/******************************************************************************
* Copyright (c) 2011, Duane Merrill. All rights reserved.
* Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved.
*
* Redistribution and use in source and binary forms, with or without
* modification, are permitted provided that the following conditions are met:
* * Redistributions of source code must retain the above copyright
* notice, this list of conditions and the following disclaimer.
* * Redistributions in binary form must reproduce the above copyright
* notice, this list of conditions and the following disclaimer in the
* documentation and/or other materials provided with the distribution.
* * Neither the name of the NVIDIA CORPORATION nor the
* names of its contributors may be used to endorse or promote products
* derived from this software without specific prior written permission.
*
* THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND
* ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
* WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
* DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY
* DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES
* (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
* LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND
* ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
* (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
* SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*
******************************************************************************/
/**
* \file
* The cub::BlockHistogram class provides [collective](index.html#sec0) methods for constructing block-wide histograms from data samples partitioned across a CUDA thread block.
*/
#pragma once
#include "specializations/block_histogram_sort.cuh"
#include "specializations/block_histogram_atomic.cuh"
#include "../config.cuh"
#include "../util_ptx.cuh"
CUB_NAMESPACE_BEGIN
/******************************************************************************
* Algorithmic variants
******************************************************************************/
/**
* \brief BlockHistogramAlgorithm enumerates alternative algorithms for the parallel construction of block-wide histograms.
*/
enum BlockHistogramAlgorithm
{
/**
* \par Overview
* Sorting followed by differentiation. Execution is comprised of two phases:
* -# Sort the data using efficient radix sort
* -# Look for "runs" of same-valued keys by detecting discontinuities; the run-lengths are histogram bin counts.
*
* \par Performance Considerations
* Delivers consistent throughput regardless of sample bin distribution.
*/
BLOCK_HISTO_SORT,
/**
* \par Overview
* Use atomic addition to update byte counts directly
*
* \par Performance Considerations
* Performance is strongly tied to the hardware implementation of atomic
* addition, and may be significantly degraded for non uniformly-random
* input distributions where many concurrent updates are likely to be
* made to the same bin counter.
*/
BLOCK_HISTO_ATOMIC,
};
/******************************************************************************
* Block histogram
******************************************************************************/
/**
* \brief The BlockHistogram class provides [collective](index.html#sec0) methods for constructing block-wide histograms from data samples partitioned across a CUDA thread block. ![](histogram_logo.png)
* \ingroup BlockModule
*
* \tparam T The sample type being histogrammed (must be castable to an integer bin identifier)
* \tparam BLOCK_DIM_X The thread block length in threads along the X dimension
* \tparam ITEMS_PER_THREAD The number of items per thread
* \tparam BINS The number bins within the histogram
* \tparam ALGORITHM [optional] cub::BlockHistogramAlgorithm enumerator specifying the underlying algorithm to use (default: cub::BLOCK_HISTO_SORT)
* \tparam BLOCK_DIM_Y [optional] The thread block length in threads along the Y dimension (default: 1)
* \tparam BLOCK_DIM_Z [optional] The thread block length in threads along the Z dimension (default: 1)
* \tparam PTX_ARCH [optional] \ptxversion
*
* \par Overview
* - A histogram
* counts the number of observations that fall into each of the disjoint categories (known as bins).
* - The `T` type must be implicitly castable to an integer type.
* - BlockHistogram expects each integral `input[i]` value to satisfy
* `0 <= input[i] < BINS`. Values outside of this range result in undefined
* behavior.
* - BlockHistogram can be optionally specialized to use different algorithms:
* -# cub::BLOCK_HISTO_SORT. Sorting followed by differentiation. [More...](\ref cub::BlockHistogramAlgorithm)
* -# cub::BLOCK_HISTO_ATOMIC. Use atomic addition to update byte counts directly. [More...](\ref cub::BlockHistogramAlgorithm)
*
* \par Performance Considerations
* - \granularity
*
* \par A Simple Example
* \blockcollective{BlockHistogram}
* \par
* The code snippet below illustrates a 256-bin histogram of 512 integer samples that
* are partitioned across 128 threads where each thread owns 4 samples.
* \par
* \code
* #include // or equivalently
*
* __global__ void ExampleKernel(...)
* {
* // Specialize a 256-bin BlockHistogram type for a 1D block of 128 threads having 4 character samples each
* typedef cub::BlockHistogram BlockHistogram;
*
* // Allocate shared memory for BlockHistogram
* __shared__ typename BlockHistogram::TempStorage temp_storage;
*
* // Allocate shared memory for block-wide histogram bin counts
* __shared__ unsigned int smem_histogram[256];
*
* // Obtain input samples per thread
* unsigned char data[4];
* ...
*
* // Compute the block-wide histogram
* BlockHistogram(temp_storage).Histogram(data, smem_histogram);
*
* \endcode
*
* \par Performance and Usage Considerations
* - All input values must fall between [0, BINS), or behavior is undefined.
* - The histogram output can be constructed in shared or device-accessible memory
* - See cub::BlockHistogramAlgorithm for performance details regarding algorithmic alternatives
*
* \par Re-using dynamically allocating shared memory
* The following example under the examples/block folder illustrates usage of
* dynamically shared memory with BlockReduce and how to re-purpose
* the same memory region:
* example_block_reduce_dyn_smem.cu
*
* This example can be easily adapted to the storage required by BlockHistogram.
*/
template <
typename T,
int BLOCK_DIM_X,
int ITEMS_PER_THREAD,
int BINS,
BlockHistogramAlgorithm ALGORITHM = BLOCK_HISTO_SORT,
int BLOCK_DIM_Y = 1,
int BLOCK_DIM_Z = 1,
int PTX_ARCH = CUB_PTX_ARCH>
class BlockHistogram
{
private:
/******************************************************************************
* Constants and type definitions
******************************************************************************/
/// Constants
enum
{
/// The thread block size in threads
BLOCK_THREADS = BLOCK_DIM_X * BLOCK_DIM_Y * BLOCK_DIM_Z,
};
/**
* Ensure the template parameterization meets the requirements of the
* targeted device architecture. BLOCK_HISTO_ATOMIC can only be used
* on version SM120 or later. Otherwise BLOCK_HISTO_SORT is used
* regardless.
*/
static const BlockHistogramAlgorithm SAFE_ALGORITHM =
((ALGORITHM == BLOCK_HISTO_ATOMIC) && (PTX_ARCH < 120)) ?
BLOCK_HISTO_SORT :
ALGORITHM;
/// Internal specialization.
using InternalBlockHistogram =
cub::detail::conditional_t,
BlockHistogramAtomic>;
/// Shared memory storage layout type for BlockHistogram
typedef typename InternalBlockHistogram::TempStorage _TempStorage;
/******************************************************************************
* Thread fields
******************************************************************************/
/// Shared storage reference
_TempStorage &temp_storage;
/// Linear thread-id
unsigned int linear_tid;
/******************************************************************************
* Utility methods
******************************************************************************/
/// Internal storage allocator
__device__ __forceinline__ _TempStorage& PrivateStorage()
{
__shared__ _TempStorage private_storage;
return private_storage;
}
public:
/// \smemstorage{BlockHistogram}
struct TempStorage : Uninitialized<_TempStorage> {};
/******************************************************************//**
* \name Collective constructors
*********************************************************************/
//@{
/**
* \brief Collective constructor using a private static allocation of shared memory as temporary storage.
*/
__device__ __forceinline__ BlockHistogram()
:
temp_storage(PrivateStorage()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
/**
* \brief Collective constructor using the specified memory allocation as temporary storage.
*/
__device__ __forceinline__ BlockHistogram(
TempStorage &temp_storage) ///< [in] Reference to memory allocation having layout type TempStorage
:
temp_storage(temp_storage.Alias()),
linear_tid(RowMajorTid(BLOCK_DIM_X, BLOCK_DIM_Y, BLOCK_DIM_Z))
{}
//@} end member group
/******************************************************************//**
* \name Histogram operations
*********************************************************************/
//@{
/**
* \brief Initialize the shared histogram counters to zero.
*
* \par Snippet
* The code snippet below illustrates a the initialization and update of a
* histogram of 512 integer samples that are partitioned across 128 threads
* where each thread owns 4 samples.
* \par
* \code
* #include // or equivalently
*
* __global__ void ExampleKernel(...)
* {
* // Specialize a 256-bin BlockHistogram type for a 1D block of 128 threads having 4 character samples each
* typedef cub::BlockHistogram BlockHistogram;
*
* // Allocate shared memory for BlockHistogram
* __shared__ typename BlockHistogram::TempStorage temp_storage;
*
* // Allocate shared memory for block-wide histogram bin counts
* __shared__ unsigned int smem_histogram[256];
*
* // Obtain input samples per thread
* unsigned char thread_samples[4];
* ...
*
* // Initialize the block-wide histogram
* BlockHistogram(temp_storage).InitHistogram(smem_histogram);
*
* // Update the block-wide histogram
* BlockHistogram(temp_storage).Composite(thread_samples, smem_histogram);
*
* \endcode
*
* \tparam CounterT [inferred] Histogram counter type
*/
template
__device__ __forceinline__ void InitHistogram(CounterT histogram[BINS])
{
// Initialize histogram bin counts to zeros
int histo_offset = 0;
#pragma unroll
for(; histo_offset + BLOCK_THREADS <= BINS; histo_offset += BLOCK_THREADS)
{
histogram[histo_offset + linear_tid] = 0;
}
// Finish up with guarded initialization if necessary
if ((BINS % BLOCK_THREADS != 0) && (histo_offset + linear_tid < BINS))
{
histogram[histo_offset + linear_tid] = 0;
}
}
/**
* \brief Constructs a block-wide histogram in shared/device-accessible memory. Each thread contributes an array of input elements.
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a 256-bin histogram of 512 integer samples that
* are partitioned across 128 threads where each thread owns 4 samples.
* \par
* \code
* #include // or equivalently
*
* __global__ void ExampleKernel(...)
* {
* // Specialize a 256-bin BlockHistogram type for a 1D block of 128 threads having 4 character samples each
* typedef cub::BlockHistogram BlockHistogram;
*
* // Allocate shared memory for BlockHistogram
* __shared__ typename BlockHistogram::TempStorage temp_storage;
*
* // Allocate shared memory for block-wide histogram bin counts
* __shared__ unsigned int smem_histogram[256];
*
* // Obtain input samples per thread
* unsigned char thread_samples[4];
* ...
*
* // Compute the block-wide histogram
* BlockHistogram(temp_storage).Histogram(thread_samples, smem_histogram);
*
* \endcode
*
* \tparam CounterT [inferred] Histogram counter type
*/
template <
typename CounterT >
__device__ __forceinline__ void Histogram(
T (&items)[ITEMS_PER_THREAD], ///< [in] Calling thread's input values to histogram
CounterT histogram[BINS]) ///< [out] Reference to shared/device-accessible memory histogram
{
// Initialize histogram bin counts to zeros
InitHistogram(histogram);
CTA_SYNC();
// Composite the histogram
InternalBlockHistogram(temp_storage).Composite(items, histogram);
}
/**
* \brief Updates an existing block-wide histogram in shared/device-accessible memory. Each thread composites an array of input elements.
*
* \par
* - \granularity
* - \smemreuse
*
* \par Snippet
* The code snippet below illustrates a the initialization and update of a
* histogram of 512 integer samples that are partitioned across 128 threads
* where each thread owns 4 samples.
* \par
* \code
* #include // or equivalently
*
* __global__ void ExampleKernel(...)
* {
* // Specialize a 256-bin BlockHistogram type for a 1D block of 128 threads having 4 character samples each
* typedef cub::BlockHistogram BlockHistogram;
*
* // Allocate shared memory for BlockHistogram
* __shared__ typename BlockHistogram::TempStorage temp_storage;
*
* // Allocate shared memory for block-wide histogram bin counts
* __shared__ unsigned int smem_histogram[256];
*
* // Obtain input samples per thread
* unsigned char thread_samples[4];
* ...
*
* // Initialize the block-wide histogram
* BlockHistogram(temp_storage).InitHistogram(smem_histogram);
*
* // Update the block-wide histogram
* BlockHistogram(temp_storage).Composite(thread_samples, smem_histogram);
*
* \endcode
*
* \tparam CounterT [inferred] Histogram counter type
*/
template <
typename CounterT >
__device__ __forceinline__ void Composite(
T (&items)[ITEMS_PER_THREAD], ///< [in] Calling thread's input values to histogram
CounterT histogram[BINS]) ///< [out] Reference to shared/device-accessible memory histogram
{
InternalBlockHistogram(temp_storage).Composite(items, histogram);
}
};
CUB_NAMESPACE_END