/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /* This example demonstrates how to call a CUTLASS TRMM kernel and provides a naive reference matrix multiply kernel to verify its correctness. The CUTLASS Trmm template is instantiated in the function CutlassStrmmNN. This is kernel computes the triangular matrix product (TRMM) using double-precision floating-point arithmetic and assumes all matrices have column-major layout. The threadblock tile size is chosen as 64x64x16 which offers good performance for large matrices. See the CUTLASS Parallel for All blog post for more exposition on the tunable parameters available in CUTLASS. https://devblogs.nvidia.com/cutlass-linear-algebra-cuda/ Aside from defining and launching the STRMM kernel, this example does not use any other components or utilities within CUTLASS. Such utilities are demonstrated elsewhere in other examples and are prevalent in the CUTLASS unit tests. */ // Standard Library includes #include #include #include // Helper methods to check for errors #include "helper.h" // // CUTLASS includes needed for double-precision TRMM kernel // // Defines cutlass::gemm::device::Trmm, the generic Trmm computation template class. #include "cutlass/gemm/device/trmm.h" /////////////////////////////////////////////////////////////////////////////////////////////////// // // This function defines a CUTLASS TRMM kernel instantiation, constructs its parameters object, // and launches it on the CUDA device. // /////////////////////////////////////////////////////////////////////////////////////////////////// /// Define a CUTLASS TRMM template and launch a TRMM kernel. cudaError_t CutlassStrmmNN( int M, int N, double alpha, double const *A, int lda, double const *B, int ldb, double *C, int ldc) { // Define type definition for double-precision CUTLASS TRMM with column-major // input matrices and 64x64x16 threadblock tile size (chosen by default). // // To keep the interface manageable, several helpers are defined for plausible compositions // including the following example for double-precision TRMM. Typical values are used as // default template arguments. // // To view the full trmm device API interface, see `cutlass/gemm/device/trmm.h` using ColumnMajor = cutlass::layout::ColumnMajor; using CutlassTrmm = cutlass::gemm::device::Trmm< double, ColumnMajor, cutlass::SideMode::kLeft, cutlass::FillMode::kLower, cutlass::DiagType::kNonUnit, double, ColumnMajor, double, ColumnMajor, double, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, cutlass::gemm::GemmShape<64, 64, 16>, cutlass::gemm::GemmShape<32, 32, 16>, cutlass::gemm::GemmShape<8, 8, 4>, cutlass::epilogue::thread::LinearCombination< double, 1, double, double, cutlass::epilogue::thread::ScaleType::OnlyAlphaScaling >, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<>, 5, 1, 1, false, cutlass::arch::OpMultiplyAdd >; // Define a CUTLASS TRMM type CutlassTrmm trmm_operator; // Construct the CUTLASS TRMM arguments object. // // One of CUTLASS's design patterns is to define trmm argument objects that are constructible // in host code and passed to kernels by value. These may include pointers, strides, scalars, // and other arguments needed by Trmm and its components. // // The benefits of this pattern are (1.) a structured, composable strategy for passing host-constructible // arguments to kernels and (2.) minimized initialization overhead on kernel entry. // CutlassTrmm::Arguments args(cutlass::gemm::GemmUniversalMode::kGemm, {M, N, M}, // Trmm Problem dimensions in Left-Side Mode 1, // batch_count, {alpha}, // Scalars used in the Epilogue reinterpret_cast(A), reinterpret_cast(B), reinterpret_cast(C), // destination matrix D (may be different memory than source C matrix) (int64_t)M*M, // Batch strides (int64_t)M*N, (int64_t)M*N, lda, ldb, ldc); // // Launch the CUTLASS TRMM kernel. // cutlass::Status status = trmm_operator(args); // // Return a cudaError_t if the CUTLASS TRMM operator returned an error code. // if (status != cutlass::Status::kSuccess) { return cudaErrorUnknown; } // Return success, if no errors were encountered. return cudaSuccess; } /////////////////////////////////////////////////////////////////////////////////////////////////// // // The source code after this point in the file is generic CUDA using the CUDA Runtime API // and simple CUDA kernels to initialize matrices and compute the general matrix product. // /////////////////////////////////////////////////////////////////////////////////////////////////// /// Kernel to initialize a matrix with small integers. __global__ void InitializeMatrix_kernel( double *matrix, int ldm, int rows, int columns, int seed = 0, cutlass::FillMode fill_mode = cutlass::FillMode::kInvalid) { int i = threadIdx.x + blockIdx.x * blockDim.x; int j = threadIdx.y + blockIdx.y * blockDim.y; if (i < rows && j < columns) { if (fill_mode == cutlass::FillMode::kLower && i < j) return; else if (fill_mode == cutlass::FillMode::kUpper && i > j) return; int offset = i + j * ldm; // Generate arbitrary elements. int const k = 16807; int const m = 16; double value = double(((offset + seed) * k % m) - m / 2); matrix[offset] = value; } } /// Simple function to initialize a matrix to arbitrary small integers. cudaError_t InitializeMatrix(double *matrix, int ldm, int rows, int columns, int seed = 0, cutlass::FillMode fill_mode = cutlass::FillMode::kInvalid) { dim3 block(16, 16); dim3 grid( (rows + block.x - 1) / block.x, (columns + block.y - 1) / block.y ); InitializeMatrix_kernel<<< grid, block >>>(matrix, ldm, rows, columns, seed, fill_mode); return cudaGetLastError(); } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Allocates device memory for a matrix then fills with arbitrary small integers. cudaError_t AllocateMatrix(double **matrix, int ldm, int rows, int columns, int seed = 0, cutlass::FillMode fill_mode = cutlass::FillMode::kInvalid) { cudaError_t result; size_t sizeof_matrix = sizeof(double) * ldm * columns; // Allocate device memory. result = cudaMalloc(reinterpret_cast(matrix), sizeof_matrix); if (result != cudaSuccess) { std::cerr << "Failed to allocate matrix: " << cudaGetErrorString(result) << std::endl; return result; } // Clear the allocation. result = cudaMemset(*matrix, 0, sizeof_matrix); if (result != cudaSuccess) { std::cerr << "Failed to clear matrix device memory: " << cudaGetErrorString(result) << std::endl; return result; } // Initialize matrix elements to arbitrary small integers. result = InitializeMatrix(*matrix, ldm, rows, columns, seed, fill_mode); if (result != cudaSuccess) { std::cerr << "Failed to initialize matrix: " << cudaGetErrorString(result) << std::endl; return result; } return result; } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Naive reference TRMM computation. __global__ void ReferenceTrmm_kernel( int M, int N, double alpha, double const *A, int lda, double const *B, int ldb, double *C, int ldc) { int i = threadIdx.x + blockIdx.x * blockDim.x; int j = threadIdx.y + blockIdx.y * blockDim.y; if (i < M && j < N) { double accumulator = 0; for (int k = 0; k < M; ++k) { accumulator += A[i + k * lda] * B[k + j * ldb]; // Since A is in Left-Side Mode } C[i + j * ldc] = alpha * accumulator; } } /// Reference TRMM computation. cudaError_t ReferenceTrmm( int M, int N, double alpha, double const *A, int lda, double const *B, int ldb, double *C, int ldc) { dim3 block(16, 16); dim3 grid( (M + block.x - 1) / block.x, (N + block.y - 1) / block.y ); ReferenceTrmm_kernel<<< grid, block >>>(M, N, alpha, A, lda, B, ldb, C, ldc); return cudaGetLastError(); } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Allocate several matrices in GPU device memory and call a double-precision /// CUTLASS TRMM kernel. cudaError_t TestCutlassTrmm(int M, int N, double alpha) { cudaError_t result; // // Define several matrices to be used as operands to TRMM kernels. // // Compute leading dimensions for each matrix. int lda = M; int ldb = M; int ldc = M; // Compute size in bytes of the C matrix. size_t sizeof_C = sizeof(double) * ldc * N; // Define pointers to matrices in GPU device memory. double *A; double *B; double *C_cutlass; double *C_reference; // // Allocate matrices in GPU device memory with arbitrary seeds. // result = AllocateMatrix(&A, lda, M, M, 0, cutlass::FillMode::kLower); if (result != cudaSuccess) { return result; } result = AllocateMatrix(&B, ldb, M, N, 17); if (result != cudaSuccess) { cudaFree(A); return result; } result = AllocateMatrix(&C_cutlass, ldc, M, N, 101); if (result != cudaSuccess) { cudaFree(A); cudaFree(B); return result; } result = AllocateMatrix(&C_reference, ldc, M, N, 101); if (result != cudaSuccess) { cudaFree(A); cudaFree(B); cudaFree(C_cutlass); return result; } result = cudaMemcpy(C_reference, C_cutlass, sizeof_C, cudaMemcpyDeviceToDevice); if (result != cudaSuccess) { std::cerr << "Failed to copy C_cutlass matrix to C_reference: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(B); cudaFree(A); return result; } // // Launch CUTLASS TRMM. // result = CutlassStrmmNN(M, N, alpha, A, lda, B, ldb, C_cutlass, ldc); if (result != cudaSuccess) { std::cerr << "CUTLASS TRMM kernel failed: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(B); cudaFree(A); return result; } // // Verify. // // Launch reference TRMM result = ReferenceTrmm(M, N, alpha, A, lda, B, ldb, C_reference, ldc); if (result != cudaSuccess) { std::cerr << "Reference TRMM kernel failed: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(B); cudaFree(A); return result; } // Copy to host and verify equivalence. std::vector host_cutlass(ldc * N, 0); std::vector host_reference(ldc * N, 0); result = cudaMemcpy(host_cutlass.data(), C_cutlass, sizeof_C, cudaMemcpyDeviceToHost); if (result != cudaSuccess) { std::cerr << "Failed to copy CUTLASS TRMM results: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(B); cudaFree(A); return result; } result = cudaMemcpy(host_reference.data(), C_reference, sizeof_C, cudaMemcpyDeviceToHost); if (result != cudaSuccess) { std::cerr << "Failed to copy Reference TRMM results: " << cudaGetErrorString(result) << std::endl; cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(B); cudaFree(A); return result; } // // Free device memory allocations. // cudaFree(C_reference); cudaFree(C_cutlass); cudaFree(B); cudaFree(A); // // Test for bit equivalence of results. // if (host_cutlass != host_reference) { std::cerr << "CUTLASS results incorrect." << std::endl; return cudaErrorUnknown; } return cudaSuccess; } /////////////////////////////////////////////////////////////////////////////////////////////////// /// Entry point to basic_trmm example. // // usage: // // 00_basic_trmm // int main(int argc, const char *arg[]) { bool notSupported = false; // CUTLASS must be compiled with CUDA 11 Toolkit to run these examples. if (!(__CUDACC_VER_MAJOR__ >= 11)) { std::cerr << "NVIDIA Ampere Tensor Core operations must be compiled with CUDA 11.0 Toolkit or later." << std::endl; notSupported = true; } cudaDeviceProp props; cudaError_t error = cudaGetDeviceProperties(&props, 0); if (error != cudaSuccess) { std::cerr << "cudaGetDeviceProperties() returned an error: " << cudaGetErrorString(error) << std::endl; return -1; } if (!((props.major * 10 + props.minor) >= 80)) { std::cerr << "This example requires compute capability at least 80." << std::endl; notSupported = true; } if (notSupported) { return 0; } // // Parse the command line to obtain TRMM dimensions and scalar values. // // TRMM problem dimensions. int problem[2] = { 128, 128 }; for (int i = 1; i < argc && i < 3; ++i) { std::stringstream ss(arg[i]); ss >> problem[i - 1]; } // Scalars used for linear scaling the result of the matrix product. double scalars[1] = { 1 }; for (int i = 3; i < argc && i < 4; ++i) { std::stringstream ss(arg[i]); ss >> scalars[i - 3]; } // // Run the CUTLASS TRMM test. // cudaError_t result = TestCutlassTrmm( problem[0], // TRMM M dimension problem[1], // TRMM N dimension scalars[0] // alpha ); if (result == cudaSuccess) { std::cout << "Passed." << std::endl; } // Exit. return result == cudaSuccess ? 0 : -1; } ///////////////////////////////////////////////////////////////////////////////////////////////////