/*************************************************************************************************** * Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ /*! \file \brief CUTLASS Dual-GEMM Example. Fused kernel that outputs `D0` and `D1`. We assume that B0/B1 have the same shape/layout ``` D0 = epilogue0(X @ B0, C0) D1 = epilogue1(X @ B1, C1) D2 = element_wise(D0, D1) ``` D0 and D1 will be optionally stored in gmem (`kStoreD0` / `kStoreD1`) */ #include #include "cutlass/cutlass.h" #include "cutlass/gemm/device/gemm.h" #include "cutlass/util/host_tensor.h" #include "cutlass/util/tensor_view_io.h" #include "cutlass/util/reference/host/tensor_fill.h" #include "cutlass/util/reference/host/tensor_copy.h" #include "cutlass/util/reference/host/tensor_compare.h" #include "cutlass/util/reference/host/gemm.h" #include "device/dual_gemm.h" #include "thread/left_silu_and_mul.h" #include "dual_gemm_run.h" #include "test_run.h" //////////////////////////////////////////////////////////////////////////////// cutlass::gemm::GemmCoord problem_size(4096, 4096, 8192); cutlass::gemm::GemmCoord batch_problem_size(321, 256, 512); constexpr int kStages = 3; constexpr bool kSplitKSerial = false; constexpr bool kUseBias = true; constexpr int kBatchCount = 37; #if 0 using ElementOperandA = cutlass::bfloat16_t; using ElementOperandB = cutlass::bfloat16_t; using ElementOutput = cutlass::bfloat16_t; using ElementAccumulator = float; using ElementCompute = float; #else using ElementOperandA = cutlass::half_t; using ElementOperandB = cutlass::half_t; using ElementOutput = cutlass::half_t; using ElementAccumulator = cutlass::half_t; using ElementCompute = cutlass::half_t; #endif constexpr auto kScaleType = kUseBias ? cutlass::epilogue::thread::ScaleType::NoBetaScaling : ( // No bias kSplitKSerial ? cutlass::epilogue::thread::ScaleType::Default : cutlass::epilogue::thread::ScaleType::Nothing ); using EpilogueOutputOp0 = cutlass::epilogue::thread::LinearCombination< ElementOutput, 128 / cutlass::sizeof_bits::value, ElementAccumulator, ElementCompute, kScaleType >; using EpilogueOutputOp1 = cutlass::epilogue::thread::LinearCombination< ElementOutput, 128 / cutlass::sizeof_bits::value, ElementAccumulator, ElementCompute, kScaleType >; using EpilogueOutputOp2 = cutlass::epilogue::thread::LeftSiLUAndMul< ElementOutput, 128 / cutlass::sizeof_bits::value, ElementOutput, ElementCompute >; const ElementCompute alpha0 = ElementCompute(1); const ElementCompute beta0 = ElementCompute(kUseBias ? 1 : 0); const ElementCompute alpha1 = ElementCompute(1); const ElementCompute beta1 = ElementCompute(kUseBias ? 1 : 0); bool run_nonfused_gemm_f16_sm80() { using ThreadblockShape = cutlass::gemm::GemmShape<128, 128, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 64, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; using Gemm0 = cutlass::gemm::device::Gemm< ElementOperandA, cutlass::layout::RowMajor, ElementOperandB, cutlass::layout::ColumnMajor, ElementOutput, cutlass::layout::RowMajor, ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, ThreadblockShape, WarpShape, InstructionShape, EpilogueOutputOp0, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, kStages, 8, 8, kSplitKSerial >; using Gemm1 = cutlass::gemm::device::Gemm< ElementOperandA, cutlass::layout::RowMajor, ElementOperandB, cutlass::layout::ColumnMajor, ElementOutput, cutlass::layout::RowMajor, ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, ThreadblockShape, WarpShape, InstructionShape, EpilogueOutputOp1, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, kStages, 8, 8, kSplitKSerial >; NonFusedDualGemmRun nonFusedGemm; std::cout << "Running Non-fused GEMMs FP16 TN GEMMs...\n"; bool pass = nonFusedGemm.run( problem_size, alpha0, beta0, alpha1, beta1, true /* is_profiling */ ); if(pass) std::cout << "Pass\n"; else std::cout << "Fail\n"; return pass; } template struct LeftSiLUAndMul { struct Params{}; CUTLASS_HOST_DEVICE LeftSiLUAndMul(Params p) {} CUTLASS_HOST_DEVICE void set_k_partition(int, int) {} CUTLASS_HOST_DEVICE T operator() ( T const &lhs, T const &rhs) const { cutlass::epilogue::thread::SiLu silu; cutlass::multiplies mul; auto silu_lhs = silu(lhs); return mul(silu_lhs, rhs); } template CUTLASS_HOST_DEVICE cutlass::Array operator() ( cutlass::Array const &lhs, cutlass::Array const &rhs) const { cutlass::epilogue::thread::SiLu silu; cutlass::multiplies mul; auto silu_lhs = silu(lhs); return mul(silu_lhs, rhs); } }; bool run_fused_gemm_f16_sm80_shmem() { using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; // Optionally, we might not need intermediate GEMM outputs constexpr bool kStoreD0 = true; constexpr bool kStoreD1 = true; using DualGemm = cutlass::gemm::device::DualGemm< ElementOperandA, cutlass::layout::RowMajor, ElementOperandB, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor, ElementOutput, cutlass::layout::RowMajor, ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, ThreadblockShape, WarpShape, InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1, EpilogueOutputOp2, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, kStages, kStoreD0, kStoreD1, kSplitKSerial >; DualFusedGemmRun fusedGemm; std::cout << "Running Fused FP16 TN GEMMs + Epilogue2...\n"; bool passed = fusedGemm.run( problem_size, alpha0, beta0, alpha1, beta1 ); if(passed) std::cout << "Pass\n"; else std::cout << "Fail\n"; return passed; } bool run_batched_fused_gemm_f16_sm80_shmem() { using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; // Optionally, we might not need intermediate GEMM outputs constexpr bool kStoreD0 = true; constexpr bool kStoreD1 = true; using DualGemm = cutlass::gemm::device::DualGemm< ElementOperandA, cutlass::layout::RowMajor, ElementOperandB, cutlass::layout::ColumnMajor, cutlass::layout::ColumnMajor, ElementOutput, cutlass::layout::RowMajor, ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, ThreadblockShape, WarpShape, InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1, EpilogueOutputOp2, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, kStages, kStoreD0, kStoreD1, kSplitKSerial >; DualFusedGemmRun fusedGemm; std::cout << "Running Batched Fused FP16 TN GEMMs + Epilogue2...\n"; bool passed = fusedGemm.run( batch_problem_size, alpha0, beta0, alpha1, beta1, kBatchCount, false, /* broadcast_b1 */ false /* is_profiling */ ); if(passed) std::cout << "Pass\n"; else std::cout << "Fail\n"; return passed; } bool run_broadcast_fused_gemm_f16_sm80_shmem() { using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; // Optionally, we might not need intermediate GEMM outputs constexpr bool kStoreD0 = true; constexpr bool kStoreD1 = true; using DualGemm = cutlass::gemm::device::DualGemm< ElementOperandA, cutlass::layout::RowMajor, ElementOperandB, // different LayoutB0 and B1 cutlass::layout::RowMajor, cutlass::layout::ColumnMajor, ElementOutput, cutlass::layout::RowMajor, ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, ThreadblockShape, WarpShape, InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1, EpilogueOutputOp2, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, kStages, kStoreD0, kStoreD1, kSplitKSerial >; DualFusedGemmRun fusedGemm; std::cout << "Running Broadcast Fused FP16 TN GEMMs + Epilogue2...\n"; bool passed = fusedGemm.run( problem_size, alpha0, beta0, alpha1, beta1, 1, /* batch_count */ true, /* broadcast_b1 */ true /* is_profiling */ ); if(passed) std::cout << "Pass\n"; else std::cout << "Fail\n"; return passed; } bool run_batched_broadcast_fused_gemm_f16_sm80_shmem() { using ThreadblockShape = cutlass::gemm::GemmShape<128, 64, 32>; using WarpShape = cutlass::gemm::GemmShape<64, 32, 32>; using InstructionShape = cutlass::gemm::GemmShape<16, 8, 16>; // Optionally, we might not need intermediate GEMM outputs constexpr bool kStoreD0 = true; constexpr bool kStoreD1 = true; using DualGemm = cutlass::gemm::device::DualGemm< ElementOperandA, cutlass::layout::RowMajor, ElementOperandB, // different LayoutB0 and B1 cutlass::layout::RowMajor, cutlass::layout::ColumnMajor, ElementOutput, cutlass::layout::RowMajor, ElementAccumulator, cutlass::arch::OpClassTensorOp, cutlass::arch::Sm80, ThreadblockShape, WarpShape, InstructionShape, EpilogueOutputOp0, EpilogueOutputOp1, EpilogueOutputOp2, cutlass::gemm::threadblock::GemmIdentityThreadblockSwizzle<1>, kStages, kStoreD0, kStoreD1, kSplitKSerial >; DualFusedGemmRun fusedGemm; std::cout << "Running Batch Broadcast Fused FP16 TN GEMMs + Epilogue2...\n"; bool passed = fusedGemm.run( batch_problem_size, alpha0, beta0, alpha1, beta1, kBatchCount, true, /* broadcast_b1 */ false /* is_profiling */ ); if(passed) std::cout << "Pass\n"; else std::cout << "Fail\n"; return passed; } int main() { std::vectorfuncs = { &run_nonfused_gemm_f16_sm80, &run_fused_gemm_f16_sm80_shmem, &run_batched_fused_gemm_f16_sm80_shmem, &run_broadcast_fused_gemm_f16_sm80_shmem, &run_batched_broadcast_fused_gemm_f16_sm80_shmem }; std::string test_name = ( "dual-gemm f16 bias=" + std::to_string(kUseBias) + " split_k_serial=" + std::to_string(kSplitKSerial) + " batch_count=" + std::to_string(kBatchCount) ); return testRun(80, funcs, test_name); } ////////////////////////////////////////////////////////////////////////////////