/** * \file * \brief Unity tests for the cryptoauthlib Verify Command * * \copyright (c) 2015-2020 Microchip Technology Inc. and its subsidiaries. * * \page License * * Subject to your compliance with these terms, you may use Microchip software * and any derivatives exclusively with Microchip products. It is your * responsibility to comply with third party license terms applicable to your * use of third party software (including open source software) that may * accompany Microchip software. * * THIS SOFTWARE IS SUPPLIED BY MICROCHIP "AS IS". NO WARRANTIES, WHETHER * EXPRESS, IMPLIED OR STATUTORY, APPLY TO THIS SOFTWARE, INCLUDING ANY IMPLIED * WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A * PARTICULAR PURPOSE. IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, * SPECIAL, PUNITIVE, INCIDENTAL OR CONSEQUENTIAL LOSS, DAMAGE, COST OR EXPENSE * OF ANY KIND WHATSOEVER RELATED TO THE SOFTWARE, HOWEVER CAUSED, EVEN IF * MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE * FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL * LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THIS SOFTWARE WILL NOT EXCEED * THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR * THIS SOFTWARE. */ #include #include "atca_test.h" #include "basic/atca_basic.h" #include "host/atca_host.h" #include "test/atca_tests.h" #include "atca_execution.h" TEST(atca_cmd_unit_test, verify) { ATCA_STATUS status; ATCAPacket packet; uint16_t keyID = 0x00; uint8_t public_key[ATCA_PUB_KEY_SIZE]; uint8_t signature[VERIFY_256_SIGNATURE_SIZE]; ATCACommand ca_cmd = _gDevice->mCommands; unit_test_assert_config_is_locked(); // build a genkey command packet.param1 = 0x04; // a random private key is generated and stored in slot keyID packet.param2 = keyID; status = atGenKey(ca_cmd, &packet); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atca_execute_command(&packet, _gDevice); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(GENKEY_RSP_SIZE_LONG, packet.data[ATCA_COUNT_IDX]); // copy the data response into the public key memcpy(&public_key[0], &packet.data[ATCA_RSP_DATA_IDX], ATCA_PUB_KEY_SIZE); // build a random command packet.param1 = RANDOM_SEED_UPDATE; packet.param2 = 0x0000; status = atRandom(ca_cmd, &packet); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atca_execute_command(&packet, _gDevice); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // build a nonce command (pass through mode) packet.param1 = NONCE_MODE_PASSTHROUGH; packet.param2 = 0x0000; memset(packet.data, 0x55, 32); // a 32-byte nonce status = atNonce(ca_cmd, &packet); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_INT(NONCE_COUNT_LONG, packet.txsize); status = atca_execute_command(&packet, _gDevice); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_INT(NONCE_RSP_SIZE_SHORT, packet.data[ATCA_COUNT_IDX]); // build a sign command packet.param1 = SIGN_MODE_EXTERNAL; //verify the signature packet.param2 = keyID; status = atSign(ca_cmd, &packet); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atca_execute_command(&packet, _gDevice); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // copy the data response into the signature memcpy(&signature[0], &packet.data[ATCA_RSP_DATA_IDX], ATCA_SIG_SIZE); // build an random command packet.param1 = RANDOM_SEED_UPDATE; packet.param2 = 0x0000; status = atRandom(ca_cmd, &packet); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atca_execute_command(&packet, _gDevice); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // build a nonce command (pass through mode) packet.param1 = NONCE_MODE_PASSTHROUGH; packet.param2 = 0x0000; memset(packet.data, 0x55, 32); // a 32-byte nonce status = atNonce(ca_cmd, &packet); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_INT(NONCE_COUNT_LONG, packet.txsize); status = atca_execute_command(&packet, _gDevice); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL_INT(NONCE_RSP_SIZE_SHORT, packet.data[ATCA_COUNT_IDX]); // build a verify command packet.param1 = VERIFY_MODE_EXTERNAL; //verify the signature packet.param2 = VERIFY_KEY_P256; memcpy(&packet.data[0], signature, sizeof(signature)); memcpy(&packet.data[64], public_key, sizeof(public_key)); status = atVerify(ca_cmd, &packet); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atca_execute_command(&packet, _gDevice); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(0x00, packet.data[ATCA_RSP_DATA_IDX]); } TEST(atca_cmd_basic_test, verify_extern) { ATCA_STATUS status; bool is_verified = false; uint8_t message[ATCA_KEY_SIZE]; uint8_t signature[ATCA_SIG_SIZE]; uint8_t pubkey[ATCA_PUB_KEY_SIZE]; test_assert_data_is_locked(); status = atcab_get_pubkey(0, pubkey); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_random(message); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sign(0, message, signature); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_verify_extern(message, signature, pubkey, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT(is_verified); // Verify with bad message, should fail message[0]++; status = atcab_verify_extern(message, signature, pubkey, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT(!is_verified); } TEST(atca_cmd_basic_test, verify_extern_mac) { ATCA_STATUS status; uint8_t message[ATCA_KEY_SIZE]; uint8_t system_nonce[ATCA_KEY_SIZE]; uint8_t signature[ATCA_SIG_SIZE]; uint8_t pubkey[ATCA_PUB_KEY_SIZE]; bool is_verified = false; test_assert_data_is_locked(); // Get current public key status = atcab_get_pubkey(0, pubkey); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Generate random message to be signed status = atcab_random(message); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Generate system nonce (typically this should not come from the CryptoAuth device). status = atcab_random(system_nonce); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Sign the message to get a signature status = atcab_sign(0, message, signature); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_verify_extern_mac(message, signature, pubkey, system_nonce, g_slot4_key, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT(is_verified); // Verify with bad message, should fail message[0]++; status = atcab_verify_extern_mac(message, signature, pubkey, system_nonce, g_slot4_key, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT(!is_verified); } TEST(atca_cmd_basic_test, verify_stored) { ATCA_STATUS status; bool is_verified = false; const uint16_t private_key_id = 2; const uint16_t public_key_id = 11; uint8_t message[ATCA_KEY_SIZE]; uint8_t signature[ATCA_SIG_SIZE]; uint8_t public_key[ATCA_PUB_KEY_SIZE]; test_assert_data_is_locked(); // Generate new key pair status = atcab_genkey(private_key_id, public_key); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Write public key to slot status = atcab_write_pubkey(public_key_id, public_key); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Generate random message to be signed status = atcab_random(message); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Sign the message status = atcab_sign(private_key_id, message, signature); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Verify the signature is_verified = false; status = atcab_verify_stored(message, signature, public_key_id, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT(is_verified); // Verify with bad message, should fail message[0]++; status = atcab_verify_stored(message, signature, public_key_id, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT(!is_verified); } TEST(atca_cmd_basic_test, verify_stored_mac) { ATCA_STATUS status; const uint16_t private_key_id = 2; const uint16_t public_key_id = 11; uint8_t message[ATCA_KEY_SIZE]; uint8_t system_nonce[ATCA_KEY_SIZE]; uint8_t signature[ATCA_SIG_SIZE]; uint8_t public_key[ATCA_PUB_KEY_SIZE]; bool is_verified = false; test_assert_data_is_locked(); // Generate new key pair status = atcab_genkey(private_key_id, public_key); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Write public key to slot status = atcab_write_pubkey(public_key_id, public_key); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Generate random message to be signed status = atcab_random(message); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Sign the message status = atcab_sign(private_key_id, message, signature); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Generate system nonce (typically this should not come from the CryptoAuth device). status = atcab_random(system_nonce); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_verify_stored_mac(message, signature, public_key_id, system_nonce, g_slot4_key, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(true, is_verified); // Verify with bad message, should fail message[0]++; status = atcab_verify_stored_mac(message, signature, public_key_id, system_nonce, g_slot4_key, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT(!is_verified); } static void test_basic_verify_validate(void) { const uint16_t public_key_id = 14; const uint16_t private_key_id = 0; const uint16_t validation_private_key_id = 2; ATCA_STATUS status = ATCA_SUCCESS; uint8_t config[128]; uint8_t sn[9]; uint8_t validation_public_key[ATCA_PUB_KEY_SIZE]; uint16_t validation_public_key_id = 0; uint8_t public_key[ATCA_PUB_KEY_SIZE]; uint8_t test_msg[32]; uint8_t test_signature[ATCA_SIG_SIZE]; bool is_verified = false; uint8_t valid_buf[4]; uint8_t nonce[32]; uint8_t rand_out[ATCA_KEY_SIZE]; atca_temp_key_t temp_key; atca_nonce_in_out_t nonce_params; uint8_t gen_key_other_data[3]; atca_gen_key_in_out_t gen_key_params; uint8_t verify_other_data[19]; uint8_t validation_msg[55]; uint8_t validation_digest[32]; atca_sign_internal_in_out_t sign_params; uint8_t validation_signature[ATCA_SIG_SIZE]; test_assert_data_is_locked(); // Read config zone status = atcab_read_config_zone(config); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); memcpy(&sn[0], &config[0], 4); memcpy(&sn[4], &config[8], 5); // SETUP: Initialize device data to support a validated public key test // Generate key pair for validation // Typically, the validation private key wouldn't be on the same device as its public key status = atcab_genkey(validation_private_key_id, validation_public_key); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Write validation public key // Typically, this would be locked into the device during initial programming. validation_public_key_id = config[20 + public_key_id * 2] & 0x0F; // Validation public key ID is the validated public key's ReadKey status = atcab_write_pubkey(validation_public_key_id, validation_public_key); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // RUN: Run through the validated public key update process // This process has two parties. First is the device with a validated public key slot. // Whenever that slot gets updated, a Validation Authority (which has the validation private // key) is required to validate the new public key before it can be used. // Validation Authority: Generate new key pair. status = atcab_genkey(private_key_id, public_key); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Create and sign some data for testing the new key pair status = atcab_random(test_msg); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sign(private_key_id, test_msg, test_signature); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_verify_extern(test_msg, test_signature, public_key, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(true, is_verified); // Validated Device: Write the new public key to the validate public key slot status = atcab_write_pubkey(public_key_id, public_key); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Make sure the previous write invalidated the public key status = atcab_read_zone(ATCA_ZONE_DATA, public_key_id, 0, 0, valid_buf, 4); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(0xA, valid_buf[0] >> 4); // Validation status is the 4 upper-most bits in the slot // Additionally, check to make sure a verify(stored) command with it fails. status = atcab_verify_stored(test_msg, test_signature, public_key_id, &is_verified); TEST_ASSERT_EQUAL(ATCA_EXECUTION_ERROR, status); // Validated Device: Validation process needs to start with a nonce (random is most secure) // Not using random due to limitations with simulating the validated device and validation // authority on the same device. memset(nonce, 0, sizeof(nonce)); memset(&temp_key, 0, sizeof(temp_key)); memset(&nonce_params, 0, sizeof(nonce_params)); nonce_params.mode = NONCE_MODE_PASSTHROUGH; nonce_params.zero = 0; nonce_params.num_in = nonce; nonce_params.rand_out = rand_out; nonce_params.temp_key = &temp_key; status = atcab_nonce(nonce_params.num_in); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validation Authority: Calculate same nonce status = atcah_nonce(&nonce_params); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validated Authority: GenKey format is then used to combine the nonce with the new public key to be validated memset(gen_key_other_data, 0, sizeof(gen_key_other_data)); gen_key_params.mode = GENKEY_MODE_PUBKEY_DIGEST; gen_key_params.key_id = public_key_id; gen_key_params.public_key = public_key; gen_key_params.public_key_size = sizeof(public_key); gen_key_params.other_data = gen_key_other_data; gen_key_params.sn = sn; gen_key_params.temp_key = &temp_key; status = atcah_gen_key_msg(&gen_key_params); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validation Authority: Build validation message which uses the Sign(Internal) format memset(&sign_params, 0, sizeof(sign_params)); sign_params.sn = sn; sign_params.verify_other_data = verify_other_data; sign_params.message = validation_msg; sign_params.digest = validation_digest; sign_params.temp_key = &temp_key; status = atcah_sign_internal_msg(gCfg->devtype, &sign_params); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validation Authority: Sign the validation message status = atcab_sign(validation_private_key_id, validation_digest, validation_signature); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // The previous sign cleared TempKey, so we have to reset it. This is because the unit test is trying // to perform the actions of the Validation Authority and the Validated Device on the same device. // This wouldn't be needed normally. status = atcab_nonce(nonce_params.num_in); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validated Device: Combine the public key with the nonce status = atcab_genkey_base(gen_key_params.mode, gen_key_params.key_id, gen_key_params.other_data, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validated Device: Use Verify(Validate) command to validate the new public key status = atcab_verify_validate(public_key_id, validation_signature, verify_other_data, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(true, is_verified); // Make sure public key is validated now status = atcab_read_zone(ATCA_ZONE_DATA, public_key_id, 0, 0, valid_buf, 4); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(0x5, valid_buf[0] >> 4); // Validation status is the 4 upper-most bits in the slot // Additionally, check to make sure a verify(stored) command works now. status = atcab_verify_stored(test_msg, test_signature, public_key_id, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(true, is_verified); } TEST(atca_cmd_basic_test, verify_validate) { test_basic_verify_validate(); } TEST(atca_cmd_basic_test, verify_invalidate) { const uint16_t public_key_id = 14; const uint16_t private_key_id = 0; const uint16_t validation_private_key_id = 2; ATCA_STATUS status = ATCA_SUCCESS; uint8_t config[128]; uint8_t sn[9]; //uint8_t validation_public_key[ATCA_PUB_KEY_SIZE]; //uint16_t validation_public_key_id = 0; uint8_t public_key[ATCA_PUB_KEY_SIZE]; uint8_t test_msg[32]; uint8_t test_signature[ATCA_SIG_SIZE]; bool is_verified = false; uint8_t valid_buf[4]; uint8_t nonce[32]; uint8_t rand_out[ATCA_KEY_SIZE]; atca_temp_key_t temp_key; atca_nonce_in_out_t nonce_params; uint8_t gen_key_other_data[3]; atca_gen_key_in_out_t gen_key_params; uint8_t verify_other_data[19]; uint8_t validation_msg[55]; uint8_t validation_digest[32]; atca_sign_internal_in_out_t sign_params; uint8_t validation_signature[ATCA_SIG_SIZE]; // We need to start with the slot validated. This test will do that. test_basic_verify_validate(); test_assert_data_is_locked(); // Read config zone status = atcab_read_config_zone(config); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); memcpy(&sn[0], &config[0], 4); memcpy(&sn[4], &config[8], 5); // RUN: Run through the public invalidation process // This process has two parties. First is the device with a validated public key slot. // Whenever that slot gets updated, a Validation Authority (which has the validation private // key) is required to validate the new public key before it can be used. // Validation Authority: Get the public key to be invalidated status = atcab_get_pubkey(private_key_id, public_key); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Create and sign some data for testing status = atcab_random(test_msg); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_sign(private_key_id, test_msg, test_signature); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); status = atcab_verify_extern(test_msg, test_signature, public_key, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(true, is_verified); // Make sure public key is currently validated status = atcab_read_zone(ATCA_ZONE_DATA, public_key_id, 0, 0, valid_buf, 4); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(0x5, valid_buf[0] >> 4); // Validation status is the 4 upper-most bits in the slot // Additionally, check to make sure a verify(stored) command works status = atcab_verify_stored(test_msg, test_signature, public_key_id, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(true, is_verified); // Validated Device: Invalidation process needs to start with a nonce (random is most secure) // Not using random due to limitations with simulating the validated device and validation // authority on the same device. memset(nonce, 0, sizeof(nonce)); memset(&temp_key, 0, sizeof(temp_key)); memset(&nonce_params, 0, sizeof(nonce_params)); nonce_params.mode = NONCE_MODE_PASSTHROUGH; nonce_params.zero = 0; nonce_params.num_in = nonce; nonce_params.rand_out = rand_out; nonce_params.temp_key = &temp_key; status = atcab_nonce(nonce_params.num_in); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validation Authority: Calculate same nonce status = atcah_nonce(&nonce_params); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validated Authority: GenKey format is then used to combine the nonce with the new public key to be validated memset(gen_key_other_data, 0, sizeof(gen_key_other_data)); gen_key_params.mode = GENKEY_MODE_PUBKEY_DIGEST; gen_key_params.key_id = public_key_id; gen_key_params.public_key = public_key; gen_key_params.public_key_size = sizeof(public_key); gen_key_params.other_data = gen_key_other_data; gen_key_params.sn = sn; gen_key_params.temp_key = &temp_key; status = atcah_gen_key_msg(&gen_key_params); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validation Authority: Build validation message which uses the Sign(Internal) format memset(&sign_params, 0, sizeof(sign_params)); sign_params.sn = sn; sign_params.verify_other_data = verify_other_data; sign_params.for_invalidate = true; sign_params.message = validation_msg; sign_params.digest = validation_digest; sign_params.temp_key = &temp_key; status = atcah_sign_internal_msg(gCfg->devtype, &sign_params); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validation Authority: Sign the validation message status = atcab_sign(validation_private_key_id, validation_digest, validation_signature); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // The previous sign cleared TempKey, so we have to reset it. This is because the unit test is trying // to perform the actions of the Validation Authority and the Validate Device on the same device. // This wouldn't be needed normally. status = atcab_nonce(nonce_params.num_in); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validated Device: Combine the public key with the nonce status = atcab_genkey_base(gen_key_params.mode, gen_key_params.key_id, gen_key_params.other_data, NULL); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); // Validated Device: Use Verify(Invalidate) command to invalidate the existing public key status = atcab_verify_invalidate(public_key_id, validation_signature, verify_other_data, &is_verified); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(true, is_verified); // Make sure the previous command invalidated the public key status = atcab_read_zone(ATCA_ZONE_DATA, public_key_id, 0, 0, valid_buf, 4); TEST_ASSERT_EQUAL(ATCA_SUCCESS, status); TEST_ASSERT_EQUAL(0xA, valid_buf[0] >> 4); // Validation status is the 4 upper-most bits in the slot // Additionally, check to make sure a verify(stored) command with it fails. status = atcab_verify_stored(test_msg, test_signature, public_key_id, &is_verified); TEST_ASSERT_EQUAL(ATCA_EXECUTION_ERROR, status); } // *INDENT-OFF* - Preserve formatting t_test_case_info verify_basic_test_info[] = { { REGISTER_TEST_CASE(atca_cmd_basic_test, verify_extern), DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, verify_extern_mac), DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, verify_stored), DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, verify_stored_mac), DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, verify_validate), DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { REGISTER_TEST_CASE(atca_cmd_basic_test, verify_invalidate), DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { (fp_test_case)NULL, (uint8_t)0 }, /* Array Termination element*/ }; t_test_case_info verify_unit_test_info[] = { { REGISTER_TEST_CASE(atca_cmd_unit_test, verify), DEVICE_MASK(ATECC108A) | DEVICE_MASK(ATECC508A) | DEVICE_MASK(ATECC608A) }, { (fp_test_case)NULL, (uint8_t)0 },/* Array Termination element*/ }; // *INDENT-ON*