veloper would need to do in order to run Coppers within an
existing project. Developers now have to do three minor things.
First, they need to add Coppers as a development dependency.
1 [dev-dependencies]
2 coppers = "0.1"

Second, they have to use the Rust Nightly tool chain.
1 rustup install nightly
2 rustup override set nightly

And finally, they have to add two lines of code to their crate
root, the file that contains the entry point of their program.
1 #![feature(custom_test_frameworks)]
2 #![test_runner(coppers::runner)]

After these one-time changes, the energy consumption of all
unit tests is automatically measured when running ‘cargo test‘.
Part of the resulting terminal output of running can be seen
in Listing 1, the output is cropped to show only the last 15
tests and the following output. Behind each test name, the
indication of a successful or unsuccessful result is indicated
as well as the power and time consumption of the test. After
the tests are done the total amount of energy spent on all tests
in combination with the overhead is printed to the screen. If
the report feature is enabled, the location of the generated
report is shown as well.

1 test seq::test::test_slice_choose ... ok - [773922
µJ in 37954 µs]

2 test seq::test::value_stability_slice ... ok -
[658690 µJ in 32818 µs]

3 test seq::test::test_iterator_choose ... ok -
[4676873 µJ in 232748 µs]

4 test seq::test::test_iterator_choose_stable ... ok
- [8381996 µJ in 429556 µs]

5 test seq::test::
test_iterator_choose_stable_stability ... ok -
[8632544 µJ in 432291 µs]

6 test seq::test::test_shuffle ... ok - [9076820 µJ
in 451666 µs]

7 test seq::test::test_partial_shuffle ... ok -
[666502 µJ in 31860 µs]

8 test seq::test::test_sample_iter ... ok - [639891
µJ in 33517 µs]

9 test seq::test::test_weighted ... ok - [5805040 µJ
in 292627 µs]

10 test seq::test::value_stability_choose ... ok -
[656003 µJ in 33261 µs]

11 test seq::test::value_stability_choose_stable ...
ok - [683349 µJ in 34847 µs]

12 test seq::test::value_stability_choose_multiple
... ok - [685425 µJ in 33109 µs]

13 test seq::test::test_multiple_weighted_edge_cases
... ok - [973204 µJ in 47325 µs]

14 test seq::test::
test_multiple_weighted_distributions ... ok -
[15714924 µJ in 778563 µs]

15 test test::test_random ... ok - [667845 µJ in
32693 µs]

16 test result: ok.
17 75 passed;
18 0 failed;
19 0 ignored;
20 finished in 8669843 µs consuming 172476243 µJ
21 spend 6202331 µs and 123255450 µJ on tests
22 spend 2467512 µs and 49220793 µJ on overhead
23 > Generated report of energy consumption results

in "target/coppers_report"

Listing 1. Output of cargo test to the terminal.

After all test cases have finished, a report is generated for the
developer to gain easier insight into the results. This report is
designed with two goals. The first goal is to establish which
tests consume a lot of energy, and potentially more energy
than the developer would expect from their functionality. This
would then allow a developer to focus on these parts of
the code when trying to optimize for energy efficiency. The
second goal is to gain insight into the regression over time.
Programmers can use the report to see which tests have an
increase or decrease in their energy consumption, which can
help them to understand the impact of their code changes.

To obtain these goals, the report contains four different visu-
alizations. The figures used here as an example are generated
from an execution of the Coppers harness on the Rust rand
crate [3]. More explanation on these results can be found in
the case study in Section IV. On the top of the report, it shows
the user which three tests consumed the most amount energy,
see Fig. 1, and which three tests consumed the least amount
energy in the last execution. This helps in obtaining the first
goal, to know which piece of code needs to be focused on
when trying to optimize for energy consumption.

Following this is an interactive line graph of the energy
consumption of the executions over time, see Fig. 4. All



Fig. 1. Most and least power consuming tests from report.

executions are ordered based on the commit. Within multiple
executions of the same commit, the time of executing the
tests is used. We chose this ordering to allow the user to
look back on older versions of the code, and at the same
time see changes between their last few measurements. This
visualization can show which tests are flaky in usage, and
which tests have a significant change in energy efficiency in
comparison with previous versions. This is more suited for
the low-level inspection of the code, and helps to obtain the
second goal of the report.

The next visualisation is also focused towards the second
goal, to gain an insight in the change over time. It is a large
interactive table, see Fig. 2, allowing search and sorting. It
shows all test cases that were executed both in the current and
previous run. The changes in energy usage and execution time
are shown. During development, this allows users to see which
tests have been impacted the most by their most recent code
changes, and whether this improves or degrades the energy
efficiency.

Lastly, the report shows a bar plot of all the tests in Fig. 3,
sorted by their energy consumption. It gives a more visual
representation of the distribution of energy usage of the test
cases in the test suite by vertically going over each test and
horizontally showing the power consumption. In turn giving
insight in how the tests are proportionally consuming more or
less data. Thereby guiding the developer on where to put in
effort to decrease the most power consumption.

IV. CASE STUDY

A. Motivation

To showcase the usage of Coppers, we have done a case
study on the most downloaded Rust crate: rand [3]. This
project has more than 116 million downloads and over 7
thousand dependents. To analyze their energy consumption,
we have run the tests of all patch releases of 0.8 (version 0.8.0
until version 0.8.5) of ‘rand’ with our custom test harness. This
resulted in a report, which we analysed to highlight potentially
beneficial information for the developers of the rand crate.

B. Results

In Fig. 4, the energy consumption of the individual
tests over time can be found. The vertical axis shows the
power consumption in micro Joules, on the horizontal
axis are the distinct versions of rand shown. The different
colors indicate particular tests. Each line represents the
energy usage of each test over time. There is one test
that stands out from the rest, which is the red line for the
distribution::uniform::tests::test_integers
test, which has an increase in energy consumption between
versions 0.8.1 and 0.8.2+. The other tests show only small
fluctuations in energy usage.

In Fig. 1, the top 3 of most and least energy consuming
tests are displayed with their average energy consumption
and in Fig. 3 there is a bar plot that shows the
distribution over all the tests. These figures show that
the tests seq::test::test_multiple_weighted_
distributions, seq::test::test_iterator_
choose_stable_stability and distributions::
uniform::tests::test_integers are quite energy
consuming in comparison to the rest of the code. It also shows
that most of the tests are actually really energy efficient. The
majority of the energy is used by only the 10 most consuming
tests.

In Fig. 2, a comparison with the previous release is made
for every test. By interacting with the table, it is possible to
sort based on absolute or percentile change. It shows that all
tests were within a [-1200, +1000] micro Joules range.

C. Conclusion

The rand crate adheres to semantic versioning rules, which
only allows for internal backwards compatible bug fixes in
patch releases. This explains why the energy consumption of
most tests stays roughly constant. The increase in usage by the
distribution::uniform::tests::test_integers
test can be explained when the difference between version
0.8.1 and 0.8.2 is examined. This difference shows the
addition of a for loop to the test in question [1]. While the
underlying implementation has not changed, the amount of
work that the test has to do has increased. This might not be
a very suitable example of a part of the code that could be
optimized. However, it shows that if significant changes to
the production codes would be made, this would be easy to
extract from the graph. Besides that, we can see that when no
large changes were made, the energy efficiency results were
rather consistent, making it more reliable.

Moreover, a programmer could know, based on this, that it
is worthwhile to look into the functionality behind the top 10
tests in the table. These make up almost all of the test suite
energy consumption, which could point to some less energy
efficient production code. It is of course also possible that these
are really large test cases, which might need a test refactor to
split them up in smaller unit tests.

Furthermore, from the table it can be seen that over the
entire test suite, 5404 micro Joules energy increase was
measured. This shows that overall, the developers have neither



Fig. 2. Comparison table between last and previous test run.

Fig. 3. Horizontal bar graph of all tests in last run.

improved nor decayed the energy efficiency of the project since
the last release. Depending on their current target, this could
be beneficial information to stakeholders.

V. DISCUSSION

A. Expected Impact

Multiple case studies have shown that most developers do
not currently take energy efficiency strongly into account when
programming [7, 6, 8]. This is mostly due to not having
the tools to gain the necessary insight in the current energy
efficiency or intuition in what impacts the consumption of their
software [7, 6]. Another factor that was often named for not
incorporating it, was a lack of time or priority given to this
aspect [7]. Being able to see how changes to a code base affect
the energy efficiency of a program could be a great way to take
energy consumption into consideration during development.
Besides that, it generates metrics that can be used to set
goals, which makes it easier to prioritize energy efficiency. The
importance of this was also stressed by the study of Manotas
et al.. Developers have expressed their interest and motivation
to focus more on the energy usage aspect of development and
we believe that this tool can help with their aspirations.

In the case study by Ournani et al., four sustainability
guidelines were established for developers. We believe that
we are able to partly fulfill three of these guidelines.

The first guideline is the availability of a global score to
approximate the energetic footprint of the source code [7]. If
the tests of a code base change too much, the total energy
usage is not a reliable global score when it is compared to
different iterations of itself. If stakeholders want a reliable
global score, then this could be obtained by executing a fixed
set of tests. This global score would however only be useful
for comparison between different versions of the same project.
Comparing different projects with each other is a much larger
problem, which will require a new tool or metric still. Coppers
does not provide such an inter-tool comparison metric.

The second guideline is that a tool should allow for low-
level diagnosis, while also being user-friendly and have in-
teractive graphics [7]. The report that can be generated by
Coppers has been designed exactly for this purpose. By being
able to see results on a test-by-test basis, it is easy to diagnose
which test, and by extension, which part of the code is using
most energy.

The third guideline is that it should integrate seamlessly
with the tools already used [7]. This was accomplished by
integrating it with cargo, which is the de facto way of
running test suites for Rust. This makes it possible to use
it with every existing Rust project that uses this standard
testing harness. Besides, only a few lines of code need to
be added to a project to use Coppers. This makes it easy and
quick to deploy for a large number of projects. The design
of Coppers meets a lot of the guidelines defined by Ournani
et al.. Therefore, we believe that Coppers has the potential
for widespread use, making it easier for many developers to
measure energy consumption of their projects.

B. Limitations

Measuring the energy consumption of software comes with
certain assumptions. These assumptions lead to some limita-
tions of our tool.



Fig. 4. The energy consumption per test of the rand library over the latest minor releases (0.8.0 to 0.8.5).

The first and most important limitation is the accuracy. The
energy measurements are done on the system as a whole. This
means that all other activity on the machine, as well as other
outside elements, will influence the results. Tests may also be
non-deterministic and vary over executions. We tried to limit
this by measuring the consumption over multiple executions,
but this cannot fully remove the influence of other components.

The second limitation we came across originates from
the fact that there is no standard way to distinguish set-up,
execution and tear-down stages of tests in Rust, as is often the
case with test frameworks in other programming languages.
This has the effect that a test with a very complicated set-
up procedure might bias the energy consumption of the test,
as it would mostly measure the consumption of the set-up
procedure itself and not of the actual test. It could still be
used for comparison over time, but changes in this stage of
the test are of course less relevant for developers than energy
efficiency changes in production code.

Another limitation of our current approach is the reliance
on Intel RAPL, a technology that is only available on Intel
platforms. This makes the current approach unsuitable for
embedded systems that can greatly benefit from easy to
use energy consumption measurement tools. To reduce this
limitation, the implementation of Coppers is done in such a
way that use case dependent extensions can be added without a
complete redesign of the system. This allows embedded sys-
tems developers to extend Coppers with platform-dependent

energy measurement tools, as long as the embedded system
does not rely on the #![no_std] attribute.

Besides, the tool currently executes only on unit tests and
does not work on documentation, system or integration tests.
Coppers relies on an unstable feature of the Rust compiler that
does not provide friction-less custom test harness support for
non-unit test types [4]. Especially system and integration tests
could prove very useful in approximating the energy impact
more completely.

The last limitation, is the lack of reliable global score. This
tool only allows comparing versions of the code that have
the same tests. Comparing versions with different test suites
or comparing to a different project requires a more global
assessment. We believe it can still be used to set targets for a
project, but as the test suite develops, these targets need to be
continuously adapted.

C. Future Steps

The project as is does have a lot to offer to Rust developers,
however the project does have room for improvement. In this
section a few possible extensions will be discussed, ranging
from simple additions to massive project expansion.

1) More Sensors: Rust is used for a range of different
tasks. The current implementation is not suited for solutions
that offload their computations to devices like GPUs, DSPs or
FGPAs. Intel RAPL does not measure the energy consumption
of other devices. Reading the energy consumption sensors of



graphic cards and other hardware inside a computers is a
logical step to increase the usability of the Coppers. External
sensors, like power supplies, could be supported in order to
test more specific hardware configurations such as embedded
systems or smart phones.

2) Including more tests: One of the current limitations as
mentioned in section V-B, is the inability to use all types
tests. Currently it is not easily possible to use Coppers with
the integration and documentation tests of a project. In case
the project is a library, integration tests are a more realistic
scenario of regular usage that that library. If it is possible
to utilize documentation or integration tests, then it might be
possible to report more accurate information about the real
world usage of a program.

3) Usage in Continuous Integration environment: Building
the report for every version or even every pull request is a lot
of tedious work when this is done manually. By automatically
reporting the power consumption changes in the continuous
integration pipeline, the maintainers of projects are able to get
insight in whether a specific addition or edit to a projects code
base changes the energy efficiency of their overall project. The
integration with CI systems would allow maintainers to act on
energy usage regressions before they land the changes in a
release. It could also make the power consumption of online
code repositories search-able, which could give users another
way of comparing different projects. Using software that takes
sustainability into account might be more in line with the goals
and policies of companies that use the software. Integrating it
with CI pipelines offers the possibility to create a ”CI status
badge”, an image that projects often include in their README.
Such an image can act as a form of promotion towards other
developers and motivate them to include energy consumption
measurement tools into their own CI pipeline as well.

4) Combine usage with code coverage: Testing is an inte-
gral part of writing hardened and reliable software. However,
not all parts of the software are tested equally. Some parts
of a project might not be tested at all, giving no information
about energy consumption of the overall library. These parts
of the code might be consuming the most energy, which will
in turn skew the results for end users. It might also also be
true in the other direction. A few lines of code can be tested
over and over again, even when they are not used as much in
real world scenarios. A combination of both the code coverage
and the power consumption of specific tests might increase the
accuracy of the results.

5) More extensive insight: Reporting is only useful if the
programmer also understands the full implication of every line
of code that is written. This is especially difficult when other
libraries are used that are not part of the main project. De-
velopers might not fully understand which functions are more
suitable for their specific use case and which combination of
functions can achieve similar results while reducing the overall
energy usage of a project. Connecting energy measurement
data from other projects could steer programmers to write
more efficient code at the moment of creation. A possible
implementation of this could take the form of rating function

calls of libraries by their energy efficiency.

REFERENCES

[1] Comparing 0.8.1...0.8.2 - rust-random/rand, 2022. URL
https://github.com/rust-random/rand/compare/0.8.1...0.8.
2.

[2] Rust survey 2021 results: Rust blog, Feb 2022. URL
https://blog.rust-lang.org/2022/02/15/Rust-Survey-2021.
html.

[3] crates.io. rand, 2022. https://crates.io/crates/rand/ [Ac-
cessed: 2022-03-31].

[4] Mazdak Farrokhzad. custom test frameworks,
2022. URL https://github.com/rust-lang/rfcs/
blob/master/text/2318-custom-test-frameworks.md#
integration-with-doctests.

[5] Kashif Nizam Khan, Mikael Hirki, Tapio Niemi, Jukka K
Nurminen, and Zhonghong Ou. Rapl in action: Expe-
riences in using rapl for power measurements. ACM
Transactions on Modeling and Performance Evaluation
of Computing Systems (TOMPECS), 3(2):1–26, 2018.

[6] Irene Manotas, Christian Bird, Rui Zhang, David Shep-
herd, Ciera Jaspan, Caitlin Sadowski, Lori Pollock, and
James Clause. An empirical study of practitioners’
perspectives on green software engineering. In 2016
IEEE/ACM 38th International Conference on Software
Engineering (ICSE), pages 237–248. IEEE, 2016.

[7] Zakaria Ournani, Romain Rouvoy, Pierre Rust, and Joel
Penhoat. On reducing the energy consumption of soft-
ware: From hurdles to requirements. In Proceedings of
the 14th ACM/IEEE International Symposium on Em-
pirical Software Engineering and Measurement (ESEM),
pages 1–12, 2020.

[8] Candy Pang, Abram Hindle, Bram Adams, and Ahmed E
Hassan. What do programmers know about software
energy consumption? IEEE Software, 33(3):83–89, 2015.

[9] Mario Pickavet, Willem Vereecken, Sofie Demeyer,
Pieter Audenaert, Brecht Vermeulen, Chris Develder, Di-
dier Colle, Bart Dhoedt, and Piet Demeester. Worldwide
energy needs for ict: The rise of power-aware network-
ing. In 2008 2nd international symposium on advanced
networks and telecommunication systems, pages 1–3.
IEEE, 2008.

[10] Inc. Plotly, 2019. https://plotly.com/python/ [Accessed:
2022-03-31].

[11] PyO3. Pyo3 user guide, 2022. https://pyo3.rs/v0.16.2/
[Accessed: 2022-03-31].

[12] Thijs Raymakers, Jeffrey Bouman, and Katja Schmahl.
Coppers: a custom test harnass for Rust that measures
the energy usage of your test suite. URL https://github.
com/ThijsRay/coppers.

[13] Armin Ronacher, 2022. https://palletsprojects.com/p/
jinja/ [Accessed: 2022-03-31].

[14] Roberto Verdecchia, Patricia Lago, Christof Ebert, and
Carol De Vries. Green it and green software. IEEE
Software, 38(6):7–15, 2021.

https://github.com/rust-random/rand/compare/0.8.1...0.8.2
https://github.com/rust-random/rand/compare/0.8.1...0.8.2
https://blog.rust-lang.org/2022/02/15/Rust-Survey-2021.html
https://blog.rust-lang.org/2022/02/15/Rust-Survey-2021.html
https://crates.io/crates/rand/
https://github.com/rust-lang/rfcs/blob/master/text/2318-custom-test-frameworks.md#integration-with-doctests
https://github.com/rust-lang/rfcs/blob/master/text/2318-custom-test-frameworks.md#integration-with-doctests
https://github.com/rust-lang/rfcs/blob/master/text/2318-custom-test-frameworks.md#integration-with-doctests
https://plotly.com/python/
https://pyo3.rs/v0.16.2/
https://github.com/ThijsRay/coppers
https://github.com/ThijsRay/coppers
https://palletsprojects.com/p/jinja/
https://palletsprojects.com/p/jinja/

	Introduction
	Problem
	Implementation
	Using the Rust programming language
	Technical details
	Usage details

	Case Study
	Motivation
	Results
	Conclusion

	Discussion
	Expected Impact
	Limitations
	Future Steps
	More Sensors
	Including more tests
	Usage in Continuous Integration environment
	Combine usage with code coverage
	More extensive insight



