
CoverCrypt
Full Documentation

Version 2

Date: 28/07/2022
Authors: Malika Izabachène (Chief Cryptographer), David Pointcheval (ENS ‑
Cosmian Advisor), Bruno Grieder (CTO).

CoverCrypt

Table Of Contents

1 Introduction 2

2 Example ‑ hierarchical axes 3

3 CoverCrypt 4

4 Security Properties 6
4.0.1 Property 1: privacy . 6
4.0.2 Property 2: traceability . 6
4.0.3 Property 3: 1‑collusion resistance . 7

5 Updates 8
5.0.1 Adding Users and Rights . 8
5.0.2 Revocation . 8

6 Comparison with GPSW06 (ABE) 9

7 Implementation choices 10
7.1 Curve25519 . 10
7.2 PRG . 10
7.3 Hash function . 10
7.4 DEM . 10

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 1

CoverCrypt

1 Introduction

CoverCrypt is a multi‑user encryption solution which provides access rights to users with respect to
an access policy. It has been proposed as a more efficient alternative to Key‑Policy Attribute‑Based
encryption scheme where the policy over attributes can be expressed as a union of users’ rights. In
this document and for CoverCrypt, we will use sets (a.k.a partitions) in place of attributes. We will
explain the correspondance in the first section.

This documentation specifies the procedure for:

• managing users keys and access rights,

• encrypting messages with respect to target rights,

• decrypting the message when users’ are granted rights for decryption.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 2

CoverCrypt

2 Example ‑ hierarchical axes

The figure below illustrates a hierarchical policy where domains: treasury, finance, market; and se‑
curity level in increasing order: HIGH, MEDIUM and LOW are on x‑ and y‑ axes respectively.

• 𝑆1, 𝑆2, 𝑆3 with 𝑆1 ⊂ 𝑆2 ⊂ 𝑆3 are associated to finance with levels LOW, MEDIUM and HIGH
respectively;

• 𝑆4, 𝑆5, 𝑆6 with 𝑆4 ⊂ 𝑆5 ⊂ 𝑆6 are associated to treasury with levels LOW, MEDIUM and HIGH
respectively;

• 𝑆7, 𝑆8, 𝑆9 with 𝑆7 ⊂ 𝑆8 ⊂ 𝑆9 are associated to market with level LOW, MEDIUM and HIGH
respectively;

Then, during the Join procedure, users get keys according to their rights:

• A right for finance with security level LOW is associated with set 𝑆1. A user𝑈 joining the system
with this right receives sk1;

• A right for market with security level MEDIUM is associated with sets 𝑆7 ⊂ 𝑆8. A user 𝑈 joining
the systemwith this right receives both sk7 and sk8.

• A right with treasury with security level HIGH is associated with sets 𝑆4 ⊂ 𝑆5 ⊂ 𝑆6. A user 𝑈
joining the systemwith this right obtains sk4, sk5, and sk6.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 3

CoverCrypt

3 CoverCrypt

Let 𝔾 be a group of prime order 𝑞, with a generator 𝑔, in which the Computational Diffie‑Hellman
problem is hard. We describe below the encryption mechanism that can target specific rights for de‑
cryption, and traceability of dishonest users:

• Setup((𝑆𝑖)𝑖): it generates themaster public keympk and themaster secret keymsk as follows:

– it samples random 𝑢, 𝑣, 𝑠 $← ℤ𝑞 and sets

𝑈 ← 𝑔𝑢 𝑉 ← 𝑔𝑣 𝐻 ← 𝑔𝑠

– For each set 𝑆𝑖 ∈ 𝒮, where 𝒮 = (𝑆𝑖)𝑖, it chooses a random 𝑥𝑖
$← ℤ𝑞 and sets 𝐻𝑖 ← 𝐻𝑥𝑖 .

Let msk ← (𝑢, 𝑣, 𝑠, (𝑥𝑖)𝑖) and mpk ← (𝔾, 𝑔, 𝑈, 𝑉 , 𝐻, (𝐻𝑖)𝑖). And we assume that mpk is known to
everybody.

• Join(msk, 𝑗, 𝐴𝑗): it takes as input the master secret key msk, a user identifier 𝑗, and the set 𝐴𝑗
of indices 𝑖 so that user 𝑗 belongs to 𝑆𝑖, and provides its secret key SK𝑗.

For the tracing, one first chooses random scalars (𝑎𝑗, 𝑏𝑗) such that

𝑎𝑗 ⋅ 𝑢 + 𝑏𝑗 ⋅ 𝑣 = 𝑠

Then SK𝑗 ← (𝑎𝑗, 𝑏𝑗, (𝑥𝑖)𝑖∈𝐴𝑗
) is provided to user 𝑗.

• Enc(𝐾, 𝐵): it takes as input a bitstring 𝐾 ∈ {0, 1}𝑛 to encrypt to all the users belonging to 𝑆𝑖,
for 𝑖 ∈ 𝐵, and outputs the encryption of 𝐾.

– it samples a random 𝑟 $← ℤ𝑞;
– it sets 𝐶 ← 𝑈𝑟 and 𝐷 ← 𝑉 𝑟;
– for every 𝑖 ∈ 𝐵, it generates 𝐾𝑖 ← 𝐻𝑟

𝑖 .

The ciphertext thus consists of (𝐶, 𝐷, (𝐸𝑖 = ℋ(𝐾𝑖) ⊕ 𝐾)𝑖∈𝐵), where ℋ is a hash function onto
{0, 1}𝑛.

• Dec(SK𝑗, (𝐶, 𝐷, (𝐸𝑖 = 𝐾𝑖 ⊕ 𝐾)𝑖∈𝐵)): it takes as input a user’s secret key and a ciphertext, it
outputs the encrypted key 𝐾.

– the user first chooses an index 𝑖 ∈ 𝐵 ∩ 𝐴𝑗, in both its set of rights 𝐴𝑗 and the rights 𝐵 of
the ciphertext, and then uses 𝑥𝑖 = sk𝑖 ∈ SK𝑗;

– it can compute 𝐾𝑖 = (𝐶𝑎𝑗𝐷𝑏𝑗)𝑥𝑖 , and extract 𝐾 = 𝐸𝑖 ⊕ ℋ(𝐾𝑖).

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 4

CoverCrypt

One can note that

𝐾𝑖 = (𝐶𝑎𝑗𝐷𝑏𝑗)𝑥𝑖 = (𝑔𝑢𝑟𝑎𝑗+𝑣𝑟𝑏𝑗)𝑥𝑖 = (𝑔(𝑢𝑎𝑗+𝑣𝑏𝑗)𝑟)𝑥𝑖 = 𝑔𝑠𝑟𝑥𝑖

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 5

CoverCrypt

4 Security Properties

The previous construction provides two security properties: the privacy of the encrypted key 𝐾 and
the traceability of users. More precisely:

4.0.1 Property 1: privacy

Any collusion of users does not learn more than what the users could get individually and then put in
common.

The security game is the following one: an adversary𝒜 corrupts users and learns their secret keys SK𝑗
for 𝑗 ∈ 𝒞 (the set of corrupted users), and asks for the encryption𝐾(𝑏) among {𝐾(0), 𝐾(1)} for the set
𝐵. We say that the adversary wins the security game if it can guess 𝑏, while 𝐵 ∩ (∪𝑗∈𝒞𝐴𝑗) = ∅.
In the static corruption setting, we know the set 𝒞 before the Setup, for which we are given a Diffie‑
Hellman instance (𝑔, 𝑋 = 𝑔𝑥, 𝑌 = 𝑔𝑦):

• 𝑈 ← 𝑔𝑢, 𝑉 ← 𝑔𝑣, and 𝐻 ← 𝑔𝑠, for random 𝑢, 𝑣, 𝑠;
• For 𝑖 ∈ ∪𝑗∈𝒞𝐴𝑗, choose a random 𝑥𝑖 and set 𝐻𝑖 ← 𝐻𝑥𝑖 = 𝑔𝑠𝑥𝑖 ;
• For 𝑖 ∉ ∪𝑗∈𝒞𝐴𝑗, choose a random 𝑦𝑖 and set𝐻𝑖 ← 𝑋𝑠𝑦𝑖 = 𝑔𝑠𝑥𝑦𝑖 , which virtually sets 𝑥𝑖 ← 𝑥𝑦𝑖;

Join‑queries can be generated as in the official procedure, as for corrupted users, 𝑥𝑖 is known. How‑
ever, when encrypting 𝐾(𝑏) for the set 𝐵:

• 𝐶 ← 𝑌 𝑢 = 𝑔𝑦𝑢, 𝐷 ← 𝑌 𝑣 = 𝑔𝑦𝑣, which virtually sets 𝑟 ← 𝑦;
• For 𝑖 ∈ 𝐵, it generates a random 𝐸𝑖

$← {0, 1}𝑛.

The adversary can only see the difference of the random𝐸𝑖 if it asks forℋ(𝐾𝑖), for some 𝑖 ∈ 𝐵, while
𝐵 ∩ (∪𝑗∈𝒞𝐴𝑗) = ∅: 𝐾𝑖 = 𝐻𝑟

𝑖 = 𝑔𝑠𝑥𝑦𝑖𝑦 = (𝑔𝑥𝑦)𝑠𝑦𝑖 . From all the queries to ℋ, in the random oracle
model, and 𝑠 and (𝑦𝑖)𝑖, one can extract 𝑔𝑥𝑦, which is the Diffie‑Hellman value of (𝑋, 𝑌) in basis 𝑔.

4.0.2 Property 2: traceability

Without any collusion, a user alone can be traced with a black‑box tracing procedure.

In order to trace a pirate decoder that contains a key (𝑎, 𝑏): one generates a fake ciphertext with𝐶 ←
𝑈𝑟 ⋅ 𝑔𝑏𝑠 and 𝐷 ← 𝑉 𝑟 ⋅ 𝑔−𝑎𝑠 for random 𝑟, 𝑠 $← ℤ𝑞, and then 𝐾𝑖 ← 𝐻𝑟

𝑖 .

User with key (𝑎, 𝑏) will compute 𝐶𝑎𝐷𝑏 = 𝑈𝑎𝑟 ⋅ 𝑔𝑎𝑏𝑠 ⋅ 𝑉 𝑏𝑟 ⋅ 𝑔−𝑎𝑏𝑠 = (𝑈𝑎 ⋅ 𝑉 𝑏)𝑟 = 𝐻𝑟, and will
eventually get the correct key 𝐾 if it owns 𝑥𝑖.

Otheruserswill compute𝐶𝑎′𝐷𝑏′ = 𝑈𝑎′𝑟⋅𝑔𝑎′𝑏𝑠⋅𝑉 𝑏′𝑟⋅𝑔−𝑎𝑏′𝑠 = (𝑈𝑎′ ⋅𝑉 𝑏′)𝑟⋅𝑔(𝑎′𝑏−𝑎𝑏′)𝑠 = 𝐻𝑟⋅𝑔(𝑎′𝑏−𝑎𝑏′)𝑠,
which will unlikely be correct as 𝑎′𝑏 − 𝑎𝑏′ ≠ 0 mod 𝑞.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 6

CoverCrypt

4.0.3 Property 3: 1‑collusion resistance

Any collusion of 2 or more users can build an anonymous key.

As we have:
𝑎1𝑢 + 𝑏1𝑣 = 𝑠 𝑎2𝑢 + 𝑏2𝑣 = 𝑠

any convex combination, with 𝛼 + 𝛽 = 1 leads to an anonymous key:

(𝛼𝑎1 + 𝛽𝑎2)𝑢 + (𝛼𝑏1 + 𝛽𝑏2)𝑣 = 𝑠

Indeed, we have
𝛼𝑎1𝑢 + 𝛼𝑏1𝑣 + 𝛽𝑎2𝑢 + 𝛽𝑏2𝑣 = (𝛼 + 𝛽)𝑠

Hence, (𝑎 = 𝛼𝑎1 + 𝛽𝑎2, 𝑏 = 𝛼𝑏1 + 𝛽𝑏2) is an anonymous key that cannot be traced.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 7

CoverCrypt

5 Updates

5.0.1 Adding Users and Rights

A new user joining the systemwill receive secret keys associated to its rights. These rightsmay evolve
and the policy can be enriched over the time with more subsets 𝑆𝑖, and thus more keys sk𝑖.

5.0.2 Revocation

For revocation, one can use time‑periods, and then a three‑dimensional space, with sk𝑡,𝑖. When the
time‑period changes, users receives the keys sk𝑡,𝑖 associated to their right. The tracing part (𝑎𝑗, 𝑏𝑗)
does not need to be updated.

On the other hand, stored data does not need to be re‑encrypted, but the key𝐾 must be re‑encrypted
under the new sk𝑡,𝑖. It canbedonewithout anyprivate information: butweneed a slightmodification
with Enc(𝐾, 𝐵) that now takes as input a key𝐾 ∈ 𝔾, while𝐻𝑡,𝑖 = 𝐻𝑥𝑡,𝑖 depends on the time‑period
𝑡

• it samples a random 𝑟 $← ℤ𝑞;
• it sets 𝐶 ← 𝑈𝑟 and 𝐷 ← 𝑉 𝑟;
• for every 𝑖 ∈ 𝐵, it generates 𝐾𝑡,𝑖 ← 𝐻𝑟

𝑡,𝑖 and 𝐸𝑡,𝑖 = 𝐾 × 𝐾𝑡,𝑖

The ciphertext of 𝐾 is thus (𝐶, 𝐷, (𝐸𝑡,𝑖)𝑖), and data is encrypted with the session key ℋ(𝐾) ∈
{0, 1}𝑛.

When updating the keys: 𝐻𝑡+1,𝑖 ← 𝐻𝑡,𝑖 ⋅ 𝑈Δ𝑡,𝑖 = 𝐻𝑥𝑡,𝑖+Δ𝑡,𝑖⋅𝑢/𝑠. The ciphertext should be updated
so that

𝐸𝑡+1,𝑖 = 𝐾 × 𝐻𝑟
𝑡+1,𝑖 = 𝐾 × 𝐻𝑟

𝑡,𝑖 ⋅ 𝑈𝑟⋅Δ𝑡,𝑖 = 𝐸𝑡,𝑖 ⋅ 𝐶Δ𝑡,𝑖

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 8

CoverCrypt

6 Comparison with GPSW06 (ABE)

In short, CoverCrypt uses simpler, older primitives, it is faster and the ciphertexts aremore compact.

Side by side

GPSW06 CoverCrypt

Protocol Family Attributes Based Encryption (ABE) Subset Cover

Primitives Pairings over Elliptic Curves El Gamal over Elliptic Curves (no pairings)

Security ~128 bits using Curve BLS12‑381 ~128 bits using Curve 25519 . The
implementatation of X25519 follows
RFC7748

Attacks SeeAttacks §5 and §5.1 for attacks
on pairings.

SeeAttacks §5

Encoding Attributes are directly encoded The combination of attributes determines
the list of all possible partitions/sets.
Partitions are then encoded. Assuming 2
axes Departments [HR, R&D] and Security
[Low, High], there are up to 4 possible
partitions: HR‑Low, HR‑High, R&D‑Low,
R&D‑High

Ciphertexts
header size
(bytes)

332 + 𝛾 ∗ 52where 𝛾 is the number
of attributes of the ciphertext (in
most use cases, 𝛾 = 2)

67 + 𝜎 ∗ 33 where 𝜎 is the number of
partitions for the ciphertext (in most use
cases, 𝜎 = 1)

Ciphertexts body
size (bytes)

AES GCM: 𝐶 + 28 where 𝐶 is the
clear text size

AES GCM: 𝐶 + 28 where 𝐶 is the clear text
size

Attacks (and key sizes) Please check this INRIA reference document

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 9

https://github.com/Cosmian/bls12_381
https://github.com/dalek-cryptography/curve25519-dalek
https://tools.ietf.org/html/rfc7748
https://hal.inria.fr/hal-03408015/document

CoverCrypt

7 Implementation choices

7.1 Curve25519

The curve used is the X25519 elliptic curve. The rust implementation is the curve25519-dalek.
It is a library providing group operations on the Edwards and Montgomery forms of Curve25519, and
on the prime‑order Ristretto group. In particular, it implements Ristretto, which constructs a prime‑
order group fromanon‑prime‑order Edwards curve. This provides the speedand safetybenefits of Ed‑
wards curve arithmetic, without the pitfalls of cofactor‑related abstractionmismatches. Curve25519
is approved by the NIST and is described in RFC7748. It offers 128 bits of security.

7.2 PRG

To generate random numbers, we use the Rust implementation of the HC‑128 algorithm from
the standard library. HC‑128 offers 128 bits of security.

7.3 Hash function

As hash function, we use the implementation of the Sha256 algorithm from the standard lib‑
rary, which offers 128 bits of security. We use this hash function to generate a KDF using the HKDF
(RFC5869) implementation from the hkdf crate.

7.4 DEM

AsDEM,weuseour implementationof the ISO/IEC18033 standard. As symmetric scheme,weuseAES
implementation of aes_gcm. This implementation provides encryption and decryption functions
that alsomanage authentification. We use an AES key length of 256 bits and aMAC length of 128 bits.
The nonce length used is 96 bits.

Confidential © Copyright 2018‑2022 Cosmian. All rights reserved 10

https://github.com/dalek-cryptography/curve25519-dalek
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186-draft.pdf
https://datatracker.ietf.org/doc/html/rfc7748
https://docs.rs/rand/0.5.0/rand/prng/hc128/struct.Hc128Rng.html
https://docs.rs/sha2/0.4.1/sha2/index.html
https://datatracker.ietf.org/doc/html/rfc5869
https://docs.rs/hkdf/latest/hkdf
https://github.com/Cosmian/crypto_base_anssi/blob/tbz_prepare_anssi_repo/src/symmetric_crypto/mod.rs
https://www.shoup.net/iso/std6.pdf
https://docs.rs/aes-gcm/0.1.0/aes_gcm/struct.AesGcm.html

	Introduction
	Example - hierarchical axes
	CoverCrypt
	Security Properties
	Property 1: privacy
	Property 2: traceability
	Property 3: 1-collusion resistance

	Updates
	Adding Users and Rights
	Revocation

	Comparison with GPSW06 (ABE)
	Implementation choices
	Curve25519
	PRG
	Hash function
	DEM

