/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief Demonstrate CUTLASS debugging tool for dumping fragments and shared memory */ /////////////////////////////////////////////////////////////////////////////////////////////////// // Standard Library includes #include // // CUTLASS includes // #include "cutlass/aligned_buffer.h" #include "cutlass/gemm/gemm.h" #include "cutlass/layout/matrix.h" #include "cutlass/matrix_shape.h" #include "cutlass/numeric_types.h" #include "cutlass/core_io.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/gemm.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/transform/pitch_linear_thread_map.h" #include "cutlass/transform/threadblock/predicated_tile_iterator.h" #include "cutlass/transform/threadblock/regular_tile_iterator_tensor_op.h" #include "cutlass/util/debug.h" #include "cutlass/util/device_dump.h" #define EXAMPLE_MATRIX_ROW 64 #define EXAMPLE_MATRIX_COL 32 /////////////////////////////////////////////////////////////////////////////////////////////////// template __global__ void kernel_dump(typename GmemIterator::Params params, typename GmemIterator::TensorRef ref) { extern __shared__ Element shared_storage[]; // Construct the global iterator and load the data to the fragments. int tb_thread_id = threadIdx.y * blockDim.x + threadIdx.x; GmemIterator gmem_iterator(params, ref.data(), {EXAMPLE_MATRIX_ROW, EXAMPLE_MATRIX_COL}, tb_thread_id); typename GmemIterator::Fragment frag; frag.clear(); gmem_iterator.load(frag); // Call dump_fragment() with different parameters. if (threadIdx.x == 0 && blockIdx.x == 0) printf("\nAll threads dump all the elements:\n"); cutlass::debug::dump_fragment(frag); if (threadIdx.x == 0 && blockIdx.x == 0) printf("\nFirst thread dumps all the elements:\n"); cutlass::debug::dump_fragment(frag, /*N = */ 1); if (threadIdx.x == 0 && blockIdx.x == 0) printf("\nFirst thread dumps first 16 elements:\n"); cutlass::debug::dump_fragment(frag, /*N = */ 1, /*M = */ 16); if (threadIdx.x == 0 && blockIdx.x == 0) printf("\nFirst thread dumps first 16 elements with a stride of 8:\n"); cutlass::debug::dump_fragment(frag, /*N = */ 1, /*M = */ 16, /*S = */ 8); // Construct the shared iterator and store the data to the shared memory. SmemIterator smem_iterator( typename SmemIterator::TensorRef( {shared_storage, SmemIterator::Layout::packed( {EXAMPLE_MATRIX_ROW, EXAMPLE_MATRIX_COL})}), tb_thread_id); smem_iterator.store(frag); // Call dump_shmem() with different parameters. if (threadIdx.x == 0 && blockIdx.x == 0) printf("\nDump all the elements:\n"); cutlass::debug::dump_shmem(shared_storage, EXAMPLE_MATRIX_ROW * EXAMPLE_MATRIX_COL); if (threadIdx.x == 0 && blockIdx.x == 0) printf("\nDump all the elements with a stride of 8:\n"); cutlass::debug::dump_shmem( shared_storage, EXAMPLE_MATRIX_ROW * EXAMPLE_MATRIX_COL, /*S = */ 8); } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Entry point for dump_reg_shmem example. // // usage: // // 02_dump_reg_shmem // int main() { // Initialize a 64x32 column major matrix with sequential data (1,2,3...). using Element = cutlass::half_t; using Layout = cutlass::layout::ColumnMajor; cutlass::HostTensor matrix( {EXAMPLE_MATRIX_ROW, EXAMPLE_MATRIX_COL}); cutlass::reference::host::BlockFillSequential(matrix.host_data(), matrix.capacity()); // Dump the matrix. std::cout << "Matrix:\n" << matrix.host_view() << "\n"; // Copy the matrix to the device. matrix.sync_device(); // Define a global iterator, a shared iterator and their thread map. using ThreadMap = cutlass::transform::PitchLinearWarpRakedThreadMap< cutlass::layout::PitchLinearShape, 32, cutlass::layout::PitchLinearShape<8, 4>, 8>; using GmemIterator = cutlass::transform::threadblock::PredicatedTileIterator< cutlass::MatrixShape, Element, Layout, 1, ThreadMap>; typename GmemIterator::Params params(matrix.layout()); using SmemIterator = cutlass::transform::threadblock::RegularTileIterator< cutlass::MatrixShape, Element, cutlass::layout::ColumnMajorTensorOpMultiplicandCongruous<16, 64>, 1, ThreadMap>; dim3 grid(1, 1); dim3 block(32, 1, 1); int smem_size = int(sizeof(Element) * EXAMPLE_MATRIX_ROW * EXAMPLE_MATRIX_COL); kernel_dump <<>>(params, matrix.device_ref()); cudaError_t result = cudaDeviceSynchronize(); if (result != cudaSuccess) { std::cout << "Failed" << std::endl; } return (result == cudaSuccess ? 0 : -1); } ///////////////////////////////////////////////////////////////////////////////////////////////////