/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* This example demonstrates how to call a CUTLASS SYRK kernel and provides a naive reference matrix multiply kernel to verify its correctness. The CUTLASS Syrk template is instantiated in the function CutlassSsyrkNN. This is kernel computes the symmetric rank-k update (SYRK) using double-precision floating-point arithmetic and assumes all matrices have column-major layout. The threadblock tile size is chosen as 16x32x16 which offers good performance for large matrices. See the CUTLASS Parallel for All blog post for more exposition on the tunable parameters available in CUTLASS. https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/ Aside from defining and launching the SSYRK kernel, this example does not use any other components or utilities within CUTLASS. Such utilities are demonstrated elsewhere in other examples and are prevalent in the CUTLASS unit tests. */ // Standard Library includes #include #include #include // Helper methods to check for errors #include "helper.h" // // CUTLASS includes needed for double-precision SYRK kernel // // Defines cutlass::gemm::device::Syrk, the generic Syrk computation template class. #include "cutlass/gemm/device/rank_k.h" /////////////////////////////////////////////////////////////////////////////////////////////////// // // This function defines a CUTLASS SYRK kernel instantiation, constructs its parameters object, // and launches it on the CUDA device. // /////////////////////////////////////////////////////////////////////////////////////////////////// /// Define a CUTLASS SYRK template and launch a SYRK kernel. cudaError_t CutlassSsyrkNN( int N, int K, double alpha, double const *A, int lda, double beta, double *C, int ldc) { // Define type definition for double-precision CUTLASS SYRK with column-major // input matrices and 16x32x16 threadblock tile size (chosen by default). // // To keep the interface manageable, several helpers are defined for plausible compositions // including the following example for double-precision SYRK. Typical values are used as // default template arguments. // // To view the full syrk device API interface, see `cutlass/gemm/device/syrk.h` using ColumnMajor = cutlass::layout::ColumnMajor; using CutlassSyrk = cutlass::gemm::device::RankK< double, ColumnMajor, double, ColumnMajor, cutlass::FillMode::kLower, double, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, cutlass::gemm::GemmShape<16, 32, 16>, cutlass::gemm::GemmShape<16, 16, 16>, cutlass::gemm::GemmShape<8, 8, 4>, cutlass::epilogue::thread::LinearCombination< double, 1, double, double >, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<8>, 5, // Stages 1, // AligmentA false, // SplitKSerail cutlass::arch::OpMultiplyAdd, cutlass::ComplexTransform::kNone, cutlass::BlasMode::kSymmetric >; // Define a CUTLASS SYRK type CutlassSyrk syrk_operator; // Construct the CUTLASS SYRK arguments object. // // One of CUTLASS's design patterns is to define syrk argument objects that are constructible // in host code and passed to kernels by value. These may include pointers, strides, scalars, // and other arguments needed by Syrk and its components. // // The benefits of this pattern are (1.) a structured, composable strategy for passing host-constructible // arguments to kernels and (2.) minimized initialization overhead on kernel entry. // CutlassSyrk::Arguments args(cutlass::gemm::GemmUniversalMode::kGemm, {N, N, K}, // Syrk Problem dimensions 1, // batch_count, {alpha, beta}, // Scalars used in the Epilogue reinterpret_cast(A), const_cast(reinterpret_cast(C)), reinterpret_cast(C), // destination matrix D (may be different memory than source C matrix) (int64_t)N*K, // Batch strides (int64_t)N*N, (int64_t)N*N, lda, ldc, ldc); // // Launch the CUTLASS SYRK kernel. // cutlass::Status status = syrk_operator(args); // // Return a cudaError_t if the CUTLASS SYRK operator returned an error code. // if (status != cutlass::Status::kSuccess) { return cudaErrorUnknown; } // Return success, if no errors were encountered. return cudaSuccess; } /////////////////////////////////////////////////////////////////////////////////////////////////// // // The source code after this point in the file is generic CUDA using the CUDA Runtime API // and simple CUDA kernels to initialize matrices and compute the general matrix product. // /////////////////////////////////////////////////////////////////////////////////////////////////// /// Kernel to initialize a matrix with small integers. __global__ void InitializeMatrix_kernel( double *matrix, int ldm, int rows, int columns, int seed = 0) { int i = threadIdx.x + blockIdx.x * blockDim.x; int j = threadIdx.y + blockIdx.y * blockDim.y; if (i < rows && j < columns) { int offset = i + j * ldm; // Generate arbitrary elements. int const k = 16807; int const m = 16; double value = double(((offset + seed) * k % m) - m / 2); matrix[offset] = value; } } /// Simple function to initialize a matrix to arbitrary small integers. cudaError_t InitializeMatrix(double *matrix, int ldm, int rows, int columns, int seed = 0) { dim3 block(16, 16); dim3 grid( (rows + block.x - 1) / block.x, (columns + block.y - 1) / block.y ); InitializeMatrix_kernel<<< grid, block >>>(matrix, ldm, rows, columns, seed); return cudaGetLastError(); } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Allocates device memory for a matrix then fills with arbitrary small integers. cudaError_t AllocateMatrix(double **matrix, int ldm, int rows, int columns, int seed = 0) { cudaError_t result; size_t sizeof_matrix = sizeof(double) * ldm * columns; // Allocate device memory. result = cudaMalloc(reinterpret_cast(matrix), sizeof_matrix); if (result != cudaSuccess) { std::cerr << "Failed to allocate matrix: " << cudaGetErrorString(result) << std::endl; return result; } // Clear the allocation. result = cudaMemset(*matrix, 0, sizeof_matrix); if (result != cudaSuccess) { std::cerr << "Failed to clear matrix device memory: " << cudaGetErrorString(result) << std::endl; return result; } // Initialize matrix elements to arbitrary small integers. result = InitializeMatrix(*matrix, ldm, rows, columns, seed); if (result != cudaSuccess) { std::cerr << "Failed to initialize matrix: " << cudaGetErrorString(result) << std::endl; return result; } return result; } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Naive reference SYRK computation. __global__ void ReferenceSyrk_kernel( int N, int K, double alpha, double const *A, int lda, double beta, double *C, int ldc) { int i = threadIdx.x + blockIdx.x * blockDim.x; int j = threadIdx.y + blockIdx.y * blockDim.y; if (i < N && j < N && i >= j ) { // Since C is in Lower Fill Mode double accumulator = 0; for (int k = 0; k < K; ++k) { accumulator += A[i + k * lda] * A[j + k * lda]; } C[i + j * ldc] = alpha * accumulator + beta * C[i + j * ldc]; } } /// Reference SYRK computation. cudaError_t ReferenceSyrk( int N, int K, double alpha, double const *A, int lda, double beta, double *C, int ldc) { dim3 block(16, 16); dim3 grid( (N + block.x - 1) / block.x, (N + block.y - 1) / block.y ); ReferenceSyrk_kernel<<< grid, block >>>(N, K, alpha, A, lda, beta, C, ldc); return cudaGetLastError(); } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Allocate several matrices in GPU device memory and call a double-precision /// CUTLASS SYRK kernel. cudaError_t TestCutlassSyrk(int N, int K, double alpha, double beta) { cudaError_t result; // // Define several matrices to be used as operands to SYRK kernels. // // Compute leading dimensions for each matrix. int lda = N; int ldc = N; // Compute size in bytes of the C matrix. size_t sizeof_C = sizeof(double) * ldc * N; // Define pointers to matrices in GPU device memory. double *A; double *C_cutlass; double *C_reference; // // Allocate matrices in GPU device memory with arbitrary seeds. // result = AllocateMatrix(&A, lda, N, K, 0); if (result != cudaSuccess) { return result; } result = AllocateMatrix(&C_cutlass, ldc, N, N, 101); if (result != cudaSuccess) { cudaFree(A); return result; } result = AllocateMatrix(&C_reference, ldc, N, N, 101); if (result != cudaSuccess) { cudaFree(A); cudaFree(C_cutlass); return result; } result = cudaMemcpy(C_reference, C_cutlass, sizeof_C, cudaMemcpyDeviceToDevice); if (result != cudaSuccess) { std::cerr << "Failed to copy C_cutlass matrix to C_reference: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(A); return result; } // // Launch CUTLASS SYRK. // result = CutlassSsyrkNN(N, K, alpha, A, lda, beta, C_cutlass, ldc); if (result != cudaSuccess) { std::cerr << "CUTLASS SYRK kernel failed: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(A); return result; } // // Verify. // // Launch reference SYRK result = ReferenceSyrk(N, K, alpha, A, lda, beta, C_reference, ldc); if (result != cudaSuccess) { std::cerr << "Reference SYRK kernel failed: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(A); return result; } // Copy to host and verify equivalence. std::vector host_cutlass(ldc * N, 0); std::vector host_reference(ldc * N, 0); result = cudaMemcpy(host_cutlass.data(), C_cutlass, sizeof_C, cudaMemcpyDeviceToHost); if (result != cudaSuccess) { std::cerr << "Failed to copy CUTLASS SYRK results: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(A); return result; } result = cudaMemcpy(host_reference.data(), C_reference, sizeof_C, cudaMemcpyDeviceToHost); if (result != cudaSuccess) { std::cerr << "Failed to copy Reference SYRK results: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(A); return result; } // // Free device memory allocations. // cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(A); // // Test for bit equivalence of results. // if (host_cutlass != host_reference) { std::cerr << "CUTLASS results incorrect." << std::endl; return cudaErrorUnknown; } return cudaSuccess; } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Entry point to basic_syrk example. // // usage: // // 00_basic_syrk // int main(int argc, const char *arg[]) { bool notSupported = false; // CUTLASS must be compiled with CUDA 11 Toolkit to run these examples. if (!(__CUDACC_VER_MAJOR__ >= 11)) { std::cerr << "NVIDIA Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl; notSupported = true; } cudaDeviceProp props; cudaError_t error = cudaGetDeviceProperties(&props, 0); if (error != cudaSuccess) { std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl; return -1; } if (!((props.major * 10 + props.minor) >= 80)) { std::cerr << "This example requires compute capability at least 80." << std::endl; notSupported = true; } if (notSupported) { return 0; } // // Parse the command line to obtain SYRK dimensions and scalar values. // // SYRK problem dimensions. int problem[2] = { 128, 128 }; for (int i = 1; i < argc && i < 3; ++i) { std::stringstream ss(arg[i]); ss >> problem[i - 1]; } // Scalars used for linear scaling the result of the matrix product. double scalars[2] = { 1, 0 }; for (int i = 3; i < argc && i < 5; ++i) { std::stringstream ss(arg[i]); ss >> scalars[i - 3]; } // // Run the CUTLASS SYRK test. // cudaError_t result = TestCutlassSyrk( problem[0], // SYRK N dimension problem[1], // SYRK K dimension scalars[0], // alpha scalars[1] // beta ); if (result == cudaSuccess) { std::cout << "Passed." << std::endl; } // Exit. return result == cudaSuccess ? 0 : -1; } ///////////////////////////////////////////////////////////////////////////////////////////////////