/****************************************** Copyright (C) 2009-2020 Authors of CryptoMiniSat, see AUTHORS file Permission is hereby granted, free of charge, to any person obtaining a copy of this software and associated documentation files (the "Software"), to deal in the Software without restriction, including without limitation the rights to use, copy, modify, merge, publish, distribute, sublicense, and/or sell copies of the Software, and to permit persons to whom the Software is furnished to do so, subject to the following conditions: The above copyright notice and this permission notice shall be included in all copies or substantial portions of the Software. THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE. ***********************************************/ #include "cl_predictors.h" #include "clause.h" #include "solver.h" #include //#define MISSING_VAL std::numeric_limits::quiet_NaN() #define MISSING_VAL -1334556800.0f using namespace CMSat; ClPredictors::ClPredictors(Solver* _solver) : solver(_solver) { BoosterHandle handle; int ret; handles.push_back(handle); ret = XGBoosterCreate(0, 0, &(handles[predict_type::short_pred])); assert(ret == 0); ret = XGBoosterSetParam(handles[predict_type::short_pred], "nthread", "1"); assert(ret == 0); BoosterHandle handle2; handles.push_back(handle2); ret = XGBoosterCreate(0, 0, &(handles[predict_type::long_pred])); assert(ret == 0); ret = XGBoosterSetParam(handles[predict_type::long_pred], "nthread", "1"); assert(ret == 0); BoosterHandle handle3; handles.push_back(handle3); ret = XGBoosterCreate(0, 0, &(handles[predict_type::forever_pred])); assert(ret == 0); ret = XGBoosterSetParam(handles[predict_type::forever_pred], "nthread", "1"); assert(ret == 0); } ClPredictors::~ClPredictors() { for(auto& h: handles) { XGBoosterFree(h); } } void ClPredictors::load_models(const std::string& short_fname, const std::string& long_fname, const std::string& forever_fname) { int ret; ret = XGBoosterLoadModel(handles[predict_type::short_pred], short_fname.c_str()); assert(ret == 0); ret =XGBoosterLoadModel(handles[predict_type::long_pred], long_fname.c_str()); assert(ret == 0); ret =XGBoosterLoadModel(handles[predict_type::forever_pred], forever_fname.c_str()); assert(ret == 0); } void ClPredictors::set_up_input( const CMSat::Clause* cl, const uint64_t sumConflicts, const int64_t last_touched_diff, #ifdef EXTENDED_FEATURES const int64_t rdb1_last_touched_diff, #endif const double act_ranking_rel, const uint32_t act_ranking_top_10, const uint32_t cols, float* at) { uint32_t x = 0; double orig_glue = cl->stats.orig_glue; assert(orig_glue != 1); //updated glue can actually be 1. Original glue cannot. double time_inside_solver = solver->sumConflicts - cl->stats.introduced_at_conflict; double tot_props_made = cl->stats.propagations_made+cl->stats.rdb1_propagations_made; #ifdef EXTENDED_FEATURES double rdb1_act_ranking_rel = (double)cl->stats.rdb1_act_ranking_rel; double tot_last_touch_diffs = last_touched_diff + rdb1_last_touched_diff; at[x++] = (float)cl->stats.used_for_uip_creation; //rdb0.used_for_uip_creation at[x++] = (float)cl->stats.glue; //rdb0.glue at[x++] = (float)time_inside_solver; //cl.time_inside_solver at[x++] = (float)last_touched_diff; //rdb0.last_touched_diff at[x++] = (float)cl->stats.propagations_made; //rdb0.propagations_made at[x++] = (float)cl->stats.rdb1_propagations_made; //rdb1.propagations_made if (rdb1_act_ranking_rel == 1 || rdb1_act_ranking_rel == 0 || time_inside_solver == 0) { at[x++] = MISSING_VAL; } else { at[x++] = ((double)cl->stats.sum_uip1_used/time_inside_solver)/ ::log2(rdb1_act_ranking_rel); } //((rdb0.sum_uip1_used/cl.time_inside_solver)/log2(rdb1_act_ranking_rel)) if (rdb1_act_ranking_rel == 0 || time_inside_solver == 0 || cl->stats.sum_uip1_used == 0) { at[x++] = MISSING_VAL; } else { at[x++] = ::log2(rdb1_act_ranking_rel)/ (cl->stats.sum_uip1_used/time_inside_solver); } // (log2(rdb1_act_ranking_rel)/(rdb0.sum_uip1_used/cl.time_inside_solver)) if (cl->stats.glue_hist == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.propagations_made/(double)cl->stats.glue_hist; } // (rdb0.propagations_made/cl.glue_hist) if (cl->stats.glue == 0) { at[x++] = MISSING_VAL; } else { at[x++] = tot_props_made/cl->stats.glue; } // ((rdb0.propagations_made+rdb1.propagations_made)/rdb0.glue) if (act_ranking_rel == 0 || act_ranking_rel == 1) { at[x++] = MISSING_VAL; } else { at[x++] = (double)(cl->stats.glue)/::log2(act_ranking_rel); } // (rdb0.glue/log2(rdb0_act_ranking_rel)) if (tot_last_touch_diffs == 0) { at[x++] = MISSING_VAL; } else { at[x++] = time_inside_solver/tot_last_touch_diffs; } // (cl.time_inside_solver/(rdb0.last_touched_diff+rdb1.last_touched_diff)) if (act_ranking_rel == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.sum_uip1_used/act_ranking_rel; } // (rdb0.sum_uip1_used/rdb0_act_ranking_rel) at[x++] = tot_props_made/orig_glue; // ((rdb0.propagations_made+rdb1.propagations_made)/cl.orig_glue) if (time_inside_solver == 0 || cl->stats.sum_uip1_used == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)(cl->stats.glue)/ (cl->stats.sum_uip1_used/time_inside_solver); } // (rdb0.glue/(rdb0.sum_uip1_used/cl.time_inside_solver)) if (tot_props_made == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.glue_hist_long/tot_props_made; } // (cl.glue_hist_long/(rdb0.propagations_made+rdb1.propagations_made)) if (time_inside_solver == 0) { at[x++] = MISSING_VAL; } else { at[x++] = ((double)cl->stats.sum_uip1_used/time_inside_solver)/ (double)orig_glue; } // ((rdb0.sum_uip1_used/cl.time_inside_solver)/cl.orig_glue) if (tot_props_made == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.glue_before_minim/tot_props_made; } // (cl.glue_before_minim/(rdb0.propagations_made+rdb1.propagations_made)) if (cl->stats.propagations_made == 0 || cl->stats.antec_overlap_hist == 0) { at[x++] = MISSING_VAL; } else { at[x++] = ::log2((double)cl->stats.antec_overlap_hist)/(double)cl->stats.propagations_made; } // (log2(cl.antec_overlap_hist)/rdb0.propagations_made) if (act_ranking_rel == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.propagations_made/act_ranking_rel; } // (rdb0.propagations_made/rdb0_act_ranking_rel) if (cl->stats.glue == 0 || cl->stats.glue == 1) { at[x++] = MISSING_VAL; } else { at[x++] = tot_props_made/::log2(cl->stats.glue); } // ((rdb0.propagations_made+rdb1.propagations_made)/log2(rdb0.glue)) if (cl->stats.propagations_made == 0) { at[x++] = MISSING_VAL; } else { at[x++] = act_ranking_rel/(double)cl->stats.propagations_made; } // (rdb0_act_ranking_rel/rdb0.sum_propagations_made) #endif if (cl->stats.num_resolutions_hist_lt == 0 || cl->stats.num_resolutions_hist_lt == 1 ) { at[x++] = MISSING_VAL; } else { at[x++] = tot_props_made/::log2((double)cl->stats.num_resolutions_hist_lt); } //((rdb0.propagations_made+rdb1.propagations_made)/log2(cl.num_resolutions_hist_lt)) at[x++] = tot_props_made/::log2(orig_glue); //((rdb0.propagations_made+rdb1.propagations_made)/log2(cl.orig_glue)) if (time_inside_solver == 0 || cl->stats.sum_uip1_used == 0) { at[x++] = MISSING_VAL; } else { at[x++] = ::log2(cl->stats.glue_before_minim)/ ((double)cl->stats.sum_uip1_used/time_inside_solver); } //(log2(cl.glue_before_minim)/(rdb0.sum_uip1_used/cl.time_inside_solver)) if (cl->stats.glue == 0 || cl->stats.glue == 1) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.sum_uip1_used/::log2(cl->stats.glue); } //(rdb0.sum_uip1_used/log2(rdb0.glue)) if (act_ranking_rel == 0) { at[x++] = MISSING_VAL; } else { at[x++] = ::log2(act_ranking_rel)/(double)cl->stats.orig_glue; } //(log2(rdb0_act_ranking_rel)/cl.orig_glue) if (time_inside_solver == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.propagations_made/(double)time_inside_solver; } //(rdb0.propagations_made/cl.time_inside_solver) if (cl->stats.num_antecedents == 0 || cl->stats.num_total_lits_antecedents == 0) { at[x++] = MISSING_VAL; } else { at[x++] = ::log2((double)cl->stats.num_antecedents)/(double)cl->stats.num_total_lits_antecedents; } //(log2(cl.num_antecedents)/cl.num_total_lits_antecedents) if (cl->stats.glue_hist_long == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->size()/(double)cl->stats.glue_hist_long; } //(rdb0.size/cl.glue_hist_long) if (cl->stats.glue_hist_queue == 0 || cl->stats.glue_hist_queue == 1) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.propagations_made/ ::log2((double)cl->stats.glue_hist_queue); } //(rdb0.propagations_made/log2(cl.glue_hist_queue) assert(cl->stats.orig_glue != 0); at[x++] = (double)cl->stats.propagations_made/(double)cl->stats.orig_glue; //(rdb0.propagations_made/cl.orig_glue) if (cl->stats.propagations_made == 0 || cl->stats.num_resolutions_hist_lt == 0) { at[x++] = MISSING_VAL; } else { at[x++] = ::log2((double)cl->stats.num_resolutions_hist_lt)/ (double)cl->stats.propagations_made; } //(log2(cl.num_resolutions_hist_lt)/rdb0.propagations_made) if (cl->stats.num_antecedents == 0 || cl->stats.num_total_lits_antecedents == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.propagations_made/ ((double)cl->stats.num_total_lits_antecedents/(double)cl->stats.num_antecedents); } //(rdb0.propagations_made/(cl.num_total_lits_antecedents/cl.num_antecedents)) if (cl->stats.propagations_made == 0) { at[x++] = MISSING_VAL; } else { at[x++] = (double)cl->stats.confl_size_hist_lt/(double)cl->stats.propagations_made; } //(cl.size_hist/rdb0.propagations_made) #ifndef EXTENDED_FEATURES at[x++] = (double)cl->stats.propagations_made/std::log2((double)cl->stats.antec_overlap_hist); //(rdb0.propagations_made/log2(cl.antec_overlap_hist)) #endif if (cl->stats.propagations_made == 0 || cl->stats.branch_depth_hist_queue == 0) { at[x++] = MISSING_VAL; } else { at[x++] = ::log2((double)cl->stats.branch_depth_hist_queue)/ (double)cl->stats.propagations_made; } //(log2(cl.branch_depth_hist_queue)/rdb0.propagations_made) at[x++] = (double)cl->stats.used_for_uip_creation/ (double)cl->stats.glue_before_minim;; //(rdb0.used_for_uip_creation/cl.glue_before_minim) // cout << "c val: "; // for(uint32_t i = 0; i < cols; i++) { // cout << at[i] << " "; // } // cout << endl; assert(x==cols); } float ClPredictors::predict_one(int num) { bst_ulong out_len; const float *out_result; int ret = XGBoosterPredict( handles[num], dmat, 0, //0: normal prediction 0, //use all trees 0, //do not use for training &out_len, &out_result ); assert(ret == 0); assert(out_len == 1); float retval = out_result[0]; return retval; } float ClPredictors::predict( predict_type pred_type, const CMSat::Clause* cl, const uint64_t sumConflicts, const int64_t last_touched_diff, #ifdef EXTENDED_FEATURES const int64_t rdb1_last_touched_diff, #endif const double act_ranking_rel, const uint32_t act_ranking_top_10) { // convert to DMatrix set_up_input( cl, sumConflicts, last_touched_diff, #ifdef EXTENDED_FEATURES rdb1_last_touched_diff, #endif act_ranking_rel, act_ranking_top_10, PRED_COLS, train); int rows=1; int ret = XGDMatrixCreateFromMat((float *)train, rows, PRED_COLS, MISSING_VAL, &dmat); assert(ret == 0); float val = predict_one(pred_type); XGDMatrixFree(dmat); return val; } void ClPredictors::predict( const CMSat::Clause* cl, const uint64_t sumConflicts, const int64_t last_touched_diff, #ifdef EXTENDED_FEATURES const int64_t rdb1_last_touched_diff, #endif const double act_ranking_rel, const uint32_t act_ranking_top_10, float& p_short, float& p_long, float& p_forever) { // convert to DMatrix set_up_input( cl, sumConflicts, last_touched_diff, #ifdef EXTENDED_FEATURES rdb1_last_touched_diff, #endif act_ranking_rel, act_ranking_top_10, PRED_COLS, train); int rows=1; int ret; ret = XGDMatrixCreateFromMat((float *)train, rows, PRED_COLS, MISSING_VAL, &dmat); assert(ret == 0); p_short = predict_one(short_pred); XGDMatrixFree(dmat); ret = XGDMatrixCreateFromMat((float *)train, rows, PRED_COLS, MISSING_VAL, &dmat); assert(ret == 0); p_long = predict_one(long_pred); XGDMatrixFree(dmat); ret = XGDMatrixCreateFromMat((float *)train, rows, PRED_COLS, MISSING_VAL, &dmat); assert(ret == 0); p_forever = predict_one(forever_pred); XGDMatrixFree(dmat); }