################################################################################################# # # Copyright (c) 2017 - 2024 NVIDIA CORPORATION & AFFILIATES. All rights reserved. # SPDX-License-Identifier: BSD-3-Clause # # Redistribution and use in source and binary forms, with or without # modification, are permitted provided that the following conditions are met: # # 1. Redistributions of source code must retain the above copyright notice, this # list of conditions and the following disclaimer. # # 2. Redistributions in binary form must reproduce the above copyright notice, # this list of conditions and the following disclaimer in the documentation # and/or other materials provided with the distribution. # # 3. Neither the name of the copyright holder nor the names of its # contributors may be used to endorse or promote products derived from # this software without specific prior written permission. # # THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" # AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE # IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE # DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE # FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL # DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR # SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER # CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, # OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. # ################################################################################################# """ Utilities for emitting RankK kernels """ import enum import functools import operator import os.path import shutil try: import builtins if hasattr(builtins, "CUTLASS_IGNORE_PACKAGE") and CUTLASS_IGNORE_PACKAGE == True: raise ImportError("Disabling attempt to import cutlass_library") from cutlass_library.library import * except ImportError: from library import * ################################################################################################### # # Data structure modeling a Rank K update operation # ################################################################################################### # class RankKOperation: # def __init__(self, rank_k_kind, arch, tile_description, A, C, element_epilogue, \ epilogue_functor = EpilogueFunctor.LinearCombination, swizzling_functor = SwizzlingFunctor.Identity8, \ blas_mode = BlasMode.symmetric): self.blas_mode = blas_mode self.operation_kind = OperationKind.RankK self.arch = arch self.tile_description = tile_description self.rank_k_kind = rank_k_kind self.A = A self.C = C self.element_epilogue = element_epilogue self.epilogue_functor = epilogue_functor self.swizzling_functor = swizzling_functor # def is_complex(self): complex_operators = [ MathOperation.multiply_add_complex, MathOperation.multiply_add_complex_gaussian, MathOperation.multiply_add_complex_fast_f32 ] return self.tile_description.math_instruction.math_operation in complex_operators return False # def is_mixed_input(self): return False # def is_planar_complex(self): return False # def accumulator_type(self): accum = self.tile_description.math_instruction.element_accumulator if self.is_complex(): return get_complex_from_real(accum) return accum # def short_math_name(self): if self.tile_description.math_instruction.math_operation == MathOperation.multiply_add_complex_gaussian: return "g%s" % ShortDataTypeNames[self.accumulator_type()] return ShortDataTypeNames[self.accumulator_type()] # def core_name(self): ''' The basic operation kind is prefixed with a letter indicating the accumulation type. ''' inst_shape = '' inst_operation = '' intermediate_type = '' math_operations_map = { MathOperation.xor_popc: 'xor', MathOperation.and_popc: 'and' } if self.tile_description.math_instruction.opcode_class == OpcodeClass.TensorOp or \ self.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp: math_op = self.tile_description.math_instruction.math_operation math_op_string = math_operations_map[math_op] if math_op in math_operations_map.keys() else '' inst_shape = "%d%d%d" % tuple(self.tile_description.math_instruction.instruction_shape) inst_shape += math_op_string if self.tile_description.math_instruction.element_a != self.A.element and \ self.tile_description.math_instruction.element_a != self.tile_description.math_instruction.element_accumulator: intermediate_type = DataTypeNames[self.tile_description.math_instruction.element_a] operation_name = 'syrk' if self.blas_mode == BlasMode.symmetric else 'herk' return "%s%s%s%s" % (self.short_math_name(), inst_shape, intermediate_type, operation_name) # def extended_name(self): ''' Append data types if they differ from compute type. ''' if self.is_complex(): extended_name = "${core_name}" else: if self.C.element != self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${element_c}_${core_name}_${element_a}" elif self.C.element == self.tile_description.math_instruction.element_accumulator and \ self.A.element != self.tile_description.math_instruction.element_accumulator: extended_name = "${core_name}_${element_a}" else: extended_name = "${core_name}" extended_name = SubstituteTemplate(extended_name, { 'element_a': DataTypeNames[self.A.element], 'element_c': DataTypeNames[self.C.element], 'core_name': self.core_name() }) return extended_name # def layout_name(self): if self.is_complex() or self.is_planar_complex(): return "%s" % ( ShortComplexLayoutNames[(self.A.layout, self.A.complex_transform)] ) return "%s" % (ShortLayoutTypeNames[self.A.layout]) # def fill_mode_name(self): return "%s" % (ShortFillModeNames[self.C.fill_mode]) # def procedural_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' threadblock = self.tile_description.procedural_name() opcode_class_name = OpcodeClassNames[self.tile_description.math_instruction.opcode_class] alignment = max([self.A.alignment, self.C.alignment]) return SubstituteTemplate( "cutlass_${opcode_class}_${extended_name}_${threadblock}_${layout}_${fill_mode}_align${alignment}", { 'opcode_class': opcode_class_name, 'extended_name': self.extended_name(), 'threadblock': threadblock, 'layout': self.layout_name(), 'fill_mode': self.fill_mode_name(), 'alignment': "%d" % self.A.alignment, } ) # def configuration_name(self): ''' The full procedural name indicates architecture, extended name, tile size, and layout. ''' return self.procedural_name() ################################################################################################### # # Emits single instances of a CUTLASS device-wide operator # ################################################################################################### # class EmitRankKUniversalInstance: ''' Responsible for emitting a CUTLASS template definition''' def __init__(self): self.rank_k_template = """ // Rank K operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::RankK< ${element_a}, ${layout_a}, ${element_c}, ${layout_c}, ${fill_mode}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${split_k_serial}, ${math_operation} >; """ self.rank_k_complex_template = """ // Rank K operator ${operation_name} using Operation_${operation_name} = typename cutlass::gemm::device::RankK< ${element_a}, ${layout_a}, ${element_c}, ${layout_c}, ${fill_mode}, ${element_accumulator}, ${opcode_class}, ${arch}, cutlass::gemm::GemmShape<${threadblock_shape_m}, ${threadblock_shape_n}, ${threadblock_shape_k}>, cutlass::gemm::GemmShape<${warp_shape_m}, ${warp_shape_n}, ${warp_shape_k}>, cutlass::gemm::GemmShape<${instruction_shape_m}, ${instruction_shape_n}, ${instruction_shape_k}>, ${epilogue_functor}< ${element_c}, ${epilogue_vector_length}, ${element_accumulator}, ${element_epilogue} >, ${swizzling_functor}, ${stages}, ${align_a}, ${split_k_serial}, ${math_operation}, ${transform_a}, ${blas_mode} >; """ def emit(self, operation): threadblock_shape = operation.tile_description.threadblock_shape warp_count = operation.tile_description.warp_count warp_shape = [threadblock_shape[idx] // warp_count[idx] for idx in range(3)] epilogue_vector_length = int(min(operation.C.alignment * DataTypeSize[operation.C.element], 128) / DataTypeSize[operation.C.element]) values = { 'operation_name': operation.procedural_name(), 'element_a': DataTypeTag[operation.A.element], 'layout_a': LayoutTag[operation.A.layout], 'element_c': DataTypeTag[operation.C.element], 'layout_c': LayoutTag[operation.C.layout], 'fill_mode': FillModeTag[operation.C.fill_mode], 'element_accumulator': DataTypeTag[operation.accumulator_type()], 'opcode_class': OpcodeClassTag[operation.tile_description.math_instruction.opcode_class], 'arch': "cutlass::arch::Sm%d" % operation.arch, 'threadblock_shape_m': str(operation.tile_description.threadblock_shape[0]), 'threadblock_shape_n': str(operation.tile_description.threadblock_shape[1]), 'threadblock_shape_k': str(operation.tile_description.threadblock_shape[2]), 'warp_shape_m': str(warp_shape[0]), 'warp_shape_n': str(warp_shape[1]), 'warp_shape_k': str(warp_shape[2]), 'instruction_shape_m': str(operation.tile_description.math_instruction.instruction_shape[0]), 'instruction_shape_n': str(operation.tile_description.math_instruction.instruction_shape[1]), 'instruction_shape_k': str(operation.tile_description.math_instruction.instruction_shape[2]), 'epilogue_vector_length': str(epilogue_vector_length), 'element_epilogue': str(DataTypeTag[operation.element_epilogue]), 'epilogue_functor': EpilogueFunctorTag[operation.epilogue_functor], 'swizzling_functor': SwizzlingFunctorTag[operation.swizzling_functor], 'stages': str(operation.tile_description.stages), 'align_a': str(operation.A.alignment), 'split_k_serial': 'false', 'math_operation': MathOperationTag[operation.tile_description.math_instruction.math_operation], 'transform_a': ComplexTransformTag[operation.A.complex_transform], 'blas_mode': BlasModeTag[operation.blas_mode] } rank_k_template = self.rank_k_complex_template if operation.is_complex() else self.rank_k_template return SubstituteTemplate(rank_k_template, values) ################################################################################################### ################################################################################################### # # Emitters functions for all targets # ################################################################################################### class EmitRankKConfigurationLibrary: def __init__(self, operation_path, configuration_name): self.configuration_name = configuration_name self.configuration_path = os.path.join(operation_path, "%s.cu" % configuration_name).replace('\\', '/') self.instance_emitter = { RankKKind.Universal: EmitRankKUniversalInstance, } self.rank_k_kind_wrappers = { RankKKind.Universal: 'RankKOperation', } self.instance_template = { RankKKind.Universal: """ ${compile_guard_start} manifest.append(new ${rank_k_kind}< Operation_${operation_name} >("${operation_name}")); ${compile_guard_end} """ } self.header_template = """ /* Generated by rank_k_operation.py - Do not edit. */ /////////////////////////////////////////////////////////////////////////////////////////////////// #include "cutlass/cutlass.h" #include "cutlass/library/library.h" #include "cutlass/library/manifest.h" #include "library_internal.h" #include "rank_k_operation.h" /////////////////////////////////////////////////////////////////////////////////////////////////// """ self.initialize_function_template = """ /////////////////////////////////////////////////////////////////////////////////////////////////// namespace cutlass { namespace library { /////////////////////////////////////////////////////////////////////////////////////////////////// void initialize_${configuration_name}(Manifest &manifest) { """ self.epilogue_template = """ } /////////////////////////////////////////////////////////////////////////////////////////////////// } // namespace library } // namespace cutlass /////////////////////////////////////////////////////////////////////////////////////////////////// """ def __enter__(self): self.configuration_file = open(self.configuration_path, "w") self.configuration_file.write(self.header_template) self.instance_definitions = [] self.instance_wrappers = [] self.operations = [] return self def emit(self, operation): emitter = self.instance_emitter[operation.rank_k_kind]() self.operations.append(operation) self.instance_definitions.append(emitter.emit(operation)) self.instance_wrappers.append(SubstituteTemplate(self.instance_template[operation.rank_k_kind], { 'configuration_name': self.configuration_name, 'operation_name': operation.procedural_name(), 'rank_k_kind': self.rank_k_kind_wrappers[operation.rank_k_kind], 'compile_guard_start': SubstituteTemplate(self.wmma_guard_start, {'sm_number': str(operation.arch)}) \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "", 'compile_guard_end': "#endif" \ if operation.tile_description.math_instruction.opcode_class == OpcodeClass.WmmaTensorOp else "" })) def __exit__(self, exception_type, exception_value, traceback): # Write instance definitions in top-level namespace for instance_definition in self.instance_definitions: self.configuration_file.write(instance_definition) # Add wrapper objects within initialize() function self.configuration_file.write(SubstituteTemplate(self.initialize_function_template, { 'configuration_name': self.configuration_name })) for instance_wrapper in self.instance_wrappers: self.configuration_file.write(instance_wrapper) self.configuration_file.write(self.epilogue_template) self.configuration_file.close() ###################################################################################################