// Copyright 2014 The Crashpad Authors. All rights reserved. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. #include "minidump/minidump_writable.h" #include #include "base/cxx17_backports.h" #include "base/logging.h" #include "util/file/file_writer.h" #include "util/numeric/safe_assignment.h" namespace { constexpr size_t kMaximumAlignment = 16; } // namespace namespace crashpad { namespace internal { MinidumpWritable::~MinidumpWritable() { } bool MinidumpWritable::WriteEverything(FileWriterInterface* file_writer) { DCHECK_EQ(state_, kStateMutable); if (!Freeze()) { return false; } DCHECK_EQ(state_, kStateFrozen); FileOffset offset = 0; std::vector write_sequence; size_t size = WillWriteAtOffset(kPhaseEarly, &offset, &write_sequence); if (size == kInvalidSize) { return false; } offset += size; if (WillWriteAtOffset(kPhaseLate, &offset, &write_sequence) == kInvalidSize) { return false; } DCHECK_EQ(state_, kStateWritable); DCHECK_EQ(write_sequence.front(), this); for (MinidumpWritable* writable : write_sequence) { if (!writable->WritePaddingAndObject(file_writer)) { return false; } } DCHECK_EQ(state_, kStateWritten); return true; } void MinidumpWritable::RegisterRVA(RVA* rva) { DCHECK_LE(state_, kStateFrozen); registered_rvas_.push_back(rva); } void MinidumpWritable::RegisterLocationDescriptor( MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor) { DCHECK_LE(state_, kStateFrozen); registered_location_descriptors_.push_back(location_descriptor); } MinidumpWritable::MinidumpWritable() : registered_rvas_(), registered_location_descriptors_(), leading_pad_bytes_(0), state_(kStateMutable) { } bool MinidumpWritable::Freeze() { DCHECK_EQ(state_, kStateMutable); state_ = kStateFrozen; std::vector children = Children(); for (MinidumpWritable* child : children) { if (!child->Freeze()) { return false; } } return true; } size_t MinidumpWritable::Alignment() { DCHECK_GE(state_, kStateFrozen); return 4; } std::vector MinidumpWritable::Children() { DCHECK_GE(state_, kStateFrozen); return std::vector(); } MinidumpWritable::Phase MinidumpWritable::WritePhase() { return kPhaseEarly; } size_t MinidumpWritable::WillWriteAtOffset( Phase phase, FileOffset* offset, std::vector* write_sequence) { FileOffset local_offset = *offset; CHECK_GE(local_offset, 0); size_t leading_pad_bytes_this_phase; size_t size; if (phase == WritePhase()) { DCHECK_EQ(state_, kStateFrozen); // Add this object to the sequence of MinidumpWritable objects to be // written. write_sequence->push_back(this); size = SizeOfObject(); if (size > 0) { // Honor this object’s request to be aligned to a specific byte boundary. // Once the alignment is corrected, this object knows exactly what file // offset it will be written at. size_t alignment = Alignment(); CHECK_LE(alignment, kMaximumAlignment); leading_pad_bytes_this_phase = (alignment - (local_offset % alignment)) % alignment; local_offset += leading_pad_bytes_this_phase; *offset = local_offset; } else { // If the object is size 0, alignment is of no concern. leading_pad_bytes_this_phase = 0; } leading_pad_bytes_ = leading_pad_bytes_this_phase; // Now that the file offset that this object will be written at is known, // let the subclass implementation know in case it’s interested. if (!WillWriteAtOffsetImpl(local_offset)) { return kInvalidSize; } // Populate the RVA fields in other objects that have registered to point to // this one. Typically, a parent object will have registered to point to its // children, but this can also occur where no parent-child relationship // exists. if (!registered_rvas_.empty() || !registered_location_descriptors_.empty()) { RVA local_rva; if (!AssignIfInRange(&local_rva, local_offset)) { LOG(ERROR) << "offset " << local_offset << " out of range"; return kInvalidSize; } for (RVA* rva : registered_rvas_) { *rva = local_rva; } if (!registered_location_descriptors_.empty()) { decltype(registered_location_descriptors_[0]->DataSize) local_size; if (!AssignIfInRange(&local_size, size)) { LOG(ERROR) << "size " << size << " out of range"; return kInvalidSize; } for (MINIDUMP_LOCATION_DESCRIPTOR* location_descriptor : registered_location_descriptors_) { location_descriptor->DataSize = local_size; location_descriptor->Rva = local_rva; } } } // This object is now considered writable. However, if it contains RVA or // MINIDUMP_LOCATION_DESCRIPTOR fields, they may not be fully updated yet, // because it’s the repsonsibility of these fields’ pointees to update them. // Once WillWriteAtOffset has completed running for both phases on an entire // tree, and the entire tree has moved into kStateFrozen, all RVA and // MINIDUMP_LOCATION_DESCRIPTOR fields within that tree will be populated. state_ = kStateWritable; } else { if (phase == kPhaseEarly) { DCHECK_EQ(state_, kStateFrozen); } else { DCHECK_EQ(state_, kStateWritable); } size = 0; leading_pad_bytes_this_phase = 0; } // Loop over children regardless of whether this object itself will write // during this phase. An object’s children are not required to be written // during the same phase as their parent. std::vector children = Children(); for (MinidumpWritable* child : children) { // Use “auto” here because it’s impossible to know whether size_t (size) or // FileOffset (local_offset) is the wider type, and thus what type the // result of adding these two variables will have. auto unaligned_child_offset = local_offset + size; FileOffset child_offset; if (!AssignIfInRange(&child_offset, unaligned_child_offset)) { LOG(ERROR) << "offset " << unaligned_child_offset << " out of range"; return kInvalidSize; } size_t child_size = child->WillWriteAtOffset(phase, &child_offset, write_sequence); if (child_size == kInvalidSize) { return kInvalidSize; } size += child_size; } return leading_pad_bytes_this_phase + size; } bool MinidumpWritable::WillWriteAtOffsetImpl(FileOffset offset) { return true; } bool MinidumpWritable::WritePaddingAndObject(FileWriterInterface* file_writer) { DCHECK_EQ(state_, kStateWritable); // The number of elements in kZeroes must be at least one less than the // maximum Alignment() ever encountered. static constexpr uint8_t kZeroes[kMaximumAlignment - 1] = {}; DCHECK_LE(leading_pad_bytes_, base::size(kZeroes)); if (leading_pad_bytes_) { if (!file_writer->Write(&kZeroes, leading_pad_bytes_)) { return false; } } if (!WriteObject(file_writer)) { return false; } state_ = kStateWritten; return true; } } // namespace internal } // namespace crashpad