#include "module.h" #include #include "replica_pool.h" namespace ctranslate2 { namespace python { class Wav2Vec2Wrapper : public ReplicaPoolHelper { public: using ReplicaPoolHelper::ReplicaPoolHelper; StorageView encode(const StorageView& features, const bool to_cpu) { std::shared_lock lock(_mutex); assert_model_is_ready(); return _pool->encode(features, to_cpu).get(); } }; void register_wav2vec2(py::module& m) { py::class_( m, "Wav2Vec2", R"pbdoc( Implements the Wav2Vec2 speech recognition model published by Facebook. See Also: https://github.com/facebookresearch/fairseq/tree/main/examples/wav2vec )pbdoc") .def(py::init>&, const StringOrMap&, size_t, size_t, long, bool, bool, py::object>(), py::arg("model_path"), py::arg("device")="cpu", py::kw_only(), py::arg("device_index")=0, py::arg("compute_type")="default", py::arg("inter_threads")=1, py::arg("intra_threads")=0, py::arg("max_queued_batches")=0, py::arg("flash_attention")=false, py::arg("tensor_parallel")=false, py::arg("files")=py::none(), R"pbdoc( Initializes a Wav2Vec2 model from a converted model. Arguments: model_path: Path to the CTranslate2 model directory. device: Device to use (possible values are: cpu, cuda, auto). device_index: Device IDs where to place this model on. compute_type: Model computation type or a dictionary mapping a device name to the computation type (possible values are: default, auto, int8, int8_float32, int8_float16, int8_bfloat16, int16, float16, bfloat16, float32). inter_threads: Number of workers to allow executing multiple batches in parallel. intra_threads: Number of OpenMP threads per worker (0 to use a default value). max_queued_batches: Maximum numbers of batches in the worker queue (-1 for unlimited, 0 for an automatic value). When the queue is full, future requests will block until a free slot is available. flash_attention: run model with flash attention 2 for self-attention layer tensor_parallel: run model with tensor parallel mode files: Load model files from the memory. This argument is a dictionary mapping file names to file contents as file-like or bytes objects. If this is set, :obj:`model_path` acts as an identifier for this model. )pbdoc") .def_property_readonly("device", &Wav2Vec2Wrapper::device, "Device this model is running on.") .def_property_readonly("device_index", &Wav2Vec2Wrapper::device_index, "List of device IDs where this model is running on.") .def_property_readonly("compute_type", &Wav2Vec2Wrapper::compute_type, "Computation type used by the model.") .def_property_readonly("num_workers", &Wav2Vec2Wrapper::num_replicas, "Number of model workers backing this instance.") .def_property_readonly("num_queued_batches", &Wav2Vec2Wrapper::num_queued_batches, "Number of batches waiting to be processed.") .def_property_readonly("tensor_parallel", &Wav2Vec2Wrapper::tensor_parallel, "Run model with tensor parallel mode.") .def_property_readonly("num_active_batches", &Wav2Vec2Wrapper::num_active_batches, "Number of batches waiting to be processed or currently processed.") .def("encode", &Wav2Vec2Wrapper::encode, py::arg("features"), py::arg("to_cpu")=false, py::call_guard(), R"pbdoc( Encodes the input features. Arguments: features: Mel spectogram of the audio, as a float array with shape ``[batch_size, 80, 3000]``. to_cpu: Copy the encoder output to the CPU before returning the value. Returns: The encoder output. )pbdoc") .def("unload_model", &Wav2Vec2Wrapper::unload_model, py::arg("to_cpu")=false, py::call_guard(), R"pbdoc( Unloads the model attached to this wav2vec2 but keep enough runtime context to quickly resume wav2vec2 on the initial device. Arguments: to_cpu: If ``True``, the model is moved to the CPU memory and not fully unloaded. )pbdoc") .def("load_model", &Wav2Vec2Wrapper::load_model, py::arg("keep_cache")=false, py::call_guard(), R"pbdoc( Loads the model back to the initial device. Arguments: keep_cache: If ``True``, the model cache in the CPU memory is not deleted if it exists. )pbdoc") .def_property_readonly("model_is_loaded", &Wav2Vec2Wrapper::model_is_loaded, "Whether the model is loaded on the initial device and ready to be used.") ; } } }