################################################################################ # # Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ """ Basic example of using the CUTLASS Python interface to run a 2d convolution """ import sys print("This example is deprecated. Please see examples/python for examples of using " "the CUTLASS Python interface.") sys.exit(0) import argparse import numpy as np import torch import cutlass_bindings import cutlass.backend as pycutlass from cutlass.backend import * from cutlass.backend.utils.reference_model import Conv2dReferenceModule from cutlass.backend.utils.device import device_cc parser = argparse.ArgumentParser( description=("Launch a 2d convolution kernel from Python. " "See https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html#convo-intro for notation.")) parser.add_argument("--n", default=1, type=int, help="N dimension of the convolution") parser.add_argument("--c", default=64, type=int, help="C dimension of the convolution") parser.add_argument("--h", default=32, type=int, help="H dimension of the convolution") parser.add_argument("--w", default=32, type=int, help="W dimension of the convolution") parser.add_argument("--k", default=32, type=int, help="N dimension of the convolution") parser.add_argument("--r", default=3, type=int, help="R dimension of the convolution") parser.add_argument("--s", default=3, type=int, help="S dimension of the convolution") parser.add_argument('--print_cuda', action="store_true", help="Print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) # Check that the device is of a sufficient compute capability cc = device_cc() assert cc >= 70, "The CUTLASS Python Conv2d example requires compute capability greater than or equal to 70." alignment = 1 np.random.seed(0) # Allocate a pool of device memory to be used by the kernel pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) # Set the compiler to use to NVCC pycutlass.compiler.nvcc() # Set up A, B, C and accumulator A = TensorDescription(cutlass_bindings.float16, cutlass_bindings.TensorNHWC, alignment) B = TensorDescription(cutlass_bindings.float16, cutlass_bindings.TensorNHWC, alignment) C = TensorDescription(cutlass_bindings.float32, cutlass_bindings.TensorNHWC, alignment) element_acc = cutlass_bindings.float32 element_epilogue = cutlass_bindings.float32 # Select instruction shape based on the Tensor Core instructions supported # by the device on which we are running if cc == 70: instruction_shape = [8, 8, 4] elif cc == 75: instruction_shape = [16, 8, 8] else: # Use CUTLASS kernels for CC 80 by default (e.g., for cases in which SM86 is used) cc = 80 instruction_shape = [16, 8, 16] math_inst = MathInstruction( instruction_shape, A.element, B.element, element_acc, cutlass_bindings.OpClass.TensorOp, MathOperation.multiply_add ) tile_description = TileDescription( [128, 128, 32], # Threadblock shape 2, # Number of stages [2, 2, 1], # Number of warps within each dimension of the threadblock shape math_inst ) epilogue_functor = pycutlass.LinearCombination(C.element, C.alignment, element_acc, element_epilogue) operation = Conv2dOperation( conv_kind=cutlass_bindings.conv.Operator.fprop, iterator_algorithm=cutlass_bindings.conv.IteratorAlgorithm.optimized, arch=cc, tile_description=tile_description, A=A, B=B, C=C, stride_support=StrideSupport.Strided, epilogue_functor=epilogue_functor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] # Compile the operation pycutlass.compiler.add_module(operations) # Randomly initialize tensors problem_size = cutlass_bindings.conv.Conv2dProblemSize( cutlass_bindings.Tensor4DCoord(args.n, args.h, args.c, args.w), cutlass_bindings.Tensor4DCoord(args.k, args.r, args.s, args.c), cutlass_bindings.Tensor4DCoord(0, 0, 0, 0), # Padding cutlass_bindings.MatrixCoord(1, 1), # Strides cutlass_bindings.MatrixCoord(1, 1), # Dilation cutlass_bindings.conv.Mode.cross_correlation, 1, # Split k slices 1 # Groups ) tensor_A_size = cutlass_bindings.conv.implicit_gemm_tensor_a_size(operation.conv_kind, problem_size) tensor_B_size = cutlass_bindings.conv.implicit_gemm_tensor_b_size(operation.conv_kind, problem_size) tensor_C_size = cutlass_bindings.conv.implicit_gemm_tensor_c_size(operation.conv_kind, problem_size) tensor_A = torch.ceil(torch.empty(size=(tensor_A_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) tensor_B = torch.ceil(torch.empty(size=(tensor_B_size,), dtype=torch.float16, device="cuda").uniform_(-8.5, 7.5)) tensor_C = torch.ceil(torch.empty(size=(tensor_C_size,), dtype=torch.float32, device="cuda").uniform_(-8.5, 7.5)) tensor_D = torch.ones(size=(tensor_C_size,), dtype=torch.float32, device="cuda") alpha = 1. beta = 0. arguments = Conv2dArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=operation.epilogue_type(alpha, beta) ) # Run the operation operation.run(arguments) arguments.sync() # Run the host reference module and compare to the CUTLASS result reference = Conv2dReferenceModule(A, B, C, operation.conv_kind) tensor_D_ref = reference.run(tensor_A, tensor_B, tensor_C, problem_size, alpha, beta) try: assert torch.equal(tensor_D, tensor_D_ref) except: assert torch.allclose(tensor_D, tensor_D_ref, rtol=1e-2) print("Passed.")