################################################################################ # # Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################ import sys print("This example is deprecated. Please see examples/python for examples of using " "the CUTLASS Python interface.") sys.exit(0) import numpy as np import cutlass.backend as pycutlass from cutlass.backend import * from cutlass.backend.utils.device import device_cc import cutlass_bindings from bfloat16 import bfloat16 import argparse # parse the arguments parser = argparse.ArgumentParser(description="Launch CUTLASS GEMM kernels from Python: 'D = alpha * A * B + beta * C'") # Operation description # math instruction description parser.add_argument("-i", "--instruction_shape", default=[1, 1, 1], nargs=3, type=int, help="This option describes the size of MMA op") parser.add_argument("-ta", "--element_a", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor A') parser.add_argument("-tb", "--element_b", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor B') parser.add_argument("-tc", "--element_c", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of elements in input tensor C and output tensor D') parser.add_argument("-tacc", "--element_acc", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16', 'int32', 'int8'], help='Data type of accumulator') parser.add_argument('-m', "--math", default="multiply_add", type=str, choices=["multiply_add", "multiply_add_fast_bf16", "multiply_add_fast_f32"], help="math instruction") parser.add_argument('-op', "--opcode", default="Simt", type=str, choices=["Simt", 'TensorOp'], help="This option describes whether you want to use tensor \ cores (TensorOp) or regular SIMT cores (Simt) on GPU SM") # tile description parser.add_argument("-b", "--threadblock_shape", default=[128, 128, 8], nargs=3, type=int, help="This option describes the tile size a thread block with compute") parser.add_argument("-s", "--stages", default=4, type=int, help="Number of pipelines you want to use") parser.add_argument("-w", "--warp_count", default=[4, 2, 1], nargs=3, type=int, help="This option describes the number of warps along M, N, and K of the threadblock") parser.add_argument("-cc", "--compute_capability", default=80, type=int, help="This option describes CUDA SM architecture number") # A parser.add_argument('-la', "--layout_a", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor A") parser.add_argument('-aa', '--alignment_a', default=1, type=int, help="Memory alignement of input tensor A") # B parser.add_argument('-lb', "--layout_b", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor B") parser.add_argument('-ab', '--alignment_b', default=1, type=int, help="Memory alignment of input tensor B") # C parser.add_argument('-lc', "--layout_c", default="RowMajor", type=str, choices=[ "RowMajor", "ColumnMajor", "RowMajorInterleaved32", "ColumnMajorInterleaved32"], help="Memory layout of input tensor C and output tensor D") parser.add_argument('-ac', '--alignment_c', default=1, type=int, help="Memory alignment of input tensor C and output tensor D") # epilogue parser.add_argument("-te", "--element_epilogue", default="float32", type=str, choices=['float64', 'float32', 'float16', 'bfloat16'], help='Epilogue datatype') parser.add_argument("-ep", "--epilogue_functor", default="LinearCombination", type=str, choices=['LinearCombination', 'FastLinearCombinationClamp', 'LinearCombinationClamp'], help="This option describes the epilogue part of the kernel") # swizzling parser.add_argument("-sw", "--swizzling_functor", default="IdentitySwizzle1", type=str, choices=[ "IdentitySwizzle1", "IdentitySwizzle2", "IdentitySwizzle4", "IdentitySwizzle8", "HorizontalSwizzle", "BatchedIdentitySwizzle"], help="This option describes how thread blocks are scheduled on GPU") # Argument parser.add_argument("-p", "--problem_size", default=[128, 128, 128], nargs=3, type=int, help="GEMM problem size M, N, K") parser.add_argument("-alpha", "--alpha", default=1.0, type=float, help="Scaling factor of A * B") parser.add_argument("-beta", "--beta", default=0.0, type=float, help="Scaling factor of C") parser.add_argument("-gm", "--gemm_mode", default="Gemm", type=str, choices=["Gemm", "GemmSplitKParallel", "Batched", "Array"], help="GEMM mode. Gemm is used for non-splitK or serial-splitK. \ GemmSplitKParallel is used for parallel splitK") parser.add_argument('-k', '--split_k_slices', default=1, type=int, help="Number of split-k partitions. (default 1)") parser.add_argument('-bias', '--bias', action='store_true', help="C is bias vector") parser.add_argument('-batch', '--batch', default=1, type=int, help="batch size for batched GEMM") # Activation function parser.add_argument("-activ", "--activation_function", default="identity", choices=["identity", "relu", "leaky_relu", "tanh", "sigmoid", "silu", "hardswish", "gelu"], help="activation function") parser.add_argument("-activ_arg", "--activation_args", default=[], nargs="+", type=float, help="addition arguments for activation") parser.add_argument('--print_cuda', action="store_true", help="print the underlying CUDA kernel") try: args = parser.parse_args() except: sys.exit(0) cc = device_cc() if args.compute_capability != cc: raise Exception(("Parameter --compute-capability of {} " "does not match that of the device of {}.").format(args.compute_capability, cc)) pycutlass.get_memory_pool(init_pool_size=2**30, max_pool_size=2**32) pycutlass.compiler.nvcc() np.random.seed(0) element_a = getattr(cutlass_bindings, args.element_a) element_b = getattr(cutlass_bindings, args.element_b) element_c = getattr(cutlass_bindings, args.element_c) element_acc = getattr(cutlass_bindings, args.element_acc) math_operation = getattr(MathOperation, args.math) opclass = getattr(cutlass_bindings.OpClass, args.opcode) math_inst = MathInstruction( args.instruction_shape, element_a, element_b, element_acc, opclass, math_operation ) tile_description = TileDescription( args.threadblock_shape, args.stages, args.warp_count, math_inst ) layout_a = getattr(cutlass_bindings, args.layout_a) layout_b = getattr(cutlass_bindings, args.layout_b) layout_c = getattr(cutlass_bindings, args.layout_c) A = TensorDescription( element_a, layout_a, args.alignment_a ) B = TensorDescription( element_b, layout_b, args.alignment_b ) C = TensorDescription( element_c, layout_c, args.alignment_c ) element_epilogue = getattr(cutlass_bindings, args.element_epilogue) if (args.activation_function == "identity" or (args.gemm_mode == "GemmSplitKParallel" and args.split_k_slices > 1)): # epilogue_functor = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) swizzling_functor = getattr(cutlass_bindings, args.swizzling_functor) operation = GemmOperationUniversal( arch=args.compute_capability, tile_description=tile_description, A=A, B=B, C=C, epilogue_functor=epilogue_functor, swizzling_functor=swizzling_functor ) if args.print_cuda: print(operation.rt_module.emit()) operations = [operation, ] if args.gemm_mode == "GemmSplitKParallel": if (args.activation_function == "identity"): epilogue_functor_reduction = getattr(pycutlass, args.epilogue_functor)( C.element, C.alignment, math_inst.element_accumulator, element_epilogue) else: epilogue_functor_reduction = getattr(pycutlass, "LinearCombinationGeneric")( getattr(pycutlass, args.activation_function)(element_epilogue), C.element, C.alignment, math_inst.element_accumulator, element_epilogue) reduction_operation = ReductionOperation( shape=cutlass_bindings.MatrixCoord(4, 32 * C.alignment), C=C, element_accumulator=element_acc, element_compute=element_epilogue, epilogue_functor=epilogue_functor_reduction, count=C.alignment ) operations.append(reduction_operation) pycutlass.compiler.add_module(operations) # User-provide inputs problem_size = cutlass_bindings.gemm.GemmCoord( args.problem_size[0], args.problem_size[1], args.problem_size[2]) tensor_a_size = args.batch * problem_size.m() * problem_size.k() if args.element_a != "int8": if args.element_a == "bfloat16": tensor_A = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_a_size,)) ).astype(bfloat16) else: tensor_A = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_a_size,)) ).astype(getattr(np, args.element_a)) else: tensor_A = np.random.uniform( low=-2, high=2,size=(tensor_a_size,) ).astype(getattr(np, args.element_a)) tensor_b_size = args.batch * problem_size.k() * problem_size.n() if args.element_b != "int8": if args.element_b == "bfloat16": tensor_B = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_b_size,)) ).astype(bfloat16) else: tensor_B = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_b_size,)) ).astype(getattr(np, args.element_b)) else: tensor_B = np.random.uniform( low=-2, high=2, size=(tensor_b_size,) ).astype(getattr(np, args.element_b)) if args.element_c != "int8": if args.bias: if args.layout_c == "RowMajor": tensor_c_size = args.batch * problem_size.n() elif args.layout_c == "ColumnMajor": tensor_c_size = args.batch * problem_size.m() else: raise ValueError(args.layout_c) else: tensor_c_size = args.batch * problem_size.m() * problem_size.n() if args.element_c == "bfloat16": tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_c_size,)) ).astype(bfloat16) else: tensor_C = np.ceil( np.random.uniform(low=-8.5, high=7.5, size=(tensor_c_size,)) ).astype(getattr(np, args.element_c)) else: tensor_C = np.random.uniform( low=-2, high=2, size=(args.batch * problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) tensor_D = np.zeros( shape=(args.batch * problem_size.m() * problem_size.n(),) ).astype(getattr(np, args.element_c)) output_op = operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)) arguments = GemmArguments( operation=operation, problem_size=problem_size, A=tensor_A, B=tensor_B, C=tensor_C, D=tensor_D, output_op=output_op, gemm_mode=getattr(cutlass_bindings.gemm.Mode, args.gemm_mode), split_k_slices=args.split_k_slices, batch=args.batch ) if args.gemm_mode == "GemmSplitKParallel": reduction_arguments = ReductionArguments( operation=reduction_operation, problem_size=[problem_size.m(), problem_size.n()], partitions=args.split_k_slices, workspace=arguments.ptr_D, destination=tensor_D, source=tensor_C, output_op=reduction_operation.epilogue_type(*([args.alpha, args.beta] + args.activation_args)), bias = arguments.bias ) operation.run(arguments) if args.gemm_mode == "GemmSplitKParallel": reduction_operation.run(reduction_arguments) reduction_arguments.sync() else: arguments.sync() # run the host reference module reference = ReferenceModule(A, B, C) tensor_D_ref = reference.run( tensor_A, tensor_B, tensor_C, problem_size, args.alpha, args.beta, args.bias, args.batch) tensor_D_ref = getattr(pycutlass, args.activation_function).numpy(*([tensor_D_ref,] + args.activation_args)) try: assert np.array_equal(tensor_D, tensor_D_ref) except: assert np.allclose(tensor_D, tensor_D_ref, atol=1e-5) print("Passed.")