// Copyright 2014 The Crashpad Authors. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "minidump/minidump_system_info_writer.h" #include #include "base/check_op.h" #include "base/cxx17_backports.h" #include "base/notreached.h" #include "minidump/minidump_string_writer.h" #include "snapshot/system_snapshot.h" #include "util/file/file_writer.h" #include "util/misc/arraysize.h" #include "util/misc/implicit_cast.h" namespace crashpad { namespace { uint64_t AMD64FeaturesFromSystemSnapshot( const SystemSnapshot* system_snapshot) { #define ADD_FEATURE(minidump_bit) (UINT64_C(1) << (minidump_bit)) // Features for which no cpuid bits are present, but that always exist on // x86_64. cmpxchg is supported on 486 and later. uint64_t minidump_features = ADD_FEATURE(PF_COMPARE_EXCHANGE_DOUBLE); #define MAP_FEATURE(features, cpuid_bit, minidump_bit) \ do { \ if ((features) & (implicit_cast(1) << (cpuid_bit))) { \ minidump_features |= ADD_FEATURE(minidump_bit); \ } \ } while (false) #define F_TSC 4 #define F_PAE 6 #define F_MMX 23 #define F_SSE 25 #define F_SSE2 26 #define F_SSE3 32 #define F_CX16 45 #define F_XSAVE 58 #define F_RDRAND 62 uint64_t cpuid_features = system_snapshot->CPUX86Features(); MAP_FEATURE(cpuid_features, F_TSC, PF_RDTSC_INSTRUCTION_AVAILABLE); MAP_FEATURE(cpuid_features, F_PAE, PF_PAE_ENABLED); MAP_FEATURE(cpuid_features, F_MMX, PF_MMX_INSTRUCTIONS_AVAILABLE); MAP_FEATURE(cpuid_features, F_SSE, PF_XMMI_INSTRUCTIONS_AVAILABLE); MAP_FEATURE(cpuid_features, F_SSE2, PF_XMMI64_INSTRUCTIONS_AVAILABLE); MAP_FEATURE(cpuid_features, F_SSE3, PF_SSE3_INSTRUCTIONS_AVAILABLE); MAP_FEATURE(cpuid_features, F_CX16, PF_COMPARE_EXCHANGE128); MAP_FEATURE(cpuid_features, F_XSAVE, PF_XSAVE_ENABLED); MAP_FEATURE(cpuid_features, F_RDRAND, PF_RDRAND_INSTRUCTION_AVAILABLE); #define FX_XD 20 #define FX_RDTSCP 27 #define FX_3DNOW 31 uint64_t extended_features = system_snapshot->CPUX86ExtendedFeatures(); MAP_FEATURE(extended_features, FX_RDTSCP, PF_RDTSCP_INSTRUCTION_AVAILABLE); MAP_FEATURE(extended_features, FX_3DNOW, PF_3DNOW_INSTRUCTIONS_AVAILABLE); #define F7_FSGSBASE 0 uint32_t leaf7_features = system_snapshot->CPUX86Leaf7Features(); MAP_FEATURE(leaf7_features, F7_FSGSBASE, PF_RDWRFSGSBASE_AVAILABLE); // This feature bit should be set if NX (XD, DEP) is enabled, not just if it’s // available on the CPU as indicated by the FX_XD bit. if (system_snapshot->NXEnabled()) { minidump_features |= ADD_FEATURE(PF_NX_ENABLED); } if (system_snapshot->CPUX86SupportsDAZ()) { minidump_features |= ADD_FEATURE(PF_SSE_DAZ_MODE_AVAILABLE); } // PF_SECOND_LEVEL_ADDRESS_TRANSLATION can’t be determined without consulting // model-specific registers, a privileged operation. The exact use of // PF_VIRT_FIRMWARE_ENABLED is unknown. PF_FASTFAIL_AVAILABLE is irrelevant // outside of Windows. #undef MAP_FEATURE #undef ADD_FEATURE return minidump_features; } } // namespace MinidumpSystemInfoWriter::MinidumpSystemInfoWriter() : MinidumpStreamWriter(), system_info_(), csd_version_() { system_info_.ProcessorArchitecture = kMinidumpCPUArchitectureUnknown; } MinidumpSystemInfoWriter::~MinidumpSystemInfoWriter() { } void MinidumpSystemInfoWriter::InitializeFromSnapshot( const SystemSnapshot* system_snapshot) { DCHECK_EQ(state(), kStateMutable); DCHECK(!csd_version_); MinidumpCPUArchitecture cpu_architecture; switch (system_snapshot->GetCPUArchitecture()) { case kCPUArchitectureX86: cpu_architecture = kMinidumpCPUArchitectureX86; break; case kCPUArchitectureX86_64: cpu_architecture = kMinidumpCPUArchitectureAMD64; break; case kCPUArchitectureARM: cpu_architecture = kMinidumpCPUArchitectureARM; break; case kCPUArchitectureARM64: cpu_architecture = kMinidumpCPUArchitectureARM64; break; default: NOTREACHED(); cpu_architecture = kMinidumpCPUArchitectureUnknown; break; } SetCPUArchitecture(cpu_architecture); uint32_t cpu_revision = system_snapshot->CPURevision(); SetCPULevelAndRevision((cpu_revision & 0xffff0000) >> 16, cpu_revision & 0x0000ffff); SetCPUCount(system_snapshot->CPUCount()); if (cpu_architecture == kMinidumpCPUArchitectureX86) { std::string cpu_vendor = system_snapshot->CPUVendor(); SetCPUX86VendorString(cpu_vendor); // The minidump file format only has room for the bottom 32 bits of CPU // features and extended CPU features. SetCPUX86VersionAndFeatures(system_snapshot->CPUX86Signature(), system_snapshot->CPUX86Features() & 0xffffffff); if (cpu_vendor == "AuthenticAMD" || cpu_vendor == "HygonGenuine") { SetCPUX86AMDExtendedFeatures( system_snapshot->CPUX86ExtendedFeatures() & 0xffffffff); } } else if (cpu_architecture == kMinidumpCPUArchitectureAMD64) { SetCPUOtherFeatures(AMD64FeaturesFromSystemSnapshot(system_snapshot), 0); } MinidumpOS operating_system; switch (system_snapshot->GetOperatingSystem()) { case SystemSnapshot::kOperatingSystemMacOSX: operating_system = kMinidumpOSMacOSX; break; case SystemSnapshot::kOperatingSystemWindows: operating_system = kMinidumpOSWin32NT; break; case SystemSnapshot::kOperatingSystemLinux: operating_system = kMinidumpOSLinux; break; case SystemSnapshot::kOperatingSystemAndroid: operating_system = kMinidumpOSAndroid; break; case SystemSnapshot::kOperatingSystemFuchsia: operating_system = kMinidumpOSFuchsia; break; case SystemSnapshot::kOperatingSystemIOS: operating_system = kMinidumpOSIOS; break; default: NOTREACHED(); operating_system = kMinidumpOSUnknown; break; } SetOS(operating_system); SetOSType(system_snapshot->OSServer() ? kMinidumpOSTypeServer : kMinidumpOSTypeWorkstation); int major; int minor; int bugfix; std::string build; system_snapshot->OSVersion(&major, &minor, &bugfix, &build); SetOSVersion(major, minor, bugfix); SetCSDVersion(build); } void MinidumpSystemInfoWriter::SetCSDVersion(const std::string& csd_version) { DCHECK_EQ(state(), kStateMutable); if (!csd_version_) { csd_version_.reset(new internal::MinidumpUTF16StringWriter()); } csd_version_->SetUTF8(csd_version); } void MinidumpSystemInfoWriter::SetCPUX86Vendor(uint32_t ebx, uint32_t edx, uint32_t ecx) { DCHECK_EQ(state(), kStateMutable); DCHECK(system_info_.ProcessorArchitecture == kMinidumpCPUArchitectureX86 || system_info_.ProcessorArchitecture == kMinidumpCPUArchitectureX86Win64); static_assert(ArraySize(system_info_.Cpu.X86CpuInfo.VendorId) == 3, "VendorId must have 3 elements"); system_info_.Cpu.X86CpuInfo.VendorId[0] = ebx; system_info_.Cpu.X86CpuInfo.VendorId[1] = edx; system_info_.Cpu.X86CpuInfo.VendorId[2] = ecx; } void MinidumpSystemInfoWriter::SetCPUX86VendorString( const std::string& vendor) { DCHECK_EQ(state(), kStateMutable); CHECK_EQ(vendor.size(), sizeof(system_info_.Cpu.X86CpuInfo.VendorId)); uint32_t registers[3]; static_assert( sizeof(registers) == sizeof(system_info_.Cpu.X86CpuInfo.VendorId), "VendorId sizes must be equal"); for (size_t index = 0; index < base::size(registers); ++index) { memcpy(®isters[index], &vendor[index * sizeof(*registers)], sizeof(*registers)); } SetCPUX86Vendor(registers[0], registers[1], registers[2]); } void MinidumpSystemInfoWriter::SetCPUX86VersionAndFeatures(uint32_t version, uint32_t features) { DCHECK_EQ(state(), kStateMutable); DCHECK(system_info_.ProcessorArchitecture == kMinidumpCPUArchitectureX86 || system_info_.ProcessorArchitecture == kMinidumpCPUArchitectureX86Win64); system_info_.Cpu.X86CpuInfo.VersionInformation = version; system_info_.Cpu.X86CpuInfo.FeatureInformation = features; } void MinidumpSystemInfoWriter::SetCPUX86AMDExtendedFeatures( uint32_t extended_features) { DCHECK_EQ(state(), kStateMutable); DCHECK(system_info_.ProcessorArchitecture == kMinidumpCPUArchitectureX86 || system_info_.ProcessorArchitecture == kMinidumpCPUArchitectureX86Win64); DCHECK(system_info_.Cpu.X86CpuInfo.VendorId[0] == 'htuA' && system_info_.Cpu.X86CpuInfo.VendorId[1] == 'itne' && system_info_.Cpu.X86CpuInfo.VendorId[2] == 'DMAc'); system_info_.Cpu.X86CpuInfo.AMDExtendedCpuFeatures = extended_features; } void MinidumpSystemInfoWriter::SetCPUOtherFeatures(uint64_t features_0, uint64_t features_1) { DCHECK_EQ(state(), kStateMutable); DCHECK(system_info_.ProcessorArchitecture != kMinidumpCPUArchitectureX86 && system_info_.ProcessorArchitecture != kMinidumpCPUArchitectureX86Win64); static_assert(ArraySize(system_info_.Cpu.OtherCpuInfo.ProcessorFeatures) == 2, "ProcessorFeatures must have 2 elements"); system_info_.Cpu.OtherCpuInfo.ProcessorFeatures[0] = features_0; system_info_.Cpu.OtherCpuInfo.ProcessorFeatures[1] = features_1; } bool MinidumpSystemInfoWriter::Freeze() { DCHECK_EQ(state(), kStateMutable); CHECK(csd_version_); if (!MinidumpStreamWriter::Freeze()) { return false; } csd_version_->RegisterRVA(&system_info_.CSDVersionRva); return true; } size_t MinidumpSystemInfoWriter::SizeOfObject() { DCHECK_GE(state(), kStateFrozen); return sizeof(system_info_); } std::vector MinidumpSystemInfoWriter::Children() { DCHECK_GE(state(), kStateFrozen); DCHECK(csd_version_); std::vector children(1, csd_version_.get()); return children; } bool MinidumpSystemInfoWriter::WriteObject(FileWriterInterface* file_writer) { DCHECK_EQ(state(), kStateWritable); return file_writer->Write(&system_info_, sizeof(system_info_)); } MinidumpStreamType MinidumpSystemInfoWriter::StreamType() const { return kMinidumpStreamTypeSystemInfo; } } // namespace crashpad