
Findex
Full Documentation

Version 1.0

Date: 16/12/2022

Findex

Table Of Contents

1 Introduction 3

2 Example ‑ The Searchable Directory 4

3 Full Process 6
3.1 Overview . 6

3.1.1 Symmetric Searchable Encryption . 6
3.1.2 Notations . 6
3.1.3 Index Tables . 7
3.1.4 Search Query . 8

3.2 Chain Table . 8
3.2.1 Chain Table Value . 9
3.2.2 Chain Table UID . 9
3.2.3 Size . 10

3.3 Entry Table . 11
3.3.1 Size . 11

3.4 Search Query Process . 12

4 Update Process 15
4.1 Overview . 15

4.1.1 Impact on the Efficiency . 15
4.2 Change in DB Table . 15

4.2.1 Delete Line . 15
4.2.2 Add Line . 16
4.2.3 Modify Line . 16

4.3 Change in Index Tables . 16
4.3.1 Delete Keyword . 16
4.3.2 Add Keyword . 17

4.4 ReIndexing . 17
4.4.1 Why . 17
4.4.2 How . 17

5 Security 20
5.1 Key . 20
5.2 Server Storage . 20
5.3 Client ‑ Server Communication . 20
5.4 ReIndexing . 21

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 1

Findex

5.5 Dynamic Symmetric Searchable Encryption . 21

6 Appendix 23
6.1 Cryptographic Algorithms . 23
6.2 Keys . 23

References 24

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 2

Findex

1 Introduction

Findex is a part of Cloudproof Encryption and helps to securely make search queries on outsourced
encrypted data.

This documentation shows its running and explains the cryptographic details.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 3

https://docs.cosmian.com/cloudproof_encryption/use_cases_benefits/

Findex

2 Example ‑ The Searchable Directory

Tounderstand the general idea behind Findex, let us assumeonewants to outsource a directorywhile
being able to securely make search queries on it.

Here the directory is composedof twousers. The first step consists of building a KeywordDatabase:

Then, the table canbeencryptedand sentbyanauthenticatedadministrator toa first server. The lines
are randomized not to be able to retrieve a keyword from a position in the encrypted database:

Now, the encrypted keyword database exists, a user can build requests. The user hashes the keyword
“Martin” and asks for it to the server having the encrypted keyword database:

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 4

Findex

The user receives an encrypted message containing the location of all the matching queries: #1,#2.
The user can then requests the server hosting the encrypted directory for these two locations:

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 5

Findex

3 Full Process

3.1 Overview

Findex relies on two server‑side tables, Entry Table and Chain Table, to solve the following search
problem:

How to securely recover the UIDs of DB Table to obtain thematching lines from a given keyword?

This solution is on top of an encrypted database, for consistency called DB Table, that actually stores
the content to be requested.

3.1.1 Symmetric Searchable Encryption

To make efficient search queries on an untrusted cloud server, one needs to use an advanced cryp‑
tographic primitive called Symmetric Searchable Encryption (SSE). The security of SSE offers precise
guarantees regarding the privacy of the user’s data and queries with respect to the host server.

3.1.2 Notations

Weassume that each line of DBTable is encryptedbut at the timeof encryption, somekeywords {𝑤𝑖}𝑖
have been extracted to be stored with Findex.

In one line many keywords can be extracted and the same keyword can be extracted from several
lines.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 6

Findex

In this document, key refers to a cryptographic key and the databases are represented by a list of
(uid𝑖, value𝑖).

Hence,

• (db_uid𝑖, db_value𝑖) = (uid𝑖, value𝑖) of DB Table,
• (entry_uid𝑖, entry_value𝑖) = (uid𝑖, value𝑖) of Entry Table,
• (chain_uid𝑖, chain_value𝑖) = (uid𝑖, value𝑖) of Chain Table.

3.1.3 Index Tables

Figure 1: Findex Input

After the extraction, each keyword 𝑤𝑖 can be associated to a list DB[𝑤𝑖] = {db_uid𝑤𝑖,𝑗}𝑗 of db_uids
matching the keyword. Let DB = {DB[𝑤𝑖]}𝑤𝑖

.

Chain Table: securely stores DB, thus all the lists DB[𝑤𝑖].

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 7

Findex

Example: The keyword “Martin” is present in lines 3, 5, and 10 of a cleartext directory. These lines cor‑
respond to the db_uids: db_uid𝑎, db_uid𝑏, and db_uid𝑐 of the DB Table (i.e. the encrypted directory).
The Chain Table will securely store {db_uid𝑎, db_uid𝑏, db_uid𝑐}.

Entry Table: provides the mandatory values to access the Chain Table.

3.1.4 Search Query

Figure 2: Search Query

Search Query: takes as input a bulk of keywords {𝑤𝑖}𝑖 and outputs the bulk of the lists {DB[𝑤𝑖]}𝑖.

Findex considers search queries restricted to a single keyword 𝑤. To handle queries with several
keywords (OR of keywords), several requests are made to the server, and possibly a combination can
be done on the client’s side to deal with ANDs.

3.2 Chain Table

Let us see the content of the Chain Table.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 8

Findex

3.2.1 Chain Table Value

We denote by DB[𝑤𝑖] the list of the UIDs1 of DB Table matching the keyword𝑤𝑖 and |DB[𝑤𝑖]| the num‑
ber of such elements.

To hide |DB[𝑤𝑖]|2, DB[𝑤𝑖] will be divided into blocks of equal size 𝐵3:

DB[𝑤𝑖] = {DB[𝑤𝑖]1, … ,DB[𝑤𝑖]𝐿𝑖
}

Potentially, the last block is not full and will be padded.

Then, all the blocks are encrypted with a symmetric encryption scheme4 under a key 𝐾𝑤𝑖,value
5 that

is specific to the keyword 𝑤𝑖:

EncSym(𝐾𝑤𝑖,value,DB[𝑤𝑖]1), … , EncSym(𝐾𝑤𝑖,value,DB[𝑤𝑖]𝐿𝑖
)

3.2.2 Chain Table UID

Before storing the chain values in the Chain Table, one needs to create their respective UIDs.

It would be possible to store all of them with random numbers but it would imply transmitting later
all these chain_uids to the user, as they correspond to thematching entries of its search request. The
number of these UIDs is exactly the number𝐿𝑖 of blocks, and thus, is strictly smaller than the number
of UIDs in the original list DB[𝑤𝑖]. However, for the same reason that the length |DB[𝑤𝑖]| must be
hidden, 𝐿𝑖 must be hidden too. The solution would be to repeat the same process by adding a new
Index Table, and so on, but it is not practical.

To avoid that, our solution will exploit linked lists to create the UIDs of Chain Table:

• from the key 𝐾𝑤𝑖,uid, one can compute: ℋ(𝐾𝑤𝑖,uid, ℋ(𝑤𝑖)) → chain_uid1
• then, from chain_uid1 and the key 𝐾𝑤𝑖,uid, one can compute: ℋ(𝐾𝑤𝑖,uid, chain_uid1) →
chain_uid2

• then, from chain_uid2 and the key 𝐾𝑤𝑖,uid, one can compute: ℋ(𝐾𝑤𝑖,uid, chain_uid2) →
chain_uid3

1In the implementation, DB[𝑤𝑖] is a list of locations where a location can be a UID or something else such as another
keyword. The size of a location is not fixed but, in this case, the location is first divided into blocks of fixed size.

2See in Section Security to learnmore about the importance of not only hiding the keywords and the db_uids but also the
length of the result.

3The size 𝐵 is constant for a given Findex index. However, it may vary between use cases since the average length of the
searchable keywords can vary.

4See Appendix for the description of the symmetric encryption scheme
5The two keys 𝐾𝑤𝑖,uid and 𝐾𝑤𝑖,value are derived from 𝐾𝑤𝑖 randomly chosen by the Index Authority.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 9

Findex

• and so on, until the 𝐿𝑖 values have been generated.

In the end, instead of having𝐿𝑖 values to transmit to the user, we only have the last value of the linked
list to know the stop criterion (and the key𝐾𝑤𝑖

to be able to derive𝐾𝑤𝑖,uid and𝐾𝑤𝑖,value). This will be
the goal of the Entry Table.

Example: If 𝐿𝑖 = 3, the Chain Table could be:

UID Value

… …

chain_uid2 EncSym(𝐾𝑤𝑖,value,DB[𝑤𝑖]2)
… …

chain_uid1 EncSym(𝐾𝑤𝑖,value,DB[𝑤𝑖]1)
… …

chain_uid3 EncSym(𝐾𝑤𝑖,value,DB[𝑤𝑖]3)
… …

with in the other lines, blocks of 𝐵 DB Table UIDs matching other keywords.

3.2.3 Size

About the size of Chain Table,

• the number of lines depends on the number of searchable keywordsand on the number of lines
needed to store all the locations indexed by these keywords

• in our implementation, a line is composed of:

– UID: 32 bytes
– Value:

Nonce AES‑GCM encrypted data MAC

Size (bytes) 12 32 × 𝐵 16

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 10

Findex

3.3 Entry Table

The role of the Entry Table is to store for each 𝑤𝑖: the last value of its associated linked list, the key
𝐾𝑤𝑖

used in this list and ℋ(𝑤𝑖).

First, for each keyword, a UID is computed from a common secret key 𝐾uid. Then the data is symmet‑
rically encrypted under a common secret key 𝐾value.

Example: For a keyword 𝑤𝑖, the entry_uid is computed:

entry_uid𝑖 = ℋ(𝐾uid, ℋ(𝑤𝑖), T)

Then, if chain_uid3 is the last value of the linked list and 𝐾𝑤𝑖
is the key used in Chain Table,

(chain_uid3, 𝐾𝑤𝑖
), ℋ(𝑤𝑖) is encrypted under 𝐾value:

entry_value𝑖 = EncSym(𝐾value, (chain_uid3, 𝐾𝑤𝑖
, ℋ(𝑤𝑖)))

Note: The two keys𝐾uid and𝐾value are derived from a secret key𝐾 known by all the authorized entit‑
ies (i.e. the Index Authority and all the users).

Finally, the Entry Table looks like this:

UID Value

… …

ℋ(𝐾uid, ℋ(𝑤𝑖), T) EncSym(𝐾value, (chain_uid𝐿𝑖
, 𝐾𝑤𝑖

, ℋ(𝑤𝑖)))
… …

3.3.1 Size

About the size of the Entry Table,

• the number of lines only depends on the number of searchable keywords
• in our implementation, a line is composed of:

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 11

Findex

– UID: 32 bytes
– Value:

Nonce AES‑GCM encrypted data MAC

Size (bytes) 12 UID.len + key.len + hash.len 16

where:

• UID.len: 32 bytes
• key.len: 16 bytes
• hash.len: 32 bytes

3.4 Search Query Process

We recall the scenario: a user wants to make a search query on an encrypted database hosted in an
external (untrusted) server. Now, we will see the interactions between this user and the server. Ba‑
sically, the search query process travels along the tables in the opposite order as the one described
before.

In the figure below, the user queries the Entry Table:

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 12

Findex

Then, the user computes chain_uid𝑖+1 until chain_uid𝐿𝑖
is found and queries the Chain Table:

Finally, the user queries the DB Table:

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 13

Findex

and tries to decrypt the results.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 14

Findex

4 Update Process

4.1 Overview

Now, one can explain how to update the indexes to update a search request.

Overall, the changes can be:

• In DB Table:

– to delete a line,
– to add a new line,
– to modify a line (the content or the right access).

• In Index Tables:

– to delete already indexed keywords,
– to add new keywords for data already encrypted in DB Table.

Remark: The changes in the Index Tables are supposed to bemade by the Index Authority.

4.1.1 Impact on the Efficiency

If you want to apply changes in order to improve efficiency, here are some remarks:

• Changing the content of DB Table can increase the size of the index tables (as new keywords
may be indexed).

• Reducing the number of searchable keywords also reduces the size of the Index Tables but
does not change the size of the DB Table.

• Increasing the number of searchable keywords does not affect the efficiency of a search re‑
quest: the efficiency of a search request is independent of the total number of keywords.

4.2 Change in DB Table

4.2.1 Delete Line

Given the db_uid𝑖 of the line that must be deleted, delete the line db_line𝑖 in the DB Table.

The index tables do not change and thus, continue to refer to deleted contents. They are cleaned
during a reindexing phase6.

6See Section ReIndexing

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 15

Findex

4.2.2 Add Line

The addition of a line simply follows the description presented in the full process:

• extraction of the keywords,
• encryption of the line and insertion in DB Table,
• encryption of the chain of keywords with insertions in the relevant index tables.

Here, the three tables change.

4.2.3 Modify Line

In our solution, a modification of the content (or possibly of the right access) will simply be the dele‑
tion of the old line followed by the addition of the new one containing the change.

A change will be:

• the deletion of the corresponding encrypted line in DB Table,
• the addition of a new line in the DB Table containing the change one wanted to apply.

Hence, it requires knowing which db_uid must be modified for the deletion.

Here, the three tables change.

4.3 Change in Index Tables

In our solution, the choice of the indexed terms is completely free, they can be extracted without any
structure as well as coming from the database structure. For example, the first two columns can be
indexed and thus be ‘searchable’ while the other columns are not. Hence, it could make sense to
modify the set of keywords even without changing the content of the encrypted database.

4.3.1 Delete Keyword

It is possible to delete an indexed keywordwithout changing the DB Table by requesting the keyword
and deleting all the corresponding lines in both Index Entry Table and Index Chain Table.

To delete an entire column of the searchable set, one needs to delete all the keywords present in it.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 16

Findex

4.3.2 Add Keyword

To add new types of keywords (for example to index a new column of the database):

• For all thenewentries (ofDBTable), one simply considers all the keywords thatmust be indexed
meaning the old ones and the new ones.

• For the already existing entries (of DB Table), all the concerned lines must be re‑added.

4.4 ReIndexing

4.4.1 Why

With thechangespresented in theprevious sections, theEntryTableandChainTablegrow indefinitely.
After the deletion of lines in the DB Table, some search requests still answer the deleted lines. Also,
the server can link the modified lines to the changes.

The ReIndexing reduces the size of the index tables and blurs the information an attacker may have
learned.

4.4.2 How

A reindexing:

• completely changes the Entry Table,
• cleans the search results of a fraction of keywords.

Entry Table

The first step of the Index Authority is to download the entire Entry Table and to delete all the out‑
sourced existing lines:

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 17

Findex

Notation: ‑ 𝑜𝑙𝑑𝑒𝑛𝑡𝑟𝑦𝑡𝑎𝑏𝑙𝑒 = {(entry_uid𝑖, entry_value𝑖)} (the downloaded Entry Table) ‑
entry_uid𝑖 = ℋ(𝐾uid, ℋ(𝑤𝑖), T) ‑ entry_value𝑖 = EncSym(𝐾value, (chain_uid𝐿𝑖

, 𝐾𝑤𝑖
, ℋ(𝑤𝑖)))

(AES‑256‑GCM encryption with nonce𝑖) ‑ 𝑛𝑒𝑤𝑒𝑛𝑡𝑟𝑦𝑡𝑎𝑏𝑙𝑒 = {(entry_uid′
𝑖, entry_value′

𝑖)}

Then, the Index Authority increments the (public) label T → T′ and, for all the Entry Table lines:

• computes entry_uid′
𝑖 = ℋ(𝐾′

uid, ℋ(𝑤𝑖), T′),
• changes nonce𝑖 used in the AES‑256‑GCMencryption into nonce′

𝑖 to create entry_value
′
𝑖 an AES‑

256‑GCM encryption with nonce′
𝑖.

Hence, entry_value′
𝑖 is a randomization of entry_value𝑖.

Cleaning

In the second step, the Index Authority will clean the search part for a fraction of keywords.

For that, the Index Authority:

• implicitly chooses a fraction𝑋 of the keywords (of size𝑥7) by choosing a random fraction of the
Entry Table and decrypting it,

• for each of them,

– makes the search request (i.e. obtains the list of all the positions matching the keywords)
and deletes all the corresponding outsourced lines,

– gets the result in the DB Tables (i.e. some of the positions will no longer exist),
– for each non‑existing value, deletes the db_uid from the non‑encrypted list of positions
matching the keyword.

7𝑥 = [𝑛 ⋅ (log 𝑛 + 0.58)]/𝑡 is the required number of keywords per reindexing needed to reach the full set of keywords
(#keywords= 𝑛) in 𝑡 reindexing phases. (cf. Coupon collector’s problem).

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 18

https://en.wikipedia.org/wiki/Coupon_collector%27s_problem

Findex

For each modified list of results, the Index Authority generates a completely new encryption of the
indexes (i.e. create a new linked list of UID with the encryption of the db_uids). This creates a new
ephemeral key𝐾𝑤𝑖

→ 𝐾′
𝑤𝑖

and a newUID value chain_uid𝑖 → chain_uid′
𝑖 to be stored in Entry Table

to be able to reconstruct the linked list during a request.

Remark: We presented the two steps of the reindexing one by one for readability but optimizations
are made in the code.

Finally, the Index Authority can push all the computed lines in a randomized order:

• inserts the new Entry Table,
• insert the new lines of the Chain Table.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 19

Findex

5 Security

Findex solves the following search problem:

How to securely recover the UIDs of DB Table to obtain thematching lines from a given keyword?

In this section, we explore the security details of Findex.

5.1 Key

The key 𝐾 in Findex allows the authorized users to make search queries and the Index Authority to
make update queries.

There is no security guarantee if the key is stolen. However, the key can be changed and distributed
to only a subset of authorized users to revoke some of them. In that case, the content of the tables
must be reencrypted.

5.2 Server Storage

The server stores two tables: Entry Table and Chain Table. Each table is composed of several lines
containing (uid, value). The uid looks like a random number as it is the output of a Hash Function ℋ
while value is the symmetric encryption of some elements. Hence, an adversary receiving a copy of
the Entry Table and/or Chain Table cannot learn information on the data.

5.3 Client ‑ Server Communication

The requests consist of hashed values and the answers to encrypted messages. Hence, for an ad‑
versary, the learnable information is limited to the frequencies of the requests. In particular, the
server learns if a user asks two times the same keyword.

Example ‑ TheSearchableDirectory: IfDupont is a frequent family name, thenumberof resultsmatch‑
ing thekeywordwill be large. On the contrary, thenumberofmatching results of anuncommon family
namewill be small. If the attacker can see the length of the results, it can exploit the frequency of the
keywords to retrieve the search query of an honest user which must be forbidden.

Moreover, if there are not enough requests for different keywords then, the server can “see” the inter‑
actions related to a keyword. This is true for the three tables: the Entry Table, the Chain Table and the
DB Table.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 20

Findex

Oneway to avoid thatwouldbe touseObliviousRandomAccessMachine (ORAM)but it is not practical
because not efficient. Hence, to avoid that, the simplest way is to generate fake requests to scramble
communications.

5.4 ReIndexing

To make statistical analyses even more complicated, reindexing operations completely change the
Entry Table and a fraction of the Chain Table.

5.5 Dynamic Symmetric Searchable Encryption

The classical version of a Symmetric Searchable Encryption (SSE) scheme considers a static database
meaning the outsourced data can not be updated or new records can not be sent later. To overcome
this issue a Dynamic version has been designed in [1] and security formalized in [2]. Such a scheme
handles dynamic file collection.

Findex is a Dynamic Symmetric Searchable Encryption8 scheme meaning one can define a triple
(Setup, Search,Update) consisting of one algorithm and two protocols (between a client and a
server) as defined below:

Notation: Let DB = {(𝑤𝑖,DB[𝑤𝑖])}𝑖 be the (non‑encrypted) table associating each keyword 𝑤𝑖 to its
matching results9.

• Setup(DB) → (EDB, 𝐾) ∶ takes as input DB and outputs EDB an encrypted version of DB to‑
gether with 𝐾 a secret key.

• Search(𝐾, 𝑞; EDB) = (SearchClient(𝐾, 𝑞), SearchServer(EDB)) ∶ is a protocol between a client
with input the secret key 𝐾 and a search query 𝑞 and a server with input the encrypted table
EDB. It outputs a list 𝑅 of results to the client.

• Update(𝐾, 𝑞; EDB) = (UpdateClient(𝐾, 𝑞),UpdateServer(EDB)) ∶ is a protocol between a cli‑
ent with input the secret key 𝐾 and an update query 𝑞 = (op, in) where the operation can be
add or delete and in is the content to be added or deleted. It outputs a new EDB′ to the server.

Findex considers search queries restricted to a single keyword 𝑤10.

An SSE scheme is said to be correct if the search protocol returns the correct result for every query:
∀𝑤𝑖, 𝑅 ← Search(𝐾, 𝑤𝑖; EDB) is equal to DB[𝑤𝑖].

Forward Secrecy
8See [3] for a thesis with a good introduction to SSE and the formal security definitions.
9See Overview for a presentation of DB[𝑤𝑖].

10Few SSE schemes deal with multiple keyword queries.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 21

Findex

In Symmetric Searchable Encryption, a security notion called Forward Secrecy ([4],[5]) guarantees
that updates do not reveal any information a priori about the modifications they carry out.

In our solution, there is no Forward Secrecy but it is possible to scramble the information during
changes on the Index Tables by adding fake modifications.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 22

Findex

6 Appendix

6.1 Cryptographic Algorithms

Hash Function

• ℋ(key, 𝑚) : Message Authentication Code of 𝑚 under the key key.

The implementation uses the KMAC128 scheme with a key of size 32 bytes.

Symmetric Scheme

• EncSym(key, 𝑚): Symmetric Encryption of 𝑚 under the key key.
• DecSym(key, 𝑚): Symmetric Decryption of 𝑚 under the key key. This algorithm “reverses” the
EncSym(key, 𝑚) function.

The implementation uses the AES256‑GCM scheme with a key of size 32 bytes.

6.2 Keys

Key Size (bytes) Obtained from Used in Known by

𝐾 16 random All

𝐾uid 32 derivation of 𝐾 KMAC128

𝐾value 32 derivation of 𝐾 AES256‑GCM

𝐾𝑤𝑖
16 random

𝐾𝑤𝑖,uid 32 derivation of 𝐾𝑤𝑖
KMAC128

𝐾𝑤𝑖,value 32 derivation of 𝐾𝑤𝑖
AES256‑GCM

where ‘All’ means all the authorized users and the Index Authority.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 23

Findex

References

[1] S. Kamara and C. Papamanthou, ‘Parallel and dynamic searchable symmetric encryption’, in
Financial cryptography and data security, 2013, pp. 258–274.

[2] S. J. D. Cash J. Jaeger, ‘Dynamic searchable encryption in very‑large databases: Data struc‑
tures and implementation.’, 2014.

[3] R. Bost, ‘Searchable encryption new constructions of encrypted databases’, 2018, [Online].
Available: https://raphael.bost.fyi/phd_docs/R_BOST_PhD_Thesis.pdf.

[4] E. S. Emil Stefanov Charalampos Papamanthou, ‘Practical dynamic searchable encryption
with small leakage’, 2014, [Online]. Available: https://www.ndss‑symposium.org/ndss20
14/programme/practical‑dynamic‑searchable‑encryption‑small‑leakage/.

[5] R. Bost, ‘∑OɸOς: Forward secure searchable encryption’, in Proceedings of the 2016 ACM
SIGSAC conference on computer and communications security, 2016, pp. 1143–1154, doi:
10.1145/2976749.2978303.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 24

https://raphael.bost.fyi/phd_docs/R_BOST_PhD_Thesis.pdf
https://www.ndss-symposium.org/ndss2014/programme/practical-dynamic-searchable-encryption-small-leakage/
https://www.ndss-symposium.org/ndss2014/programme/practical-dynamic-searchable-encryption-small-leakage/
https://doi.org/10.1145/2976749.2978303

	Introduction
	Example - The Searchable Directory
	Full Process
	Overview
	Symmetric Searchable Encryption
	Notations
	Index Tables
	Search Query

	Chain Table
	Chain Table Value
	Chain Table UID
	Size

	Entry Table
	Size

	Search Query Process

	Update Process
	Overview
	Impact on the Efficiency

	Change in DB Table
	Delete Line
	Add Line
	Modify Line

	Change in Index Tables
	Delete Keyword
	Add Keyword

	ReIndexing
	Why
	How

	Security
	Key
	Server Storage
	Client - Server Communication
	ReIndexing
	Dynamic Symmetric Searchable Encryption

	Appendix
	Cryptographic Algorithms
	Keys

	References

