// Copyright 2005 Google Inc. All Rights Reserved. // // Redistribution and use in source and binary forms, with or without // modification, are permitted provided that the following conditions are // met: // // * Redistributions of source code must retain the above copyright // notice, this list of conditions and the following disclaimer. // * Redistributions in binary form must reproduce the above // copyright notice, this list of conditions and the following disclaimer // in the documentation and/or other materials provided with the // distribution. // * Neither the name of Google Inc. nor the names of its // contributors may be used to endorse or promote products derived from // this software without specific prior written permission. // // THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS // "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT // LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR // A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT // OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, // SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT // LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, // DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY // THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT // (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE // OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. #include "snappy-internal.h" #include "snappy-sinksource.h" #include "snappy.h" #if !defined(SNAPPY_HAVE_BMI2) // __BMI2__ is defined by GCC and Clang. Visual Studio doesn't target BMI2 // specifically, but it does define __AVX2__ when AVX2 support is available. // Fortunately, AVX2 was introduced in Haswell, just like BMI2. // // BMI2 is not defined as a subset of AVX2 (unlike SSSE3 and AVX above). So, // GCC and Clang can build code with AVX2 enabled but BMI2 disabled, in which // case issuing BMI2 instructions results in a compiler error. #if defined(__BMI2__) || (defined(_MSC_VER) && defined(__AVX2__)) #define SNAPPY_HAVE_BMI2 1 #else #define SNAPPY_HAVE_BMI2 0 #endif #endif // !defined(SNAPPY_HAVE_BMI2) #if !defined(SNAPPY_HAVE_X86_CRC32) #if defined(__SSE4_2__) #define SNAPPY_HAVE_X86_CRC32 1 #else #define SNAPPY_HAVE_X86_CRC32 0 #endif #endif // !defined(SNAPPY_HAVE_X86_CRC32) #if !defined(SNAPPY_HAVE_NEON_CRC32) #if SNAPPY_HAVE_NEON && defined(__ARM_FEATURE_CRC32) #define SNAPPY_HAVE_NEON_CRC32 1 #else #define SNAPPY_HAVE_NEON_CRC32 0 #endif #endif // !defined(SNAPPY_HAVE_NEON_CRC32) #if SNAPPY_HAVE_BMI2 || SNAPPY_HAVE_X86_CRC32 // Please do not replace with . or with headers that assume more // advanced SSE versions without checking with all the OWNERS. #include #elif SNAPPY_HAVE_NEON_CRC32 #include #endif #include #include #include #include #include #include #include #include #include namespace snappy { namespace { // The amount of slop bytes writers are using for unconditional copies. constexpr int kSlopBytes = 64; using internal::char_table; using internal::COPY_1_BYTE_OFFSET; using internal::COPY_2_BYTE_OFFSET; using internal::COPY_4_BYTE_OFFSET; using internal::kMaximumTagLength; using internal::LITERAL; #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE using internal::V128; using internal::V128_Load; using internal::V128_LoadU; using internal::V128_Shuffle; using internal::V128_StoreU; using internal::V128_DupChar; #endif // We translate the information encoded in a tag through a lookup table to a // format that requires fewer instructions to decode. Effectively we store // the length minus the tag part of the offset. The lowest significant byte // thus stores the length. While total length - offset is given by // entry - ExtractOffset(type). The nice thing is that the subtraction // immediately sets the flags for the necessary check that offset >= length. // This folds the cmp with sub. We engineer the long literals and copy-4 to // always fail this check, so their presence doesn't affect the fast path. // To prevent literals from triggering the guard against offset < length (offset // does not apply to literals) the table is giving them a spurious offset of // 256. inline constexpr int16_t MakeEntry(int16_t len, int16_t offset) { return len - (offset << 8); } inline constexpr int16_t LengthMinusOffset(int data, int type) { return type == 3 ? 0xFF // copy-4 (or type == 3) : type == 2 ? MakeEntry(data + 1, 0) // copy-2 : type == 1 ? MakeEntry((data & 7) + 4, data >> 3) // copy-1 : data < 60 ? MakeEntry(data + 1, 1) // note spurious offset. : 0xFF; // long literal } inline constexpr int16_t LengthMinusOffset(uint8_t tag) { return LengthMinusOffset(tag >> 2, tag & 3); } template struct index_sequence {}; template struct make_index_sequence : make_index_sequence {}; template struct make_index_sequence<0, Is...> : index_sequence {}; template constexpr std::array MakeTable(index_sequence) { return std::array{LengthMinusOffset(seq)...}; } alignas(64) const std::array kLengthMinusOffset = MakeTable(make_index_sequence<256>{}); // Given a table of uint16_t whose size is mask / 2 + 1, return a pointer to the // relevant entry, if any, for the given bytes. Any hash function will do, // but a good hash function reduces the number of collisions and thus yields // better compression for compressible input. // // REQUIRES: mask is 2 * (table_size - 1), and table_size is a power of two. inline uint16_t* TableEntry(uint16_t* table, uint32_t bytes, uint32_t mask) { // Our choice is quicker-and-dirtier than the typical hash function; // empirically, that seems beneficial. The upper bits of kMagic * bytes are a // higher-quality hash than the lower bits, so when using kMagic * bytes we // also shift right to get a higher-quality end result. There's no similar // issue with a CRC because all of the output bits of a CRC are equally good // "hashes." So, a CPU instruction for CRC, if available, tends to be a good // choice. #if SNAPPY_HAVE_NEON_CRC32 // We use mask as the second arg to the CRC function, as it's about to // be used anyway; it'd be equally correct to use 0 or some constant. // Mathematically, _mm_crc32_u32 (or similar) is a function of the // xor of its arguments. const uint32_t hash = __crc32cw(bytes, mask); #elif SNAPPY_HAVE_X86_CRC32 const uint32_t hash = _mm_crc32_u32(bytes, mask); #else constexpr uint32_t kMagic = 0x1e35a7bd; const uint32_t hash = (kMagic * bytes) >> (31 - kMaxHashTableBits); #endif return reinterpret_cast(reinterpret_cast(table) + (hash & mask)); } } // namespace size_t MaxCompressedLength(size_t source_bytes) { // Compressed data can be defined as: // compressed := item* literal* // item := literal* copy // // The trailing literal sequence has a space blowup of at most 62/60 // since a literal of length 60 needs one tag byte + one extra byte // for length information. // // Item blowup is trickier to measure. Suppose the "copy" op copies // 4 bytes of data. Because of a special check in the encoding code, // we produce a 4-byte copy only if the offset is < 65536. Therefore // the copy op takes 3 bytes to encode, and this type of item leads // to at most the 62/60 blowup for representing literals. // // Suppose the "copy" op copies 5 bytes of data. If the offset is big // enough, it will take 5 bytes to encode the copy op. Therefore the // worst case here is a one-byte literal followed by a five-byte copy. // I.e., 6 bytes of input turn into 7 bytes of "compressed" data. // // This last factor dominates the blowup, so the final estimate is: return 32 + source_bytes + source_bytes / 6; } namespace { void UnalignedCopy64(const void* src, void* dst) { char tmp[8]; std::memcpy(tmp, src, 8); std::memcpy(dst, tmp, 8); } void UnalignedCopy128(const void* src, void* dst) { // std::memcpy() gets vectorized when the appropriate compiler options are // used. For example, x86 compilers targeting SSE2+ will optimize to an SSE2 // load and store. char tmp[16]; std::memcpy(tmp, src, 16); std::memcpy(dst, tmp, 16); } template inline void ConditionalUnalignedCopy128(const char* src, char* dst) { if (use_16bytes_chunk) { UnalignedCopy128(src, dst); } else { UnalignedCopy64(src, dst); UnalignedCopy64(src + 8, dst + 8); } } // Copy [src, src+(op_limit-op)) to [op, (op_limit-op)) a byte at a time. Used // for handling COPY operations where the input and output regions may overlap. // For example, suppose: // src == "ab" // op == src + 2 // op_limit == op + 20 // After IncrementalCopySlow(src, op, op_limit), the result will have eleven // copies of "ab" // ababababababababababab // Note that this does not match the semantics of either std::memcpy() or // std::memmove(). inline char* IncrementalCopySlow(const char* src, char* op, char* const op_limit) { // TODO: Remove pragma when LLVM is aware this // function is only called in cold regions and when cold regions don't get // vectorized or unrolled. #ifdef __clang__ #pragma clang loop unroll(disable) #endif while (op < op_limit) { *op++ = *src++; } return op_limit; } #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE // Computes the bytes for shuffle control mask (please read comments on // 'pattern_generation_masks' as well) for the given index_offset and // pattern_size. For example, when the 'offset' is 6, it will generate a // repeating pattern of size 6. So, the first 16 byte indexes will correspond to // the pattern-bytes {0, 1, 2, 3, 4, 5, 0, 1, 2, 3, 4, 5, 0, 1, 2, 3} and the // next 16 byte indexes will correspond to the pattern-bytes {4, 5, 0, 1, 2, 3, // 4, 5, 0, 1, 2, 3, 4, 5, 0, 1}. These byte index sequences are generated by // calling MakePatternMaskBytes(0, 6, index_sequence<16>()) and // MakePatternMaskBytes(16, 6, index_sequence<16>()) respectively. template inline constexpr std::array MakePatternMaskBytes( int index_offset, int pattern_size, index_sequence) { return {static_cast((index_offset + indexes) % pattern_size)...}; } // Computes the shuffle control mask bytes array for given pattern-sizes and // returns an array. template inline constexpr std::array, sizeof...(pattern_sizes_minus_one)> MakePatternMaskBytesTable(int index_offset, index_sequence) { return { MakePatternMaskBytes(index_offset, pattern_sizes_minus_one + 1, make_index_sequence())...}; } // This is an array of shuffle control masks that can be used as the source // operand for PSHUFB to permute the contents of the destination XMM register // into a repeating byte pattern. alignas(16) constexpr std::array, 16> pattern_generation_masks = MakePatternMaskBytesTable( /*index_offset=*/0, /*pattern_sizes_minus_one=*/make_index_sequence<16>()); // Similar to 'pattern_generation_masks', this table is used to "rotate" the // pattern so that we can copy the *next 16 bytes* consistent with the pattern. // Basically, pattern_reshuffle_masks is a continuation of // pattern_generation_masks. It follows that, pattern_reshuffle_masks is same as // pattern_generation_masks for offsets 1, 2, 4, 8 and 16. alignas(16) constexpr std::array, 16> pattern_reshuffle_masks = MakePatternMaskBytesTable( /*index_offset=*/16, /*pattern_sizes_minus_one=*/make_index_sequence<16>()); SNAPPY_ATTRIBUTE_ALWAYS_INLINE static inline V128 LoadPattern(const char* src, const size_t pattern_size) { V128 generation_mask = V128_Load(reinterpret_cast( pattern_generation_masks[pattern_size - 1].data())); // Uninitialized bytes are masked out by the shuffle mask. // TODO: remove annotation and macro defs once MSan is fixed. SNAPPY_ANNOTATE_MEMORY_IS_INITIALIZED(src + pattern_size, 16 - pattern_size); return V128_Shuffle(V128_LoadU(reinterpret_cast(src)), generation_mask); } SNAPPY_ATTRIBUTE_ALWAYS_INLINE static inline std::pair LoadPatternAndReshuffleMask(const char* src, const size_t pattern_size) { V128 pattern = LoadPattern(src, pattern_size); // This mask will generate the next 16 bytes in-place. Doing so enables us to // write data by at most 4 V128_StoreU. // // For example, suppose pattern is: abcdefabcdefabcd // Shuffling with this mask will generate: efabcdefabcdefab // Shuffling again will generate: cdefabcdefabcdef V128 reshuffle_mask = V128_Load(reinterpret_cast( pattern_reshuffle_masks[pattern_size - 1].data())); return {pattern, reshuffle_mask}; } #endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE // Fallback for when we need to copy while extending the pattern, for example // copying 10 bytes from 3 positions back abc -> abcabcabcabca. // // REQUIRES: [dst - offset, dst + 64) is a valid address range. SNAPPY_ATTRIBUTE_ALWAYS_INLINE static inline bool Copy64BytesWithPatternExtension(char* dst, size_t offset) { #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE if (SNAPPY_PREDICT_TRUE(offset <= 16)) { switch (offset) { case 0: return false; case 1: { // TODO: Ideally we should memset, move back once the // codegen issues are fixed. V128 pattern = V128_DupChar(dst[-1]); for (int i = 0; i < 4; i++) { V128_StoreU(reinterpret_cast(dst + 16 * i), pattern); } return true; } case 2: case 4: case 8: case 16: { V128 pattern = LoadPattern(dst - offset, offset); for (int i = 0; i < 4; i++) { V128_StoreU(reinterpret_cast(dst + 16 * i), pattern); } return true; } default: { auto pattern_and_reshuffle_mask = LoadPatternAndReshuffleMask(dst - offset, offset); V128 pattern = pattern_and_reshuffle_mask.first; V128 reshuffle_mask = pattern_and_reshuffle_mask.second; for (int i = 0; i < 4; i++) { V128_StoreU(reinterpret_cast(dst + 16 * i), pattern); pattern = V128_Shuffle(pattern, reshuffle_mask); } return true; } } } #else if (SNAPPY_PREDICT_TRUE(offset < 16)) { if (SNAPPY_PREDICT_FALSE(offset == 0)) return false; // Extend the pattern to the first 16 bytes. // The simpler formulation of `dst[i - offset]` induces undefined behavior. for (int i = 0; i < 16; i++) dst[i] = (dst - offset)[i]; // Find a multiple of pattern >= 16. static std::array pattern_sizes = []() { std::array res; for (int i = 1; i < 16; i++) res[i] = (16 / i + 1) * i; return res; }(); offset = pattern_sizes[offset]; for (int i = 1; i < 4; i++) { std::memcpy(dst + i * 16, dst + i * 16 - offset, 16); } return true; } #endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE // Very rare. for (int i = 0; i < 4; i++) { std::memcpy(dst + i * 16, dst + i * 16 - offset, 16); } return true; } // Copy [src, src+(op_limit-op)) to [op, op_limit) but faster than // IncrementalCopySlow. buf_limit is the address past the end of the writable // region of the buffer. inline char* IncrementalCopy(const char* src, char* op, char* const op_limit, char* const buf_limit) { #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE constexpr int big_pattern_size_lower_bound = 16; #else constexpr int big_pattern_size_lower_bound = 8; #endif // Terminology: // // slop = buf_limit - op // pat = op - src // len = op_limit - op assert(src < op); assert(op < op_limit); assert(op_limit <= buf_limit); // NOTE: The copy tags use 3 or 6 bits to store the copy length, so len <= 64. assert(op_limit - op <= 64); // NOTE: In practice the compressor always emits len >= 4, so it is ok to // assume that to optimize this function, but this is not guaranteed by the // compression format, so we have to also handle len < 4 in case the input // does not satisfy these conditions. size_t pattern_size = op - src; // The cases are split into different branches to allow the branch predictor, // FDO, and static prediction hints to work better. For each input we list the // ratio of invocations that match each condition. // // input slop < 16 pat < 8 len > 16 // ------------------------------------------ // html|html4|cp 0% 1.01% 27.73% // urls 0% 0.88% 14.79% // jpg 0% 64.29% 7.14% // pdf 0% 2.56% 58.06% // txt[1-4] 0% 0.23% 0.97% // pb 0% 0.96% 13.88% // bin 0.01% 22.27% 41.17% // // It is very rare that we don't have enough slop for doing block copies. It // is also rare that we need to expand a pattern. Small patterns are common // for incompressible formats and for those we are plenty fast already. // Lengths are normally not greater than 16 but they vary depending on the // input. In general if we always predict len <= 16 it would be an ok // prediction. // // In order to be fast we want a pattern >= 16 bytes (or 8 bytes in non-SSE) // and an unrolled loop copying 1x 16 bytes (or 2x 8 bytes in non-SSE) at a // time. // Handle the uncommon case where pattern is less than 16 (or 8 in non-SSE) // bytes. if (pattern_size < big_pattern_size_lower_bound) { #if SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE // Load the first eight bytes into an 128-bit XMM register, then use PSHUFB // to permute the register's contents in-place into a repeating sequence of // the first "pattern_size" bytes. // For example, suppose: // src == "abc" // op == op + 3 // After V128_Shuffle(), "pattern" will have five copies of "abc" // followed by one byte of slop: abcabcabcabcabca. // // The non-SSE fallback implementation suffers from store-forwarding stalls // because its loads and stores partly overlap. By expanding the pattern // in-place, we avoid the penalty. // Typically, the op_limit is the gating factor so try to simplify the loop // based on that. if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) { auto pattern_and_reshuffle_mask = LoadPatternAndReshuffleMask(src, pattern_size); V128 pattern = pattern_and_reshuffle_mask.first; V128 reshuffle_mask = pattern_and_reshuffle_mask.second; // There is at least one, and at most four 16-byte blocks. Writing four // conditionals instead of a loop allows FDO to layout the code with // respect to the actual probabilities of each length. // TODO: Replace with loop with trip count hint. V128_StoreU(reinterpret_cast(op), pattern); if (op + 16 < op_limit) { pattern = V128_Shuffle(pattern, reshuffle_mask); V128_StoreU(reinterpret_cast(op + 16), pattern); } if (op + 32 < op_limit) { pattern = V128_Shuffle(pattern, reshuffle_mask); V128_StoreU(reinterpret_cast(op + 32), pattern); } if (op + 48 < op_limit) { pattern = V128_Shuffle(pattern, reshuffle_mask); V128_StoreU(reinterpret_cast(op + 48), pattern); } return op_limit; } char* const op_end = buf_limit - 15; if (SNAPPY_PREDICT_TRUE(op < op_end)) { auto pattern_and_reshuffle_mask = LoadPatternAndReshuffleMask(src, pattern_size); V128 pattern = pattern_and_reshuffle_mask.first; V128 reshuffle_mask = pattern_and_reshuffle_mask.second; // This code path is relatively cold however so we save code size // by avoiding unrolling and vectorizing. // // TODO: Remove pragma when when cold regions don't get // vectorized or unrolled. #ifdef __clang__ #pragma clang loop unroll(disable) #endif do { V128_StoreU(reinterpret_cast(op), pattern); pattern = V128_Shuffle(pattern, reshuffle_mask); op += 16; } while (SNAPPY_PREDICT_TRUE(op < op_end)); } return IncrementalCopySlow(op - pattern_size, op, op_limit); #else // !SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE // If plenty of buffer space remains, expand the pattern to at least 8 // bytes. The way the following loop is written, we need 8 bytes of buffer // space if pattern_size >= 4, 11 bytes if pattern_size is 1 or 3, and 10 // bytes if pattern_size is 2. Precisely encoding that is probably not // worthwhile; instead, invoke the slow path if we cannot write 11 bytes // (because 11 are required in the worst case). if (SNAPPY_PREDICT_TRUE(op <= buf_limit - 11)) { while (pattern_size < 8) { UnalignedCopy64(src, op); op += pattern_size; pattern_size *= 2; } if (SNAPPY_PREDICT_TRUE(op >= op_limit)) return op_limit; } else { return IncrementalCopySlow(src, op, op_limit); } #endif // SNAPPY_HAVE_VECTOR_BYTE_SHUFFLE } assert(pattern_size >= big_pattern_size_lower_bound); constexpr bool use_16bytes_chunk = big_pattern_size_lower_bound == 16; // Copy 1x 16 bytes (or 2x 8 bytes in non-SSE) at a time. Because op - src can // be < 16 in non-SSE, a single UnalignedCopy128 might overwrite data in op. // UnalignedCopy64 is safe because expanding the pattern to at least 8 bytes // guarantees that op - src >= 8. // // Typically, the op_limit is the gating factor so try to simplify the loop // based on that. if (SNAPPY_PREDICT_TRUE(op_limit <= buf_limit - 15)) { // There is at least one, and at most four 16-byte blocks. Writing four // conditionals instead of a loop allows FDO to layout the code with respect // to the actual probabilities of each length. // TODO: Replace with loop with trip count hint. ConditionalUnalignedCopy128(src, op); if (op + 16 < op_limit) { ConditionalUnalignedCopy128(src + 16, op + 16); } if (op + 32 < op_limit) { ConditionalUnalignedCopy128(src + 32, op + 32); } if (op + 48 < op_limit) { ConditionalUnalignedCopy128(src + 48, op + 48); } return op_limit; } // Fall back to doing as much as we can with the available slop in the // buffer. This code path is relatively cold however so we save code size by // avoiding unrolling and vectorizing. // // TODO: Remove pragma when when cold regions don't get vectorized // or unrolled. #ifdef __clang__ #pragma clang loop unroll(disable) #endif for (char* op_end = buf_limit - 16; op < op_end; op += 16, src += 16) { ConditionalUnalignedCopy128(src, op); } if (op >= op_limit) return op_limit; // We only take this branch if we didn't have enough slop and we can do a // single 8 byte copy. if (SNAPPY_PREDICT_FALSE(op <= buf_limit - 8)) { UnalignedCopy64(src, op); src += 8; op += 8; } return IncrementalCopySlow(src, op, op_limit); } } // namespace template static inline char* EmitLiteral(char* op, const char* literal, int len) { // The vast majority of copies are below 16 bytes, for which a // call to std::memcpy() is overkill. This fast path can sometimes // copy up to 15 bytes too much, but that is okay in the // main loop, since we have a bit to go on for both sides: // // - The input will always have kInputMarginBytes = 15 extra // available bytes, as long as we're in the main loop, and // if not, allow_fast_path = false. // - The output will always have 32 spare bytes (see // MaxCompressedLength). assert(len > 0); // Zero-length literals are disallowed int n = len - 1; if (allow_fast_path && len <= 16) { // Fits in tag byte *op++ = LITERAL | (n << 2); UnalignedCopy128(literal, op); return op + len; } if (n < 60) { // Fits in tag byte *op++ = LITERAL | (n << 2); } else { int count = (Bits::Log2Floor(n) >> 3) + 1; assert(count >= 1); assert(count <= 4); *op++ = LITERAL | ((59 + count) << 2); // Encode in upcoming bytes. // Write 4 bytes, though we may care about only 1 of them. The output buffer // is guaranteed to have at least 3 more spaces left as 'len >= 61' holds // here and there is a std::memcpy() of size 'len' below. LittleEndian::Store32(op, n); op += count; } // When allow_fast_path is true, we can overwrite up to 16 bytes. if (allow_fast_path) { char* destination = op; const char* source = literal; const char* end = destination + len; do { std::memcpy(destination, source, 16); destination += 16; source += 16; } while (destination < end); } else { std::memcpy(op, literal, len); } return op + len; } template static inline char* EmitCopyAtMost64(char* op, size_t offset, size_t len) { assert(len <= 64); assert(len >= 4); assert(offset < 65536); assert(len_less_than_12 == (len < 12)); if (len_less_than_12) { uint32_t u = (len << 2) + (offset << 8); uint32_t copy1 = COPY_1_BYTE_OFFSET - (4 << 2) + ((offset >> 3) & 0xe0); uint32_t copy2 = COPY_2_BYTE_OFFSET - (1 << 2); // It turns out that offset < 2048 is a difficult to predict branch. // `perf record` shows this is the highest percentage of branch misses in // benchmarks. This code produces branch free code, the data dependency // chain that bottlenecks the throughput is so long that a few extra // instructions are completely free (IPC << 6 because of data deps). u += offset < 2048 ? copy1 : copy2; LittleEndian::Store32(op, u); op += offset < 2048 ? 2 : 3; } else { // Write 4 bytes, though we only care about 3 of them. The output buffer // is required to have some slack, so the extra byte won't overrun it. uint32_t u = COPY_2_BYTE_OFFSET + ((len - 1) << 2) + (offset << 8); LittleEndian::Store32(op, u); op += 3; } return op; } template static inline char* EmitCopy(char* op, size_t offset, size_t len) { assert(len_less_than_12 == (len < 12)); if (len_less_than_12) { return EmitCopyAtMost64(op, offset, len); } else { // A special case for len <= 64 might help, but so far measurements suggest // it's in the noise. // Emit 64 byte copies but make sure to keep at least four bytes reserved. while (SNAPPY_PREDICT_FALSE(len >= 68)) { op = EmitCopyAtMost64(op, offset, 64); len -= 64; } // One or two copies will now finish the job. if (len > 64) { op = EmitCopyAtMost64(op, offset, 60); len -= 60; } // Emit remainder. if (len < 12) { op = EmitCopyAtMost64(op, offset, len); } else { op = EmitCopyAtMost64(op, offset, len); } return op; } } bool GetUncompressedLength(const char* start, size_t n, size_t* result) { uint32_t v = 0; const char* limit = start + n; if (Varint::Parse32WithLimit(start, limit, &v) != NULL) { *result = v; return true; } else { return false; } } namespace { uint32_t CalculateTableSize(uint32_t input_size) { static_assert( kMaxHashTableSize >= kMinHashTableSize, "kMaxHashTableSize should be greater or equal to kMinHashTableSize."); if (input_size > kMaxHashTableSize) { return kMaxHashTableSize; } if (input_size < kMinHashTableSize) { return kMinHashTableSize; } // This is equivalent to Log2Ceiling(input_size), assuming input_size > 1. // 2 << Log2Floor(x - 1) is equivalent to 1 << (1 + Log2Floor(x - 1)). return 2u << Bits::Log2Floor(input_size - 1); } } // namespace namespace internal { WorkingMemory::WorkingMemory(size_t input_size) { const size_t max_fragment_size = std::min(input_size, kBlockSize); const size_t table_size = CalculateTableSize(max_fragment_size); size_ = table_size * sizeof(*table_) + max_fragment_size + MaxCompressedLength(max_fragment_size); mem_ = std::allocator().allocate(size_); table_ = reinterpret_cast(mem_); input_ = mem_ + table_size * sizeof(*table_); output_ = input_ + max_fragment_size; } WorkingMemory::~WorkingMemory() { std::allocator().deallocate(mem_, size_); } uint16_t* WorkingMemory::GetHashTable(size_t fragment_size, int* table_size) const { const size_t htsize = CalculateTableSize(fragment_size); memset(table_, 0, htsize * sizeof(*table_)); *table_size = htsize; return table_; } } // end namespace internal // Flat array compression that does not emit the "uncompressed length" // prefix. Compresses "input" string to the "*op" buffer. // // REQUIRES: "input" is at most "kBlockSize" bytes long. // REQUIRES: "op" points to an array of memory that is at least // "MaxCompressedLength(input.size())" in size. // REQUIRES: All elements in "table[0..table_size-1]" are initialized to zero. // REQUIRES: "table_size" is a power of two // // Returns an "end" pointer into "op" buffer. // "end - op" is the compressed size of "input". namespace internal { char* CompressFragment(const char* input, size_t input_size, char* op, uint16_t* table, const int table_size) { // "ip" is the input pointer, and "op" is the output pointer. const char* ip = input; assert(input_size <= kBlockSize); assert((table_size & (table_size - 1)) == 0); // table must be power of two const uint32_t mask = 2 * (table_size - 1); const char* ip_end = input + input_size; const char* base_ip = ip; const size_t kInputMarginBytes = 15; if (SNAPPY_PREDICT_TRUE(input_size >= kInputMarginBytes)) { const char* ip_limit = input + input_size - kInputMarginBytes; for (uint32_t preload = LittleEndian::Load32(ip + 1);;) { // Bytes in [next_emit, ip) will be emitted as literal bytes. Or // [next_emit, ip_end) after the main loop. const char* next_emit = ip++; uint64_t data = LittleEndian::Load64(ip); // The body of this loop calls EmitLiteral once and then EmitCopy one or // more times. (The exception is that when we're close to exhausting // the input we goto emit_remainder.) // // In the first iteration of this loop we're just starting, so // there's nothing to copy, so calling EmitLiteral once is // necessary. And we only start a new iteration when the // current iteration has determined that a call to EmitLiteral will // precede the next call to EmitCopy (if any). // // Step 1: Scan forward in the input looking for a 4-byte-long match. // If we get close to exhausting the input then goto emit_remainder. // // Heuristic match skipping: If 32 bytes are scanned with no matches // found, start looking only at every other byte. If 32 more bytes are // scanned (or skipped), look at every third byte, etc.. When a match is // found, immediately go back to looking at every byte. This is a small // loss (~5% performance, ~0.1% density) for compressible data due to more // bookkeeping, but for non-compressible data (such as JPEG) it's a huge // win since the compressor quickly "realizes" the data is incompressible // and doesn't bother looking for matches everywhere. // // The "skip" variable keeps track of how many bytes there are since the // last match; dividing it by 32 (ie. right-shifting by five) gives the // number of bytes to move ahead for each iteration. uint32_t skip = 32; const char* candidate; if (ip_limit - ip >= 16) { auto delta = ip - base_ip; for (int j = 0; j < 4; ++j) { for (int k = 0; k < 4; ++k) { int i = 4 * j + k; // These for-loops are meant to be unrolled. So we can freely // special case the first iteration to use the value already // loaded in preload. uint32_t dword = i == 0 ? preload : static_cast(data); assert(dword == LittleEndian::Load32(ip + i)); uint16_t* table_entry = TableEntry(table, dword, mask); candidate = base_ip + *table_entry; assert(candidate >= base_ip); assert(candidate < ip + i); *table_entry = delta + i; if (SNAPPY_PREDICT_FALSE(LittleEndian::Load32(candidate) == dword)) { *op = LITERAL | (i << 2); UnalignedCopy128(next_emit, op + 1); ip += i; op = op + i + 2; goto emit_match; } data >>= 8; } data = LittleEndian::Load64(ip + 4 * j + 4); } ip += 16; skip += 16; } while (true) { assert(static_cast(data) == LittleEndian::Load32(ip)); uint16_t* table_entry = TableEntry(table, data, mask); uint32_t bytes_between_hash_lookups = skip >> 5; skip += bytes_between_hash_lookups; const char* next_ip = ip + bytes_between_hash_lookups; if (SNAPPY_PREDICT_FALSE(next_ip > ip_limit)) { ip = next_emit; goto emit_remainder; } candidate = base_ip + *table_entry; assert(candidate >= base_ip); assert(candidate < ip); *table_entry = ip - base_ip; if (SNAPPY_PREDICT_FALSE(static_cast(data) == LittleEndian::Load32(candidate))) { break; } data = LittleEndian::Load32(next_ip); ip = next_ip; } // Step 2: A 4-byte match has been found. We'll later see if more // than 4 bytes match. But, prior to the match, input // bytes [next_emit, ip) are unmatched. Emit them as "literal bytes." assert(next_emit + 16 <= ip_end); op = EmitLiteral(op, next_emit, ip - next_emit); // Step 3: Call EmitCopy, and then see if another EmitCopy could // be our next move. Repeat until we find no match for the // input immediately after what was consumed by the last EmitCopy call. // // If we exit this loop normally then we need to call EmitLiteral next, // though we don't yet know how big the literal will be. We handle that // by proceeding to the next iteration of the main loop. We also can exit // this loop via goto if we get close to exhausting the input. emit_match: do { // We have a 4-byte match at ip, and no need to emit any // "literal bytes" prior to ip. const char* base = ip; std::pair p = FindMatchLength(candidate + 4, ip + 4, ip_end, &data); size_t matched = 4 + p.first; ip += matched; size_t offset = base - candidate; assert(0 == memcmp(base, candidate, matched)); if (p.second) { op = EmitCopy(op, offset, matched); } else { op = EmitCopy(op, offset, matched); } if (SNAPPY_PREDICT_FALSE(ip >= ip_limit)) { goto emit_remainder; } // Expect 5 bytes to match assert((data & 0xFFFFFFFFFF) == (LittleEndian::Load64(ip) & 0xFFFFFFFFFF)); // We are now looking for a 4-byte match again. We read // table[Hash(ip, mask)] for that. To improve compression, // we also update table[Hash(ip - 1, mask)] and table[Hash(ip, mask)]. *TableEntry(table, LittleEndian::Load32(ip - 1), mask) = ip - base_ip - 1; uint16_t* table_entry = TableEntry(table, data, mask); candidate = base_ip + *table_entry; *table_entry = ip - base_ip; // Measurements on the benchmarks have shown the following probabilities // for the loop to exit (ie. avg. number of iterations is reciprocal). // BM_Flat/6 txt1 p = 0.3-0.4 // BM_Flat/7 txt2 p = 0.35 // BM_Flat/8 txt3 p = 0.3-0.4 // BM_Flat/9 txt3 p = 0.34-0.4 // BM_Flat/10 pb p = 0.4 // BM_Flat/11 gaviota p = 0.1 // BM_Flat/12 cp p = 0.5 // BM_Flat/13 c p = 0.3 } while (static_cast(data) == LittleEndian::Load32(candidate)); // Because the least significant 5 bytes matched, we can utilize data // for the next iteration. preload = data >> 8; } } emit_remainder: // Emit the remaining bytes as a literal if (ip < ip_end) { op = EmitLiteral(op, ip, ip_end - ip); } return op; } } // end namespace internal // Called back at avery compression call to trace parameters and sizes. static inline void Report(const char *algorithm, size_t compressed_size, size_t uncompressed_size) { // TODO: Switch to [[maybe_unused]] when we can assume C++17. (void)algorithm; (void)compressed_size; (void)uncompressed_size; } // Signature of output types needed by decompression code. // The decompression code is templatized on a type that obeys this // signature so that we do not pay virtual function call overhead in // the middle of a tight decompression loop. // // class DecompressionWriter { // public: // // Called before decompression // void SetExpectedLength(size_t length); // // // For performance a writer may choose to donate the cursor variable to the // // decompression function. The decompression will inject it in all its // // function calls to the writer. Keeping the important output cursor as a // // function local stack variable allows the compiler to keep it in // // register, which greatly aids performance by avoiding loads and stores of // // this variable in the fast path loop iterations. // T GetOutputPtr() const; // // // At end of decompression the loop donates the ownership of the cursor // // variable back to the writer by calling this function. // void SetOutputPtr(T op); // // // Called after decompression // bool CheckLength() const; // // // Called repeatedly during decompression // // Each function get a pointer to the op (output pointer), that the writer // // can use and update. Note it's important that these functions get fully // // inlined so that no actual address of the local variable needs to be // // taken. // bool Append(const char* ip, size_t length, T* op); // bool AppendFromSelf(uint32_t offset, size_t length, T* op); // // // The rules for how TryFastAppend differs from Append are somewhat // // convoluted: // // // // - TryFastAppend is allowed to decline (return false) at any // // time, for any reason -- just "return false" would be // // a perfectly legal implementation of TryFastAppend. // // The intention is for TryFastAppend to allow a fast path // // in the common case of a small append. // // - TryFastAppend is allowed to read up to bytes // // from the input buffer, whereas Append is allowed to read // // . However, if it returns true, it must leave // // at least five (kMaximumTagLength) bytes in the input buffer // // afterwards, so that there is always enough space to read the // // next tag without checking for a refill. // // - TryFastAppend must always return decline (return false) // // if is 61 or more, as in this case the literal length is not // // decoded fully. In practice, this should not be a big problem, // // as it is unlikely that one would implement a fast path accepting // // this much data. // // // bool TryFastAppend(const char* ip, size_t available, size_t length, T* op); // }; static inline uint32_t ExtractLowBytes(const uint32_t& v, int n) { assert(n >= 0); assert(n <= 4); #if SNAPPY_HAVE_BMI2 return _bzhi_u32(v, 8 * n); #else // This needs to be wider than uint32_t otherwise `mask << 32` will be // undefined. uint64_t mask = 0xffffffff; return v & ~(mask << (8 * n)); #endif } static inline bool LeftShiftOverflows(uint8_t value, uint32_t shift) { assert(shift < 32); static const uint8_t masks[] = { 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, 0x00, // 0x00, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe}; return (value & masks[shift]) != 0; } inline bool Copy64BytesWithPatternExtension(ptrdiff_t dst, size_t offset) { // TODO: Switch to [[maybe_unused]] when we can assume C++17. (void)dst; return offset != 0; } // Copies between size bytes and 64 bytes from src to dest. size cannot exceed // 64. More than size bytes, but never exceeding 64, might be copied if doing // so gives better performance. [src, src + size) must not overlap with // [dst, dst + size), but [src, src + 64) may overlap with [dst, dst + 64). void MemCopy64(char* dst, const void* src, size_t size) { // Always copy this many bytes. If that's below size then copy the full 64. constexpr int kShortMemCopy = 32; assert(size <= 64); assert(std::less_equal()(static_cast(src) + size, dst) || std::less_equal()(dst + size, src)); // We know that src and dst are at least size bytes apart. However, because we // might copy more than size bytes the copy still might overlap past size. // E.g. if src and dst appear consecutively in memory (src + size >= dst). // TODO: Investigate wider copies on other platforms. #if defined(__x86_64__) && defined(__AVX__) assert(kShortMemCopy <= 32); __m256i data = _mm256_lddqu_si256(static_cast(src)); _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst), data); // Profiling shows that nearly all copies are short. if (SNAPPY_PREDICT_FALSE(size > kShortMemCopy)) { data = _mm256_lddqu_si256(static_cast(src) + 1); _mm256_storeu_si256(reinterpret_cast<__m256i *>(dst) + 1, data); } #else std::memmove(dst, src, kShortMemCopy); // Profiling shows that nearly all copies are short. if (SNAPPY_PREDICT_FALSE(size > kShortMemCopy)) { std::memmove(dst + kShortMemCopy, static_cast(src) + kShortMemCopy, 64 - kShortMemCopy); } #endif } void MemCopy64(ptrdiff_t dst, const void* src, size_t size) { // TODO: Switch to [[maybe_unused]] when we can assume C++17. (void)dst; (void)src; (void)size; } void ClearDeferred(const void** deferred_src, size_t* deferred_length, uint8_t* safe_source) { *deferred_src = safe_source; *deferred_length = 0; } void DeferMemCopy(const void** deferred_src, size_t* deferred_length, const void* src, size_t length) { *deferred_src = src; *deferred_length = length; } SNAPPY_ATTRIBUTE_ALWAYS_INLINE inline size_t AdvanceToNextTagARMOptimized(const uint8_t** ip_p, size_t* tag) { const uint8_t*& ip = *ip_p; // This section is crucial for the throughput of the decompression loop. // The latency of an iteration is fundamentally constrained by the // following data chain on ip. // ip -> c = Load(ip) -> delta1 = (c & 3) -> ip += delta1 or delta2 // delta2 = ((c >> 2) + 1) ip++ // This is different from X86 optimizations because ARM has conditional add // instruction (csinc) and it removes several register moves. const size_t tag_type = *tag & 3; const bool is_literal = (tag_type == 0); if (is_literal) { size_t next_literal_tag = (*tag >> 2) + 1; *tag = ip[next_literal_tag]; ip += next_literal_tag + 1; } else { *tag = ip[tag_type]; ip += tag_type + 1; } return tag_type; } SNAPPY_ATTRIBUTE_ALWAYS_INLINE inline size_t AdvanceToNextTagX86Optimized(const uint8_t** ip_p, size_t* tag) { const uint8_t*& ip = *ip_p; // This section is crucial for the throughput of the decompression loop. // The latency of an iteration is fundamentally constrained by the // following data chain on ip. // ip -> c = Load(ip) -> ip1 = ip + 1 + (c & 3) -> ip = ip1 or ip2 // ip2 = ip + 2 + (c >> 2) // This amounts to 8 cycles. // 5 (load) + 1 (c & 3) + 1 (lea ip1, [ip + (c & 3) + 1]) + 1 (cmov) size_t literal_len = *tag >> 2; size_t tag_type = *tag; bool is_literal; #if defined(__GCC_ASM_FLAG_OUTPUTS__) && defined(__x86_64__) // TODO clang misses the fact that the (c & 3) already correctly // sets the zero flag. asm("and $3, %k[tag_type]\n\t" : [tag_type] "+r"(tag_type), "=@ccz"(is_literal) :: "cc"); #else tag_type &= 3; is_literal = (tag_type == 0); #endif // TODO // This is code is subtle. Loading the values first and then cmov has less // latency then cmov ip and then load. However clang would move the loads // in an optimization phase, volatile prevents this transformation. // Note that we have enough slop bytes (64) that the loads are always valid. size_t tag_literal = static_cast(ip)[1 + literal_len]; size_t tag_copy = static_cast(ip)[tag_type]; *tag = is_literal ? tag_literal : tag_copy; const uint8_t* ip_copy = ip + 1 + tag_type; const uint8_t* ip_literal = ip + 2 + literal_len; ip = is_literal ? ip_literal : ip_copy; #if defined(__GNUC__) && defined(__x86_64__) // TODO Clang is "optimizing" zero-extension (a totally free // operation) this means that after the cmov of tag, it emits another movzb // tag, byte(tag). It really matters as it's on the core chain. This dummy // asm, persuades clang to do the zero-extension at the load (it's automatic) // removing the expensive movzb. asm("" ::"r"(tag_copy)); #endif return tag_type; } // Extract the offset for copy-1 and copy-2 returns 0 for literals or copy-4. inline uint32_t ExtractOffset(uint32_t val, size_t tag_type) { // For x86 non-static storage works better. For ARM static storage is better. // TODO: Once the array is recognized as a register, improve the // readability for x86. #if defined(__x86_64__) constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull; uint16_t result; memcpy(&result, reinterpret_cast(&kExtractMasksCombined) + 2 * tag_type, sizeof(result)); return val & result; #elif defined(__aarch64__) constexpr uint64_t kExtractMasksCombined = 0x0000FFFF00FF0000ull; return val & static_cast( (kExtractMasksCombined >> (tag_type * 16)) & 0xFFFF); #else static constexpr uint32_t kExtractMasks[4] = {0, 0xFF, 0xFFFF, 0}; return val & kExtractMasks[tag_type]; #endif }; // Core decompression loop, when there is enough data available. // Decompresses the input buffer [ip, ip_limit) into the output buffer // [op, op_limit_min_slop). Returning when either we are too close to the end // of the input buffer, or we exceed op_limit_min_slop or when a exceptional // tag is encountered (literal of length > 60) or a copy-4. // Returns {ip, op} at the points it stopped decoding. // TODO This function probably does not need to be inlined, as it // should decode large chunks at a time. This allows runtime dispatch to // implementations based on CPU capability (BMI2 / perhaps 32 / 64 byte memcpy). template std::pair DecompressBranchless( const uint8_t* ip, const uint8_t* ip_limit, ptrdiff_t op, T op_base, ptrdiff_t op_limit_min_slop) { // If deferred_src is invalid point it here. uint8_t safe_source[64]; const void* deferred_src; size_t deferred_length; ClearDeferred(&deferred_src, &deferred_length, safe_source); // We unroll the inner loop twice so we need twice the spare room. op_limit_min_slop -= kSlopBytes; if (2 * (kSlopBytes + 1) < ip_limit - ip && op < op_limit_min_slop) { const uint8_t* const ip_limit_min_slop = ip_limit - 2 * kSlopBytes - 1; ip++; // ip points just past the tag and we are touching at maximum kSlopBytes // in an iteration. size_t tag = ip[-1]; #if defined(__clang__) && defined(__aarch64__) // Workaround for https://bugs.llvm.org/show_bug.cgi?id=51317 // when loading 1 byte, clang for aarch64 doesn't realize that it(ldrb) // comes with free zero-extension, so clang generates another // 'and xn, xm, 0xff' before it use that as the offset. This 'and' is // redundant and can be removed by adding this dummy asm, which gives // clang a hint that we're doing the zero-extension at the load. asm("" ::"r"(tag)); #endif do { // The throughput is limited by instructions, unrolling the inner loop // twice reduces the amount of instructions checking limits and also // leads to reduced mov's. SNAPPY_PREFETCH(ip + 128); for (int i = 0; i < 2; i++) { const uint8_t* old_ip = ip; assert(tag == ip[-1]); // For literals tag_type = 0, hence we will always obtain 0 from // ExtractLowBytes. For literals offset will thus be kLiteralOffset. ptrdiff_t len_minus_offset = kLengthMinusOffset[tag]; uint32_t next; #if defined(__aarch64__) size_t tag_type = AdvanceToNextTagARMOptimized(&ip, &tag); // We never need more than 16 bits. Doing a Load16 allows the compiler // to elide the masking operation in ExtractOffset. next = LittleEndian::Load16(old_ip); #else size_t tag_type = AdvanceToNextTagX86Optimized(&ip, &tag); next = LittleEndian::Load32(old_ip); #endif size_t len = len_minus_offset & 0xFF; ptrdiff_t extracted = ExtractOffset(next, tag_type); ptrdiff_t len_min_offset = len_minus_offset - extracted; if (SNAPPY_PREDICT_FALSE(len_minus_offset > extracted)) { if (SNAPPY_PREDICT_FALSE(len & 0x80)) { // Exceptional case (long literal or copy 4). // Actually doing the copy here is negatively impacting the main // loop due to compiler incorrectly allocating a register for // this fallback. Hence we just break. break_loop: ip = old_ip; goto exit; } // Only copy-1 or copy-2 tags can get here. assert(tag_type == 1 || tag_type == 2); std::ptrdiff_t delta = (op + deferred_length) + len_min_offset - len; // Guard against copies before the buffer start. // Execute any deferred MemCopy since we write to dst here. MemCopy64(op_base + op, deferred_src, deferred_length); op += deferred_length; ClearDeferred(&deferred_src, &deferred_length, safe_source); if (SNAPPY_PREDICT_FALSE(delta < 0 || !Copy64BytesWithPatternExtension( op_base + op, len - len_min_offset))) { goto break_loop; } // We aren't deferring this copy so add length right away. op += len; continue; } std::ptrdiff_t delta = (op + deferred_length) + len_min_offset - len; if (SNAPPY_PREDICT_FALSE(delta < 0)) { // Due to the spurious offset in literals have this will trigger // at the start of a block when op is still smaller than 256. if (tag_type != 0) goto break_loop; MemCopy64(op_base + op, deferred_src, deferred_length); op += deferred_length; DeferMemCopy(&deferred_src, &deferred_length, old_ip, len); continue; } // For copies we need to copy from op_base + delta, for literals // we need to copy from ip instead of from the stream. const void* from = tag_type ? reinterpret_cast(op_base + delta) : old_ip; MemCopy64(op_base + op, deferred_src, deferred_length); op += deferred_length; DeferMemCopy(&deferred_src, &deferred_length, from, len); } } while (ip < ip_limit_min_slop && static_cast(op + deferred_length) < op_limit_min_slop); exit: ip--; assert(ip <= ip_limit); } // If we deferred a copy then we can perform. If we are up to date then we // might not have enough slop bytes and could run past the end. if (deferred_length) { MemCopy64(op_base + op, deferred_src, deferred_length); op += deferred_length; ClearDeferred(&deferred_src, &deferred_length, safe_source); } return {ip, op}; } // Helper class for decompression class SnappyDecompressor { private: Source* reader_; // Underlying source of bytes to decompress const char* ip_; // Points to next buffered byte const char* ip_limit_; // Points just past buffered bytes // If ip < ip_limit_min_maxtaglen_ it's safe to read kMaxTagLength from // buffer. const char* ip_limit_min_maxtaglen_; uint32_t peeked_; // Bytes peeked from reader (need to skip) bool eof_; // Hit end of input without an error? char scratch_[kMaximumTagLength]; // See RefillTag(). // Ensure that all of the tag metadata for the next tag is available // in [ip_..ip_limit_-1]. Also ensures that [ip,ip+4] is readable even // if (ip_limit_ - ip_ < 5). // // Returns true on success, false on error or end of input. bool RefillTag(); void ResetLimit(const char* ip) { ip_limit_min_maxtaglen_ = ip_limit_ - std::min(ip_limit_ - ip, kMaximumTagLength - 1); } public: explicit SnappyDecompressor(Source* reader) : reader_(reader), ip_(NULL), ip_limit_(NULL), peeked_(0), eof_(false) {} ~SnappyDecompressor() { // Advance past any bytes we peeked at from the reader reader_->Skip(peeked_); } // Returns true iff we have hit the end of the input without an error. bool eof() const { return eof_; } // Read the uncompressed length stored at the start of the compressed data. // On success, stores the length in *result and returns true. // On failure, returns false. bool ReadUncompressedLength(uint32_t* result) { assert(ip_ == NULL); // Must not have read anything yet // Length is encoded in 1..5 bytes *result = 0; uint32_t shift = 0; while (true) { if (shift >= 32) return false; size_t n; const char* ip = reader_->Peek(&n); if (n == 0) return false; const unsigned char c = *(reinterpret_cast(ip)); reader_->Skip(1); uint32_t val = c & 0x7f; if (LeftShiftOverflows(static_cast(val), shift)) return false; *result |= val << shift; if (c < 128) { break; } shift += 7; } return true; } // Process the next item found in the input. // Returns true if successful, false on error or end of input. template #if defined(__GNUC__) && defined(__x86_64__) __attribute__((aligned(32))) #endif void DecompressAllTags(Writer* writer) { const char* ip = ip_; ResetLimit(ip); auto op = writer->GetOutputPtr(); // We could have put this refill fragment only at the beginning of the loop. // However, duplicating it at the end of each branch gives the compiler more // scope to optimize the expression based on the local // context, which overall increases speed. #define MAYBE_REFILL() \ if (SNAPPY_PREDICT_FALSE(ip >= ip_limit_min_maxtaglen_)) { \ ip_ = ip; \ if (SNAPPY_PREDICT_FALSE(!RefillTag())) goto exit; \ ip = ip_; \ ResetLimit(ip); \ } \ preload = static_cast(*ip) // At the start of the for loop below the least significant byte of preload // contains the tag. uint32_t preload; MAYBE_REFILL(); for (;;) { { ptrdiff_t op_limit_min_slop; auto op_base = writer->GetBase(&op_limit_min_slop); if (op_base) { auto res = DecompressBranchless(reinterpret_cast(ip), reinterpret_cast(ip_limit_), op - op_base, op_base, op_limit_min_slop); ip = reinterpret_cast(res.first); op = op_base + res.second; MAYBE_REFILL(); } } const uint8_t c = static_cast(preload); ip++; // Ratio of iterations that have LITERAL vs non-LITERAL for different // inputs. // // input LITERAL NON_LITERAL // ----------------------------------- // html|html4|cp 23% 77% // urls 36% 64% // jpg 47% 53% // pdf 19% 81% // txt[1-4] 25% 75% // pb 24% 76% // bin 24% 76% if (SNAPPY_PREDICT_FALSE((c & 0x3) == LITERAL)) { size_t literal_length = (c >> 2) + 1u; if (writer->TryFastAppend(ip, ip_limit_ - ip, literal_length, &op)) { assert(literal_length < 61); ip += literal_length; // NOTE: There is no MAYBE_REFILL() here, as TryFastAppend() // will not return true unless there's already at least five spare // bytes in addition to the literal. preload = static_cast(*ip); continue; } if (SNAPPY_PREDICT_FALSE(literal_length >= 61)) { // Long literal. const size_t literal_length_length = literal_length - 60; literal_length = ExtractLowBytes(LittleEndian::Load32(ip), literal_length_length) + 1; ip += literal_length_length; } size_t avail = ip_limit_ - ip; while (avail < literal_length) { if (!writer->Append(ip, avail, &op)) goto exit; literal_length -= avail; reader_->Skip(peeked_); size_t n; ip = reader_->Peek(&n); avail = n; peeked_ = avail; if (avail == 0) goto exit; ip_limit_ = ip + avail; ResetLimit(ip); } if (!writer->Append(ip, literal_length, &op)) goto exit; ip += literal_length; MAYBE_REFILL(); } else { if (SNAPPY_PREDICT_FALSE((c & 3) == COPY_4_BYTE_OFFSET)) { const size_t copy_offset = LittleEndian::Load32(ip); const size_t length = (c >> 2) + 1; ip += 4; if (!writer->AppendFromSelf(copy_offset, length, &op)) goto exit; } else { const ptrdiff_t entry = kLengthMinusOffset[c]; preload = LittleEndian::Load32(ip); const uint32_t trailer = ExtractLowBytes(preload, c & 3); const uint32_t length = entry & 0xff; assert(length > 0); // copy_offset/256 is encoded in bits 8..10. By just fetching // those bits, we get copy_offset (since the bit-field starts at // bit 8). const uint32_t copy_offset = trailer - entry + length; if (!writer->AppendFromSelf(copy_offset, length, &op)) goto exit; ip += (c & 3); // By using the result of the previous load we reduce the critical // dependency chain of ip to 4 cycles. preload >>= (c & 3) * 8; if (ip < ip_limit_min_maxtaglen_) continue; } MAYBE_REFILL(); } } #undef MAYBE_REFILL exit: writer->SetOutputPtr(op); } }; constexpr uint32_t CalculateNeeded(uint8_t tag) { return ((tag & 3) == 0 && tag >= (60 * 4)) ? (tag >> 2) - 58 : (0x05030201 >> ((tag * 8) & 31)) & 0xFF; } #if __cplusplus >= 201402L constexpr bool VerifyCalculateNeeded() { for (int i = 0; i < 1; i++) { if (CalculateNeeded(i) != (char_table[i] >> 11) + 1) return false; } return true; } // Make sure CalculateNeeded is correct by verifying it against the established // table encoding the number of added bytes needed. static_assert(VerifyCalculateNeeded(), ""); #endif // c++14 bool SnappyDecompressor::RefillTag() { const char* ip = ip_; if (ip == ip_limit_) { // Fetch a new fragment from the reader reader_->Skip(peeked_); // All peeked bytes are used up size_t n; ip = reader_->Peek(&n); peeked_ = n; eof_ = (n == 0); if (eof_) return false; ip_limit_ = ip + n; } // Read the tag character assert(ip < ip_limit_); const unsigned char c = *(reinterpret_cast(ip)); // At this point make sure that the data for the next tag is consecutive. // For copy 1 this means the next 2 bytes (tag and 1 byte offset) // For copy 2 the next 3 bytes (tag and 2 byte offset) // For copy 4 the next 5 bytes (tag and 4 byte offset) // For all small literals we only need 1 byte buf for literals 60...63 the // length is encoded in 1...4 extra bytes. const uint32_t needed = CalculateNeeded(c); assert(needed <= sizeof(scratch_)); // Read more bytes from reader if needed uint32_t nbuf = ip_limit_ - ip; if (nbuf < needed) { // Stitch together bytes from ip and reader to form the word // contents. We store the needed bytes in "scratch_". They // will be consumed immediately by the caller since we do not // read more than we need. std::memmove(scratch_, ip, nbuf); reader_->Skip(peeked_); // All peeked bytes are used up peeked_ = 0; while (nbuf < needed) { size_t length; const char* src = reader_->Peek(&length); if (length == 0) return false; uint32_t to_add = std::min(needed - nbuf, length); std::memcpy(scratch_ + nbuf, src, to_add); nbuf += to_add; reader_->Skip(to_add); } assert(nbuf == needed); ip_ = scratch_; ip_limit_ = scratch_ + needed; } else if (nbuf < kMaximumTagLength) { // Have enough bytes, but move into scratch_ so that we do not // read past end of input std::memmove(scratch_, ip, nbuf); reader_->Skip(peeked_); // All peeked bytes are used up peeked_ = 0; ip_ = scratch_; ip_limit_ = scratch_ + nbuf; } else { // Pass pointer to buffer returned by reader_. ip_ = ip; } return true; } template static bool InternalUncompress(Source* r, Writer* writer) { // Read the uncompressed length from the front of the compressed input SnappyDecompressor decompressor(r); uint32_t uncompressed_len = 0; if (!decompressor.ReadUncompressedLength(&uncompressed_len)) return false; return InternalUncompressAllTags(&decompressor, writer, r->Available(), uncompressed_len); } template static bool InternalUncompressAllTags(SnappyDecompressor* decompressor, Writer* writer, uint32_t compressed_len, uint32_t uncompressed_len) { Report("snappy_uncompress", compressed_len, uncompressed_len); writer->SetExpectedLength(uncompressed_len); // Process the entire input decompressor->DecompressAllTags(writer); writer->Flush(); return (decompressor->eof() && writer->CheckLength()); } bool GetUncompressedLength(Source* source, uint32_t* result) { SnappyDecompressor decompressor(source); return decompressor.ReadUncompressedLength(result); } size_t Compress(Source* reader, Sink* writer) { size_t written = 0; size_t N = reader->Available(); const size_t uncompressed_size = N; char ulength[Varint::kMax32]; char* p = Varint::Encode32(ulength, N); writer->Append(ulength, p - ulength); written += (p - ulength); internal::WorkingMemory wmem(N); while (N > 0) { // Get next block to compress (without copying if possible) size_t fragment_size; const char* fragment = reader->Peek(&fragment_size); assert(fragment_size != 0); // premature end of input const size_t num_to_read = std::min(N, kBlockSize); size_t bytes_read = fragment_size; size_t pending_advance = 0; if (bytes_read >= num_to_read) { // Buffer returned by reader is large enough pending_advance = num_to_read; fragment_size = num_to_read; } else { char* scratch = wmem.GetScratchInput(); std::memcpy(scratch, fragment, bytes_read); reader->Skip(bytes_read); while (bytes_read < num_to_read) { fragment = reader->Peek(&fragment_size); size_t n = std::min(fragment_size, num_to_read - bytes_read); std::memcpy(scratch + bytes_read, fragment, n); bytes_read += n; reader->Skip(n); } assert(bytes_read == num_to_read); fragment = scratch; fragment_size = num_to_read; } assert(fragment_size == num_to_read); // Get encoding table for compression int table_size; uint16_t* table = wmem.GetHashTable(num_to_read, &table_size); // Compress input_fragment and append to dest const int max_output = MaxCompressedLength(num_to_read); // Need a scratch buffer for the output, in case the byte sink doesn't // have room for us directly. // Since we encode kBlockSize regions followed by a region // which is <= kBlockSize in length, a previously allocated // scratch_output[] region is big enough for this iteration. char* dest = writer->GetAppendBuffer(max_output, wmem.GetScratchOutput()); char* end = internal::CompressFragment(fragment, fragment_size, dest, table, table_size); writer->Append(dest, end - dest); written += (end - dest); N -= num_to_read; reader->Skip(pending_advance); } Report("snappy_compress", written, uncompressed_size); return written; } // ----------------------------------------------------------------------- // IOVec interfaces // ----------------------------------------------------------------------- // A `Source` implementation that yields the contents of an `iovec` array. Note // that `total_size` is the total number of bytes to be read from the elements // of `iov` (_not_ the total number of elements in `iov`). class SnappyIOVecReader : public Source { public: SnappyIOVecReader(const struct iovec* iov, size_t total_size) : curr_iov_(iov), curr_pos_(total_size > 0 ? reinterpret_cast(iov->iov_base) : nullptr), curr_size_remaining_(total_size > 0 ? iov->iov_len : 0), total_size_remaining_(total_size) { // Skip empty leading `iovec`s. if (total_size > 0 && curr_size_remaining_ == 0) Advance(); } ~SnappyIOVecReader() = default; size_t Available() const { return total_size_remaining_; } const char* Peek(size_t* len) { *len = curr_size_remaining_; return curr_pos_; } void Skip(size_t n) { while (n >= curr_size_remaining_ && n > 0) { n -= curr_size_remaining_; Advance(); } curr_size_remaining_ -= n; total_size_remaining_ -= n; curr_pos_ += n; } private: // Advances to the next nonempty `iovec` and updates related variables. void Advance() { do { assert(total_size_remaining_ >= curr_size_remaining_); total_size_remaining_ -= curr_size_remaining_; if (total_size_remaining_ == 0) { curr_pos_ = nullptr; curr_size_remaining_ = 0; return; } ++curr_iov_; curr_pos_ = reinterpret_cast(curr_iov_->iov_base); curr_size_remaining_ = curr_iov_->iov_len; } while (curr_size_remaining_ == 0); } // The `iovec` currently being read. const struct iovec* curr_iov_; // The location in `curr_iov_` currently being read. const char* curr_pos_; // The amount of unread data in `curr_iov_`. size_t curr_size_remaining_; // The amount of unread data in the entire input array. size_t total_size_remaining_; }; // A type that writes to an iovec. // Note that this is not a "ByteSink", but a type that matches the // Writer template argument to SnappyDecompressor::DecompressAllTags(). class SnappyIOVecWriter { private: // output_iov_end_ is set to iov + count and used to determine when // the end of the iovs is reached. const struct iovec* output_iov_end_; #if !defined(NDEBUG) const struct iovec* output_iov_; #endif // !defined(NDEBUG) // Current iov that is being written into. const struct iovec* curr_iov_; // Pointer to current iov's write location. char* curr_iov_output_; // Remaining bytes to write into curr_iov_output. size_t curr_iov_remaining_; // Total bytes decompressed into output_iov_ so far. size_t total_written_; // Maximum number of bytes that will be decompressed into output_iov_. size_t output_limit_; static inline char* GetIOVecPointer(const struct iovec* iov, size_t offset) { return reinterpret_cast(iov->iov_base) + offset; } public: // Does not take ownership of iov. iov must be valid during the // entire lifetime of the SnappyIOVecWriter. inline SnappyIOVecWriter(const struct iovec* iov, size_t iov_count) : output_iov_end_(iov + iov_count), #if !defined(NDEBUG) output_iov_(iov), #endif // !defined(NDEBUG) curr_iov_(iov), curr_iov_output_(iov_count ? reinterpret_cast(iov->iov_base) : nullptr), curr_iov_remaining_(iov_count ? iov->iov_len : 0), total_written_(0), output_limit_(-1) { } inline void SetExpectedLength(size_t len) { output_limit_ = len; } inline bool CheckLength() const { return total_written_ == output_limit_; } inline bool Append(const char* ip, size_t len, char**) { if (total_written_ + len > output_limit_) { return false; } return AppendNoCheck(ip, len); } char* GetOutputPtr() { return nullptr; } char* GetBase(ptrdiff_t*) { return nullptr; } void SetOutputPtr(char* op) { // TODO: Switch to [[maybe_unused]] when we can assume C++17. (void)op; } inline bool AppendNoCheck(const char* ip, size_t len) { while (len > 0) { if (curr_iov_remaining_ == 0) { // This iovec is full. Go to the next one. if (curr_iov_ + 1 >= output_iov_end_) { return false; } ++curr_iov_; curr_iov_output_ = reinterpret_cast(curr_iov_->iov_base); curr_iov_remaining_ = curr_iov_->iov_len; } const size_t to_write = std::min(len, curr_iov_remaining_); std::memcpy(curr_iov_output_, ip, to_write); curr_iov_output_ += to_write; curr_iov_remaining_ -= to_write; total_written_ += to_write; ip += to_write; len -= to_write; } return true; } inline bool TryFastAppend(const char* ip, size_t available, size_t len, char**) { const size_t space_left = output_limit_ - total_written_; if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16 && curr_iov_remaining_ >= 16) { // Fast path, used for the majority (about 95%) of invocations. UnalignedCopy128(ip, curr_iov_output_); curr_iov_output_ += len; curr_iov_remaining_ -= len; total_written_ += len; return true; } return false; } inline bool AppendFromSelf(size_t offset, size_t len, char**) { // See SnappyArrayWriter::AppendFromSelf for an explanation of // the "offset - 1u" trick. if (offset - 1u >= total_written_) { return false; } const size_t space_left = output_limit_ - total_written_; if (len > space_left) { return false; } // Locate the iovec from which we need to start the copy. const iovec* from_iov = curr_iov_; size_t from_iov_offset = curr_iov_->iov_len - curr_iov_remaining_; while (offset > 0) { if (from_iov_offset >= offset) { from_iov_offset -= offset; break; } offset -= from_iov_offset; --from_iov; #if !defined(NDEBUG) assert(from_iov >= output_iov_); #endif // !defined(NDEBUG) from_iov_offset = from_iov->iov_len; } // Copy bytes starting from the iovec pointed to by from_iov_index to // the current iovec. while (len > 0) { assert(from_iov <= curr_iov_); if (from_iov != curr_iov_) { const size_t to_copy = std::min(from_iov->iov_len - from_iov_offset, len); AppendNoCheck(GetIOVecPointer(from_iov, from_iov_offset), to_copy); len -= to_copy; if (len > 0) { ++from_iov; from_iov_offset = 0; } } else { size_t to_copy = curr_iov_remaining_; if (to_copy == 0) { // This iovec is full. Go to the next one. if (curr_iov_ + 1 >= output_iov_end_) { return false; } ++curr_iov_; curr_iov_output_ = reinterpret_cast(curr_iov_->iov_base); curr_iov_remaining_ = curr_iov_->iov_len; continue; } if (to_copy > len) { to_copy = len; } assert(to_copy > 0); IncrementalCopy(GetIOVecPointer(from_iov, from_iov_offset), curr_iov_output_, curr_iov_output_ + to_copy, curr_iov_output_ + curr_iov_remaining_); curr_iov_output_ += to_copy; curr_iov_remaining_ -= to_copy; from_iov_offset += to_copy; total_written_ += to_copy; len -= to_copy; } } return true; } inline void Flush() {} }; bool RawUncompressToIOVec(const char* compressed, size_t compressed_length, const struct iovec* iov, size_t iov_cnt) { ByteArraySource reader(compressed, compressed_length); return RawUncompressToIOVec(&reader, iov, iov_cnt); } bool RawUncompressToIOVec(Source* compressed, const struct iovec* iov, size_t iov_cnt) { SnappyIOVecWriter output(iov, iov_cnt); return InternalUncompress(compressed, &output); } // ----------------------------------------------------------------------- // Flat array interfaces // ----------------------------------------------------------------------- // A type that writes to a flat array. // Note that this is not a "ByteSink", but a type that matches the // Writer template argument to SnappyDecompressor::DecompressAllTags(). class SnappyArrayWriter { private: char* base_; char* op_; char* op_limit_; // If op < op_limit_min_slop_ then it's safe to unconditionally write // kSlopBytes starting at op. char* op_limit_min_slop_; public: inline explicit SnappyArrayWriter(char* dst) : base_(dst), op_(dst), op_limit_(dst), op_limit_min_slop_(dst) {} // Safe default see invariant. inline void SetExpectedLength(size_t len) { op_limit_ = op_ + len; // Prevent pointer from being past the buffer. op_limit_min_slop_ = op_limit_ - std::min(kSlopBytes - 1, len); } inline bool CheckLength() const { return op_ == op_limit_; } char* GetOutputPtr() { return op_; } char* GetBase(ptrdiff_t* op_limit_min_slop) { *op_limit_min_slop = op_limit_min_slop_ - base_; return base_; } void SetOutputPtr(char* op) { op_ = op; } inline bool Append(const char* ip, size_t len, char** op_p) { char* op = *op_p; const size_t space_left = op_limit_ - op; if (space_left < len) return false; std::memcpy(op, ip, len); *op_p = op + len; return true; } inline bool TryFastAppend(const char* ip, size_t available, size_t len, char** op_p) { char* op = *op_p; const size_t space_left = op_limit_ - op; if (len <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { // Fast path, used for the majority (about 95%) of invocations. UnalignedCopy128(ip, op); *op_p = op + len; return true; } else { return false; } } SNAPPY_ATTRIBUTE_ALWAYS_INLINE inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) { assert(len > 0); char* const op = *op_p; assert(op >= base_); char* const op_end = op + len; // Check if we try to append from before the start of the buffer. if (SNAPPY_PREDICT_FALSE(static_cast(op - base_) < offset)) return false; if (SNAPPY_PREDICT_FALSE((kSlopBytes < 64 && len > kSlopBytes) || op >= op_limit_min_slop_ || offset < len)) { if (op_end > op_limit_ || offset == 0) return false; *op_p = IncrementalCopy(op - offset, op, op_end, op_limit_); return true; } std::memmove(op, op - offset, kSlopBytes); *op_p = op_end; return true; } inline size_t Produced() const { assert(op_ >= base_); return op_ - base_; } inline void Flush() {} }; bool RawUncompress(const char* compressed, size_t compressed_length, char* uncompressed) { ByteArraySource reader(compressed, compressed_length); return RawUncompress(&reader, uncompressed); } bool RawUncompress(Source* compressed, char* uncompressed) { SnappyArrayWriter output(uncompressed); return InternalUncompress(compressed, &output); } bool Uncompress(const char* compressed, size_t compressed_length, std::string* uncompressed) { size_t ulength; if (!GetUncompressedLength(compressed, compressed_length, &ulength)) { return false; } // On 32-bit builds: max_size() < kuint32max. Check for that instead // of crashing (e.g., consider externally specified compressed data). if (ulength > uncompressed->max_size()) { return false; } STLStringResizeUninitialized(uncompressed, ulength); return RawUncompress(compressed, compressed_length, string_as_array(uncompressed)); } // A Writer that drops everything on the floor and just does validation class SnappyDecompressionValidator { private: size_t expected_; size_t produced_; public: inline SnappyDecompressionValidator() : expected_(0), produced_(0) {} inline void SetExpectedLength(size_t len) { expected_ = len; } size_t GetOutputPtr() { return produced_; } size_t GetBase(ptrdiff_t* op_limit_min_slop) { *op_limit_min_slop = std::numeric_limits::max() - kSlopBytes + 1; return 1; } void SetOutputPtr(size_t op) { produced_ = op; } inline bool CheckLength() const { return expected_ == produced_; } inline bool Append(const char* ip, size_t len, size_t* produced) { // TODO: Switch to [[maybe_unused]] when we can assume C++17. (void)ip; *produced += len; return *produced <= expected_; } inline bool TryFastAppend(const char* ip, size_t available, size_t length, size_t* produced) { // TODO: Switch to [[maybe_unused]] when we can assume C++17. (void)ip; (void)available; (void)length; (void)produced; return false; } inline bool AppendFromSelf(size_t offset, size_t len, size_t* produced) { // See SnappyArrayWriter::AppendFromSelf for an explanation of // the "offset - 1u" trick. if (*produced <= offset - 1u) return false; *produced += len; return *produced <= expected_; } inline void Flush() {} }; bool IsValidCompressedBuffer(const char* compressed, size_t compressed_length) { ByteArraySource reader(compressed, compressed_length); SnappyDecompressionValidator writer; return InternalUncompress(&reader, &writer); } bool IsValidCompressed(Source* compressed) { SnappyDecompressionValidator writer; return InternalUncompress(compressed, &writer); } void RawCompress(const char* input, size_t input_length, char* compressed, size_t* compressed_length) { ByteArraySource reader(input, input_length); UncheckedByteArraySink writer(compressed); Compress(&reader, &writer); // Compute how many bytes were added *compressed_length = (writer.CurrentDestination() - compressed); } void RawCompressFromIOVec(const struct iovec* iov, size_t uncompressed_length, char* compressed, size_t* compressed_length) { SnappyIOVecReader reader(iov, uncompressed_length); UncheckedByteArraySink writer(compressed); Compress(&reader, &writer); // Compute how many bytes were added. *compressed_length = writer.CurrentDestination() - compressed; } size_t Compress(const char* input, size_t input_length, std::string* compressed) { // Pre-grow the buffer to the max length of the compressed output STLStringResizeUninitialized(compressed, MaxCompressedLength(input_length)); size_t compressed_length; RawCompress(input, input_length, string_as_array(compressed), &compressed_length); compressed->erase(compressed_length); return compressed_length; } size_t CompressFromIOVec(const struct iovec* iov, size_t iov_cnt, std::string* compressed) { // Compute the number of bytes to be compressed. size_t uncompressed_length = 0; for (size_t i = 0; i < iov_cnt; ++i) { uncompressed_length += iov[i].iov_len; } // Pre-grow the buffer to the max length of the compressed output. STLStringResizeUninitialized(compressed, MaxCompressedLength( uncompressed_length)); size_t compressed_length; RawCompressFromIOVec(iov, uncompressed_length, string_as_array(compressed), &compressed_length); compressed->erase(compressed_length); return compressed_length; } // ----------------------------------------------------------------------- // Sink interface // ----------------------------------------------------------------------- // A type that decompresses into a Sink. The template parameter // Allocator must export one method "char* Allocate(int size);", which // allocates a buffer of "size" and appends that to the destination. template class SnappyScatteredWriter { Allocator allocator_; // We need random access into the data generated so far. Therefore // we keep track of all of the generated data as an array of blocks. // All of the blocks except the last have length kBlockSize. std::vector blocks_; size_t expected_; // Total size of all fully generated blocks so far size_t full_size_; // Pointer into current output block char* op_base_; // Base of output block char* op_ptr_; // Pointer to next unfilled byte in block char* op_limit_; // Pointer just past block // If op < op_limit_min_slop_ then it's safe to unconditionally write // kSlopBytes starting at op. char* op_limit_min_slop_; inline size_t Size() const { return full_size_ + (op_ptr_ - op_base_); } bool SlowAppend(const char* ip, size_t len); bool SlowAppendFromSelf(size_t offset, size_t len); public: inline explicit SnappyScatteredWriter(const Allocator& allocator) : allocator_(allocator), full_size_(0), op_base_(NULL), op_ptr_(NULL), op_limit_(NULL), op_limit_min_slop_(NULL) {} char* GetOutputPtr() { return op_ptr_; } char* GetBase(ptrdiff_t* op_limit_min_slop) { *op_limit_min_slop = op_limit_min_slop_ - op_base_; return op_base_; } void SetOutputPtr(char* op) { op_ptr_ = op; } inline void SetExpectedLength(size_t len) { assert(blocks_.empty()); expected_ = len; } inline bool CheckLength() const { return Size() == expected_; } // Return the number of bytes actually uncompressed so far inline size_t Produced() const { return Size(); } inline bool Append(const char* ip, size_t len, char** op_p) { char* op = *op_p; size_t avail = op_limit_ - op; if (len <= avail) { // Fast path std::memcpy(op, ip, len); *op_p = op + len; return true; } else { op_ptr_ = op; bool res = SlowAppend(ip, len); *op_p = op_ptr_; return res; } } inline bool TryFastAppend(const char* ip, size_t available, size_t length, char** op_p) { char* op = *op_p; const int space_left = op_limit_ - op; if (length <= 16 && available >= 16 + kMaximumTagLength && space_left >= 16) { // Fast path, used for the majority (about 95%) of invocations. UnalignedCopy128(ip, op); *op_p = op + length; return true; } else { return false; } } inline bool AppendFromSelf(size_t offset, size_t len, char** op_p) { char* op = *op_p; assert(op >= op_base_); // Check if we try to append from before the start of the buffer. if (SNAPPY_PREDICT_FALSE((kSlopBytes < 64 && len > kSlopBytes) || static_cast(op - op_base_) < offset || op >= op_limit_min_slop_ || offset < len)) { if (offset == 0) return false; if (SNAPPY_PREDICT_FALSE(static_cast(op - op_base_) < offset || op + len > op_limit_)) { op_ptr_ = op; bool res = SlowAppendFromSelf(offset, len); *op_p = op_ptr_; return res; } *op_p = IncrementalCopy(op - offset, op, op + len, op_limit_); return true; } // Fast path char* const op_end = op + len; std::memmove(op, op - offset, kSlopBytes); *op_p = op_end; return true; } // Called at the end of the decompress. We ask the allocator // write all blocks to the sink. inline void Flush() { allocator_.Flush(Produced()); } }; template bool SnappyScatteredWriter::SlowAppend(const char* ip, size_t len) { size_t avail = op_limit_ - op_ptr_; while (len > avail) { // Completely fill this block std::memcpy(op_ptr_, ip, avail); op_ptr_ += avail; assert(op_limit_ - op_ptr_ == 0); full_size_ += (op_ptr_ - op_base_); len -= avail; ip += avail; // Bounds check if (full_size_ + len > expected_) return false; // Make new block size_t bsize = std::min(kBlockSize, expected_ - full_size_); op_base_ = allocator_.Allocate(bsize); op_ptr_ = op_base_; op_limit_ = op_base_ + bsize; op_limit_min_slop_ = op_limit_ - std::min(kSlopBytes - 1, bsize); blocks_.push_back(op_base_); avail = bsize; } std::memcpy(op_ptr_, ip, len); op_ptr_ += len; return true; } template bool SnappyScatteredWriter::SlowAppendFromSelf(size_t offset, size_t len) { // Overflow check // See SnappyArrayWriter::AppendFromSelf for an explanation of // the "offset - 1u" trick. const size_t cur = Size(); if (offset - 1u >= cur) return false; if (expected_ - cur < len) return false; // Currently we shouldn't ever hit this path because Compress() chops the // input into blocks and does not create cross-block copies. However, it is // nice if we do not rely on that, since we can get better compression if we // allow cross-block copies and thus might want to change the compressor in // the future. // TODO Replace this with a properly optimized path. This is not // triggered right now. But this is so super slow, that it would regress // performance unacceptably if triggered. size_t src = cur - offset; char* op = op_ptr_; while (len-- > 0) { char c = blocks_[src >> kBlockLog][src & (kBlockSize - 1)]; if (!Append(&c, 1, &op)) { op_ptr_ = op; return false; } src++; } op_ptr_ = op; return true; } class SnappySinkAllocator { public: explicit SnappySinkAllocator(Sink* dest) : dest_(dest) {} ~SnappySinkAllocator() {} char* Allocate(int size) { Datablock block(new char[size], size); blocks_.push_back(block); return block.data; } // We flush only at the end, because the writer wants // random access to the blocks and once we hand the // block over to the sink, we can't access it anymore. // Also we don't write more than has been actually written // to the blocks. void Flush(size_t size) { size_t size_written = 0; for (Datablock& block : blocks_) { size_t block_size = std::min(block.size, size - size_written); dest_->AppendAndTakeOwnership(block.data, block_size, &SnappySinkAllocator::Deleter, NULL); size_written += block_size; } blocks_.clear(); } private: struct Datablock { char* data; size_t size; Datablock(char* p, size_t s) : data(p), size(s) {} }; static void Deleter(void* arg, const char* bytes, size_t size) { // TODO: Switch to [[maybe_unused]] when we can assume C++17. (void)arg; (void)size; delete[] bytes; } Sink* dest_; std::vector blocks_; // Note: copying this object is allowed }; size_t UncompressAsMuchAsPossible(Source* compressed, Sink* uncompressed) { SnappySinkAllocator allocator(uncompressed); SnappyScatteredWriter writer(allocator); InternalUncompress(compressed, &writer); return writer.Produced(); } bool Uncompress(Source* compressed, Sink* uncompressed) { // Read the uncompressed length from the front of the compressed input SnappyDecompressor decompressor(compressed); uint32_t uncompressed_len = 0; if (!decompressor.ReadUncompressedLength(&uncompressed_len)) { return false; } char c; size_t allocated_size; char* buf = uncompressed->GetAppendBufferVariable(1, uncompressed_len, &c, 1, &allocated_size); const size_t compressed_len = compressed->Available(); // If we can get a flat buffer, then use it, otherwise do block by block // uncompression if (allocated_size >= uncompressed_len) { SnappyArrayWriter writer(buf); bool result = InternalUncompressAllTags(&decompressor, &writer, compressed_len, uncompressed_len); uncompressed->Append(buf, writer.Produced()); return result; } else { SnappySinkAllocator allocator(uncompressed); SnappyScatteredWriter writer(allocator); return InternalUncompressAllTags(&decompressor, &writer, compressed_len, uncompressed_len); } } } // namespace snappy