/*************************************************************************************************** * Copyright (c) 2023 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. * SPDX-License-Identifier: BSD-3-Clause * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * 1. Redistributions of source code must retain the above copyright notice, this * list of conditions and the following disclaimer. * * 2. Redistributions in binary form must reproduce the above copyright notice, * this list of conditions and the following disclaimer in the documentation * and/or other materials provided with the distribution. * * 3. Neither the name of the copyright holder nor the names of its * contributors may be used to endorse or promote products derived from * this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" * AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR * SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, * OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * **************************************************************************************************/ #pragma once #include "cute/numeric/math.hpp" namespace example { // Naive grid-stride loop implementation of gather template __global__ void gather_kernel(Element const * __restrict__ input, Element * __restrict__ output, Func func, int num_elems_input, int num_elems_output, cutlass::FastDivmod stride_divmod) { Element const * input_b = input + blockIdx.z * num_elems_input; Element * output_b = output + blockIdx.z * num_elems_output; int tidx = threadIdx.x + blockIdx.x * blockDim.x; for (int k = tidx; k < num_elems_output; k += blockDim.x * gridDim.x) { int i,j; stride_divmod(j, i, k); output_b[k] = input_b[i + func(j) * stride_divmod.divisor]; } } // Gather elements along strided dimension of the tensor according to given indices template void gather(Element const * input, Element * output, Func func, int batch_size, int num_elems_input, int num_elems_output, int stride, cutlass::KernelHardwareInfo const& hw_info) { // Upcast to uint128_t data type int factor = 128 / cutlass::sizeof_bits::value; assert(stride % factor == 0); int stride_upcast = stride/factor; int num_elems_input_upcast = num_elems_input / factor; int num_elems_output_upcast = num_elems_output / factor; cutlass::FastDivmod stride_divmod(stride_upcast); dim3 blocks(hw_info.sm_count, 1, batch_size); gather_kernel<<>>(reinterpret_cast(input), reinterpret_cast(output), func, num_elems_input_upcast, num_elems_output_upcast, stride_divmod); } // Naive grid-stride loop implementation of scatter template __global__ void scatter_kernel(Element const * __restrict__ input, Element * __restrict__ output, Func func, int num_elems_input, int num_elems_output, cutlass::FastDivmod stride_divmod) { Element const * input_b = input + blockIdx.z * num_elems_input; Element * output_b = output + blockIdx.z * num_elems_output; int tidx = threadIdx.x + blockIdx.x * blockDim.x; for (int k = tidx; k < num_elems_input; k += blockDim.x * gridDim.x) { int i,j; stride_divmod(j, i, k); output_b[i + func(j) * stride_divmod.divisor] = input_b[k]; } } // Gather elements along strided dimension of the tensor according to given indices template void scatter(Element const * input, Element * output, Func func, int batch_size, int num_elems_input, int num_elems_output, int stride, cutlass::KernelHardwareInfo const& hw_info) { // Upcast to uint128_t data type int factor = 128 / cutlass::sizeof_bits::value; assert(stride % factor == 0); int stride_upcast = stride/factor; int num_elems_input_upcast = num_elems_input / factor; int num_elems_output_upcast = num_elems_output / factor; cutlass::FastDivmod stride_divmod(stride_upcast); dim3 blocks(hw_info.sm_count, 1, batch_size); scatter_kernel<<>>(reinterpret_cast(input), reinterpret_cast(output), func, num_elems_input_upcast, num_elems_output_upcast, stride_divmod); } } // namespace example