/****************************************************************************** * Copyright (c) 2011, Duane Merrill. All rights reserved. * Copyright (c) 2011-2018, NVIDIA CORPORATION. All rights reserved. * * Redistribution and use in source and binary forms, with or without * modification, are permitted provided that the following conditions are met: * * Redistributions of source code must retain the above copyright * notice, this list of conditions and the following disclaimer. * * Redistributions in binary form must reproduce the above copyright * notice, this list of conditions and the following disclaimer in the * documentation and/or other materials provided with the distribution. * * Neither the name of the NVIDIA CORPORATION nor the * names of its contributors may be used to endorse or promote products * derived from this software without specific prior written permission. * * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" AND * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED * WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE * DISCLAIMED. IN NO EVENT SHALL NVIDIA CORPORATION BE LIABLE FOR ANY * DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES * (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND * ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS * SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. * ******************************************************************************/ /** * \file * cub::DeviceReduce provides device-wide, parallel operations for computing a reduction across a sequence of data items residing within device-accessible memory. */ #pragma once #include #include #include "../../agent/agent_reduce.cuh" #include "../../iterator/arg_index_input_iterator.cuh" #include "../../thread/thread_operators.cuh" #include "../../grid/grid_even_share.cuh" #include "../../iterator/arg_index_input_iterator.cuh" #include "../../config.cuh" #include "../../util_debug.cuh" #include "../../util_device.cuh" #include CUB_NAMESPACE_BEGIN /****************************************************************************** * Kernel entry points *****************************************************************************/ /** * Reduce region kernel entry point (multi-block). Computes privatized reductions, one per thread block. */ template < typename ChainedPolicyT, ///< Chained tuning policy typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator typename OffsetT, ///< Signed integer type for global offsets typename ReductionOpT> ///< Binary reduction functor type having member T operator()(const T &a, const T &b) __launch_bounds__ (int(ChainedPolicyT::ActivePolicy::ReducePolicy::BLOCK_THREADS)) __global__ void DeviceReduceKernel( InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items OutputIteratorT d_out, ///< [out] Pointer to the output aggregate OffsetT num_items, ///< [in] Total number of input data items GridEvenShare even_share, ///< [in] Even-share descriptor for mapping an equal number of tiles onto each thread block ReductionOpT reduction_op) ///< [in] Binary reduction functor { // The output value type using OutputT = cub::detail::non_void_value_t>; // Thread block type for reducing input tiles using AgentReduceT = AgentReduce; // Shared memory storage __shared__ typename AgentReduceT::TempStorage temp_storage; // Consume input tiles OutputT block_aggregate = AgentReduceT(temp_storage, d_in, reduction_op).ConsumeTiles(even_share); // Output result if (threadIdx.x == 0) d_out[blockIdx.x] = block_aggregate; } /** * Reduce a single tile kernel entry point (single-block). Can be used to aggregate privatized thread block reductions from a previous multi-block reduction pass. */ template < typename ChainedPolicyT, ///< Chained tuning policy typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator typename OffsetT, ///< Signed integer type for global offsets typename ReductionOpT, ///< Binary reduction functor type having member T operator()(const T &a, const T &b) typename OutputT> ///< Data element type that is convertible to the \p value type of \p OutputIteratorT __launch_bounds__ (int(ChainedPolicyT::ActivePolicy::SingleTilePolicy::BLOCK_THREADS), 1) __global__ void DeviceReduceSingleTileKernel( InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items OutputIteratorT d_out, ///< [out] Pointer to the output aggregate OffsetT num_items, ///< [in] Total number of input data items ReductionOpT reduction_op, ///< [in] Binary reduction functor OutputT init) ///< [in] The initial value of the reduction { // Thread block type for reducing input tiles typedef AgentReduce< typename ChainedPolicyT::ActivePolicy::SingleTilePolicy, InputIteratorT, OutputIteratorT, OffsetT, ReductionOpT> AgentReduceT; // Shared memory storage __shared__ typename AgentReduceT::TempStorage temp_storage; // Check if empty problem if (num_items == 0) { if (threadIdx.x == 0) *d_out = init; return; } // Consume input tiles OutputT block_aggregate = AgentReduceT(temp_storage, d_in, reduction_op).ConsumeRange( OffsetT(0), num_items); // Output result if (threadIdx.x == 0) *d_out = reduction_op(init, block_aggregate); } /// Normalize input iterator to segment offset template __device__ __forceinline__ void NormalizeReductionOutput( T &/*val*/, OffsetT /*base_offset*/, IteratorT /*itr*/) {} /// Normalize input iterator to segment offset (specialized for arg-index) template __device__ __forceinline__ void NormalizeReductionOutput( KeyValuePairT &val, OffsetT base_offset, ArgIndexInputIterator /*itr*/) { val.key -= base_offset; } /** * Segmented reduction (one block per segment) */ template < typename ChainedPolicyT, ///< Chained tuning policy typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator typename BeginOffsetIteratorT, ///< Random-access input iterator type for reading segment beginning offsets \iterator typename EndOffsetIteratorT, ///< Random-access input iterator type for reading segment ending offsets \iterator typename OffsetT, ///< Signed integer type for global offsets typename ReductionOpT, ///< Binary reduction functor type having member T operator()(const T &a, const T &b) typename OutputT> ///< Data element type that is convertible to the \p value type of \p OutputIteratorT __launch_bounds__ (int(ChainedPolicyT::ActivePolicy::ReducePolicy::BLOCK_THREADS)) __global__ void DeviceSegmentedReduceKernel( InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items OutputIteratorT d_out, ///< [out] Pointer to the output aggregate BeginOffsetIteratorT d_begin_offsets, ///< [in] Random-access input iterator to the sequence of beginning offsets of length \p num_segments, such that d_begin_offsets[i] is the first element of the ith data segment in d_keys_* and d_values_* EndOffsetIteratorT d_end_offsets, ///< [in] Random-access input iterator to the sequence of ending offsets of length \p num_segments, such that d_end_offsets[i]-1 is the last element of the ith data segment in d_keys_* and d_values_*. If d_end_offsets[i]-1 <= d_begin_offsets[i], the ith is considered empty. int /*num_segments*/, ///< [in] The number of segments that comprise the sorting data ReductionOpT reduction_op, ///< [in] Binary reduction functor OutputT init) ///< [in] The initial value of the reduction { // Thread block type for reducing input tiles typedef AgentReduce< typename ChainedPolicyT::ActivePolicy::ReducePolicy, InputIteratorT, OutputIteratorT, OffsetT, ReductionOpT> AgentReduceT; // Shared memory storage __shared__ typename AgentReduceT::TempStorage temp_storage; OffsetT segment_begin = d_begin_offsets[blockIdx.x]; OffsetT segment_end = d_end_offsets[blockIdx.x]; // Check if empty problem if (segment_begin == segment_end) { if (threadIdx.x == 0) d_out[blockIdx.x] = init; return; } // Consume input tiles OutputT block_aggregate = AgentReduceT(temp_storage, d_in, reduction_op).ConsumeRange( segment_begin, segment_end); // Normalize as needed NormalizeReductionOutput(block_aggregate, segment_begin, d_in); if (threadIdx.x == 0) d_out[blockIdx.x] = reduction_op(init, block_aggregate);; } /****************************************************************************** * Policy ******************************************************************************/ template < typename InputT, ///< Input data type typename OutputT, ///< Compute/output data type typename OffsetT, ///< Signed integer type for global offsets typename ReductionOpT> ///< Binary reduction functor type having member T operator()(const T &a, const T &b) struct DeviceReducePolicy { //------------------------------------------------------------------------------ // Architecture-specific tuning policies //------------------------------------------------------------------------------ /// SM30 struct Policy300 : ChainedPolicy<300, Policy300, Policy300> { // ReducePolicy (GTX670: 154.0 @ 48M 4B items) typedef AgentReducePolicy< 256, 20, InputT, ///< Threads per block, items per thread, compute type, compute type 2, ///< Number of items per vectorized load BLOCK_REDUCE_WARP_REDUCTIONS, ///< Cooperative block-wide reduction algorithm to use LOAD_DEFAULT> ///< Cache load modifier ReducePolicy; // SingleTilePolicy typedef ReducePolicy SingleTilePolicy; // SegmentedReducePolicy typedef ReducePolicy SegmentedReducePolicy; }; /// SM35 struct Policy350 : ChainedPolicy<350, Policy350, Policy300> { // ReducePolicy (GTX Titan: 255.1 GB/s @ 48M 4B items; 228.7 GB/s @ 192M 1B items) typedef AgentReducePolicy< 256, 20, InputT, ///< Threads per block, items per thread, compute type 4, ///< Number of items per vectorized load BLOCK_REDUCE_WARP_REDUCTIONS, ///< Cooperative block-wide reduction algorithm to use LOAD_LDG> ///< Cache load modifier ReducePolicy; // SingleTilePolicy typedef ReducePolicy SingleTilePolicy; // SegmentedReducePolicy typedef ReducePolicy SegmentedReducePolicy; }; /// SM60 struct Policy600 : ChainedPolicy<600, Policy600, Policy350> { // ReducePolicy (P100: 591 GB/s @ 64M 4B items; 583 GB/s @ 256M 1B items) typedef AgentReducePolicy< 256, 16, InputT, ///< Threads per block, items per thread, compute type 4, ///< Number of items per vectorized load BLOCK_REDUCE_WARP_REDUCTIONS, ///< Cooperative block-wide reduction algorithm to use LOAD_LDG> ///< Cache load modifier ReducePolicy; // SingleTilePolicy typedef ReducePolicy SingleTilePolicy; // SegmentedReducePolicy typedef ReducePolicy SegmentedReducePolicy; }; /// MaxPolicy typedef Policy600 MaxPolicy; }; /****************************************************************************** * Single-problem dispatch ******************************************************************************/ /** * Utility class for dispatching the appropriately-tuned kernels for device-wide reduction */ template < typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator typename OffsetT, ///< Signed integer type for global offsets typename ReductionOpT, ///< Binary reduction functor type having member T operator()(const T &a, const T &b) typename OutputT = ///< Data type of the output iterator cub::detail::non_void_value_t< OutputIteratorT, cub::detail::value_t>, typename SelectedPolicy = DeviceReducePolicy< cub::detail::value_t, OutputT, OffsetT, ReductionOpT> > struct DispatchReduce : SelectedPolicy { //------------------------------------------------------------------------------ // Problem state //------------------------------------------------------------------------------ void *d_temp_storage; ///< [in] Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t &temp_storage_bytes; ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in; ///< [in] Pointer to the input sequence of data items OutputIteratorT d_out; ///< [out] Pointer to the output aggregate OffsetT num_items; ///< [in] Total number of input items (i.e., length of \p d_in) ReductionOpT reduction_op; ///< [in] Binary reduction functor OutputT init; ///< [in] The initial value of the reduction cudaStream_t stream; ///< [in] CUDA stream to launch kernels within. Default is stream0. bool debug_synchronous; ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false. int ptx_version; ///< [in] PTX version //------------------------------------------------------------------------------ // Constructor //------------------------------------------------------------------------------ /// Constructor CUB_RUNTIME_FUNCTION __forceinline__ DispatchReduce( void* d_temp_storage, size_t &temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, OffsetT num_items, ReductionOpT reduction_op, OutputT init, cudaStream_t stream, bool debug_synchronous, int ptx_version) : d_temp_storage(d_temp_storage), temp_storage_bytes(temp_storage_bytes), d_in(d_in), d_out(d_out), num_items(num_items), reduction_op(reduction_op), init(init), stream(stream), debug_synchronous(debug_synchronous), ptx_version(ptx_version) {} //------------------------------------------------------------------------------ // Small-problem (single tile) invocation //------------------------------------------------------------------------------ /// Invoke a single block block to reduce in-core template < typename ActivePolicyT, ///< Umbrella policy active for the target device typename SingleTileKernelT> ///< Function type of cub::DeviceReduceSingleTileKernel CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t InvokeSingleTile( SingleTileKernelT single_tile_kernel) ///< [in] Kernel function pointer to parameterization of cub::DeviceReduceSingleTileKernel { #ifndef CUB_RUNTIME_ENABLED (void)single_tile_kernel; // Kernel launch not supported from this device return CubDebug(cudaErrorNotSupported ); #else cudaError error = cudaSuccess; do { // Return if the caller is simply requesting the size of the storage allocation if (d_temp_storage == NULL) { temp_storage_bytes = 1; break; } // Log single_reduce_sweep_kernel configuration if (debug_synchronous) _CubLog("Invoking DeviceReduceSingleTileKernel<<<1, %d, 0, %lld>>>(), %d items per thread\n", ActivePolicyT::SingleTilePolicy::BLOCK_THREADS, (long long) stream, ActivePolicyT::SingleTilePolicy::ITEMS_PER_THREAD); // Invoke single_reduce_sweep_kernel THRUST_NS_QUALIFIER::cuda_cub::launcher::triple_chevron( 1, ActivePolicyT::SingleTilePolicy::BLOCK_THREADS, 0, stream ).doit(single_tile_kernel, d_in, d_out, num_items, reduction_op, init); // Check for failure to launch if (CubDebug(error = cudaPeekAtLastError())) break; // Sync the stream if specified to flush runtime errors if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break; } while (0); return error; #endif // CUB_RUNTIME_ENABLED } //------------------------------------------------------------------------------ // Normal problem size invocation (two-pass) //------------------------------------------------------------------------------ /// Invoke two-passes to reduce template < typename ActivePolicyT, ///< Umbrella policy active for the target device typename ReduceKernelT, ///< Function type of cub::DeviceReduceKernel typename SingleTileKernelT> ///< Function type of cub::DeviceReduceSingleTileKernel CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t InvokePasses( ReduceKernelT reduce_kernel, ///< [in] Kernel function pointer to parameterization of cub::DeviceReduceKernel SingleTileKernelT single_tile_kernel) ///< [in] Kernel function pointer to parameterization of cub::DeviceReduceSingleTileKernel { #ifndef CUB_RUNTIME_ENABLED (void) reduce_kernel; (void) single_tile_kernel; // Kernel launch not supported from this device return CubDebug(cudaErrorNotSupported ); #else cudaError error = cudaSuccess; do { // Get device ordinal int device_ordinal; if (CubDebug(error = cudaGetDevice(&device_ordinal))) break; // Get SM count int sm_count; if (CubDebug(error = cudaDeviceGetAttribute (&sm_count, cudaDevAttrMultiProcessorCount, device_ordinal))) break; // Init regular kernel configuration KernelConfig reduce_config; if (CubDebug(error = reduce_config.Init(reduce_kernel))) break; int reduce_device_occupancy = reduce_config.sm_occupancy * sm_count; // Even-share work distribution int max_blocks = reduce_device_occupancy * CUB_SUBSCRIPTION_FACTOR(ptx_version); GridEvenShare even_share; even_share.DispatchInit(num_items, max_blocks, reduce_config.tile_size); // Temporary storage allocation requirements void* allocations[1] = {}; size_t allocation_sizes[1] = { max_blocks * sizeof(OutputT) // bytes needed for privatized block reductions }; // Alias the temporary allocations from the single storage blob (or compute the necessary size of the blob) if (CubDebug(error = AliasTemporaries(d_temp_storage, temp_storage_bytes, allocations, allocation_sizes))) break; if (d_temp_storage == NULL) { // Return if the caller is simply requesting the size of the storage allocation return cudaSuccess; } // Alias the allocation for the privatized per-block reductions OutputT *d_block_reductions = (OutputT*) allocations[0]; // Get grid size for device_reduce_sweep_kernel int reduce_grid_size = even_share.grid_size; // Log device_reduce_sweep_kernel configuration if (debug_synchronous) _CubLog("Invoking DeviceReduceKernel<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy\n", reduce_grid_size, ActivePolicyT::ReducePolicy::BLOCK_THREADS, (long long) stream, ActivePolicyT::ReducePolicy::ITEMS_PER_THREAD, reduce_config.sm_occupancy); // Invoke DeviceReduceKernel THRUST_NS_QUALIFIER::cuda_cub::launcher::triple_chevron( reduce_grid_size, ActivePolicyT::ReducePolicy::BLOCK_THREADS, 0, stream ).doit(reduce_kernel, d_in, d_block_reductions, num_items, even_share, reduction_op); // Check for failure to launch if (CubDebug(error = cudaPeekAtLastError())) break; // Sync the stream if specified to flush runtime errors if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break; // Log single_reduce_sweep_kernel configuration if (debug_synchronous) _CubLog("Invoking DeviceReduceSingleTileKernel<<<1, %d, 0, %lld>>>(), %d items per thread\n", ActivePolicyT::SingleTilePolicy::BLOCK_THREADS, (long long) stream, ActivePolicyT::SingleTilePolicy::ITEMS_PER_THREAD); // Invoke DeviceReduceSingleTileKernel THRUST_NS_QUALIFIER::cuda_cub::launcher::triple_chevron( 1, ActivePolicyT::SingleTilePolicy::BLOCK_THREADS, 0, stream ).doit(single_tile_kernel, d_block_reductions, d_out, reduce_grid_size, reduction_op, init); // Check for failure to launch if (CubDebug(error = cudaPeekAtLastError())) break; // Sync the stream if specified to flush runtime errors if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break; } while (0); return error; #endif // CUB_RUNTIME_ENABLED } //------------------------------------------------------------------------------ // Chained policy invocation //------------------------------------------------------------------------------ /// Invocation template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Invoke() { typedef typename ActivePolicyT::SingleTilePolicy SingleTilePolicyT; typedef typename DispatchReduce::MaxPolicy MaxPolicyT; // Force kernel code-generation in all compiler passes if (num_items <= (SingleTilePolicyT::BLOCK_THREADS * SingleTilePolicyT::ITEMS_PER_THREAD)) { // Small, single tile size return InvokeSingleTile( DeviceReduceSingleTileKernel); } else { // Regular size return InvokePasses( DeviceReduceKernel, DeviceReduceSingleTileKernel); } } //------------------------------------------------------------------------------ // Dispatch entrypoints //------------------------------------------------------------------------------ /** * Internal dispatch routine for computing a device-wide reduction */ CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t Dispatch( void *d_temp_storage, ///< [in] Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items OutputIteratorT d_out, ///< [out] Pointer to the output aggregate OffsetT num_items, ///< [in] Total number of input items (i.e., length of \p d_in) ReductionOpT reduction_op, ///< [in] Binary reduction functor OutputT init, ///< [in] The initial value of the reduction cudaStream_t stream, ///< [in] [optional] CUDA stream to launch kernels within. Default is stream0. bool debug_synchronous) ///< [in] [optional] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false. { typedef typename DispatchReduce::MaxPolicy MaxPolicyT; cudaError error = cudaSuccess; do { // Get PTX version int ptx_version = 0; if (CubDebug(error = PtxVersion(ptx_version))) break; // Create dispatch functor DispatchReduce dispatch( d_temp_storage, temp_storage_bytes, d_in, d_out, num_items, reduction_op, init, stream, debug_synchronous, ptx_version); // Dispatch to chained policy if (CubDebug(error = MaxPolicyT::Invoke(ptx_version, dispatch))) break; } while (0); return error; } }; /****************************************************************************** * Segmented dispatch ******************************************************************************/ /** * Utility class for dispatching the appropriately-tuned kernels for device-wide reduction */ template < typename InputIteratorT, ///< Random-access input iterator type for reading input items \iterator typename OutputIteratorT, ///< Output iterator type for recording the reduced aggregate \iterator typename BeginOffsetIteratorT, ///< Random-access input iterator type for reading segment beginning offsets \iterator typename EndOffsetIteratorT, ///< Random-access input iterator type for reading segment ending offsets \iterator typename OffsetT, ///< Signed integer type for global offsets typename ReductionOpT, ///< Binary reduction functor type having member T operator()(const T &a, const T &b) typename OutputT = ///< Data type of the output iterator cub::detail::non_void_value_t>, typename SelectedPolicy = DeviceReducePolicy< cub::detail::value_t, OutputT, OffsetT, ReductionOpT> > struct DispatchSegmentedReduce : SelectedPolicy { //------------------------------------------------------------------------------ // Problem state //------------------------------------------------------------------------------ void *d_temp_storage; ///< [in] Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t &temp_storage_bytes; ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in; ///< [in] Pointer to the input sequence of data items OutputIteratorT d_out; ///< [out] Pointer to the output aggregate OffsetT num_segments; ///< [in] The number of segments that comprise the sorting data BeginOffsetIteratorT d_begin_offsets; ///< [in] Random-access input iterator to the sequence of beginning offsets of length \p num_segments, such that d_begin_offsets[i] is the first element of the ith data segment in d_keys_* and d_values_* EndOffsetIteratorT d_end_offsets; ///< [in] Random-access input iterator to the sequence of ending offsets of length \p num_segments, such that d_end_offsets[i]-1 is the last element of the ith data segment in d_keys_* and d_values_*. If d_end_offsets[i]-1 <= d_begin_offsets[i], the ith is considered empty. ReductionOpT reduction_op; ///< [in] Binary reduction functor OutputT init; ///< [in] The initial value of the reduction cudaStream_t stream; ///< [in] CUDA stream to launch kernels within. Default is stream0. bool debug_synchronous; ///< [in] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false. int ptx_version; ///< [in] PTX version //------------------------------------------------------------------------------ // Constructor //------------------------------------------------------------------------------ /// Constructor CUB_RUNTIME_FUNCTION __forceinline__ DispatchSegmentedReduce( void* d_temp_storage, size_t &temp_storage_bytes, InputIteratorT d_in, OutputIteratorT d_out, OffsetT num_segments, BeginOffsetIteratorT d_begin_offsets, EndOffsetIteratorT d_end_offsets, ReductionOpT reduction_op, OutputT init, cudaStream_t stream, bool debug_synchronous, int ptx_version) : d_temp_storage(d_temp_storage), temp_storage_bytes(temp_storage_bytes), d_in(d_in), d_out(d_out), num_segments(num_segments), d_begin_offsets(d_begin_offsets), d_end_offsets(d_end_offsets), reduction_op(reduction_op), init(init), stream(stream), debug_synchronous(debug_synchronous), ptx_version(ptx_version) {} //------------------------------------------------------------------------------ // Chained policy invocation //------------------------------------------------------------------------------ /// Invocation template < typename ActivePolicyT, ///< Umbrella policy active for the target device typename DeviceSegmentedReduceKernelT> ///< Function type of cub::DeviceSegmentedReduceKernel CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t InvokePasses( DeviceSegmentedReduceKernelT segmented_reduce_kernel) ///< [in] Kernel function pointer to parameterization of cub::DeviceSegmentedReduceKernel { #ifndef CUB_RUNTIME_ENABLED (void)segmented_reduce_kernel; // Kernel launch not supported from this device return CubDebug(cudaErrorNotSupported ); #else cudaError error = cudaSuccess; do { // Return if the caller is simply requesting the size of the storage allocation if (d_temp_storage == NULL) { temp_storage_bytes = 1; return cudaSuccess; } // Init kernel configuration KernelConfig segmented_reduce_config; if (CubDebug(error = segmented_reduce_config.Init(segmented_reduce_kernel))) break; // Log device_reduce_sweep_kernel configuration if (debug_synchronous) _CubLog("Invoking SegmentedDeviceReduceKernel<<<%d, %d, 0, %lld>>>(), %d items per thread, %d SM occupancy\n", num_segments, ActivePolicyT::SegmentedReducePolicy::BLOCK_THREADS, (long long) stream, ActivePolicyT::SegmentedReducePolicy::ITEMS_PER_THREAD, segmented_reduce_config.sm_occupancy); // Invoke DeviceReduceKernel THRUST_NS_QUALIFIER::cuda_cub::launcher::triple_chevron( num_segments, ActivePolicyT::SegmentedReducePolicy::BLOCK_THREADS, 0, stream ).doit(segmented_reduce_kernel, d_in, d_out, d_begin_offsets, d_end_offsets, num_segments, reduction_op, init); // Check for failure to launch if (CubDebug(error = cudaPeekAtLastError())) break; // Sync the stream if specified to flush runtime errors if (debug_synchronous && (CubDebug(error = SyncStream(stream)))) break; } while (0); return error; #endif // CUB_RUNTIME_ENABLED } /// Invocation template CUB_RUNTIME_FUNCTION __forceinline__ cudaError_t Invoke() { typedef typename DispatchSegmentedReduce::MaxPolicy MaxPolicyT; // Force kernel code-generation in all compiler passes return InvokePasses( DeviceSegmentedReduceKernel); } //------------------------------------------------------------------------------ // Dispatch entrypoints //------------------------------------------------------------------------------ /** * Internal dispatch routine for computing a device-wide reduction */ CUB_RUNTIME_FUNCTION __forceinline__ static cudaError_t Dispatch( void *d_temp_storage, ///< [in] Device-accessible allocation of temporary storage. When NULL, the required allocation size is written to \p temp_storage_bytes and no work is done. size_t &temp_storage_bytes, ///< [in,out] Reference to size in bytes of \p d_temp_storage allocation InputIteratorT d_in, ///< [in] Pointer to the input sequence of data items OutputIteratorT d_out, ///< [out] Pointer to the output aggregate int num_segments, ///< [in] The number of segments that comprise the sorting data BeginOffsetIteratorT d_begin_offsets, ///< [in] Random-access input iterator to the sequence of beginning offsets of length \p num_segments, such that d_begin_offsets[i] is the first element of the ith data segment in d_keys_* and d_values_* EndOffsetIteratorT d_end_offsets, ///< [in] Random-access input iterator to the sequence of ending offsets of length \p num_segments, such that d_end_offsets[i]-1 is the last element of the ith data segment in d_keys_* and d_values_*. If d_end_offsets[i]-1 <= d_begin_offsets[i], the ith is considered empty. ReductionOpT reduction_op, ///< [in] Binary reduction functor OutputT init, ///< [in] The initial value of the reduction cudaStream_t stream, ///< [in] [optional] CUDA stream to launch kernels within. Default is stream0. bool debug_synchronous) ///< [in] [optional] Whether or not to synchronize the stream after every kernel launch to check for errors. Also causes launch configurations to be printed to the console. Default is \p false. { typedef typename DispatchSegmentedReduce::MaxPolicy MaxPolicyT; if (num_segments <= 0) return cudaSuccess; cudaError error = cudaSuccess; do { // Get PTX version int ptx_version = 0; if (CubDebug(error = PtxVersion(ptx_version))) break; // Create dispatch functor DispatchSegmentedReduce dispatch( d_temp_storage, temp_storage_bytes, d_in, d_out, num_segments, d_begin_offsets, d_end_offsets, reduction_op, init, stream, debug_synchronous, ptx_version); // Dispatch to chained policy if (CubDebug(error = MaxPolicyT::Invoke(ptx_version, dispatch))) break; } while (0); return error; } }; CUB_NAMESPACE_END