/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include "cutlass/cutlass.h" #include "cutlass/kernel_hardware_info.hpp" #include "cutlass/gemm/gemm.h" #include "cutlass/gemm/dispatch_policy.hpp" #include "cute/tensor.hpp" #include "gather_tensor.hpp" namespace cutlass::gemm::kernel { /////////////////////////////////////////////////////////////////////////////// template < class ProblemShape_, class CollectiveMainloop_, class CollectiveEpilogue_, class TileScheduler_, class GatherA_, class GatherB_ > class GemmGather { public: // // Type Aliases // using ProblemShape = ProblemShape_; static_assert(cute::rank(ProblemShape{}) == 3 or cute::rank(ProblemShape{}) == 4, "ProblemShape{} should be or "); // Mainloop derived types using CollectiveMainloop = CollectiveMainloop_; using TileShape = typename CollectiveMainloop::TileShape; using TiledMma = typename CollectiveMainloop::TiledMma; using ArchTag = typename CollectiveMainloop::ArchTag; using ElementA = typename CollectiveMainloop::ElementA; using StrideA = typename CollectiveMainloop::StrideA; using ElementB = typename CollectiveMainloop::ElementB; using StrideB = typename CollectiveMainloop::StrideB; using DispatchPolicy = typename CollectiveMainloop::DispatchPolicy; using ElementAccumulator = typename CollectiveMainloop::ElementAccumulator; using ClusterShape = typename DispatchPolicy::ClusterShape; using MainloopArguments = typename CollectiveMainloop::Arguments; using MainloopParams = typename CollectiveMainloop::Params; static_assert(ArchTag::kMinComputeCapability >= 90); // Epilogue derived types using CollectiveEpilogue = CollectiveEpilogue_; using ElementC = typename CollectiveEpilogue::ElementC; using StrideC = typename CollectiveEpilogue::StrideC; using ElementD = typename CollectiveEpilogue::ElementD; using StrideD = typename CollectiveEpilogue::StrideD; using EpilogueArguments = typename CollectiveEpilogue::Arguments; using EpilogueParams = typename CollectiveEpilogue::Params; static_assert(cute::is_void_v or cute::is_same_v, "Non-persistent warp-specialized kernel does not support specializing the tile scheduler."); using TileSchedulerTag = TileScheduler_; using TileScheduler = typename detail::TileSchedulerSelector< TileScheduler_, ArchTag, TileShape, ClusterShape>::Scheduler; using TileSchedulerArguments = typename TileScheduler::Arguments; using GatherA = GatherA_; using GatherB = GatherB_; // Kernel level shared memory storage struct SharedStorage { union TensorStorage { using MainloopTensorStorage = typename CollectiveMainloop::TensorStorage; using EpilogueTensorStorage = typename CollectiveEpilogue::TensorStorage; MainloopTensorStorage mainloop; EpilogueTensorStorage epilogue; } tensors; struct PipelineStorage : cute::aligned_struct<16> { using MainloopPipelineStorage = typename CollectiveMainloop::PipelineStorage; using EpiLoadPipelineStorage = typename CollectiveEpilogue::PipelineStorage; alignas(16) MainloopPipelineStorage mainloop; alignas(16) EpiLoadPipelineStorage epi_load; } pipelines; }; static constexpr int SharedStorageSize = sizeof(SharedStorage); using GmemTiledCopyA = typename CollectiveMainloop::GmemTiledCopyA; using GmemTiledCopyB = typename CollectiveMainloop::GmemTiledCopyB; static_assert(cute::size(GmemTiledCopyA{}) == cute::size(GmemTiledCopyB{}), "Number of threads in A/B tiled copies must be the same."); static constexpr uint32_t NumLoadWarpGroups = cute::size(GmemTiledCopyA{}) / NumThreadsPerWarpGroup; static constexpr uint32_t NumMmaWarpGroups = CUTE_STATIC_V(cute::size(TiledMma{})) / NumThreadsPerWarpGroup; static constexpr uint32_t NumWarpGroups = NumLoadWarpGroups + NumMmaWarpGroups; static_assert(NumWarpGroups == 2 || NumWarpGroups == 3, "Number of warp groups must be 2 or 3 for good performance."); static constexpr uint32_t MaxThreadsPerBlock = NumWarpGroups * NumThreadsPerWarpGroup; static constexpr uint32_t MinBlocksPerMultiprocessor = 1; // Device side arguments struct Arguments { GemmUniversalMode mode{}; ProblemShape problem_shape{}; MainloopArguments mainloop{}; EpilogueArguments epilogue{}; KernelHardwareInfo hw_info{}; TileSchedulerArguments scheduler{}; GatherA gather_A{}; GatherB gather_B{}; }; // Kernel entry point API struct Params { GemmUniversalMode mode; ProblemShape problem_shape; MainloopParams mainloop; EpilogueParams epilogue; GatherA gather_A{}; GatherB gather_B{}; }; // // Methods // // Convert to underlying arguments. In this case, a simple copy for the aliased type. static Params to_underlying_arguments(Arguments const& args, void* workspace) { (void) workspace; auto problem_shape = args.problem_shape; if constexpr (detail::IF_SWAP_AB::value) { // swap M/N get<0>(problem_shape) = get<1>(args.problem_shape); get<1>(problem_shape) = get<0>(args.problem_shape); } return { args.mode, problem_shape, CollectiveMainloop::to_underlying_arguments(args.problem_shape, args.mainloop, workspace), CollectiveEpilogue::to_underlying_arguments(args.problem_shape, args.epilogue, workspace), args.gather_A, args.gather_B }; } CUTLASS_HOST_DEVICE static bool can_implement(Arguments const& args) { bool implementable = (args.mode == GemmUniversalMode::kGemm) or (args.mode == GemmUniversalMode::kBatched && cute::rank(ProblemShape{}) == 4); if (!implementable) { CUTLASS_TRACE_HOST(" CAN IMPLEMENT: Arguments or Problem Shape don't meet the requirements.\n"); return implementable; } implementable &= CollectiveMainloop::can_implement(args.problem_shape, args.mainloop); implementable &= CollectiveEpilogue::can_implement(args.problem_shape, args.epilogue); return implementable; } static int get_workspace_size(Arguments const& args) { return 0; } static cutlass::Status initialize_workspace(Arguments const& args, void* workspace = nullptr, cudaStream_t stream = nullptr) { return Status::kSuccess; } // Computes the kernel launch grid shape based on runtime parameters static dim3 get_grid_shape(Params const& params) { auto cluster_shape = Shape<_1,_1,_1>{}; auto tile_shape = TileShape{}; auto problem_shape_MNKL = append<4>(params.problem_shape, Int<1>{}); return TileScheduler::get_tiled_cta_shape_mnl( problem_shape_MNKL, tile_shape, cluster_shape); } static dim3 get_block_shape() { return dim3(MaxThreadsPerBlock, 1, 1); } CUTLASS_DEVICE void operator()(Params const& params, char* smem_buf) { using namespace cute; using X = Underscore; // Any Tensor Op MMA Atom in the WGMMA ISA is arch conditional to sm90a. #if ! defined(__CUDA_ARCH_FEAT_SM90_ALL) if constexpr(size<0>(typename TiledMma::AtomShape_MNK{}) == 64) { printf("ERROR : Arch conditional MMA instruction used without targeting sm90a compute capability. Aborting.\n"); return; } #endif enum class WarpGroupRole { Producer = 0, Consumer = 1, }; // Kernel level shared memory storage SharedStorage& shared_storage = *reinterpret_cast(smem_buf); int thread_idx = int(threadIdx.x); int warp_group_thread_idx = thread_idx % NumThreadsPerWarpGroup; int warp_group_idx = canonical_warp_group_idx(); CUTLASS_ASSERT(warp_group_idx < NumWarpGroups); WarpGroupRole warp_group_role = warp_group_idx < NumLoadWarpGroups ? WarpGroupRole::Producer : WarpGroupRole::Consumer; // Mainloop Load pipeline using MainloopPipeline = typename CollectiveMainloop::MainloopPipeline; typename MainloopPipeline::Params mainloop_pipeline_params; if (warp_group_role == WarpGroupRole::Producer) { mainloop_pipeline_params.role = MainloopPipeline::ThreadCategory::Producer; } if (warp_group_role == WarpGroupRole::Consumer) { mainloop_pipeline_params.role = MainloopPipeline::ThreadCategory::Consumer; } mainloop_pipeline_params.producer_arv_count = NumLoadWarpGroups * NumThreadsPerWarpGroup; mainloop_pipeline_params.consumer_arv_count = NumMmaWarpGroups * NumThreadsPerWarpGroup; MainloopPipeline mainloop_pipeline(shared_storage.pipelines.mainloop, mainloop_pipeline_params); // Epilogue Load pipeline using EpiLoadPipeline = typename CollectiveEpilogue::LoadPipeline; typename EpiLoadPipeline::Params epi_load_pipeline_params; if (warp_group_role == WarpGroupRole::Producer) { epi_load_pipeline_params.role = EpiLoadPipeline::ThreadCategory::Producer; } if (warp_group_role == WarpGroupRole::Consumer) { epi_load_pipeline_params.role = EpiLoadPipeline::ThreadCategory::Consumer; } epi_load_pipeline_params.producer_arv_count = NumLoadWarpGroups * NumThreadsPerWarpGroup; epi_load_pipeline_params.consumer_arv_count = NumMmaWarpGroups * NumThreadsPerWarpGroup; EpiLoadPipeline epi_load_pipeline(shared_storage.pipelines.epi_load, epi_load_pipeline_params); // Epilogue Store pipeline using EpiStorePipeline = typename CollectiveEpilogue::StorePipeline; typename EpiStorePipeline::Params epi_store_pipeline_params; epi_store_pipeline_params.always_wait = true; EpiStorePipeline epi_store_pipeline(epi_store_pipeline_params); // Initialize starting pipeline states for the collectives typename CollectiveMainloop::PipelineState mainloop_pipe_consumer_state; typename CollectiveEpilogue::LoadPipelineState epi_load_pipe_consumer_state; // For the DMA Load (producer) we start with an opposite phase // i.e., we skip all waits since we know that the buffer is indeed empty PipelineState mainloop_pipe_producer_state = cutlass::make_producer_start_state(); PipelineState epi_load_pipe_producer_state = cutlass::make_producer_start_state(); PipelineState epi_store_pipe_producer_state = cutlass::make_producer_start_state(); // Preconditions static_assert(cute::rank(StrideA{}) == 3, "StrideA must be rank-3: [M, K, L]. If batch mode is not needed, set L stride to Int<0>."); static_assert(cute::rank(StrideB{}) == 3, "StrideB must be rank-3: [N, K, L]. If batch mode is not needed, set L stride to Int<0>."); static_assert(cute::rank(StrideC{}) == 3, "StrideC must be rank-3: [M, N, L]. If batch mode is not needed, set L stride to Int<0>."); static_assert(cute::rank(StrideD{}) == 3, "StrideD must be rank-3: [M, N, L]. If batch mode is not needed, set L stride to Int<0>."); // Separate out problem shape for convenience // Optionally append 1s until problem shape is rank-4 in case its is only rank-3 (MNK) auto problem_shape_MNKL = append<4>(params.problem_shape, Int<1>{}); auto M = get<0>(problem_shape_MNKL); auto N = get<1>(problem_shape_MNKL); auto K = get<2>(problem_shape_MNKL); auto L = get<3>(problem_shape_MNKL); // Represent the full tensors Tensor mA_mkl = make_gather_tensor(make_gmem_ptr(params.mainloop.ptr_A), make_shape(M,K,L), params.mainloop.dA, params.gather_A); //(m,k,l) Tensor mB_nkl = make_gather_tensor(make_gmem_ptr(params.mainloop.ptr_B), make_shape(N,K,L), params.mainloop.dB, params.gather_B); //(n,k,l) // Get the appropriate blocks for this thread block -- potential for thread block locality auto blk_shape = TileShape{}; // (BLK_M,BLK_N,BLK_K) TiledMma tiled_mma; // Make tiled views, defer the slice Tensor gA_mkl = local_tile(mA_mkl, blk_shape, make_coord(_,_,_), Step<_1, X,_1>{}); // (BLK_M,BLK_K,m,k,l) Tensor gB_nkl = local_tile(mB_nkl, blk_shape, make_coord(_,_,_), Step< X,_1,_1>{}); // (BLK_N,BLK_K,n,k,l) // Compute m_coord, n_coord, and l_coord with their post-tiled shapes auto m_coord = idx2crd(int(blockIdx.x), shape<2>(gA_mkl)); auto n_coord = idx2crd(int(blockIdx.y), shape<2>(gB_nkl)); auto l_coord = idx2crd(int(blockIdx.z), shape<4>(gB_nkl)); auto blk_coord = make_coord(m_coord, n_coord, _, l_coord); // Slice with m_coord and n_coord Tensor gA = gA_mkl(_,_,m_coord,_,l_coord); // (BLK_M,BLK_K,k) Tensor gB = gB_nkl(_,_,n_coord,_,l_coord); // (BLK_N,BLK_K,k) // Get pipeline iterators and increments from tensor shapes auto k_tile_iter = cute::make_coord_iterator(shape<2>(gA)); auto k_tile_count = size<2>(gA); auto c_tile_count = CollectiveEpilogue::get_load_pipe_increment(blk_shape); auto d_tile_count = CollectiveEpilogue::get_store_pipe_increment(blk_shape); // Wait for all threads in the thread block __syncthreads(); // In a warp specialized kernel, collectives expose data movement and compute operations separately CollectiveMainloop collective_mainloop; CollectiveEpilogue collective_epilogue{params.epilogue, shared_storage.tensors.epilogue}; if (warp_group_role == WarpGroupRole::Producer) { // Compute tile residues for predication auto m_max_coord = M - size<0>(gA) * get<0>(blk_coord); // M - BLK_M * m_coord auto n_max_coord = N - size<0>(gB) * get<1>(blk_coord); // N - BLK_N * n_coord auto k_residue = K - size<1>(gA) * size<2>(gA); // K - BLK_K * k_coord_max auto residue_mnk = make_tuple(m_max_coord, n_max_coord, k_residue); collective_mainloop.load( mainloop_pipeline, mainloop_pipe_producer_state, gA, gB, k_tile_iter, k_tile_count, residue_mnk, thread_idx, shared_storage.tensors.mainloop ); // Update starting mainloop pipeline state for the pipeline drain mainloop_pipe_producer_state.advance(k_tile_count); // Make sure mainloop consumer has been waited upon before issuing epilogue load collective_mainloop.load_tail(mainloop_pipeline, mainloop_pipe_producer_state); if (collective_epilogue.is_producer_load_needed()) { epi_load_pipe_producer_state = collective_epilogue.load( epi_load_pipeline, epi_load_pipe_producer_state, problem_shape_MNKL, blk_shape, blk_coord, tiled_mma, thread_idx, shared_storage.tensors.epilogue ); collective_epilogue.load_tail(epi_load_pipeline, epi_load_pipe_producer_state); } } else if (warp_group_role == WarpGroupRole::Consumer) { Tensor accumulators = partition_fragment_C(tiled_mma, take<0,2>(blk_shape)); // (MMA,MMA_M,MMA_N) collective_mainloop.mma( mainloop_pipeline, mainloop_pipe_consumer_state, accumulators, k_tile_count, warp_group_thread_idx, shared_storage.tensors.mainloop, params.mainloop ); // Make sure the math instructions are done and free buffers before entering the epilogue collective_mainloop.mma_tail( mainloop_pipeline, mainloop_pipe_consumer_state, k_tile_count ); // Epilogue and write to gD collective_epilogue.store( epi_load_pipeline, epi_load_pipe_consumer_state, epi_store_pipeline, epi_store_pipe_producer_state, problem_shape_MNKL, blk_shape, blk_coord, accumulators, tiled_mma, warp_group_thread_idx, shared_storage.tensors.epilogue ); } } }; /////////////////////////////////////////////////////////////////////////////// } // namespace cutlass::gemm::kernel