/** * \file * \brief Unity tests for the cryptoauthlib Basic API * * \copyright (c) 2015-2020 Microchip Technology Inc. and its subsidiaries. * * \page License * * Subject to your compliance with these terms, you may use Microchip software * and any derivatives exclusively with Microchip products. It is your * responsibility to comply with third party license terms applicable to your * use of third party software (including open source software) that may * accompany Microchip software. * * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER * EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED * WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A * PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, * SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE * OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF * MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE * FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL * LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED * THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR * THIS SOFTWARE. */ #include #include "atca_test.h" #include "basic/atca_basic.h" #include "host/atca_host.h" #include "test/atca_tests.h" #include "atca_execution.h" static const uint8_t nist_hash_msg1[] = "abc"; static const uint8_t nist_hash_msg2[] = "abcdbcdecdefdefgefghfghighijhijkijkljklmklmnlmnomnopnopq"; TEST(atca_cmd_unit_test, sha) { ATCA_STATUS status; ATCAPacket packet; uint8_t sha_success = 0x00; uint8_t sha_digest_out[ATCA_SHA_DIGEST_SIZE]; ATCACommand ca_cmd = _gDevice->mCommands; // initialize SHA calculation engine, initializes TempKey packet.param1 = SHA_MODE_SHA256_START; packet.param2 = 0x0000; status = atSHA(ca_cmd, &packet, 0); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atca_execute_command(&packet, _gDevice); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(SHA_RSP_SIZE_SHORT, packet.data[ATCA_COUNT_IDX]); // check the response, if error then TempKey not initialized TEST_ASSERT_EQUAL_INT8(sha_success, packet.data[ATCA_RSP_DATA_IDX]); // Compute the SHA 256 digest if TempKey is loaded correctly packet.param1 = SHA_MODE_SHA256_END; packet.param2 = 0x0000; status = atSHA(ca_cmd, &packet, 0); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atca_execute_command(&packet, _gDevice); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(SHA_RSP_SIZE_LONG, packet.data[ATCA_COUNT_IDX]); // Copy the response into digest_out memcpy(&sha_digest_out[0], &packet.data[ATCA_RSP_DATA_IDX], ATCA_SHA_DIGEST_SIZE); } TEST(atca_cmd_basic_test, sha) { ATCA_STATUS status = ATCA_GEN_FAIL; uint8_t message[ATCA_SHA256_BLOCK_SIZE]; uint8_t digest[ATCA_SHA_DIGEST_SIZE]; uint8_t rightAnswer[] = { 0x1A, 0x3A, 0xA5, 0x45, 0x04, 0x94, 0x53, 0xAF, 0xDF, 0x17, 0xE9, 0x89, 0xA4, 0x1F, 0xA0, 0x97, 0x94, 0xA5, 0x1B, 0xD5, 0xDB, 0x91, 0x36, 0x37, 0x67, 0x55, 0x0C, 0x0F, 0x0A, 0xF3, 0x27, 0xD4 }; memset(message, 0xBC, sizeof(message)); status = atcab_sha(sizeof(message), message, digest); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_MEMORY(rightAnswer, digest, ATCA_SHA_DIGEST_SIZE); memset(message, 0x5A, sizeof(message)); status = atcab_sha_start(); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_update(message); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_update(message); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_update(message); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_end(digest, 0, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); } /** \brief test HW SHA with a long message > SHA block size and not an exact SHA block-size increment * */ TEST(atca_cmd_basic_test, sha_long) { ATCA_STATUS status = ATCA_GEN_FAIL; uint8_t message[ATCA_SHA256_BLOCK_SIZE + 63]; // just short of two blocks uint8_t digest[ATCA_SHA_DIGEST_SIZE]; uint8_t rightAnswer[] = { 0xA9, 0x22, 0x18, 0x56, 0x43, 0x70, 0xA0, 0x57, 0x27, 0x3F, 0xF4, 0x85, 0xA8, 0x07, 0x3F, 0x32, 0xFC, 0x1F, 0x14, 0x12, 0xEC, 0xA2, 0xE3, 0x0B, 0x81, 0xA8, 0x87, 0x76, 0x0B, 0x61, 0x31, 0x72 }; memset(message, 0xBC, sizeof(message)); memset(digest, 0x00, ATCA_SHA_DIGEST_SIZE); status = atcab_sha(sizeof(message), message, digest); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_MEMORY(rightAnswer, digest, ATCA_SHA_DIGEST_SIZE); } /** \brief test HW SHA with a short message < SHA block size and not an exact SHA block-size increment * */ TEST(atca_cmd_basic_test, sha_short) { ATCA_STATUS status = ATCA_GEN_FAIL; uint8_t message[10]; // a short message to sha uint8_t digest[ATCA_SHA_DIGEST_SIZE]; uint8_t rightAnswer[] = { 0x30, 0x3f, 0xf8, 0xba, 0x40, 0xa2, 0x06, 0xe7, 0xa9, 0x50, 0x02, 0x1e, 0xf5, 0x10, 0x66, 0xd4, 0xa0, 0x01, 0x54, 0x75, 0x32, 0x3e, 0xe9, 0xf2, 0x4a, 0xc8, 0xc9, 0x63, 0x29, 0x8f, 0x34, 0xce }; memset(message, 0xBC, sizeof(message)); memset(digest, 0x00, ATCA_SHA_DIGEST_SIZE); status = atcab_sha(sizeof(message), message, digest); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_MEMORY(rightAnswer, digest, ATCA_SHA_DIGEST_SIZE); } TEST(atca_cmd_basic_test, sha2_256_nist1) { const uint8_t digest_ref[] = { 0xBA, 0x78, 0x16, 0xBF, 0x8F, 0x01, 0xCF, 0xEA, 0x41, 0x41, 0x40, 0xDE, 0x5D, 0xAE, 0x22, 0x23, 0xB0, 0x03, 0x61, 0xA3, 0x96, 0x17, 0x7A, 0x9C, 0xB4, 0x10, 0xFF, 0x61, 0xF2, 0x00, 0x15, 0xAD }; uint8_t digest[ATCA_SHA2_256_DIGEST_SIZE]; ATCA_STATUS status; TEST_ASSERT_EQUAL(ATCA_SHA2_256_DIGEST_SIZE, sizeof(digest_ref)); status = atcab_sha(sizeof(nist_hash_msg1) - 1, nist_hash_msg1, digest); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_MEMORY(digest_ref, digest, sizeof(digest_ref)); } TEST(atca_cmd_basic_test, sha2_256_nist2) { const uint8_t digest_ref[] = { 0x24, 0x8D, 0x6A, 0x61, 0xD2, 0x06, 0x38, 0xB8, 0xE5, 0xC0, 0x26, 0x93, 0x0C, 0x3E, 0x60, 0x39, 0xA3, 0x3C, 0xE4, 0x59, 0x64, 0xFF, 0x21, 0x67, 0xF6, 0xEC, 0xED, 0xD4, 0x19, 0xDB, 0x06, 0xC1 }; uint8_t digest[ATCA_SHA2_256_DIGEST_SIZE]; ATCA_STATUS status; TEST_ASSERT_EQUAL(ATCA_SHA2_256_DIGEST_SIZE, sizeof(digest_ref)); status = atcab_sha(sizeof(nist_hash_msg2) - 1, nist_hash_msg2, digest); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_MEMORY(digest_ref, digest, sizeof(digest_ref)); } #ifdef _WIN32 static void hex_to_uint8(const char hex_str[2], uint8_t* num) { *num = 0; if (hex_str[0] >= '0' && hex_str[0] <= '9') { *num += (hex_str[0] - '0') << 4; } else if (hex_str[0] >= 'A' && hex_str[0] <= 'F') { *num += (hex_str[0] - 'A' + 10) << 4; } else if (hex_str[0] >= 'a' && hex_str[0] <= 'f') { *num += (hex_str[0] - 'a' + 10) << 4; } else { TEST_FAIL_MESSAGE("Not a hex digit."); } if (hex_str[1] >= '0' && hex_str[1] <= '9') { *num += (hex_str[1] - '0'); } else if (hex_str[1] >= 'A' && hex_str[1] <= 'F') { *num += (hex_str[1] - 'A' + 10); } else if (hex_str[1] >= 'a' && hex_str[1] <= 'f') { *num += (hex_str[1] - 'a' + 10); } else { TEST_FAIL_MESSAGE("Not a hex digit."); } } void hex_to_data(const char* hex_str, uint8_t* data, size_t data_size) { size_t i = 0; TEST_ASSERT_EQUAL_MESSAGE(data_size * 2, strlen(hex_str) - 1, "Hex string unexpected length."); for (i = 0; i < data_size; i++) { hex_to_uint8(&hex_str[i * 2], &data[i]); } } static int read_rsp_hex_value(FILE* file, const char* name, uint8_t* data, size_t data_size) { char line[16384]; char* str = NULL; size_t name_size = strlen(name); do { str = fgets(line, sizeof(line), file); if (str == NULL) { continue; } if (memcmp(line, name, name_size) == 0) { str = &line[name_size]; } else { str = NULL; } } while (str == NULL && !feof(file)); if (str == NULL) { return ATCA_GEN_FAIL; } hex_to_data(str, data, data_size); return ATCA_SUCCESS; } static int read_rsp_int_value(FILE* file, const char* name, int* value) { char line[2048]; char* str = NULL; size_t name_size = strlen(name); do { str = fgets(line, sizeof(line), file); if (str == NULL) { continue; } if (memcmp(line, name, name_size) == 0) { str = &line[name_size]; } else { str = NULL; } } while (str == NULL && !feof(file)); if (str == NULL) { return ATCA_GEN_FAIL; } *value = atoi(str); return ATCA_SUCCESS; } #endif static void test_basic_hw_sha2_256_nist_simple(const char* filename) { #ifndef _WIN32 TEST_IGNORE_MESSAGE("Test only available under windows."); #else FILE* rsp_file = NULL; uint8_t md_ref[ATCA_SHA2_256_DIGEST_SIZE]; uint8_t md[sizeof(md_ref)]; int len_bits = 0; uint8_t* msg = NULL; size_t count = 0; ATCA_STATUS status; rsp_file = fopen(filename, "r"); TEST_ASSERT_NOT_NULL_MESSAGE(rsp_file, "Failed to open file"); do { status = read_rsp_int_value(rsp_file, "Len = ", &len_bits); if (status != ATCA_SUCCESS) { continue; } msg = unity_malloc(len_bits == 0 ? 1 : len_bits / 8); TEST_ASSERT_NOT_NULL_MESSAGE(msg, "malloc failed"); status = read_rsp_hex_value(rsp_file, "Msg = ", msg, len_bits == 0 ? 1 : len_bits / 8); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = read_rsp_hex_value(rsp_file, "MD = ", md_ref, sizeof(md_ref)); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha(len_bits / 8, msg, md); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_MEMORY(md_ref, md, sizeof(md_ref)); unity_free(msg); msg = NULL; count++; } while (status == ATCA_SUCCESS); TEST_ASSERT_MESSAGE(count > 0, "No long tests found in file."); #endif } TEST(atca_cmd_basic_test, sha2_256_nist_short) { test_basic_hw_sha2_256_nist_simple("cryptoauthlib/test/sha-byte-test-vectors/SHA256ShortMsg.rsp"); } TEST(atca_cmd_basic_test, sha2_256_nist_long) { test_basic_hw_sha2_256_nist_simple("cryptoauthlib/test/sha-byte-test-vectors/SHA256LongMsg.rsp"); } TEST(atca_cmd_basic_test, sha2_256_nist_monte) { #ifndef _WIN32 TEST_IGNORE_MESSAGE("Test only available under windows."); #else FILE* rsp_file = NULL; uint8_t seed[ATCA_SHA2_256_DIGEST_SIZE]; uint8_t md[4][sizeof(seed)]; int i, j; uint8_t m[sizeof(seed) * 3]; uint8_t md_ref[sizeof(seed)]; ATCA_STATUS status; rsp_file = fopen("cryptoauthlib/test/sha-byte-test-vectors/SHA256Monte.rsp", "r"); TEST_ASSERT_NOT_EQUAL_MESSAGE(NULL, rsp_file, "Failed to open sha-byte-test-vectors/SHA256Monte.rsp"); // Find the seed value status = read_rsp_hex_value(rsp_file, "Seed = ", seed, sizeof(seed)); TEST_ASSERT_EQUAL_MESSAGE(ATCA_SUCCESS, status, "Failed to find Seed value in file."); for (j = 0; j < 100; j++) { memcpy(&md[0], seed, sizeof(seed)); memcpy(&md[1], seed, sizeof(seed)); memcpy(&md[2], seed, sizeof(seed)); for (i = 0; i < 1000; i++) { memcpy(m, md, sizeof(m)); status = atcab_sha(sizeof(m), m, &md[3][0]); TEST_ASSERT_EQUAL_MESSAGE(ATCA_SUCCESS, status, "atcac_sw_sha1 failed"); memmove(&md[0], &md[1], sizeof(seed) * 3); } status = read_rsp_hex_value(rsp_file, "MD = ", md_ref, sizeof(md_ref)); TEST_ASSERT_EQUAL_MESSAGE(ATCA_SUCCESS, status, "Failed to find MD value in file."); TEST_ASSERT_EQUAL_MEMORY(md_ref, &md[2], sizeof(md_ref)); memcpy(seed, &md[2], sizeof(seed)); } #endif } TEST(atca_cmd_basic_test, sha_context) { ATCA_STATUS status; uint16_t data_out_size = 0; uint16_t context_size; uint8_t context[SHA_CONTEXT_MAX_SIZE]; uint8_t digest[ATCA_SHA_DIGEST_SIZE]; uint8_t digest1[ATCA_SHA_DIGEST_SIZE]; uint8_t digest2[ATCA_SHA_DIGEST_SIZE]; uint8_t message[ATCA_SHA256_BLOCK_SIZE]; uint8_t data_input[] = { 0x01, 0x02, 0x03, 0x04, 0x05 }; /* uint8_t expected_read_context_Data[] = { 0x05, 0x00, 0x00, 0x00, 0x67, 0xE6, 0x09, 0x6A, 0X85, 0xAE, 0x67, 0xBB, 0x72, 0xF3, 0x6E, 0x3C, 0x3A, 0xF5, 0x4F, 0xA5, 0x7F, 0x52, 0x0E, 0x51, 0X8C, 0x68, 0x05, 0x9B, 0xAB, 0xD9, 0x83, 0x1F, 0x19, 0xCD, 0xE0, 0x5B, 0x01, 0x02, 0x03, 0x04, 0X05 }; uint8_t expected_digest[] = { 0xE6, 0xD3, 0x21, 0x95, 0x02, 0x33, 0x65, 0xAD, 0X50, 0x3A, 0xB7, 0xE6, 0x70, 0xBE, 0x31, 0x4B, 0x87, 0x22, 0xF6, 0x72, 0xA2, 0x61, 0x30, 0x03, 0X06, 0x8C, 0x28, 0xBA, 0x86, 0x47, 0x1E, 0x04 }; */ //Calculating the digest for message data_input and reading the context status = atcab_sha_base(SHA_MODE_SHA256_START, 0, NULL, NULL, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, sizeof(data_input), data_input, NULL, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); context_size = sizeof(context); status = atcab_sha_read_context(context, &context_size); //Reading the context to use it later TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, sizeof(data_input), data_input, NULL, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); data_out_size = sizeof(digest1); status = atcab_sha_base(SHA_MODE_SHA256_END | SHA_MODE_TARGET_OUT_ONLY, 0, NULL, digest1, &data_out_size); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); //Calculating the digest for another message memset(message, 0x5A, sizeof(message)); status = atcab_sha_base(SHA_MODE_SHA256_START, 0, NULL, NULL, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, 64, message, NULL, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, 64, message, NULL, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, 64, message, NULL, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); data_out_size = sizeof(digest); status = atcab_sha_base(SHA_MODE_SHA256_END | SHA_MODE_TARGET_OUT_ONLY, 0, NULL, digest, &data_out_size); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); //Calculating the digest using the write context status = atcab_sha_write_context(context, context_size); //Write context the data, read from read context and comparing both the digest. TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sha_base(SHA_MODE_SHA256_UPDATE, sizeof(data_input), data_input, NULL, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); data_out_size = sizeof(digest2); status = atcab_sha_base(SHA_MODE_SHA256_END | SHA_MODE_TARGET_OUT_ONLY, 0, NULL, digest2, &data_out_size); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_MEMORY(digest1, digest2, ATCA_SHA_DIGEST_SIZE); } TEST(atca_cmd_basic_test, sha_hmac) { ATCA_STATUS status = ATCA_GEN_FAIL; uint8_t hmac[ATCA_SHA_DIGEST_SIZE]; uint8_t data_input[] = { 0x6f, 0xb3, 0xec, 0x66, 0xf9, 0xeb, 0x07, 0x0a, 0x71, 0x9b, 0xeb, 0xbe, 0x70, 0x8b, 0x93, 0xa6, 0x5b, 0x20, 0x1b, 0x78, 0xe2, 0xd2, 0x6d, 0x8c, 0xcc, 0xdf, 0x1c, 0x33, 0xf7, 0x41, 0x90, 0x4a, 0x9a, 0xde, 0x64, 0x0f, 0xce, 0x00, 0x0c, 0x33, 0x4d, 0x04, 0xbb, 0x30, 0x79, 0x56, 0x83, 0xdc, 0xa0, 0x9d, 0xbf, 0x3e, 0x7e, 0x32, 0xae, 0xa1, 0x03, 0xd7, 0x60, 0xe8, 0x57, 0xa6, 0xd6, 0x21, 0x1c }; const uint8_t hmac_ref[ATCA_SHA_DIGEST_SIZE] = { 0x29, 0x7f, 0x22, 0xb8, 0xd2, 0x51, 0xb0, 0x63, 0xa7, 0xc0, 0x8d, 0xcf, 0x4d, 0xba, 0x0d, 0x1f, 0xb3, 0x5d, 0x32, 0xa3, 0xba, 0xab, 0x15, 0xac, 0xea, 0xf4, 0x39, 0x1c, 0x4a, 0xdb, 0x32, 0x77 }; uint16_t key_id = 4; test_assert_data_is_locked(); //Calculating HMAC using the key in slot4 status = atcab_sha_hmac(data_input, sizeof(data_input), key_id, hmac, SHA_MODE_TARGET_TEMPKEY); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_MEMORY(hmac_ref, hmac, ATCA_SHA_DIGEST_SIZE); } TEST(atca_cmd_basic_test, sha_hmac_tempkey) { ATCA_STATUS status = ATCA_GEN_FAIL; uint8_t hmac[ATCA_SHA_DIGEST_SIZE]; uint8_t data_input[] = { 0x6f, 0xb3, 0xec, 0x66, 0xf9, 0xeb, 0x07, 0x0a, 0x71, 0x9b, 0xeb, 0xbe, 0x70, 0x8b, 0x93, 0xa6, 0x5b, 0x20, 0x1b, 0x78, 0xe2, 0xd2, 0x6d, 0x8c, 0xcc, 0xdf, 0x1c, 0x33, 0xf7, 0x41, 0x90, 0x4a, 0x9a, 0xde, 0x64, 0x0f, 0xce, 0x00, 0x0c, 0x33, 0x4d, 0x04, 0xbb, 0x30, 0x79, 0x56, 0x83, 0xdc, 0xa0, 0x9d, 0xbf, 0x3e, 0x7e, 0x32, 0xae, 0xa1, 0x03, 0xd7, 0x60, 0xe8, 0x57, 0xa6, 0xd6, 0x21, 0x1c }; const uint8_t hmac_ref[ATCA_SHA_DIGEST_SIZE] = { 0x29, 0x7f, 0x22, 0xb8, 0xd2, 0x51, 0xb0, 0x63, 0xa7, 0xc0, 0x8d, 0xcf, 0x4d, 0xba, 0x0d, 0x1f, 0xb3, 0x5d, 0x32, 0xa3, 0xba, 0xab, 0x15, 0xac, 0xea, 0xf4, 0x39, 0x1c, 0x4a, 0xdb, 0x32, 0x77 }; uint16_t key_id = ATCA_TEMPKEY_KEYID; test_assert_data_is_locked(); // Load key into TempKey status = atcab_nonce_load(NONCE_MODE_TARGET_TEMPKEY, g_slot4_key, 32); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); //Calculating HMAC using the key in TempKey status = atcab_sha_hmac(data_input, sizeof(data_input), key_id, hmac, NONCE_MODE_TARGET_TEMPKEY); TEST_ASSERT_EQUAL_MEMORY(hmac_ref, hmac, ATCA_SHA_DIGEST_SIZE); } // *INDENT-OFF* - Preserve formatting t_test_case_info sha_basic_test_info[] = { { REGISTER_TEST_CASE(atca_cmd_basic_test, sha), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_long), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_short), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist1), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist2), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist_short), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, //{ REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist_long), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, //{ REGISTER_TEST_CASE(atca_cmd_basic_test, sha2_256_nist_monte), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_context), DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_hmac), DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, sha_hmac_tempkey), DEVICE_MASK(ATECC608A) }, { (fp_test_case)NULL, (uint8_t)0 }, /* Array Termination element*/ }; t_test_case_info sha_unit_test_info[] = { { REGISTER_TEST_CASE(atca_cmd_unit_test, sha), DEVICE_MASK(ATSHA204A) | DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { (fp_test_case)NULL, (uint8_t)0 },/* Array Termination element*/ }; // *INDENT-ON*