
Curdleproofs: A Shuffle Argument Protocol

The Ethereum Foundation Cryptography Research Team

September 14, 2022

Abstract

Curdleproofs is a zero-knowledge shuffle argument which is inspired by the work of Bayer and Groth
[BG12]. Curdleproofs has applications to secret leader elections which prevents DDOS attacks on
the Ethereum Proof of Stake consensus layer. Curdleproofs runs over a public coin setup in any
group where the DDH assumption holds.
Curdleproofs is built from well established inner product arguments and does not need a trusted
setup. The prover and verifier both run in linear time asymptotically with small constants because
there is no reduction to NP constraints. Their concrete run time is highly practical: shuffling 252
elements requires 0.5 seconds for the prover and 25 milliseconds for the verifier on an Intel i7-
8550U CPU at 1.80GHz over the BLS12-381 curve. The proof size is logarithmic size (dominated
by 10 logpℓq for ℓ the number of elements).



Contents

1 Introduction 1
1.1 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1.1 Public Coin Setup . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

2 Full Curdleproofs Construction 3
2.1 Problem Statement . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2.2 Curdleproofs Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2.2.1 Informal Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
2.2.2 Relations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2.3 Full Zero Knowledge Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.2.4 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

3 SameScalar Argument 15
3.0.1 Full Zero-Knowledge Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
3.0.2 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

4 SameMultiscalar Argument 19
4.0.1 Informal Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19
4.0.2 Full Zero Knowledge Construction . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
4.0.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

5 Same Permutation Argument 27
5.1 Same Permutation Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

5.1.1 Neff’s Trick . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27
5.1.2 Informal Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
5.1.3 GrandProd Relation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
5.1.4 Full Zero Knowledge Same-Permutation Construction . . . . . . . . . . . . . . . . . 30
5.1.5 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

5.2 Grand-Product Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.1 Informal Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
5.2.2 Discrete Logarithm Inner Product Relation . . . . . . . . . . . . . . . . . . . . . . . . 37
5.2.3 Full Zero Knowledge Grand Product Construction . . . . . . . . . . . . . . . . . . . . 37
5.2.4 Grand-Product Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

5.3 Discrete Logarithm Inner Product Argument . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.1 Informal Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 46
5.3.2 Full Zero-Knowledge DL Inner Product Construction . . . . . . . . . . . . . . . . . . . 47
5.3.3 Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47



6 Efficiency 55
6.1 Full Curdleproofs Construction Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

6.1.1 Verifier Optimisation: Accumulate MSM Operations . . . . . . . . . . . . . . . . . . . 56
6.2 Breakdown of Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

6.2.1 Same Scalar Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.2 Same Multiscalar Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
6.2.3 Same Permutation Efficiency . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

6.3 Figures of Optimised Constructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

7 Deferred Security Preliminaries 67
7.0.1 Generalised Inner Product Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . 69
7.0.2 The Generalized Forking Lemma . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70



Chapter 1

Introduction

In Ethereum proof of stake, single secret leader elections (SSLE) [BEHG20, AC21] have been
proposed as a privacy-preserving method for electing block proposers on the Ethereum beacon
chain. The beacon chain currently elects the next 32 block proposers at the beginning of each
epoch. The results of this election are public and everyone gets to learn the identity of those
future block proposers. This information leak enables attackers to launch DoS attacks against each
proposer sequentially in an attempt to disable Ethereum.

The proposal Whisk is a practical SSLE scheme that uses a shuffle argument as a backend.
In Whisk the beacon chain first randomly picks a set of election candidates. Then and for an
entire day, block proposers continuously shuffle that candidate list thousands of times. After the
shuffling is finished, we use the final order of the candidate list to determine the future block
proposers for the following day. Due to all that shuffling, only the candidates themselves know
which position they have in the final shuffled set. For the shuffling process to work, Whisk does not
shuffle the validators themselves, but cryptographic randomizable commitments that correspond to
them. Election winners can open their commitments to prove that they won the elections.

Verifiable shuffling has been a research topic for decades due to its application in mixnets and
hence to online anonymity and digital election schemes [Cha03, DK00]. Already since twenty years
ago, zero-knowledge proofs based on randomizable El-Gamal ciphertexts have been proposed, and
in recent years we’ve seen proofs based on pairings [CFG21, FLSZ17] as well as post-quantum
proofs based on lattices [CMM19, HMS21, ABG`21].

In Whisk we use shuffling ZKPs that solely rely on the discrete logarithm assumption and don’t
require a trusted setup while still maintaining decent proving and verification performance. In this
document we specify the zero-knowledge proving system Curdleproofs used by Whisk. The scheme
is a modernisation of the Bayer-Groth shuffle argument [BG12] that makes use of inner product
arguments as a backend.

1.1 Preliminaries
To denote a relation Rrel where a public instance ϕ and a private witness w is in Rrel if and only if
certain properties hold, we write

Rrel “ t ϕ; w properties that ϕ and w satisfy u.

Proving algorithms Proverel take as input pcrsrel, ϕ, wq where crsrel is a common reference string.

1



They return a proof πrel. Verification algorithms Verifyrel take as input pcrsrel, ϕ, πrelq where crsrel is
a common reference string, ϕ is an instance the prover is claiming to be in the language, and πrel
is a proof. They return a bit 1 to indicate acceptance and 0 to indicate rejection.

We use bold font a to denote a vector with coordinates a1, a2, . . . , an and ˆ is the dot product
of vectors. We write ka to denote the vector pka1, ka2, . . . , kanq. We write pa || bq to denote the
concatenated vector pa1, . . . , an, b1, . . . , bnq. We write k ˝ a to denote the vector pk1a1, . . . , knanq.

1.1.1 Public Coin Setup
Curdleproofs is built over a cryptographic group G in which both the discrete logarithm problem
and the decisional Diffie-Hellman problem is hard. Curdleproofs requires a common reference string
(crs) consisting of ℓ random group elements g. This allows us to generate Pedersen commitments
V to vectors of scalars v of the form

V “ Commitpcrs; vq “ v ˆ g

We are shuffling ℓ-tuples of group elements. In order to mask the resulting positions of these group
elements we require that our Pedersen commitments use blinders. Specifically we need up to nbl “ 4
blinders in each commitment. We thus include nbl additional random group elements h such that
blinded commitments V have the form

V “ Commitpcrs; v; rV q “ v ˆ g ` rV ˆ h

with random rV . We additionally require a random group elements GT , GU ,H that are used for
committing a group element

GroupCommitppGT ,Hq; T ; rT q “ cmT “ pcmT,1, cmT,2q “ prTGT , T ` rTHq

This group commitment scheme is statistically binding and hiding under the DDH assumption. It
is also equipped with a homomorphism such that

GroupCommitppGT ,Hq; A; rAq ` GroupCommitppGT ,Hq; B; rBq

“ GroupCommitppGT ,Hq; A ` B; rA ` rBq

“ pprA ` rBqGT , pA ` Bq ` prA ` rBqHq

It is based of the El-Gamal encryption scheme.

2



Chapter 2

Full Curdleproofs Construction

2.1 Problem Statement
The aim of Curdleproofs is to build a shuffle argument that preserves discrete logarithm relations
between pairs of group elements. More precisely, given a public set of 2ℓ group elements

R “ pR1, . . . , Rℓq and S “ pS1, . . . , Sℓq

a shuffler computes a second set of group elements

T “ pT1, . . . , Tℓq and U “ pU1, . . . , Uℓq

and proves in zero knowledge that there exists a permutation

σpq : r1, ℓs ÞÑ r1, ℓs

and a field element k P F such that for all 1 ď i ď ℓ

Ti “ kRσpiq ^ Ui “ kSσpiq .

We use the same scalar k for each i. The permutation σpq is committed to in M P G under some
randomness rM P Fnbl

M “ σpr1, ℓsq ˆ g ` rM ˆ h

Note that by the ℓ-ddh assumption (Assumption 7.0.1) it is difficult to distinguish the randomised
ciphertexts from truly random values.

In other words we define a zero-knowledge proof for the relation

Rshuffle “

$

’

’

&

’

’

%

pR,S,T ,U ,Mq; σpq T “ σpkRq

k P F{t0u U “ σpkSq

rM P Fnbl M “ σp1, . . . , ℓq ˆ g ` rM ˆ h
σpq P permutations over r1, . . . , ℓs

,

/

/

.

/

/

-

To do this we make use of a permutation argument by Bayer and Groth [BG12] which we modify to
make use of more recent work on inner product arguments. All modifications are formally justified.
If any mistakes are spotted please file an issue on the github repo.

3



2.2 Curdleproofs Construction
We begin by giving a full overview of the construction. For an informal overview see Figure 2.1
and for the formal construction see Figures 2.2 and 2.3. The security arguments are deferred
to Theorems 2.2.1 and 2.2.2. The construction makes use of three subprotocols: a SameScalar,
SameMultiScalar, and SamePerm arguments. We specify the relations for these subprotocols in
Section 2.2.2 below but we defer discussing their proving and verifying algorithms to Chapter 3, 4,
& 5.

Figure 2.1: Overview of the shuffle argument. There are three subprotocols: SamePerm argument, Same-
MultiScalar argument, and SameScalar argument.

2.2.1 Informal Overview
Let ℓ ą 1. The prover will take as input the R,S,T ,U ,M and aims to prove knowledge of σpq, k
such that:

• M “ σp1, 2, . . . , ℓq ˆ g is a commitment to the permutation σpq

• T “ σpkRq is a randomised permutation of R

• U “ σpkSq is a randomised permutation of S

Initially all the public inputs are hashed to get a vector a of challenges. Then the prover computes
values A “ σpaq ˆ g, T “ a ˆ kR, and U “ a ˆ kS which it sends to the verifier. As part of our
full construction we require zero-knowledge algorithms for proving and verifying three additional
relations: a same permutation relation, a same scalar relation, and a same multiscalar relation.

The prover runs

• SamePerm argument to demonstrate that A is a commitment to σpaq for σpq the permutation
committed to with M .

4



• SameMultiScalar argument to show knowledge of some x such that A “ x ˆ g, T “ x ˆ T
and U “ x ˆ U . Given that A “ σpaq ˆ g “ x ˆ g this implies that T “ σpaq ˆ T and
U “ σpaq ˆ U .

• SameScalar argument to show the existence of k such that T “ kpa ˆ Rq and U “ kpa ˆ Sq.

Together this means that

T “ kpa ˆ Rq “ σpaq ˆ T and U “ σpaq ˆ U “ kpa ˆ Sq

Where a is random this means that kRσpiq “ Ti for all i except with negligible probability.
Note that the full protocol has some additional masking values that are included to ensure

zero-knowledge. For simplicity we have ignored these terms in this overview.

2.2.2 Relations
SamePerm Relation

SamePerm relation demonstrates that given public input pA,Mq P G2 there exists σp1, . . . , ℓq such
that M is a commitment to σpq and A is a commitment to a. These commitments are blinded. In
other words

Rsameperm “

$

&

%

pA,M,aq; pσpq, rA, rM q A “ σpaq ˆ g ` rA ˆ h
M “ σp1, . . . , ℓq ˆ g ` rM ˆ h
σpq P permutations over r1, . . . , ℓs

,

.

-

SameScalar Relation

SameScalar relation demonstrates that given public input pR,S, cmT , cmU q there exists k such that
cmT is a commitment to T “ kR and cmU is a commitment to kS. In other words

Rsamescalar “

"

pR,S, cmT , cmU q; pk, rU , rT q cmT “ GroupCommitppGT ,Hq; kR; rT q

cmU “ GroupCommitppGU ,Hq; kS; rU q

*

where GU , GT and H are fixed group elements.

SameMultiScalar Relation

SameMultiScalar relation demonstrates that two group elements pT, Uq P G2 are bound together
by the same vector x P Fn under the bases T P Gn and U P Gn. The vector x is contained in a
commitment A P G that is computed under a binding commitment key G P Gn which is not chosen
by the prover. In other words

Rsamemsm “

$

&

%

pA,ZT , ZU ,T ,Uq; x A “ x ˆ G
ZT “ x ˆ T
ZU “ x ˆ U

,

.

-

.

5



2.2.3 Full Zero Knowledge Construction
A formal description of Curdleproofs is provided in Figures 2.2 and 2.3. Here we describe the
additional steps that we have added compared to the informal overview in Section 2.2.1 to achieve
zero-knowledge. We defer the security proofs of zero-knowledge, and soundness to Section 2.2.4,
Theorems 2.2.2 and 2.2.1.

Step 1: In the first step the prover and verifier both hash the instance to get a random vector of
field elements a P Fℓ. There are no secrets involved in this step. The verifier parses all inputs to
check that they are group or field elements. When parsing T the verifier checks that T1 ‰ 0 to
prevent the prover from choosing k “ 0.

Step 2: In the second step the prover computes a commitment A to the permuted σpaq. The
vector σpaq is private because it reveals information about the secret permutation σpq. The prover
therefore chooses a random blinding vector rA P Fnbl´2. Looking ahead, the same-permutation
argument is only zero-knowledge provided |rA| ě 2, thus we choose nbl ě 4.

The prover outputs A together with a proof πsameperm demonstrating that A is a blinded com-
mitment to σpaq for σpq committed to in the blinded commitment M . The verifier simply checks
that this proof verifies.

Step 3: In the third step, the prover computes R “ a ˆ R and S “ a ˆ S and the verifier checks
that R and S have been computed correctly. Note that due to the optimisations in ?? it is faster
for the verifier to check correctness of R and S than it is to compute them itself. The prover then
computes commitments cmT “ prTGT , T `rTHq, cmU “ prUGU , U `rUHq to T “ kR and U “ kS
respectively. The commitments are blinded with the masking values rT and rU . The prover then
outputs cmT , cmU together with a proof πsamescalar demonstrating that cmT and cmU open to pT, Uq

such that T “ kR and U “ kS for the same scalar k.

Step 4: In the fourth and final step, The prover and verifier first extends A1 “ A ` rTGT ` rUGU

such that A1 includes the blinders rT and rU . They also extend the basis G such that A1 is a
commitment to x “ pσpa || rA || rT || rU qq under the basis G. Now if T 1 “ pT || 0 || H ||0q for 0
a vector of length nbl ´ 2 with every element equal to the identity element then

cmT,2 “ kR ` rTH “ x ˆ T 1 “ σpaq ˆ T ` rTH

then we have that kR “ σpaq ˆ T as required. A similar argument shows that kS “ σpaq ˆ U .
Thus the prover outputs a proof πsamemsm demonstrating that cmT and cmU contain σpaq ˆT and
σpaq ˆ U respectively.

Outcome: The prover returns the proof
πshuffle “ pA, cmT , cmU , R, S, πsameperm, πsamescalar, πsamemsmq.

The verifier returns 1 if and only if all checks pass.

2.2.4 Security
We first prove the zero-knowledge of our arguments, i.e. a verifier learns no information from an
honest proof except for the truth of the statement. The SamePerm and SameScalar are uncondi-

6



tionally zero-knowledge. The SameMultiScalar argument is zero-knowledge assuming that we set
nbl such that nbl ě 4 and nbl ` ℓ ě 6.

Theorem 2.2.1 (Shuffle argument is zero-knowledge). If SamePerm argument, SameScalar argu-
ment, and SameMultiScalar argument are zero-knowledge then the shuffle argument described in
Figures 2.2 and 2.3 is zero-knowledge.

Proof. We design a simulator Simulate that takes as input an instance

pR,S,T ,U ,Mq

and outputs a proof πshuffle that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
determined by the adversary.

During the setup the simulator chooses the crsshuffle “ pg,h, GT , GU ,Hq uniformly at random.
During proving the simulator Simulate proceeds as follows

1. In Step 1 they hash to find a1, . . . , aℓ identically to the honest prover.

2. In Step 2 they choose A
$

ÐÝ G uniformly at random and run

πsameperm “ Simulatesamepermppg,h,Hq; pA,M,aqq

3. In Step 3 they generate R “ a ˆ R and S “ a ˆ S identically to the honest prover. They
sample cmT , cmU

$
ÐÝ G4 uniformly at random and run

πsamescalar “ SimulatesamescalarppGT , GU ,Hq; pR,S, cmT , cmU qq

4. In Step 3 they set A1 Ð A` cmT,1 ` cmU,1, G Ð pg || h || GT || GU q, T 1 Ð pT || 0 || H || 0q,
U 1 Ð pU || 0 || 0 || Hq, identically to the honest prover and run

πsamemsm “ SimulatesamemsmpG; pA1, cmT,2, cmU,2,T
1,U 1qq

Finally they return πshuffle “ pπsameperm, πsamescalar, πsamemsmq.

Now we must argue that the simulated proof is indistinguishable from the real proof.
We design an adversaries B1,B2,B3,B4,B5 such that

Advshuffle
A pλq ď 2pAdvsameperm

B1
pλq ` Advsamescalar

B2
pλq ` Advsamemsm

B3
pλq ` AdvddhB4

pλq ` AdvddhB5
pλqq

We proceed via a series of games Game1,Game2,Game3,Game4,Game5 such that

Advshuffle
A pλq ď 2Advsameperm

B1
pλq ` AdvGame1

A pλq

AdvGame1
A pλq ď 2Advsamescalar

B2
pλq ` AdvGame2

A pλq

AdvGame2
A pλq ď 2Advsamemsm

B3
pλq ` AdvGame3

A pλq

AdvGame3
A pλq ď 2AdvddhB4

pλq ` AdvGame4
A pλq

AdvGame4
A pλq ď 2AdvddhB5

pλq ` AdvGame5
A pλq

AdvGame5
A pλq “ 0

7



which combined give us our final result.
Game0 ÞÑ Game1 : Let Game0 be the initial zero-knowledge game. Define Game1 to run identicallly
to Game0 except that, the crs and the πsameperm proof are generated by the sameperm simulator for
both b “ 0 and b “ 1.

Let B1 be an adversary against the sameperm zero-knowledge game. Then B1 simulates the
zero-knowledge game for A. It takes as input pg,h,Hq, generates the remaining terms pGT , GU q

randomly, and runs Apcrsq. It flips a coin to get b P t0, 1u. When A makes a valid prover query
pR,S,T ,U ,Mq, pσpq, k, rM q, if b “ 0 then B1 generates A,a, rA honestly and queries its oracle on
input pA,M,aq and pσpq, rA, rM q for A “ σpaq ˆ g ` rA ˆ h. It receives back a proof πsameperm. It
computes the remaining proofs πsamescalar, πsamemsm the same as the honest prover. Then B1 returns
pπsameperm, πsamescalar, πsamemsmq. If b “ 1 then B1 runs the simulator to compute the response.
When A returns b1 then if b “ b1 then B1 returns 0, else B1 returns 1.

Then

PrrB1pcrsq “ 0 | b̄ “ 0s “
1

2
pPrrApcrsq “ 0 | Game0, b “ 0s ` PrrApcrsq “ 1 | Game0, b “ 1sq

PrrB1pcrsq “ 1 | b̄ “ 1s “
1

2
p2 ´ PrrApcrsq “ 0 | Game1, b “ 0s ´ PrrApcrsq “ 1 | Game1, b “ 1sq

and

Advsameperm
B1

pλq “ |1 ´ 2PrrGamesameperm
B1

pλqs|

“ |1 ´ PrrB1pcrsq “ 0 | b̄ “ 0s ´ PrrB1pcrsq “ 1 | b̄ “ 1s|

“

ˇ

ˇ

ˇ
1 ´

1

2
pPrrApcrsq “ 0 | Game0, b “ 0s ` PrrApcrsq “ 1 | Game0, b “ 1sq

´
`

1 ´ PrrB1pcrsq “ 0 | b̄ “ 1s
˘

ˇ

ˇ

ˇ

“
1

2

ˇ

ˇ

ˇ
1 ´ PrrApcrsq “ 0 | Game0, b “ 0s ´ PrrApcrsq “ 1 | Game0, b “ 1s

´ 1 ` PrrApcrsq “ 0 | Game1, b “ 0s ` PrrApcrsq “ 1 | Game0, b “ 1s

ˇ

ˇ

ˇ

“
1

2
|AdvGame0

A pλq ´ AdvGame1
A pλq|

This means that

AdvGame0
A pλq ď 2Advsameperm

B1
pλq ` AdvGame1

A pλq

Game1 ÞÑ Game2 : Define Game2 to run identicallly to Game1 except that, the crs and the πsamescalar

proof are generated by the samescalar simulator for both b “ 0 and b “ 1.
Let B2 be an adversary against the samescalar zero-knowledge game. Then B2 simulates the

zero-knowledge game for A. It takes as input pGT , GU q, generates the remaining terms g,h,H
randomly, and runs Apcrsq. It flips a coin to get b P t0, 1u. When A makes a valid prover query
pR,S,T ,U ,Mq, pσpq, k, rM q, if b “ 0 then B2 generates a, A honestly and simulates πsameperm.
Then B2 generates rT , rU , R, S, cmT , cmU honestly and queries its oracle on input pR,S, cmT , cmU q

and pk, rT , rU q. It receives back a proof πsamescalar. It computes the remaining proof πsamemsm the

8



same as the honest prover. Then B2 returns pπsameperm, πsamescalar, πsamemsmq. If b “ 1 then B2 runs
the simulator to compute the response. When A returns b1 then if b “ b1 then B2 returns 0, else B2

returns 1.
By the same argument as in Game0 ÞÑ Game1 we have that

AdvGame1
A pλq ď 2Advsamescalar

B2
pλq ` AdvGame2

A pλq

Game2 ÞÑ Game3 : Define Game3 to run identicallly to Game2 except that, the crs and the πsamemsm

proof are generated by the samemsm simulator for both b “ 0 and b “ 1.
Let B3 be an adversary against the samemsm zero-knowledge game. Then B3 simulates the

zero-knowledge game for A. It takes as input pg || h ||GT || GU q, generates the remaining
terms H randomly, and runs Apcrsq. It flips a coin to get b P t0, 1u. When A makes a valid
prover query pR,S,T ,U ,Mq, pσpq, k, rM q, if b “ 0 then B3 generates a, A, cmT , cmU honestly
and simulates πsameperm, πsamescalar. Then B3 generates A1,T 1,U 1,x honestly and queries its ora-
cle on input pA1, cmT,2, cmU,2,T

1,U 1q and x. It receives back a proof πsamemsm. Then B3 returns
pπsameperm, πsamescalar, πsamemsmq. If b “ 1 then B3 runs the three simulators to compute the response.
When A returns b1 then if b “ b1 then B3 returns 0, else B3 returns 1.

By the same argument as in Game0 ÞÑ Game1 we have that

AdvGame2
A pλq ď 2Advsamemsm

B3
pλq ` AdvGame3

A pλq

Game3 ÞÑ Game4 : Define Game4 to run identically to Game3 except that, for both b “ 0 and b “ 1
, the cmT is selected uniformly at random.

Let B4 be an adversary against the ddh. Then B4 gets as input pG1, G2, G3, G4q and aims to
distinguish whether these equal pG1, xG1, yG1, xyG1q for some x, y or not. It simulates the zero-
knowledge game for A setting GT “ G1,H “ G2, and generating the remaining terms pg,h, GU q

randomly, and runs Apcrsq. It flips a coin to get b P t0, 1u. When A makes a valid prover query, if
b “ 0 then B4 computes all elements the same as in Game3 apart from it sets cmT “ pG3, kR`G4q.
If b “ 1 then B4 runs the simulator to compute the response. When A returns b1 then if b “ b1 then
B2 returns 0, else B2 returns 1.

Then

PrrB1pG1, G2, G3, G4q “ 0 | b̄ “ 0s “
1

2
pPrrApcrsq “ 0 | Game3, b “ 0s ` PrrApcrsq “ 1 | Game3, b “ 1sq

PrrB1pG1, G2, G3, G4q “ 1 | b̄ “ 1s “
1

2
p2 ´ PrrApcrsq “ 0 | Game4, b “ 0s ´ PrrApcrsq “ 1 | Game4, b “ 1sq

Thus by the same argument as in Game0 ÞÑ Game1 we have that

AdvGame3
A pλq ď 2AdvddhB4

pλq ` AdvGame4
A pλq

Game4 ÞÑ Game5 : Define Game5 to run identically to Game4 except that, for both b “ 0 and b “ 1
, the cmU is selected uniformly at random. Then by the same argument as in Game3 ÞÑ Game4 we

9



have that there exists B5 such that

AdvGame4
A pλq ď 2AdvddhB5

pλq ` AdvGame5
A pλq

Game5 ÞÑ 0 : In Game5 the simulated proofs are generated identically and are thus indistinguishable.

Theorem 2.2.2 (Shuffle Argument is knowledge-sound). If SamePerm argument, SameScalar argu-
ment, and SameMultiScalar argument are knowledge-sound, and the q-dlog assumption holds, then
the Curdleproofs shuffle argument described in Figures 2.2 and 2.3 is knowledge-sound.

Proof. We design an extractor Xshuffle such that for any adversary A that convinces the verifier,
with overwhelming probability returns either a discrete logarithm relation between g,h, GT , GU ,H
or a permutation σpq and field element k such that

ppR,S,T ,U ,Mq; pσpq, kqq P Rshuffle.

By the knowledge-soundness of SamePerm argument, SameScalar argument, and SameMultiScalar
argument there exist extractors Xsameperm,Xsamescalar,Xsamemsm such that if A returns verifying
pπsameperm, πsamescalar, πsamemsmq then they return valid witnesses for their respective languages with
overwhelming probability.

The extractor Xshuffle works as follows

1. Run pR,S,T ,U ,Mq; pA, cmT , cmU , πsameperm, πsamescalar, πsamemsmq Ð Apcrsq.

2. Let B1 be the adversary that returns ppA,M,aq, πsamepermq and Xsameperm its corresponding
SamePerm extractor. Extract σpq, rA, rM such that

M “ σp1, . . . , ℓq ˆ g ` rM ˆ h ^ A “ σpaq ˆ g ` rA ˆ h

3. Let B2 be the adversary that returns ppcmT , cmU q, πsamescalarq and Xsamescalar its corresponding
SameScalar extractor. Extract k, rT , rU such that

cmT,1 “ rTGT , cmT,2 “ kR ` rTH, ^ cmU,1 “ rUGU , cmU,2 “ kS ` rUH.

Return pσpq, kq.

We must show that whenever A convinces the verifier, then either Xshuffle succeeds or we can
extract a discrete logarithm relation between pg,h, GT , GU ,Hq. First see that Xshuffle terminates
in polynomial time because Xsameperm and Xsamescalar terminate in polynomial time.

We design adversaries B1,B2,B3,B4 such that for all extractors Xsameperm,Xsamescalar,Xsamemsm

we have that

AdvA,Xshuffle
pλq ď Advsameperm

B1,Xsameperm
pλq ` Advsamescalar

B2,Xsameperm
pλq ` Advsamemsm

B3,Xsamemsm
pλq ` Advq-dlogB4

pλq `
qH
|F|

10



We proceed via a series of games Game1,Game2,Game3,Game4 such that

AdvA,Xshuffle
pλq ď Advsameperm

B1,Xsameperm
pλq ` AdvGame1

A,Xshuffle
pλq

AdvGame1
A,Xshuffle

pλq ď Advsamescalar
B2,Xsamescalar

pλq ` AdvGame2
A,Xshuffle

pλq

AdvGame2
A,Xshuffle

pλq ď Advsamemsm
B3,Xsamemsm

pλq ` AdvGame3
A,Xshuffle

pλq

AdvGame3
A,Xshuffle

pλq ď Advq-dlogB4
pλq ` AdvGame4

A,Xshuffle
pλq

AdvGame4
A,Xshuffle

pλq ď
qH
F

which combined give us our final result.

Game0 ÞÑ Game1 : Let Game0 be the initial knowledge-soundness game. Then Game1 is identical
except in the following case. If A outputs a verifying proof then define B1 be the adversary that
returns ppA,M,aq, πsamepermq and Xsameperm its corresponding extractor. Return 0 if Xsameperm fails.
If Game0 returns 1 but Game1 returns 0 then this means that πsameperm verifies and Xsameperm fails,
and hence that B1 succeeds.

Game1 ÞÑ Game2 : Define Game2 to be identical to Game1 except in the following case. If A out-
puts a verifying proof then define B2 be the adversary that returns ppcmT , cmU q, πsamescalarq and
Xsamescalar its corresponding extractor. Return 0 if Xsamescalar fails. such that Xsamescalar fails then
Game2 returns 0. This is in addition to returning 0 if Xsameperm fails. If Game1 returns 1 but Game2
returns 0 then this means that πsamescalar verifies and Xsamescalar fails ,and hence that B2 succeeds.

Game2 ÞÑ Game3 : Define Game3 to be identical to Game2 except in the following case. If A outputs
a verifying proof then define B3 to be the adversary that returns ppB, cmT,2, cmU,2,V ,W q, πsamemsmq

for
B “ A ` cmT,1 ` cmU,1, V “ pT || 0 || H || 0q, W “ pU || 0 || 0 || Hq

and Xsamemsm its corresponding extractor. Return 0 if Xsamemsm fails. This is in addition to return-
ing 0 if Xsameperm fails or if Xsamescalar fails. If Game2 returns 1 but Game3 returns 0 then this means
that πsamemsm verifies and Xsamemsm fails, and hence that B3 succeeds.

Game3 ÞÑ Game4 : Define Game4 to be identical to Game3 except in the following case. If Xsameperm

and Xsamescalar output pσpq, rA, rM q and pk, rT , rU q and if Xsamemsm outputs x such that

x ‰ pσpaq || rA || rT || rU q

then return 0.
We define the adversary B4 against the pℓ`nbl`3q-dlog assumption that takes as input pℓ`nbl`3q

random group elements g1 and aims to output two vectors x and y such that

x ˆ g1 “ y ˆ g1 ^ x ‰ y

First B4 splits pg || h || GT || GU || Hq Ð g1 and runs A on crs “ pg || h || GT || GU || Hq. When
A returns a verifying proof

ppR,S,T ,U ,Mq; pA, cmT , cmU , πsameperm, πsamescalar, πsamemsmqq Ð Apcrsq

11



then B4 runs Xsameperm and Xsamescalar to obtain pσpq, rA, rM q, pk, rT , rU q and Xsamemsm to obtain x
such that

A ` rTGT ` rUGU “ x ˆ g1 “ σpaq ˆ g ` rA ˆ h ` rTGT ` rUGU

See that if Game3 returns 1 then these extractors will succeed. Then B4 returns px, pσpaq || rA || rT || rU qq.
If Game4 returns 0 then this output is a valid q-dlog solution.

Game4 ÞÑ neglpλq : If Game4 returns 1 then we have that Xshuffle outputs pσpq, rM , kq such that
M “ σpaq ˆ g ` rMh and there exists rA with

A ` rTGT ` rUGU “ pσpaq || rA || rT || rU q ˆ pg || h || GT || GU q

kR ` rTH “ pσpaq || rA || rT || rU q ˆ pT || 0 || H || 0q

kS ` rUH “ pσpaq || rA || rT || rU q ˆ pU || 0 || 0 || Hq

Thus

kR ` rTH “ σpaq ˆ T ` rTH

kS ` rUH “ σpaq ˆ U ` rUH

and
a ˆ kR “ σpaq ˆ T ^ a ˆ kS “ σpaq ˆ U

Where a is selected after pR,S,T ,U ,Mq are determined, and ℓ ą 1, this happens with maximum
probability qH{|F|.

12



Proveshufflepcrsshuffle; pR,S,T ,U ,Mq; pσpq, k, rM qq

Step 1:
pg,h, GT , GU ,Hq Ð parsepcrsshuffleq

a “ pa1, . . . , aℓq Ð HashpR,S,T ,U ,Mq

Step 2:
rA

$
ÐÝ Fnbl´2

r1
A Ð prA || p0, 0qq

A Ð σpaq ˆ g ` r1
A ˆ h

πsameperm Ð Provesameperm ppg,h,Hq; pA,M,aq; pσpq, r1
A, rM qq

Step 3:
rT , rU

$
ÐÝ F

R Ð a ˆ R
S Ð a ˆ S
cmT Ð GroupCommitppGT ,Hq; kR; rT q

cmU Ð GroupCommitppGU ,Hq; kS; rU q

πsamescalar Ð ProvesamescalarppGT , GU ,Hq; pR,S, cmT , cmU q; pk, rT , rU qq

Step 4:
A1 Ð A ` cmT,1 ` cmU,1

G Ð pg || hr:nbl´2s || GT || GU q

T 1 Ð pT || 0 || H || 0q

U 1 Ð pU || 0 || 0 || Hq

x Ð pσpaq || rA || rT || rU q

πsamemsm Ð Provesamemsm

`

G; pA1, cmT,2, cmU,2,T
1,U 1q; x

˘

return pA, cmT , cmU , R, S, πsameperm, πsamescalar, πsamemsmq

Figure 2.2: The Curdleproofs proving algorithm to demonstrate that T ,U “ σpkRq, σpkSq for some field
element k and permutation σ committed in M .

13



Verifyshufflepcrsshuffle, ; ϕshuffle; πshuffleq

Step 1:
pg,h, GT , GU ,Hq Ð parsepcrsshuffleq

pR,S,T ,U ,Mq Ð parsepϕshuffleq

pA, cmT , cmU , R, S, πsameperm, πsamescalar, πsamemsmq Ð parsepπshuffleq

a “ pa1, . . . , aℓq Ð HashpR,S,T ,U ,Mq

Step 2:
check1 Ð Verifysamepermppg,h,Hq; pA,Mq; πsamepermq

Step 3:
R Ð a ˆ R
S Ð a ˆ S
check2 Ð VerifysamescalarppGT , GU ,Hq; pR,S, cmT , cmU q; πsamescalarq

Step 4:
A1 Ð A ` cmT,1 ` cmU,1

G Ð pg || hr:nbl´2s || GT || GU q

T 1 Ð pT || 0 || H || 0q

U 1 Ð pU || 0 || 0 || Hq

check3 Ð VerifysamemsmpG; pA1, cmT,2, cmU,2,T
1,U 1q;πsamemsmq

return 1 if pcheck1, check2, check3q “ p1, 1, 1q

else return 0

Figure 2.3: The Curdleproofs verification algorithm to check that T ,U “ σpkRq, σpkSq for some unknown
field element k and unknown permutation σ committed in M .

14



Chapter 3

SameScalar Argument

In this chapter we discuss a zero knowledge argument for the relation

Rsamescalar “

"

pR,S, cmT , cmU q; pk, rU , rT q cmT “ GroupCommitppGT ,Hq; kR; rT q

cmU “ GroupCommitppGU ,Hq; kS; rU q

*

It demonstrates that given public input pR,S, cmT , cmU q there exists k such that cmT is a commit-
ment to T “ kR and cmU is a commitment to kS.

The same scalar argument does not depend on any subroutines. This chapter consists of a single
section discussing the argument. We first describe the full zero-knowledge SameScalar construction.
We then prove its security in Theorems 3.0.1 and 3.0.2.

3.0.1 Full Zero-Knowledge Construction
A formal description of SameScalar argument is provided in Figure 3.1. The protocol is a simple
sigma-protocol and makes use of the additive homomorphism of the commitment scheme.

In order to convince the verifier the prover chooses a random statement that satisfies the same-
scalar relation. In other words it chooses a random scalar rk and computes two group elements
A “ rkR and B “ rkS with the same scalar. The prover then outputs the commitments: (1) cmA

a commitment to A under randomness rA; and (2) cmB a commitment to B under randomness rB.
These commitments are hashed, together with the instance, to get a challenge α.

The commitment scheme is homomorphic and thus cmA ` αcmT is a commitment to A ` αT
where T is the contents of cmT . Similarly cmB ` αcmU is a commitment to B ` αU where U is
the contents of cmU . If T “ kR, U “ kS, A “ rkR, and B “ rkS then we have that A ` αT and
B ` αU have the same scalar (namely rk ` αk). This is negligibly unlikely to occur if either T
and U or A and B do not have the same scalar because α is chosen randomly. Thus the prover
returns zk “ rk `αk together with the commitment randomness zT “ rT `αrA and zU “ rk `αrB.
The verifier checks that (1) cmA ` αcmT is a commitment to zkR under randomness zT ; and (2)
cmB ` αcmU is a commitment to zkS under randomness zU .

3.0.2 Security
Theorem 3.0.1 (SameScalar argument is zero-knowledge). SameScalar argument in Figure 3.1 is
zero-knowledge in the random oracle model.

15



Provesamescalarpcrssamescalar; pR,S, cmT , cmU q; pk, rT , rU qq

Step 1:
pGT , GU ,Hq Ð parsepcrsq

rA, rB, rk
$

ÐÝ F
cmA Ð GroupCommitppGT ,Hq; rkR; rAq

cmB Ð GroupCommitppGU ,Hq; rkS; rBq

α Ð HashpR,S, cmT , cmU , cmA, cmBq

Step 2:
zk Ð rk ` αk
zT Ð rA ` αrT
zU Ð rB ` αrU

return pcmA, cmB, zk, zT , zU q

Verifysamescalarpcrssamescalar; ϕsamescalar; πsamescalarq

Step 1:
pGT , GU ,Hq Ð parsepcrssamescalarq

pR,S, cmT , cmU q Ð parsepϕsamescalarq

pcmA, cmB, zk, zT , zU q Ð parsepπsamescalarq

α Ð HashpR,S, cmT , cmU , cmA, cmBq

Step 2:
check cmA ` αcmT “ GroupCommitppGT ,Hq; zkR; zT q

check cmB ` αcmU “ GroupCommitppGU ,Hq; zkS; zU q

return 1 if both checks pass, else return 0

Figure 3.1: Proving and verifying algorithms to demonstrate that cmT and cmU open to some T and U such
that T “ kR amd U “ kS for the same scalar k.

16



Proof. We design a simulator Simulate that takes as input an instance

pR,S, cmT , cmU q

and outputs a proof πsamescalar that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
queried by the adversary.

The simulator chooses zk, zT , zU , α
$

ÐÝ F. They set

cmA “ cmT ´ αGroupCommitppGT ,Hq; zkR; zT q

cmB “ cmU ´ αGroupCommitppGU ,Hq; zkS; zU q

They program the random oracle to return α on input pR,S, cmT , cmU , cmA, cmBq and return
pcmA, cmB, zk, zT , zU q.

First observe that cmA, cmB are randomised and thus with overwhelming probability the oracle
will not have already been programmed at this point. Second we see that if the commitments cmT

and cmU are in Rsamescalar then there exists k, rT , rU such that

cmT “ GroupCommitppGT ,Hq; kR; rT q

cmU “ GroupCommitppGU ,Hq; kS; rU q

Thus for r1
k “ prk ´ αzkq , rA “ prT ´ αzT q and rB “ prU ´ αzU q we have that

cmA “ GroupCommitppGT ,Hq; r1
kR; rAq

cmB “ GroupCommitppGU ,Hq; r1
kS; rBq

Where r1
k, rA, rB are randomised by zk, zT , zU respectively we see that these outputs are indistin-

guishable from the honest provers output.
The remaining outputs zk, zT , zU are the unique openings of cmA `αcmT and cmB `αcmU and

thus the only values that satisfy the verifiers equations for both prover and verifier. This is because
our commitment scheme is perfectly binding. Thus the prover and simulator values are sampled
from the same distribution.

Theorem 3.0.2 (SameScalar argument is knowledge-sound). The same scalar argument described
in Figure 3.1 is statistically knowledge-sound in the random oracle model.

Proof. We design an extractor Xsameperm such that: if there exists an adversary A that convinces
the verifier with non-negligible probability then with overwhelming probability Xsameperm returns
field elements k, rT , rU such that

ppR,S, cmT , cmU q; pk, rT , rU qq P Rsamescalar.

The extractor Xsameperm works as follows

1. Generate crs “ pGT , GU ,Hq and set trans “ 0. While trans “ 0 run trans Ð GameforkA pcrsq for
GameforkA pcrsq defined in Section 7.0.2. Parse

pα, α1q, ppR,S, cmT , cmU q; pcmA, cmBqq, pzk, zT , zU q, pz1
k, z

1
T , z

1
U qq “ trans

17



2. Compute

rk “ pzk ´ z1
kq{pα ´ α1q

rT “ pzT ´ z1
T q{pα ´ α1q

rU “ pzU ´ z1
U q{pα ´ α1q

and return prk, rT , rU q.

We must show that whenever A convinces the verifier then Xsameperm succeeds.
First see that Xsameperm terminates in polynomial time with overwhelming probability. Let τ

be the run time of A, ϵ be the probability that A outputs a valid response and qH be the total
number of hash queries that A can make. Assuming 8qH

|F|
ă ϵ then the game GameforkA pparq runs in

time at most 8τqH
ϵ ¨ lnp8{ϵq and is successful with probability at least ϵ{8. Thus the expected run

time of Xsamemsm is less than τqH ¨ lnp8{ϵq, which is polynomial time assuming that τ , ϵ and qH are
polynomial in the security parameter.

Second see that where both proofs verify we have that

cmA ` αcmT “ GroupCommitppGT ,Hq; zkR; zT q

cmA ` α1cmT “ GroupCommitppGT ,Hq; z1
kR; z1

T q

and hence
pα ´ α1qcmT “ GroupCommitppGT ,Hq; pzk ´ z1

kqR; zT ´ z1
T q

Multiplying both sides by pα ´ α1q´1 yields

cmT “ GroupCommit

ˆ

pGT ,Hq;
zk ´ z1

k

α ´ α1
R;

zT ´ z1
T

α ´ α1

˙

“ GroupCommitppGT ,Hq; rkR; rT q

Similarly see that where both proofs verify we have that

cmB ` αcmU “ GroupCommitppGU ,Hq; zkS; zU q

cmB ` α1cmU “ GroupCommitppGU ,Hq; z1
kS; z1

U q

and hence
pα ´ α1qcmU “ GroupCommitppGU ,Hq; pzk ´ z1

kqS; zU ´ z1
U q

Multiplying both sides by pα ´ α1q´1 yields

cmU “ GroupCommit

ˆ

pGU ,Hq;
zk ´ z1

k

α ´ α1
S;

zU ´ z1
U

α ´ α1

˙

“ GroupCommitppGT ,Hq; rkS; rU q

Thus prk, rT , rU q is a valid witness.

18



Chapter 4

SameMultiscalar Argument

In this chapter we discuss a zero knowledge argument for the relation

Rsamemsm “

$

&

%

pA,ZT , ZU ,T ,Uq; x A “ x ˆ G
ZT “ x ˆ T
ZU “ x ˆ U

,

.

-

.

SameMultiScalar argument does not depend on any subroutines. This chapter consists of a single
section discussing the argument. We first provide an informal overview and then describe the full
zero-knowledge SameMultiScalar construction. We finish by proving its security in Theorems 4.0.1
and 4.0.3.

4.0.1 Informal Overview
Our SameMultiScalar relation can be seen as a form of inner product relation where one is interested
in verifying whether A “ xˆG, ZT “ xˆT and ZU “ xˆU for some x. Inner product relations
have proven popular in recent years and have been the focus both of a long line of both academic
work [BCC`16, BBB`18, WTS`18, LMR19, HKR19, JT20, BMM`21, ACF21, GT21, BCS21,
RMM21] and implementation work. By expressing our multiscalar relation as an inner product we
can thus capitalise on this preexisting work.

In our case we consider that A is a commitment to x and T is the identity commitment to
T . We then wish to show that ZT “ x ˆ T . Here x is private while T is known to the verifier.
For simplicity we ignore the proof that ZU “ x ˆ U because this behaves identically. The inner
product argument is recursive. At each stage of the recursion, the aim is to find new commitments
A1,T 1 to values x1, T 1 of half the length. Further we need a new Z 1

T such that Z 1
T “ x1 ˆ T 1 if and

only if ZT “ xˆT . After sufficient rounds of recursion we have that x1 is a vector of length 1, and
thus can be sent in the clear. The verifier checks that the inner product relation holds for the final
revealed openings, and this suffices to show that the relation holds for the original longer openings.

Each round of the recursion proceeds as follows. The prover first computes auxiliary cross
product commitments (that will later be used to define A1 and T 1) as

LA “ xr:ns ˆ Grn:s, RA “ xrn:s ˆ Gr:ns, LT “ xr:ns ˆ Trn:s, RT “ xrn:s ˆ Tr:ns

Here n is a power of two. These are then hashed to find a random challenge γ .

19



The verifier updates the claimed inner product result to Z 1
T “ γLT ` ZT ` γ´1RT and the

prover updates the commitment contents to

x1 “ xr:ns ` γ´1crn:s, T 1 “ Tr:ns ` γTrn:s

such that Z 1
T “ x1 ˆ T 1. See that x1 and T 1 are half the length of x and T . We then update the

commitment A to x and the commitment key G as

A1 “ γLA ` A ` γ´1RA, G1 “ Gr:ns ` γ´1Grn:s

such that A1 “ x1 ˆ G1 is a commitment to x1.
Putting this together means we have pA1, T 1q “ px1 ˆ G1,x1 ˆ T 1q for some x1 that is half the

length of x. Due to the randomised nature of γ this statement is true if and only if the original
pA,ZT q “ px ˆ G,x ˆ T q for some x. The protocol then recurses until the final round, where x
and T have length 1. Then the prover sends x “ x1 in the clear and verifier accepts if and only if
ZT “ x1T1. Note that the full protocol has some additional masking values that are included to
ensure zero-knowledge. For simplicity we have ignored these terms in this overview.

4.0.2 Full Zero Knowledge Construction
A formal description of SameMultiScalar construction is provided in Figures 4.1 and 4.2. Inner
product arguments are not, by default, zero-knowledge. In order to get a zero-knowledge argument
we introduce a step at the beginning to randomise the provers witness. In particular the prover first
blinds the argument by sampling r randomly. They compute BA, BT , BU “ pr ˆ G, r ˆ T , r ˆ Uq

to blind the witness relating to A, ZT and ZU respectively. They hash to obtain the field element
α. The prover resets the private inputs to equal r ` αx and the verifier resets the public inputs to
equal

A “ BA ` αA and ZT “ BT ` αZT and ZU “ BU ` αZU

At this point the provers private input x is fully randomised and the prover could, theoretically,
reveal it in the clear. Doing so however would increase the proof size significantly. Instead we run
the inner product argument as specified in Section 4.0.1.

4.0.3 Security
Theorem 4.0.1 (SameMultiScalar argument is zero-knowledge). SameMultiScalar argument in Fig-
ures 4.1 and 4.2 is zero-knowledge in the random oracle model.

Proof. We design a simulator Simulate that takes as input an instance

pA,ZT , ZU ,T ,Uq

and outputs a proof πsamemsm that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
determined by the adversary.

The simulator Simulate samples x1, α
$

ÐÝ F and computes

A1 “ x1 ˆ G
Z 1
T “ x1 ˆ T

Z 1
U “ x1 ˆ U

20



They set
BA “ A1 ´ αA
BT “ Z 1

T ´ αZT

BU “ Z 1
U ´ αZU

program HashpA,ZT , ZU ,T ,U , BA, BT , BU q to equal α. In the remaining steps they behave exactly
as the honest prover with respect to the inputs x1.

Now we must argue that the simulated proof is indistinguishable from the real proof and that
the simulator doesn’t abort. First observe that BA, BT and BU are randomly sampled so the
probability that the adversary has already queried these points (causing the simulator to fail)
is negligible. Second observe that the provers commitment openings x ` αr and the simulaters
commitment openings x1 are distributed uniformly at random. These random values completely
determine the form of the honest provers output and the simulators output.

Indeed, for convenience denote the provers xP “ r ` αx Then the provers elements

tBA, BT , BUu “ txP ˆ G ´ αA,xP ˆ T ´ αZT ,xP ˆ U ´ αZUu

are distributed identically to the simulated elements. Likewise π, x are determined according to
the same recursive argument.

Lemma 4.0.2. The algorithm in Steps 2 and 3 of the prover and verifier in Figures 4.1 and 4.2 is
a knowledge sound argument for the relation Rsamemsm assuming the q-dlog problem holds.

Proof. The algorithms implement a generalised inner product argument with respect to the com-
mitment scheme

pG,k, kq
$

ÐÝ SetuppGq
¨

˝

x ˆ G
pk ˝ T ,k ˝ Uq

pkZT , kZU q

˛

‚Ð Commit

¨

˝

G x
k pT ,Uq

k pZT , ZU q

˛

‚

and the inner product
¨ : F ˆ G2 ÞÑ G2, x ¨ pT, Uq “ pxT, xUq

Note that Figures 4.1 and 4.2 have been optimised such that the commitments pk˝T ,k˝U , kZT , kZU q

are neither computed nor sent. This is because the verifier can compute the openings of these com-
mitments in the final round of recursion for itself.

By Theorem 7.0.5 it suffices to show that pSetup,Commit, ¨q is an inner product commitment.
We first show that pSetup,Commitq is binding. We second show that pSetup,Commitq is doubly ho-
momorphic. We third show the existence of a correct Collapse function (Definition 7.0.8). Together
these suffice to prove the lemma.

Binding commitment: Let A be an adversary that breaks binding. We describe an adversary B
against q-dlog. The adversary B takes as input G and sets a,k, k to have random entries in Fˆ.
Then B runs

¨

˝

A
pV ,W q

pZV , ZW q

˛

‚,

¨

˝

x
pT ,Uq

pZT , ZU q

˛

‚,

¨

˝

x1

pT 1,U 1q

pZ 1
T , Z

1
U q

˛

‚ Ð ApG,k, kq

21



and then B returns px,x1q.
If A wins then A “ x ˆ G “ x1 ˆ G for x ‰ x1 Thus B returns a correct q-dlog response and

AdvbindingA pλq ď Advq-dlogB pλq

Doubly homomorphic commitment: First see that the key space is homomorphic

Commit

¨

˝

G ` G1 x
k ` k1 pT ,Uq

k ` k1 pZT , ZU q

˛

‚“

¨

˝

x ˆ pG ` G1q

ppk ` k1q ˝ T , pk ` k1q ˝ Uq

ppk ` k1qZT , pk ` k1qZU q

˛

‚

“

¨

˝

x ˆ G
pk ˝ T ,k ˝ Uq

pkZT , kZU q

˛

‚`

¨

˝

x ˆ G1

pk1 ˝ T ,k1 ˝ Uq

pk1ZT , k
1ZU q

˛

‚

“ Commit

¨

˝

G x
k pT ,Uq

k pZT , ZU q

˛

‚` Commit

¨

˝

G1 x
k1 pT ,Uq

k1 pZT , ZU q

˛

‚

Second see that the message space is homomorphic

Commit

¨

˝

G x ` x1

k pT ,Uq ` pT 1,U 1q

k pZT , ZU q ` pZ 1
T , Z

1
U q

˛

‚“

¨

˝

px ` x1q ˆ G
pk ˝ pT ` T 1q,k ˝ pU ` U 1qq

kpZT ` Z 1
T , ZU ` Z 1

U q

˛

‚

“

¨

˝

x ˆ G
pk ˝ T ,k ˝ Uq

pkZT , kZU q

˛

‚`

¨

˝

x1 ˆ G
pk ˝ T 1,k ˝ U 1q

kpZ 1
T , Z

1
U q

˛

‚

“ Commit

¨

˝

G x
k pT ,Uq

k pZT , ZU q

˛

‚` Commit

¨

˝

G x1

k pT 1,U 1q

k pZ 1
T , Z

1
U q

˛

‚

Collapsible commitment: Let Collapse be the function

Collapse

¨

˝

A
ppV1 || V2q, pW1 || W2qq

pZV , ZW q

˛

‚ ÞÑ

¨

˝

A
pV1 ` V2,W1 ` W2q

pZV , ZW q

˛

‚

Then

Collapse

¨

˝Commit

¨

˝

G || G1 x || x
k || k1 ppT || T q, pU || Uqq

k pZT , ZU q

˛

‚

˛

‚“ Collapse

¨

˝

x ˆ G ` x ˆ G1

ppk ˝ T || k1 ˝ T q, pk ˝ U || k1 ˝ Uqq

pkZT , kZU q

˛

‚

“

¨

˝

x ˆ pG ` G1q

ppk ˝ T ` k1 ˝ T q, pk ˝ U ` k1 ˝ Uqq

pkZT , kZU q

˛

‚

“

¨

˝

x ˆ pG ` G1q

ppk ` k1q ˝ T , pk ` k1q ˝ Uq

pkZT , kZU q

˛

‚

“ Commit

¨

˝

G ` G1 x
k ` k1 pT ,Uq

k pZT , ZU q

˛

‚

22



as required.

Theorem 4.0.3 (SameMultiScalar argument is knowledge-sound). SameMultiScalar argument de-
scribed in Figures 4.1 and 4.2 is knowledge-sound in the random oracle model assuming the q-dlog
is hard.

Proof. We design an extractor Xsamemsm such that: if there exists an adversary A that convinces
the verifier with non-negligible probability then with overwhelming probability Xsamescalar returns
field elements x such that

ppA,ZT , ZU ,T ,Uq; xq P Rsamemsm.

By Lemma 4.0.2, whenever an adversary B outputs a valid proof, there exists an extractor XB
that takes as input B’s transcript and outputs x such that

pBA, BT , BU q ` αpA,ZT , ZU q “ px ˆ G, x ˆ T , x ˆ Uq

such that Advsamemsm2
B,XB

pλq is negligible assuming the dlog problem is hard. Here samemsm2 refers
to the knowledge-soundness game for the (non-zk) protocol in steps 2 and 3 of Figures 4.1 and 4.2.

The extractor Xsamemsm works as follows

1. Randomly sample coins ω.

2. Define an adversary B1 that behaves as follows:

• Generate crs “ G and set trans “ 0. While trans “ 0 run trans Ð GameforkA pcrs;ωq for
GameforkA pcrsq defined in Section 7.0.2. Parse

pα, α1q, ppA,ZT , ZU ,T ,Uq; pBA, BT , BU q, pπ, xq, pπ1, x1qq “ trans

• Return pBA ` αA,BT ` αZT , BU ` αZU q, pπ, xq

3. Define an adversary B2 that behaves as follows:

• Compute

pα, α1q, ppA,ZT , ZU ,T ,Uq; pBA, BT , BU q, pπ, xq, pπ111, x1qq “ trans

the same as B0

• Return pBA ` α1A,BT ` α1ZT , BU ` α1ZU q, pπ1, x1q

4. Let XB1 be B1’s samemsm2 extractor. Extract y such that BA ` αA “ y ˆ G, BT ` αZT “

y ˆ T , BU ` αZU “ y ˆ U .

5. Let XB2 be B2’s samemsm2 extractor. Extract y1 such that BA `α1A “ y1 ˆG, BT `α1ZT “

y1 ˆ T , BU ` α1ZU “ y1 ˆ U .

6. Compute x “ pα ´ α1q´1py ´ y1q and return x.

23



We must show that whenever A convinces the verifier then Xsamemsm succeeds.
First see that Xsamemsm terminates in polynomial time with overwhelming probability. Let τ be

the run time of A, ϵ be the probability that A outputs a valid response and qH be the total number
of hash queries that A can make. Assuming 8qH

|F|
ă ϵ then the game GameforkA pparq runs in time at

most 8τqH
ϵ ¨ lnp8{ϵq and is successful with probability at least ϵ{8. The expected run time of B1,B2

is less than τqH ¨ lnp8{ϵq, which is polynomial time assuming that τ , ϵ and qH are polynomial in
the security parameter. By Lemma 4.0.2 this means that the expected run times of XB1 and XB2

are also polynomial.
We show that for all extractors XB1 ,XB2 we have that

AdvA,Xsamemsmpλq ď Advsamemsm2
B1,X1

pλq ` Advsamemsm2
B2,X2

pλq

We proceed via a series of games Game1,Game2 such that

AdvA,Xsamemsmpλq ď Advsamemsm2
B1,XB1

pλq ` AdvGame1
A,Xsamemsm

pλq

AdvGame1
A,Xsamemsm

pλq ď Advsamemsm2
B2,XB2

pλq ` AdvGame2
A,Xsamemsm

pλq

AdvGame2
A,Xsamemsm

pλq “ 0

which combined give us our final result.

Game0 ÞÑ Game1 : Let Game0 be the initial knowledge-soundness game. Then Game1 is identical
except in the following case. If A outputs a verifying proof then define B1 be the adversary as in
Xsamemsm that returns pBA `αA,BT `αZT , BU `αZU q, pπ, xq and XB1 its corresponding extractor.
Return 0 if XB1 fails. If Game0 returns 1 but Game1 returns 0 then this means that pπ, xq verifies
and XB1 fails, and hence that B1 succeeds. By Lemma 4.0.2 the probability of this is negligible if
the q-dlog assumption holds.

Game1 ÞÑ Game2 : Define Game2 to be identical to Game1 except in the following case. If A out-
puts a verifying proof then define B2 be the adversary as in Xsamemsm that returns pBA `α1A,BT `

α1ZT , BU ` α1ZU q, pπ1, x1q and XB2 its corresponding extractor. Return 0 if XB2 fails. If Game1
returns 1 but Game2 returns 0 then this means that pπ1, x1q verifies and XB2 fails, and hence that
B2 succeeds. By Lemma 4.0.2 the probability of this is negligible if the q-dlog assumption holds.

Game2 ÞÑ neglpλq : See that
¨

˝

BA ` αA
BT ` αZT

BU ` αZU

˛

‚“

¨

˝

y ˆ G
y ˆ T
y ˆ U

˛

‚ and

¨

˝

BA ` α1A
BT ` α1ZT

BU ` α1ZU

˛

‚“

¨

˝

y1 ˆ G
y1 ˆ T
y1 ˆ U

˛

‚

ñ

¨

˝

pα ´ α1qA
pα ´ α1qZT

pα ´ α1qZU

˛

‚“

¨

˝

py ´ y1q ˆ G
py ´ y1q ˆ T
py ´ y1q ˆ U

˛

‚

Thus the value x “ pα ´ α1q´1py ´ y1q output by Xsamemsm in Game2 is a correct witness for
pA,ZT , ZU ,T ,Uq.

24



Provesamemsmpcrssamemsm; pA,ZT , ZU ,T ,Uq; xq

Step 1:
G Ð parsepcrssamemsmq

r
$

ÐÝ Fn

BA Ð r ˆ G
BT Ð r ˆ T
BU Ð r ˆ U
α Ð HashpA,ZT , ZU ,T ,U , BA, BT , BU q

x Ð r ` αx

Step 2:
m Ð n
while 1 ď j ď m :

n Ð n
2

LA,j Ð xr:ns ˆ Grn:s

LT,j Ð xr:ns ˆ Trn:s

LU,j Ð xr:ns ˆ Urn:s

RA,j Ð xrn:s ˆ Gr:ns

RT,j Ð xrn:s ˆ Tr:ns

RU,j Ð xrn:s ˆ Ur:ns

πj Ð pLA,j , LT,j , LU,j , RA,j , RT,j , RU,jq

γj Ð Hashpπjq

x Ð xr:ns ` γ´1
j xrn:s

T Ð Tr:ns ` γjTrn:s

U Ð Ur:ns ` γjUrn:s

G Ð Gr:ns ` γjGrn:s

Step 3:
x Ð x1

return pBA, BT , BU ,π, xq

Figure 4.1: Proving algorithm to demonstrate that pA,ZT , ZU q “ pxˆG, xˆT , xˆUq for some vector of
field elements x.

25



Verifysamemsmpcrssamemsm; ϕsamemsm; πsamemsmq

Step 1:
G Ð parsepcrssamemsmq

pA,ZT , ZU ,T ,Uq Ð parsepϕsamemsmq

pBA, BT , BU ,π, xq Ð parsepπsamemsmq

α Ð HashpA,ZT , ZU ,T ,U , BA, BT , BU q

A Ð BA ` αA
ZT Ð BT ` αZT

ZU Ð BU ` αZU

Step 2:
m Ð n
while 1 ď j ď m :

n Ð n
2

pLA,j , LT,j , LU,j , RA,j , RT,j , RU,jq Ð parsepπjq
γj Ð Hashpπjq

A Ð γjLA,j ` A ` γ´1
j RA,j

ZT Ð γjLT,j ` ZT ` γ´1
j RT,j

ZU Ð γjLU,j ` ZU ` γ´1
j RU,j

G Ð Gr:ns ` γjGrn:s

T Ð Tr:ns ` γjTrn:s

U Ð Ur:ns ` γjUrn:s

Step 3:
check1 Ð A

?
“ xG1

check2 Ð ZT
?
“ xT1

check3 Ð ZU
?
“ xU1

return pcheck1, check2, check3q “ p1, 1, 1q

else return 0.

Figure 4.2: Verify algorithm to check that that pA,ZT , ZU q “ px ˆ G, x ˆ T , x ˆ Uq for some vector of
field elements x.

26



Chapter 5

Same Permutation Argument

In this chapter we discuss a zero knowledge argument for the relation

Rsameperm “

$

&

%

pA,M,aq; pσpq, rA, rM q A “ σpaq ˆ g ` rA ˆ h
M “ σp1, . . . , ℓq ˆ g ` rM ˆ h
σpq P permutations over r1, . . . , ℓs

,

.

-

This chapter consists of three sections each discussing a unique argument: (1) SamePerm argument;
(2) GrandProd argument; and (3) an inner product for pedersen commitments. SamePerm uses
GrandProd as a subroutine. The grand-product then uses the inner-product as a subroutine.

5.1 Same Permutation Argument
We begin by giving a full overview of the same-permutation construction. For an informal overview
see Section 5.1.2 and for the formal construction see Figure 5.1. The security arguments are given
in Theorems 5.1.1 and 5.1.2. The construction makes use of GrandProd argument as a subprotocol.
We specify GrandProd relations below and describe GrandProd construction in Section 5.2.

5.1.1 Neff’s Trick
The argument takes advantage of an observation (first applied in the proof context by Neff [Nef01])
that two polynomials are equal if and only if their roots are the same up to permutation. In other
words

σpaq “ c ô pa1 ` Y qpa2 ` Y q ¨ ¨ ¨ paℓ ` Y q “ pc1 ` Y qpc2 ` Y q ¨ ¨ ¨ pcℓ ` Y q

as polynomials of Y . We can additionally bind a and c to a specific permutation σpq through
including an additional indeterminate X. Indeed whenever the polynomial equation

pa1 `X ` Y qpa2 ` 2X ` Y q ¨ ¨ ¨ paℓ ` ℓX `Y q “ pc1 `m1X `Y qpc2 `m2X `Y q ¨ ¨ ¨ pcℓ `mℓX ` Y q

holds we have that there exists σpq such that

σpa1 ` X, a2 ` 2X, . . . , aℓ ` ℓXq “ pc1 ` m1X, c2 ` m2X, . . . , cℓ ` mℓXq

This implies that σpq is a permutation, σpaq “ c and σp1, . . . , ℓq “ m.

27



Figure 5.1: Overview of SamePerm argument. The protocol uses GrandProd argument as a subroutine.

5.1.2 Informal Overview
The prover will take as input the A,M,a and aims to prove knowledge of σpq such that:

• A “ σpaq ˆ g is a commitment to σpaq

• M “ σp1, 2, . . . , ℓq ˆ g is a commitment to σpq

The verifier wishes to check that A and M are commitments to c and m respectively such that

pa1 `X ` Y qpa2 ` 2X ` Y q ¨ ¨ ¨ paℓ ` ℓX `Y q “ pc1 `m1X ` Y qpc2 `m2X `Y q ¨ ¨ ¨ pcℓ `mℓX ` Y q

Initially all the public inputs pA,M,aq are hashed to get challenges α, β and we must show that

pa1 ` α ` βqpa2 ` 2α ` βq ¨ ¨ ¨ paℓ ` ℓα ` βq “ pc1 ` m1α ` βqpc2 ` m2α ` βq ¨ ¨ ¨ pcℓ ` mℓα ` βq

By the Schwartz-Zippel Lemma this implies that the polynomial expression holds except with
negligible probability.

Next the prover and verifier both compute values p “
śℓ

i“1pai`iα`βq and B “ A`αM`βˆg
where β “ pβ, β, . . . , βq. By the homomorphic properties of the Pedersen commitment we see that
B is thus a commitment to

b “ c ` αm ` β1 “ pc1 ` m1α ` β, c2 ` m2α ` β, . . . , cℓ ` mℓα ` βq

Here 1 “ p1, . . . , 1q is the length ℓ vector where every entry equals 1. Then the prover uses a
grand-product argument to describe knowledge of b such that B is a commitment to b and p is a
grandproduct of b. This implies that

ℓ
ź

i“1

pai ` iα ` βq “

ℓ
ź

i“1

pci ` miα ` βq

28



and hence that m “ σp1, . . . , ℓq, c “ σpaq for some σpq.
Note that the full same-permutation protocol has some additional masking values that are

included to ensure zero-knowledge. For simplicity we have ignored these terms in this overview.

5.1.3 GrandProd Relation
GrandProd relation demonstrates that given public input pB, pq P G ˆ F there exists b such that B
is a commitment to b and p is the grand-product of b. This commitment is blinded. In other words

Rgprod “

"

pB, pq; pb, rBq B “ b ˆ g ` rB ˆ h

p “
śℓ

i“1 bi

*

Provesamepermpcrssameperm; pA,M,aq; pσpq, rA, rM qq

Step 1:
pg,h,Hq Ð parsepcrssamepermq

pα, βq Ð HashpA,M,aq

Step 2:
b Ð σpaiq ` σpp1 . . . ℓqqα ` β

p Ð
śℓ

i“1 bi
B Ð A ` αM ` β ˆ g
rB Ð rA ` αrM
πgprod Ð Provegprod ppg,h,Hq; pB, pq; pb, rBqq

return pB, πgprodq

Verifysamepermpcrssameperm, ; ϕsameperm; πsamepermq

Step 1:
pg,h,Hq Ð parsepcrssamepermq

pA,M,aq Ð parsepϕsamepermq

pB, πgprodq Ð parsepπsamepermq

pα, βq Ð HashpA,M,aq

Step 2:
p Ð

śℓ
i“1pai ` iα ` βq

check1 Ð B
?
“ A ` αM ` β ˆ g

check2 Ð Verifygprodppg,h,Hq; pB, pq; πgprodq

return 1 if pcheck1, check2q “ p1, 1q

else return 0

Figure 5.2: Proving and verifying algorithms to demonstrate that A,M are commitments to σpaq, σp1, . . . , ℓq
for some permutation σ. Here we denote β “ pβ, β, . . . , βq

29



5.1.4 Full Zero Knowledge Same-Permutation Construction
The full zero-knowledge construction for SamePerm argument is given in Figure 5.2. In the first
step the prover and verifier both hash the instance pA,M,aq to get a challenge α, β.

In the second step the prover and verifer both compute the grandproduct p Ð
śℓ

i“1pai`iα`βq

and a value B which is a commitment to b “ c ` αm ` β where

A “ c ˆ g ` rA ˆ h ^ M “ m ˆ g ` rM ˆ h

and where β is a vector of length ℓ in which every entry is β. For later optimisations to the
verifier, the verifier checks that B is correct rather than computing the value for itself. The prover
additionally computes the randomness rB of the commitment B such that

B “ b ˆ g ` rB ˆ h

Finally the prover runs a grandproduct argument to demonstrate that the prover knows pb, rBq

such that B is as above and p “
śℓ

i“1 bi.
The final proof is simply the grand-product proof πgprod and thus πsameperm is zero-knowledge

provided that πgprod is zero-knowledge.

5.1.5 Security
Theorem 5.1.1 (Same-permutation argument is zero-knowledge). If the grandproduct argument
is zero-knowledge, then the same-permutation argument described in Figures 5.2 and 5.2 is zero-
knowledge.

Proof. We design a simulator Simulate that takes as input an instance

pA,M,aq

and outputs a proof πsameperm that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
determined by the adversary.

During the setup the simulator chooses the crsgprod “ pg,h,Hq uniformly at random. During
proving the simulator Simulate proceeds as follows

1. They compute p,B identically to the honest prover.

2. They run
πgprod “ Simulatedl-innerppg,h,Hq, pB, pqq

and return πgprod.

Now we must argue that the simulated proof is indistinguishable from the real proof.
We design an adversary B such that

AdvApλq ď 2AdvgprodB pλq

Game0 ÞÑ Game1 : Let Game0 be the initial zero-knowledge game. Define Game1 to run identicallly
to Game0 except that, the crs and the πgprod proof are generated by the gprod simulator for both
b “ 0 and b “ 1.

30



Let B be an adversary against the gprod zero-knowledge game. Then B simulates the zero-
knowledge game for A. It takes as input crs and runs Apcrsq on the same input. It flips a coin to
get b P t0, 1u. When A makes a prover query, if b “ 0 then B generates pB, pq honestly and queries
its oracle on input pB, pq and pb, rBq for b “ σpaq `ασpr1, ℓsq `β and rB “ rA `αrM . It receives
back a proof πgprod. Then B returns πgprod. If b “ 1 then B runs the simulator to compute the
response. When A returns b1 then if b “ b1 then B returns 0, else B returns 1.

Then

PrrBpcrsq “ 0 | b̄ “ 0s “
1

2
pPrrApcrsq “ 0 | Game0, b “ 0s ` PrrApcrsq “ 1 | Game0, b “ 1sq

PrrBpcrsq “ 1 | b̄ “ 1s “
1

2
p2 ´ PrrApcrsq “ 0 | Game1, b “ 0s ´ PrrApcrsq “ 1 | Game1, b “ 1sq

and

AdvzkB pλq “ |1 ´ 2PrrGamegprodB pλqs|

“ |1 ´ PrrBpcrsq “ 0 | b̄ “ 0s ´ PrrBpcrsq “ 1 | b̄ “ 1s|

“

ˇ

ˇ

ˇ
1 ´

1

2
pPrrApcrsq “ 0 | Game0, b “ 0s ` PrrApcrsq “ 1 | Game0, b “ 1sq

´
`

1 ´ PrrBpcrsq “ 0 | b̄ “ 1s
˘

ˇ

ˇ

ˇ

“
1

2

ˇ

ˇ

ˇ
1 ´ PrrApcrsq “ 0 | Game0, b “ 0s ´ PrrApcrsq “ 1 | Game0, b “ 1s

´ 1 ` PrrApcrsq “ 0 | Game1, b “ 0s ` PrrApcrsq “ 1 | Game0, b “ 1s

ˇ

ˇ

ˇ

“
1

2
|AdvGame0

A pλq ´ AdvGame1
A pλq|

This means that

AdvGame0
A pλq ď 2AdvgprodB pλq ` AdvGame1

A pλq

Game1 ÞÑ 0 : In Game1 the simulated proofs are generated identically and are thus indistinguishable.

Theorem 5.1.2 (SamePerm argument is knowledge-sound). If GrandProd argument is knowledge-
sound, and the q-dlog assumption holds, then the SamePerm argument described in Figure 5.2 is
knowledge-sound.

Proof. We design an extractor Xsameperm such that for any adversary A that convinces the veri-
fier, with overwhelming probability returns either a discrete logarithm relation between g,h or a
permutation σpq and randomness rA, rM such that

ppA,M,aq; pσpq, rA, rM qq P Rsameperm.

By the knowledge-soundness of the grand-product argument there exists an extractor Xgprod such
that if A returns verifying pB, p, πgprodq then they return valid witnesses for their respective lan-
guages with overwhelming probability.

The extractor Xsameperm works as follows

31



1. Randomly sample coins ω.

2. Define an adversary B1 that behaves as follows:

• Generate crs “ pg,h,Hq and set trans “ 0. While trans “ 0 run trans Ð GameforkA pcrs;ωq

for GameforkA pcrsq defined in Section 7.0.2. Parse

ppα, βq, pα1, β1qq, pA,M,aq; ¨ , pπgprod, π
1
gprodq “ trans

• Return pA ` αM ` β ˆ g, πgprodq

3. Define an adversary B2 that behaves as follows:

• Generate crs “ pg,h,Hq and set trans “ 0. While trans “ 0 run trans Ð GameforkA pcrs;ωq

for GameforkA pcrsq defined in Section 7.0.2. Parse

ppα, βq, pα1, β1qq, pA,M,aq; ¨, pπgprod, π
1
gprodq “ trans

• Return pA ` α1M ` β1 ˆ g, π1
gprodq

4. Let XB1 be B1’s gprod extractor. Extract b, rB such that B “ b ˆ g ` rB ˆ h and p “
ś

i bi.

5. Let XB2 be B2’s gprod extractor. Extract b1, r1
B such that B1 “ b1 ˆg`r1

B ˆh and p1 “
ś

i bi.

6. Set m Ð pα ´ α1q´1ppb ´ βq ´ pb1 ´ β1qq

7. Set rM Ð pα ´ α1q´1prB ´ r1
Bq

8. Set rA Ð rB ´ αrM and return m, rA, rM .

We must show that whenever A convinces the verifier, then either Xsameperm succeeds or we can
extract a discrete logarithm relation between pg || hq. First see that Xsameperm terminates in
polynomial time. Let τ be the run time of A, ϵ be the probability that A outputs a valid response
and qH be the total number of hash queries that A can make. Assuming 8qH

|F|
ă ϵ then the game

GameforkA pparq runs in time at most 8τqH
ϵ ¨ lnp8{ϵq and is successful with probability at least ϵ{8.

The expected run time of B1,B2 is less than τqH ¨ lnp8{ϵq, which is polynomial time assuming that
τ , ϵ and qH are polynomial in the security parameter. By the knowledge soundness of the gprod
argument this means that the expected run times of XB1 and XB2 are also polynomial.

We design an B3,B4 such that for all extractors XB1 ,XB2 ,XB3 we have that

AdvA,Xsamepermpλq ď AdvgprodB1,X1
pλq ` AdvgprodB2,X2

pλq ` AdvgprodB3,X3
pλq ` Advq-dlogB4

pλq `
qH
|F|

We proceed via a series of games Game1,Game2,Game3 such that

AdvA,Xsamepermpλq ď AdvgprodB1,XB1
pλq ` AdvGame1

A,Xsameperm
pλq

AdvGame1
A,Xsameperm

pλq ď AdvgprodB2,XB2
pλq ` AdvGame2

A,Xsameperm
pλq

AdvGame2
A,Xsameperm

pλq ď AdvgprodB3,XB3
pλq ` `Advq-dlogB4

pλq ` AdvGame3
A,Xsameperm

pλq

AdvGame3
A,Xsameperm

pλq ď
qH
F

32



which combined give us our final result.

Game0 ÞÑ Game1 : Let Game0 be the initial knowledge-soundness game. Then Game1 is identical
except in the following case. If A outputs a verifying proof then define B1 be the adversary as in
Xsameperm that returns pA ` αM ` β ˆ g, πgprodq and XB1 its corresponding extractor. Return 0
if XB1 fails. If Game0 returns 1 but Game1 returns 0 then this means that πgprod verifies and XB1

fails, and hence that B1 succeeds.

Game1 ÞÑ Game2 : Define Game2 to be identical to Game1 except in the following case. If A outputs
a verifying proof then define B2 be the adversary as in Xsameperm that returns pA`αM`β1ˆg, π1

gprodq

and XB2 its corresponding extractor. Return 0 if XB2 fails. If Game1 returns 1 but Game2 returns
0 then this means that π1

gprod verifies and XB2 fails, and hence that B2 succeeds.

Game2 ÞÑ Game3 : Define Game3 to be identical to Game2 except in the following case. We define
an adversary B3 that behaves as follows:

• Generate crs “ pg,h,Hq and set trans “ 0. Choose random coins ω1 such that during the
GameforkA pcrsq the original f values are sampled identically but the f 1 values are sampled differ-
ently. While trans “ 0 run trans Ð GameforkA pcrs;ω1q for GameforkA pcrsq defined in Section 7.0.2.
Parse

ppα, βq, pα2, β2qq, pA,M,aq; ¨, pπgprod, π
2
gprodq “ trans

• Return pA ` αM ` β ˆ g, π2
gprodq

Let XB3 be B3’s gprod extractor. Then Game3 runs B3 and then XB3 to extract b2, r2
B such that

B “ b2 ˆ g ` r2
B ˆ h and p “

ś

i b
2
i . It computes x Ð b ´ αm ´ β. If

pb2 || r2
Bq ‰ px ` α2m ` β2 || rA ` α2rM q

then return 0.
Let B4 be the adversary that takes as input g,h, samples H randomly, and runs B3pcrs; ωq and

XB3 on B3’s transcript, and returns
`

pb2 || r2
Bq, px ` α2m ` β2 ||rA ` α2rM q

˘

If Game2 returns 1 but Game3 returns 0 then this means that either (1) π2
gprod verifies and XB3 fails,

and hence that B3 succeeds; or (2) pb2 || r2
Bq ‰ px ` α2m ` β2 ||rA ` α2rM q.

In the latter case we have that

A ` αm ˆ g ` αrM ˆ h ` β “ b ˆ g ` rB ˆ h

implies that A “ x ˆ g ` rA ˆ h. Thus

A ` αM ` β ˆ g “ b2 ˆ g ` r2
B ˆ h

“ px ` α2m ` β2q ˆ g ` prA ` α2rM q ˆ h

and so B4 breaks the q-dlog assumption.

33



Game3 ÞÑ neglpλq : If Game4 returns 1 then we have that Xsameperm outputs pm, rA, rM q such that
for x defined in Game3 and for random α2, β2 we have that

ℓ
ź

i“1

pai ` iα2 ` β2q “

ℓ
ź

i“1

pxi ` α2mi ` β2q

Where α2, β2 is selected after px,m, rA, rM q are determined, this happens with maximum proba-
bility qH{|F| unless x “ σpaq and m “ σp1, . . . , ℓq.

34



5.2 Grand-Product Argument
In this section we discuss a zero knowledge argument for the relation

Rgprod “

"

pB, pq; pb, rBq B “ b ˆ g ` rB ˆ h

p “
śℓ

i“1 bi

*

For an informal overview see Section 5.2.1 and for the formal construction see Figures 5.4 and 5.5.
The security arguments are deferred to Theorems 5.2.1 and 5.2.3. The construction makes use
of a discrete-logarithm inner product argument as a subprotocol. We specify the inner-product
relations below and describe the inner-product construction in Section 5.3.

5.2.1 Informal Overview
The prover will take as input the B, p and aims to prove knowledge of b such that:

• B “ b ˆ g is a commitment to b

• p “
śℓ

i“1 bi is the grandproduct of b

On a high level we aim to express this relation as an inner product argument. Doing this consists
of the following steps:

1. We separate the grandproduct into multiple single product equations;

2. We compress all our equations into a polynomial;

3. We rearrange the polynomial into an inner product equation;

4. We compile the proving system by obtaining commitments to the inputs to the inner product
equation;

See Figure 5.3.

Figure 5.3: The grandproduct argument is compiled into an inner product argument.

35



Separate

The product p “
śℓ

i“1 bi consists of ℓ´1 multiplications. Initially we separate these multiplications
into ℓ ` 1 separate multiplication checks

c1 “ 1 ^ ci`1 “ bici, i P r1, ℓq ^ p “ bℓcℓ

that iteratively define a vector c. The final check enforces that p “
śℓ

i“1 bi is the grandproduct of
b.

Compress

To ensure that each of our multiplication checks hold we compress them into a single polynomial
equation

0 “ p1 ´ c1q ` pb1c1 ´ c2qX ` pb2c2 ´ c3qX2 ` . . . ` pbℓ´1cℓ´1 ´ cℓqX
ℓ´1 ` pbℓcℓ ´ pqXℓ

or equivalently

0 “ p1 ´ c1q `

ℓ´1
ÿ

i“1

pbici ´ ci`1qXi ` pbℓcℓ ´ pqXℓ

in the indeterminate X where each coefficient is checking a single constraint.

Rearrange

Our eventual goal is to express (5.1) as an inner product equation such that we can run an inner
product argument. We thus rearrange the c terms and see that

pXℓ ´ 1 “ c1pXb1 ´ 1q ` c2pX2b2 ´ Xq ` . . . ` cℓ´1pXℓ´1bℓ´1 ´ Xℓ´2q ` cℓpX
ℓbℓ ´ Xℓ´1q

or equivalently

pXℓ ´ 1 “

ℓ
ÿ

i“1

cipX
ibi ´ Xi´1q

Compile

By the Schwartz-Zippel Lemma our inner product equation holds with overwhelming probability if
at a random point β

pβℓ ´ 1 “

ℓ
ÿ

i“1

cipβ
ibi ´ βi´1q (5.1)

Equivalently
z “ c ˆ d

where
z “ pβℓ ´ 1 ^ di “ pβibi ´ βi´1q, i P r1, ℓs

We thus require a commitment to c and d.
Initially the prover provides a commitment C “ c ˆ g to

c “ p1, b1, b1b2, b1b2b3, . . . , b1 . . . bℓ´1q

36



The commitment C is hashed to get β. We now require a commitment D to the vector d. We have
a commitment B “ b ˆ g to b. Recall that

v ˆ w “ pa1v1, . . . , aℓvℓq ˆ pa´1
1 w1, . . . , a

´1
ℓ wℓq

for all invertible a. Thus we can view B as being a commitment to a rescaled vector b1 under an
appropriately rescaled commitment key g1

b1 “ pβ1b1, . . . , β
ℓbℓq

g1 “ pβ´1g1, . . . , β
´pℓqgℓq

B “ b1 ˆ g1

Now
d “ b1 ´ p1, β, . . . , βℓ´1q

Hence the prover and verifier compute

D “ B ´

ℓ
ÿ

i“1

βi´1g1
i

such that D “ d ˆ g1 is a commitment to d under g1.
To finish, the prover provides a discrete log inner product argument, the relation for which is

formally defined below, attesting to the existence of c and d such that

C “ c ˆ g, D “ d ˆ g1, pβℓ ´ 1 “ c ˆ d

By design there exists a non-trivial relation between g and g1. The full construction has some
additional masking values that are included to ensure zero-knowledge. For simplicity we have
ignored these terms in this overview.

5.2.2 Discrete Logarithm Inner Product Relation
The discrete logarithm inner product relation demonstrates that given public input C,D P G,v P

Fn, z P F there exists c and d such that C “ c ˆ G, D “ d ˆ G1 and z “ c ˆ d. In other words

Rdl-inner “

$

&

%

pC,D, zq; pc,dq C “ c ˆ G
D “ d ˆ G1

z “ c ˆ d

,

.

-

When we use this relation we will have that the adversary knows a non-trivial relation between
G and G1 but it will not know: (1) any non-trivial relations between the elements in G; (1) any
non-trivial relations between the elements in G1.

5.2.3 Full Zero Knowledge Grand Product Construction
A formal description of the grand-product argument is provided in Figures 5.4 and 5.5. Here we
describe the additional steps that we have added compared to the informal overview in Section 5.2.1

37



to achieve zero-knowledge. We defer the security proofs of zero-knowledge, and soundness to Sec-
tion 5.2.4, Theorems 5.2.3 and 5.2.1.

Step 1: In the first step the prover and verifier both hash the instance to get a random value α.
This allows the prover to mask rB in the next step even when rB “ 0. There are no secrets in this
step. The verifier parses all inputs to check that they are group or field elements.

Step 2: In the second step the prover computes a commitment C to c. The vector c depends on b
and thus must be kept private. Thus the prover chooses a random blinding vector rC P Fnbl . This
vector rC is included in the inner product argument in the final step, and thus the prover provides
a field element rp “ prB `α1qˆrC that cancels out the blinders contributions to the inner product.
See here that the αp1ˆrCq component ensures that rp is satistically blinded provided that |rC | ě 2.

Step 3: In the third step the prover and verifier compute h1 “ β´pℓ`1qh as the rescaled part of
the commitment key that is used for blinding commitments. The prover additionally computes
randomness rD “ βℓ`1prB `α1q such that D “ dˆ g1 ` rD ˆh1 is a commitment to d. Here βℓ`1

does not overlap with the pβ, β2, . . . , βℓq values that are used to rescale b1.

Step 4: In the fourth and final step the prover and verifier compute the commitment key G “

pg || hq so that they can view C as a commitment to the extended vector pc || rCq. They do
the same for G1 such that D is a commitment to the extended vector pd || rDq. They compute
z “ pβℓ ` rpβ

ℓ`1 ´ 1 as the inner product of the extended vectors z “ pc || rCq ˆ pd || rDq. See
that rpβ

ℓ`1 “ rC ˆ rD. There are no secrets involved in this step.

5.2.4 Grand-Product Security
Theorem 5.2.1 (Grand product argument is zero-knowledge). The grand-product argument de-
scribed in Figures 5.4 and 5.5 is zero-knowledge when |h| ě 2 and the discrete logarithm inner
product argument is zero-knowledge.

Proof. We design a simulator Simulate that takes as input an instance pB, pq and outputs a proof
πgprod that is indistinguishable from a proof generated by an honest prover that knows the witness.

During the setup the simulator chooses the crsgprod “ pg,h,Hq uniformly at random. During
proving the simulator Simulate proceeds as follows

1. They sample C
$

ÐÝ G and rp
$

ÐÝ F.

2. They compute G,G1, D, z identically to the honest prover.

3. They run
πdl-inner “ Simulatedl-innerppG,G1,Hq, pC,D, zqq

and return pC, rp, πdl-innerq.

Now we must argue that the simulated proof is indistinguishable from the real proof.
We design an adversary B such that

AdvApλq ď 2Advdl-innerB pλq `
1

|F|

38



Provegprodpcrsgprod; pB, pq; pb, rBqq

Step 1:
pg,h,Hq Ð parsepcrsgprodq

α Ð HashpB, pq

Step 2:
c Ð p1, b1, b1b2, b1b2b3, . . . , b1 ¨ ¨ ¨ bℓ´1q

rC
$

ÐÝ Fnbl

C Ð c ˆ g ` rC ˆ h
rp Ð prB ` α1q ˆ rC
β Ð HashpC, rpq

Step 3:
g1 Ð pβ´1g1, β

´2g2, . . . , β
´ℓgℓq

h1 Ð β´pℓ`1qh
b1 Ð pb1β, b2β

2, . . . , bℓβ
ℓq

d Ð b1 ´ p1, β, . . . , βℓ´1q

rD Ð βℓ`1prB ` α1q

D Ð B ´ p1, β, . . . , βℓ´1q ˆ g1 ` αβℓ`11 ˆ h1

Step 4:
G Ð pg || hq

G1 Ð pg1 || h1q

z Ð pβℓ ` rpβ
ℓ`1 ´ 1

πdl-inner Ð Provedl-inner
`

pG,G1,Hq; pC,D, zq; ppc || rCq, pd || rDqq
˘

return pC, rp, πdl-innerq

Figure 5.4: Proving algorithm to demonstrate that pB, pq is such that B “ b ˆ g ` rB ˆ h such that
p “

śℓ
i“1 bi. Here 1 “ p1, . . . , 1q denotes the length ℓ vector with all entries equal to 1.

39



Verifygprodpcrsgprod; ϕgprod; πgprodq

Step 1:
pg,h,Hq Ð parsepcrsgprodq

pB, pq Ð parsepϕgprodq

pC, rp, πdl-innerq Ð parsepπgprodq

α Ð HashpB, pq

Step 2:
β Ð HashpC, rpq

Step 3:
g1 Ð pβ´1g1, β

´2g2, . . . , β
´ℓgℓq

h1 Ð β´pℓ`1q1 ˆ h
D Ð B ´ p1, β, . . . , βℓ´1q ˆ g1 ` αβℓ`11 ˆ h1

Step 4:
G Ð pg || hq

G1 Ð pg1 || h1q

z Ð pβℓ ` rpβ
ℓ`1 ´ 1

check Ð Verifydl-innerppG,G1,Hq, pC,D, zq, πdl-innerq

return 1 if check “ 1
else return 0

Figure 5.5: Verify algorithm to check that the prover knows b, rB such that B “ b ˆ g ` rB ˆ h such that
p “

śℓ
i“1 bi.

40



Game0 ÞÑ Game1 : Let Game0 be the initial zero-knowledge game. Define Game1 to run identicallly
to Game0 except that, the crs and the πdl-inner proof are generated by the dl-inner simulator for both
b “ 0 and b “ 1.

Let B be an adversary against the dl-inner zero-knowledge game. Then B simulates the zero-
knowledge game for A. It takes as input crs and runs Apcrsq on the same input. It flips a coin
to get b P t0, 1u. When A makes a prover query, if b “ 0 then B generates pC, rpq honestly and
queries its oracle on input pC,D, zq and pc || rCq, pd || rDq to get a proof πdl-inner. Then B returns
pC, rp, πdl-innerq. If b “ 1 then B runs the simulator to compute the response. When A returns b1

then if b “ b1 then B returns 0, else B returns 1.
Then

PrrBpcrsq “ 0 | b̄ “ 0s “
1

2
pPrrApcrsq “ 0 | Game0, b “ 0s ` PrrApcrsq “ 1 | Game0, b “ 1sq

PrrBpcrsq “ 1 | b̄ “ 1s “
1

2
p2 ´ PrrApcrsq “ 0 | Game1, b “ 0s ´ PrrApcrsq “ 1 | Game1, b “ 1sq

and

AdvzkB pλq “ |1 ´ 2PrrGamedl-innerB pλqs|

“ |1 ´ PrrBpcrsq “ 0 | b̄ “ 0s ´ PrrBpcrsq “ 1 | b̄ “ 1s|

“

ˇ

ˇ

ˇ
1 ´

1

2
pPrrApcrsq “ 0 | Game0, b “ 0s ` PrrApcrsq “ 1 | Game0, b “ 1sq

´
`

1 ´ PrrBpcrsq “ 0 | b̄ “ 1s
˘

ˇ

ˇ

ˇ

“
1

2

ˇ

ˇ

ˇ
1 ´ PrrApcrsq “ 0 | Game0, b “ 0s ´ PrrApcrsq “ 1 | Game0, b “ 1s

´ 1 ` PrrApcrsq “ 0 | Game1, b “ 0s ` PrrApcrsq “ 1 | Game0, b “ 1s

ˇ

ˇ

ˇ

“
1

2
|AdvGame0

A pλq ´ AdvGame1
A pλq|

This means that

AdvGame0
A pλq ď 2Advdl-innerB pλq ` AdvGame1

A pλq

Game1 ÞÑ neglpλq : In Game1 the simulated proofs are generated identically. The remaining honest
prover elements C, rp are such that C is randomised by rC . The value rp “ rC ˆ prB ` α1q is ran-
domised by rC provided that |rC | ą 1 and rB ‰ α1. The latter happens with maximum probability
1

|F|
. The simulated elements C, rp are also generated randomly and are thus indistinguishable.

41



Lemma 5.2.2. There does not exist an adversary A such that

paux, pa, b, cq, px,y, zqq
$

ÐÝ Apg,h,Hq

β Ð Hashpauxq

G Ð pg || hq

G1 Ð ppβ´1g1, β
´2g2, . . . , β

´ℓgℓq || β´pℓ`1qhq

CommitppG,G1,Hq, pa, b, cqq “ CommitppG,G1,Hq, px,y, zqq

pa, b, cq ‰ px,y, zq

where
px ˆ G ` zH, y ˆ G1q Ð CommitppG,G1,Hq; px,y, zqq

assuming the q-dlog assumption holds.

Proof. We show the existence of an adversary B such that

AdvApλq ď Advq-dlogB pλq

Initially B takes as input a q-dlog instance pg || h || Hq and runs

paux, pa, b, cq, px,y, zqq
$

ÐÝ Apg,h,Hq

If A succeeds then
pa ˆ G ` cH, b ˆ G1q “ px ˆ G ` zH, y ˆ G1q

If pa, cq ‰ px, zq then B returns pa || cq, px || zq.
Else B sets

b1 Ð ppβ´1b1, . . . , β
´ℓbℓq, || β´pℓ`1qbrℓ`1:s || 0q

y1 Ð pβ´1y1, . . . , β
´ℓyℓq, || β´pℓ`1qyrℓ`1:s || 0q

and returns pb1,y1q.
If A succeeds then

pa || cq ˆ pG||hq “ px || zq ˆ pG||hq

and so if pa, cq ‰ px, zq then B succeeds. If pa, cq “ px, zq then b ‰ y. In this case

b1 ˆ pG||hq “ y1 ˆ pG||hq

and b1 ‰ y1, hence B also succeeds.

Theorem 5.2.3 (Grand Product Argument is knowledge-sound). Suppose the dl-inner argument
is knowledge sound whenever crsdl-inner “ pG,G1,Hq is sampled such that

px ˆ G ` zH, y ˆ G1q Ð CommitppG,G1,Hq; px,y, zqq

is a binding commitment. Then whenever the q-dlog assumption holds, the shuffle argument de-
scribed in Figures 5.4 and 5.5 is knowledge-sound.

42



Proof. We design an extractor Xgprod such that: if there exists an adversary A that convinces
the verifier with non-negligible probability then with overwhelming probability Xgprod returns field
elements pb, rBq such that

ppB, pq; pb, rBqq P Rgprod.

By Lemma 5.2.2 Commitpq is a binding commitment with respect to crsdl-inner and hence we
can assume that the dl-inner argument is knowledge sound. By the knowledge-soundness of the
discrete-log inner product argument there exists an extractor XB such that if B returns verifying
πdl-inner then they return valid witnesses for Rdl-inner with overwhelming probability.

The extractor Xgprod works as follows

1. Randomly sample coins ω.

2. Run ppB, pq; pC, rp, πdl-innerqq Ð Apcrs; ωq.
Define an adversary B1 that behaves as follows:

• Generate crs “ pg,h,Hq and set trans “ 0. While trans “ 0 run trans Ð GameforkA pcrs;ωq

for GameforkA pcrsq defined in Section 7.0.2. Parse

ppα, βq, pα, β̄qq, ppB, pq; pC, rpq, pπdl-inner, π̄dl-innerqq “ trans

• Computes D, z the same as the honest verifier wrt β.
• Return pC,D, zq, π1

dl-inner
3. Let XB1 be B1’s corresponding discrete-logarithm inner-product extractor. Extract pc || rCq

and pd || rDq such that

C “ pc || rCq ˆ G ^ D “ pd || rDq ˆ G1

4. Return
b “ pd1β

´1, . . . , dℓβ
´ℓqq ^ rB “ β´pℓ`1qrD ´ α1

We must show that whenever A convinces the verifier, then either Xgprod succeeds or we can extract
a discrete logarithm relation between pg,h,Hq.

First see that Xgprod terminates in polynomial time with overwhelming probability. Let τ be
the run time of A, ϵ be the probability that A outputs a valid response and qH be the total number
of hash queries that A can make. Assuming 8qH

|F|
ă ϵ then the game GameforkA pparq runs in time at

most 8τqH
ϵ ¨ lnp8{ϵq and is successful with probability at least ϵ{8. The expected run time of B1

is less than τqH ¨ lnp8{ϵq, which is polynomial time assuming that τ , ϵ and qH are polynomial in
the security parameter. By the assumption that dl-inner is knowledge sound this means that the
expected run time of XB1 is also polynomial.

We design adversaries B1,B2,B3 such that for all extractors XB1 ,XB2 we have that

AdvA,Xgprod
pλq ď Advdl-innerB1,XB1

pλq ` Advdl-innerB2,XB2
pλq ` Advq-dlogB3

pλq `
qH
|F|

43



for qH the maximum number of hash queries the adversary can make. We proceed via a series of
games Game1,Game2,Game3 such that

AdvGame0
A,Xgprod

pλq ď Advdl-innerB1,XB1
` AdvGame1

A,Xgprod
pλq

AdvGame1
A,Xgprod

pλq ď `Advdl-innerB2,XB2
pλq ` AdvGame2

A,Xgprod
pλq

AdvGame2
A,Xgprod

pλq ď Advq-dlogB3
pλq ` AdvGame3

A,Xgprod
pλq

AdvGame3
A,Xgprod

pλq ď
qH
|F|

which combined give us our final result.

Game0 ÞÑ Game1 : Let Game0 be the initial knowledge-soundness game and define Game1 to initially
run identicallly to Game0. However, in Game1, when A outputs a verifying proof then define B1 to
be the adversary in Xgprod that returns ppC,D, zq, πdl-innerq and XB1 its corresponding extractor.
Return 0 if Xdl-inner fails.

If Game0 returns 1 but Game1 returns 0 then this means that πdl-inner verifies and XB1 fails,
and hence that B1 succeeds.

Game1 ÞÑ Game2 : Let Game2 be identical to Game1 except in the following case.
Define an adversary B2 that behaves as follows:

• Generate crs “ pg,h,Hq and set trans “ 0. While trans “ 0 run trans Ð GameforkA pcrs;ωq for
GameforkA pcrsq defined in Section 7.0.2. Parse

ppα, βq, pα, β̄qq, ppB, pq; pC, rpq, pπdl-inner, π̄dl-innerqq “ trans

• Computes D̄, z̄ the same as the honest verifier wrt β̄.

• Return pC, D̄, z̄q, π̄dl-inner

Let XB2 be B2’s corresponding discrete-logarithm inner-product extractor. Then Game2 runs B2

and XB2 to extract pc̄ || r̄Cq and pd̄ || r̄Dq. Then Game2 checks whether

C “ pc̄ || r̄Cq ˆ G ^ D “ pd̄ || r̄Dq ˆ Ḡ1 ^ pc̄ || r̄Cq ˆ pd̄ || r̄Dq “ z̄

and returns 0 if not.
First see that Game2 terminates in polynomial time with overwhelming probability. By the

same argument as B1,XB1 we have that the expected run time of B2,XB2 is polynomial. If Game1
returns 1 but Game2 returns 0 then this means that π̄dl-inner verifies and XB2 fails, and hence that
B2 succeeds.

Game2 ÞÑ Game3 : Define Game3 to be identical to Game2 except in the following cases. When XB1

outputs ppc || rCq, pd || rDqq compute

b “ pd1β
´1, . . . , dℓβ

´ℓqq ^ rB “ β´pℓ`1qrD ´ α1

44



After XB2 has output ppc̄ || r̄Cq, pd̄ || r̄Dqq then return 0 if pc || rCq ‰ pc̄ || r̄Cq or if

d̄ ‰ pb1β
1, b2β

12, . . . , bℓβ
1ℓq ´ p1, β1, . . . , β1ℓq

r̄D ‰ β1ℓ`1
prB ` α1q

Let B3 be the adversary that takes as input a q-dlog challenge pg || h || Hq and runs B1, XB1 ,
B2 and XB2 as subroutines under the crs with respect to random coins ω. When XB1 and XB2 have
returned ppc || rCq, pd || rDqq and ppc̄ || r̄Cq, pd̄ || r̄Dqq. If ppc || rCq ‰ ppc̄ || r̄Cq then B3 returns
these as a correct q-dlog output.

Else compute
b “ pd1β

´1, . . . , dℓβ
´ℓq ^ rB “ β´pℓ`1qrD ´ α1

and
b̄ “ pd̄1pβ1q´1, . . . , d̄ℓpβ

1q´ℓq ^ r̄B “ pβ1q´pℓ`1qr̄D ´ α1

If pb || rDq ‰ pb̄ || r̄Bq then B3 returns these as a correct q-dlog output.
If Game2 returns 1 but Game3 returns 0 then this means that B3 succeeds.

Game3 ÞÑ neglpλq : If Game3 returns 0 then

B “ b ˆ g ` rB ˆ h

C “ c ˆ g ` rC ˆ h

is such that, for random β1, we have that

pβ1ℓ ` rpβ
1ℓ`1

´ 1 “ pc || rCq ˆ pd1 || r1
Dq

for random β1. Substituting for d1 and r1
D

pβ1ℓ ` rpβ
1ℓ`1

´ 1 “ c ˆ

´

pb1β
1, b2β

12, . . . , bℓβ
1ℓq ´ p1, β1, . . . , β1ℓ´1

q

¯

` rC ˆ β1ℓ`1
prB ` α1q

Expanding we see that

pβ1ℓ ` rpβ
1ℓ`1

´ 1 “ c1pb1β
1 ´ 1q ` . . . ` cℓpbℓβ

1ℓ ´ β1ℓ´1
q ` β1ℓ`1

rC ˆ prB ` α1q

By the Schwatz-Zippel Lemma this holds with maximum probability qH
|F|

unless

pXℓ ` rpX
ℓ`1 ´ 1 “ c1pb1X ´ 1q ` . . . ` cℓpbℓX

ℓ ´ Xℓ´1q ` Xℓ`1rC ˆ prB ` α1q

If this polynomial expression holds then rp “ rC ˆ prB ` α1q and

pXℓ ´ 1 “ c1pb1X ´ 1q ` . . . ` cℓpbℓX
ℓ ´ Xℓ´1q

“ ´c1 ` pc1b1 ´ c2qX ` . . . ` pcℓ´1bℓ´1 ´ cℓqX
ℓ´1 ` cℓbℓX

ℓ

Thus
c1 “ 1, c2 “ b1, . . . , cℓ “ b1 . . . bℓ´1, b1 . . . bℓ “ p

This means that p is the grandproduct of b extracted by Xgprod as required.

45



5.3 Discrete Logarithm Inner Product Argument
In this section we discuss a zero knowledge argument for the relation

Rdl-inner “

$

&

%

pC,D, zq; pc,dq C “ c ˆ G
D “ d ˆ G1

z “ c ˆ d

,

.

-

which is given in Figures 5.6 and 5.7. This protocol was originally by Bootle et al. [BCC`16]. We
make minor adjustments in order to achieve zero-knowledge. We did not use all the optimisations by
Bünz et al. [BBB`18] because we decided that the improvements to the proof size is not justified by
the additional cost to the verifier for our application. However we did use their method for inserting
the inner product into the commitment. We prove our construction sound and zero-knowledge in
Theorems 5.3.1 and 5.3.3.

5.3.1 Informal Overview
Our relation is a form of inner product relation where one is interested in verifying whether we
know pc,dq such that C “ cˆG` zH, D “ dˆG1 where z “ cˆd. The inner product argument
is recursive. At each stage of the recursion, the aim is to find new commitments C 1, D1 to values c1,
d1 of half the length. Further we need a new z1 such that z1 “ c1 ˆd1 if and only if z “ cˆd. After
sufficient rounds of recursion we have that c,d are vectors of length 1, and thus can be sent in the
clear. The verifier checks that the inner product relation holds for the final revealed openings, and
this suffices to show that the relation holds for the original longer openings.

One initial subtlety is that C is a commitment to pc || 0q whereas the inner product argument
as described in Section 5.3.1 assumes that C is a commitment to pc || zq. We thus have an initial
step where: (1) we obtain a random challenge by hashing the public inputs β “ HashpC,D, zq; (2)
the verifier updates the public input

C “ C ` zβH

to include z; (3) we update H “ βH. Here the random β term prevents a cheating prover from
initially providing C that is not a commitment to p ¨ || 0q.

Each round of the recursion proceeds as follows. The prover first computes cross product
commitments (that will later be used to define C 1 and C 1) as

LC “ cr:ns ˆ Grn:s ` pcr:ns ˆ drn:sqH RC “ crn:s ˆ Gr:ns ` pcrn:s ˆ dr:nsqH

LD “ drn:s ˆ G1
r:ns RD “ dr:ns ˆ G1

rn:s

These are then hashed to find a random challenge γ .
The prover updates the commitment contents to

c1 “ cr:ns ` γ´1crn:s, d1 “ dr:ns ` γdrn:s, z “ γpcr:ns ˆ drn:sq ` z ` γ´1pcrn:s ˆ dr:nsq

such that z1 “ c1 ˆ d1. See that c1 and d1 are half the length of c and d. We then update the
commitments C, D to c, d and the commitment keys G, G1 as

C 1 “ γLC ` C ` γ´1RC , D1 “ γLD ` D ` γ´1RD, Ḡ “ Gr:ns ` γGrn:s, Ḡ1 “ Gr:ns ` γ´1Grn:s

such that C 1 “ c1 ˆ Ḡ ` z1H is a commitment to pc1, z1q and D1 “ d1 ˆ D̄ is a commitment to d1 .

46



Putting this together means we have pC 1, D1q “ pc1 ˆ Ḡ ` zH,d1 ˆ Ḡ1q for some c1, d1 that are
half the length of c, d. Due to the randomised nature of γ this statement is true if and only if
the original pC,Dq “ pc ˆ G ` pc ˆ dqH,d ˆ G1q for some c, d. The protocol then recurses until
the final round, where c and d have length 1. Then the prover sends c “ c1 and d “ d1 in the
clear and verifier accepts if and only if C “ cG1 ` zH, D “ dG1

1. Note that the full protocol has
some additional masking values that are included to ensure zero-knowledge. For simplicity we have
ignored these terms in this overview.

5.3.2 Full Zero-Knowledge DL Inner Product Construction
The full zero-knowledge construction for the same-permutation argument is given in Figures 5.6 and
5.7. Inner product arguments are not, by default, zero-knowledge. In order to get a zero-knowledge
argument we introduce an intermediary step to randomise the provers witness.

Step 1: The prover blinds the argument by sampling rC , rD randomly such that

rC ˆ d ` rD ˆ c “ 0 and rC ˆ rD “ 0

Then the prover computes
pBC , BDq “ prC ˆ G, rD ˆ G1q

to blind the witness relating to c, d respectively.
Next they hash to obtain the field elements α, β. The prover resets the private inputs to equal

rC ` αc and rD ` αd and the verifier resets the public inputs to equal

C “ BC ` αC ` α2zH and D “ BD ` αD

Observe that the updated C is a commitment to prC`αc, α2zq and D is a commitment to prD`αdq.
Thus

prC ` αcq ˆ prD ` αdq “ rC ˆ rD ` αprC ˆ d ` rD ˆ cq ` α2z

and α2z is the correct inner product of the updated commitments.

Step 3: We now run the inner product argument as specified in Section 5.3.1. If |G| ě 8 then the
randomisers given in rC and rD suffice to fully blind the inner product argument, which we argue
formally in Theorem 5.3.1.

5.3.3 Security
Theorem 5.3.1 (DL inner product argument is zero-knowledge). The discrete logarithm inner
product argument described in Figures 5.6 and 5.7 is zero-knowledge in the random oracle model
provided that |G| ě 8.

Proof. We design a simulator Simulate that takes as input an instance

pB,C, zq

and outputs a proof πdl-inner that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
determined by the adversary.

47



The simulator Simulate takes as input pG,G1,H; C,D, zq, and samples c̄, d̄, α, β randomly from
the field and compute

C̄ “ c̄ ˆ G ` pc̄ ˆ d̄qH

D̄ “ d̄ ˆ G1

Then they set

BC “ C̄ ´ αC ´ α2βzH

BD “ D̄ ´ αD

and program HashpBC , BDq to equal α, β. They rescale queries β Ð HashpC,D, zq. In the remaining
steps they behave exactly as the honest prover with respect to the inputs c̄, d̄.

Now we must argue that the simulated proof is indistinguishable from the real proof and that
the simulator doesn’t abort. First observe that BC , BD are randomly sampled so the probability
that the adversary has already queried these points (causing the simulator to fail) is negligible.

Second observe that the provers commitment openings

rD ` βd

and the simulaters commitment openings d̄ are distributed uniformly at random and could be
revealed in the clear. Hence elements relating to these values BD, LD,j , RD,j are identically dis-
tributed.

The proof element BC are blinded by rC,0 for the honest prover and c̄0 for the simulator. The
proof elements LC,1 are blinded by rC,1 for the honest prover and c̄1 for the simulator. The proof
elements RC,1 are blinded by rC,n

2
for the honest prover and c̄n

2
for the simulator. The updated

commitment γLC,1 ` C ` γ´1RC,1 contains

c̄1 “ c̄r:ns ` γ´1c̄rn:s

If |c̄| ě 8 then c̄1
0 is blinded by c̄n

2
`1. The remaining c̄1

r1:s is blinded by c̄r1:s. Thus the openings
c̄1, d̄1, z̄1 could theoretically be revealed in the clear for z̄1 “ c̄1 ˆ d̄1. Where the remaining proof
elements are deterministically computed from these openings, the provers and simulators responses
are distributed identically.

Lemma 5.3.2. The algorithm in Steps 2 and 3 of the prover and verifier in Figures 5.6 and 5.7 is
a knowledge sound argument for the relation Rdl-inner assuming the q-dlog problem holds.

Proof. The algorithms implement a generalised inner product argument with respect to the com-
mitment scheme

pG,G1,Hq
$

ÐÝ SetuppGq

ˆ

c ˆ G ` zH
d ˆ G1

˙

Ð Commit

¨

˝

G c
G1 d
H z

˛

‚

and the inner product
¨ : G ˆ G, c ¨ d “ c ˆ d

48



By Theorem 7.0.5 it suffices to show that pSetup,Commit, ¨ q is an inner product commitment.
We first show that pSetup,Commitq is binding. We second show that pSetup,Commitq is doubly ho-
momorphic. We third show the existence of a correct Collapse function (Definition 7.0.8). Together
these suffice to prove the lemma.

Binding commitment: Binding follows from the q-dlog assumption by Lemma 5.2.2.

Doubly homomorphic commitment: First see that the key space is homomorphic

Commit

¨

˝

G ` Ḡ c
G1 ` Ḡ1 d
H ` H̄ z

˛

‚“

ˆ

c ˆ pG ` Ḡq ` zpH ` H̄q

d ˆ pG1 ` Ḡ1q

˙

“

ˆ

c ˆ G ` zH
d ˆ G1

˙

`

ˆ

c ˆ Ḡ ` zH̄
d ˆ Ḡ1

˙

“ Commit

¨

˝

G c
G1 d
H z

˛

‚` Commit

¨

˝

Ḡ c
Ḡ1 d
H̄ z

˛

‚

Second see that the message space is homomorphic

Commit

¨

˝

G c ` c̄
G1 d ` d̄
H z ` z̄

˛

‚“

ˆ

pc ` c̄q ˆ G ` pz ` z̄qH
pd ` d̄q ˆ G1

˙

“

ˆ

c ˆ G ` zH
d ˆ G1

˙

`

ˆ

c̄ ˆ G ` z̄H
d̄ ˆ G1

˙

“ Commit

¨

˝

G c
G1 d
H z

˛

‚` Commit

¨

˝

G c̄
G1 d̄
H z̄

˛

‚

Collapsible commitment: Let Collapse be the identity function

Collapse

ˆ

C
D

˙

ÞÑ

ˆ

C
D

˙

Then

Collapse

¨

˝Commit

¨

˝

G || Ḡ pc || cq

G1 || Ḡ1 pd || dq

H z

˛

‚

˛

‚“ Collapse

ˆ

c ˆ G ` c ˆ Ḡ ` zH
d ˆ G1 ` d ˆ Ḡ1

˙

“

ˆ

c ˆ pG ` Ḡq ` zH
d ˆ pG1 ` Ḡ1q

˙

“ Commit

¨

˝

G ` Ḡ c
G1 ` Ḡ1 d

H z

˛

‚

49



Theorem 5.3.3 (DL inner product argument is knowledge-sound). The inner product argument
described in Figures 5.6 and 5.7 is knowledge-sound in the random oracle model assuming the q-dlog
is hard.

Proof. We design an extractor Xdl-inner such that: if there exists an adversary A that convinces the
verifier with non-negligible probability then with overwhelming probability Xdl-inner returns field
elements pc,dq such that

ppC,D, zq; pc,dqq P Rdl-inner.

By Lemma 5.3.2, whenever an adversary B outputs a valid proof, there exists an extractor XB
that takes as input B’s transcript and outputs px,yq such that

pBC , BDq ` αpC,Dq “ px ˆ G ` px ˆ yqH, y ˆ G1q

such that Advdl-inner2B,XB
pλq is negligible assuming the q-dlog problem is hard. Here dl-inner2 refers to

the knowledge-soundness game for the (non-zk) protocol in steps 3 and 4 of Figures 5.6 and 5.7.
The extractor Xdl-inner works as follows

1. Randomly sample coins ω.

2. Define an adversary B1 that behaves as follows:

• Generate crs “ G,G1,H and set trans “ 0. While trans “ 0 run trans Ð GameforkA pcrs;ωq

for GameforkA pcrsq defined in Section 7.0.2. Parse

ppα, βq, pα1, β1qq, ppC,D, zq; pBC , BDq, pπ, x, yq, pπ1, x1, y1qq “ trans

• Return pBC ` αC ` α2βzH,BD ` βDq, pπ, c, dq

3. Define an adversary B2 that behaves as follows:

• Compute

ppα, βq, pα1, β1qq, ppC,D, zq; pBC , BDq, pπ, x, yq, pπ1, x1, y1qq “ trans

the same as B1

• Return pBC ` β1C ` α1pβ1q2zH,BD ` β1Dq, pπ1, x1, y1q

4. Let XB1 be B1’s dl-inner2 extractor. Extract px,yq such that BC ` αC ` α2βzH “ x ˆ G `

px ˆ yqβH, BD ` αD “ y ˆ G1.

5. Let XB2 be B2’s dl-inner2 extractor. Extract px1,y1q such that BC ` α1C ` pα1q2β1zH “

x1 ˆ G ` px1 ˆ y1qβ1H, BD ` α1D “ y1 ˆ G1.

6. Compute c “ pβ ´ β1q´1px ´ x1q, d “ pβ ´ β1q´1py ´ y1q and return pc,dq.

We must show that whenever A convinces the verifier then Xdl-inner succeeds.
First see that Xdl-inner terminates in polynomial time with overwhelming probability. Let τ be

the run time of A, ϵ be the probability that A outputs a valid response and qH be the total number
of hash queries that A can make. Assuming 8qH

|F|
ă ϵ then the game GameforkA pparq runs in time at

most 8τqH
ϵ ¨ lnp8{ϵq and is successful with probability at least ϵ{8. The expected run time of B1,B2

50



is less than τqH ¨ lnp8{ϵq, which is polynomial time assuming that τ , ϵ and qH are polynomial in
the security parameter. By Lemma 4.0.2 this means that the expected run times of XB1 and XB2

are also polynomial.
We show that there exists B3,B4 such that for all extractors XB1 ,XB2 ,XB3 we have that

AdvA,Xdl-innerpλq ď Advdl-inner2B1,X1
pλq ` Advdl-inner2B2,X2

pλq ` Advdl-inner2B3,X3
pλq ` Advq-dlogB4

pλq `
qH
|F|

We proceed via a series of games Game1,Game2,Game3 such that

AdvA,Xdl-innerpλq ď Advdl-inner2B1,XB1
pλq ` AdvGame1

A,Xdl-innerpλq

AdvGame1
A,Xdl-innerpλq ď Advdl-inner2B2,XB2

pλq ` AdvGame2
A,Xdl-innerpλq

AdvGame2
A,Xdl-innerpλq ď Advdl-inner2B3,XB3

pλq ` AdvdlogB4
pλq ` AdvGame3

A,Xdl-innerpλq

AdvGame3
A,Xdl-innerpλq ď

qH
|F|

which combined give us our final result.

Game0 ÞÑ Game1 : Let Game0 be the initial knowledge-soundness game. Then Game1 is identical
except in the following case. If A outputs a verifying proof then define B1 be the adversary as in
Xdl-inner that returns pBC ` αC ` α2βH,BD ` αDq, pπ, x, yq and XB1 its corresponding extractor.
Return 0 if XB1 fails. If Game0 returns 1 but Game1 returns 0 then this means that pπ, x, yq verifies
and XB1 fails, and hence that B1 succeeds. By Lemma 4.0.2 the probability of this is negligible if
the q-dlog assumption holds.

Game1 ÞÑ Game2 : Define Game2 to be identical to Game1 except in the following case. If A out-
puts a verifying proof then define B2 be the adversary as in Xdl-inner that returns pBC ` α1C `

pα1q2β1H,BD ` α1Dq, pπ1, x1, y1q and XB2 its corresponding extractor. Return 0 if XB2 fails. If
Game1 returns 1 but Game2 returns 0 then this means that pπ1, x1, y1q verifies and XB2 fails, and
hence that B2 succeeds. By Lemma 4.0.2 the probability of this is negligible if the q-dlog assump-
tion holds.

Game2 ÞÑ Game3 : Define Game3 to be identical to Game2 except in the following case.
We define an adversary B3 that behaves as follows:

• Generate crs “ pG,G1,Hq and set trans “ 0. Choose random coins ω1 such that during the
GameforkA pcrsq the original f values are sampled identically but the f 1 values are sampled differ-
ently. While trans “ 0 run trans Ð GameforkA pcrs;ω1q for GameforkA pcrsq defined in Section 7.0.2.
Parse

ppα, βq, pα2, β2qq, pC,D, zq; pBC , BDq, pπ, x, yq, pπ2, x2, y2qq “ trans

• Return pB2
C ` α2C ` pα2q2β2zH, pπ2, x2, y2qq

Let XB3 be B3’s dl-inner2 extractor.
Then Game3 runs B3 and then XB3 to extract x2,y2. Using B1,XB1 ,B2,XB2 it extracts c,d, zc

such that
C “ c ˆ G ` zcH, D “ d ˆ G1

51



where c,d are computed the same as in Xdl-inner, and

zC “ βpα ´ α1q´1
`

x ˆ y ´ x1 ˆ y1 ´ pα2 ´ pα1q2qz
˘

Additionally Game3 sets

rC “ x ´ αc, rD “ y ´ αd, rz “ β
`

x ˆ y ´ αzC ´ α2z
˘

If
prC ` β2cq ˆ prD ` α2dq “ prz ` α2zC ` pα2q2zq

then Game3 returns 0.
Let B4 be the adversary that takes as input G,G1,H and runs B3pcrs; ωq and XB3 on B3’s

transcript, and returns either
`

px2 || x2 ˆ y2q, prC ` α2c || rz ` α2zC ` pα2q2β2zq
˘

or
`

y2, prD ` α2dq
˘

If Game2 returns 1 but Game3 returns 0 then this means that either (1) π2, x2, y2 verifies and
XB3 fails, and hence that B3 succeeds; or (2) px2 || x2 ˆ y2q ‰ prC ` α2c || rz ` α2zc ` pα2q2β2zq

or (3) y2 ‰ prD ` α2dq

In the second case we have that

prC ` α2cq ˆ G ` prz ` α2zC ` pα2q2β2zq “ x2 ˆ G ` px2 ˆ y2qβ2H

implies that B4 returns a valid discrete logarithm solution. In the third case we have that

prD ` α2dq ˆ G1 “ y2 ˆ G1

implies that B4 returns a valid discrete logarithm solution. Thus B4 breaks the q-dlog assumption.

Game3 ÞÑ neglpλq : If Game3 returns 1 then we have that

prC ` α2cq ˆ prD ` α2dqβ2 “ prz ` α2zC ` pα2q2β2zq

Where rC , c, rD,d, rz, zC are determined before α2, β2 the probability of this occurring is bounded
by qH

|F|
unless rz “ zC “ 0 and z “ c ˆ d. Thus the values c “ pα ´ α1q´1px ´ x1q and d “

pα ´ α1q´1py ´ y1q output by Xdl-inner in Game3 is a correct witness for pC,D, zq.

52



Provedl-innerpcrsdl-inner, pC,D, zq, pc,dqq

Step 1:
rC , rD

$
ÐÝ Fn such that prC ˆ d ` rD ˆ cq “ 0 and rC ˆ rD “ 0

BC Ð rC ˆ G
BD Ð rD ˆ G1

α, β Ð HashpC,D, z,BC , BDq

c Ð rC ` αc
d Ð rD ` αd
H Ð βH

Step 2:
m Ð n
while 1 ď j ď logpmq :

n Ð n
2

LC,j Ð cr:ns ˆ Grn:s ` pcr:ns ˆ drn:sqH

LD,j Ð drn:s ˆ G1
r:ns

RC,j Ð crn:s ˆ Gr:ns ` pcrn:s ˆ dr:nsqH

RD,j Ð dr:ns ˆ G1
rn:s

πj Ð pLC,j , LD,j , RC,j , RD,jq

γj Ð Hashpπjq

c Ð cr:ns ` γ´1
j crn:s

d Ð dr:ns ` γjdrn:s

G Ð Gr:ns ` γjGrn:s

G1 Ð G1
r:ns

` γ´1
j G1

rn:s

Step 3:
c Ð c1
d Ð d1

return pBC , BD,π, c, dq

Figure 5.6: Proving algorithm to demonstrate that pC,D, zq “ pc ˆ G,d ˆ G1, c ˆ dq for some c, d.

53



Verifydl-innerpcrsdl-inner; ϕdl-inner; πdl-innerq
Step 1:
pG,G1,Hq Ð parsepcrsdl-innerq
pC,D, zq Ð parsepϕdl-innerq
pBC , BD,π, c, dq Ð parsepπdl-innerq
α, β Ð HashpC,D, z,BC , BDq

H Ð βH
C Ð BC ` αC ` pα2zqH
D Ð BD ` αD

Step 2:
m Ð logpnq

for 1 ď j ď m :
n Ð n

2
pLC,j , LD,j , RC,j , RD,jq Ð parsepπjq
γj Ð Hashpπjq

C Ð γjLC,j ` C ` γ´1
j RC,j

D Ð γjLD,j ` D ` γ´1
j RD,j

G Ð Gr:ns ` γjGrn:s

G1 Ð G1
r:ns

` γ´1
j G1

rn:s

Step 3:
check C “ c ˆ G1 ` cdH
check D “ d ˆ G1

1

return 1 if both checks pass, else return 0.

Figure 5.7: Verify algorithm to check that pC,D, zq “ pc ˆ G,d ˆ G1, c ˆ dq.

54



Chapter 6

Efficiency

In this section we provide a breakdown of the costs in our shuffle argument. We first provide a
full overview of costs and then explain how we got to each of these numbers. We also explain any
optimisations that have been used.

6.1 Full Curdleproofs Construction Efficiency
The proof consists of 18 ` 10 logpℓ ` 4q group elements and 7 field elements. To see this observe
that

πshuffle “ pA, cmT , cmU , R, S, πsameperm, πsamescalar, πsamemsmq

for cmT and cmU group commitments and A,R, S group elements. Each group commitment consists
of 2 group elements. The proofs πsameperm, πsamescalar, πsamemsm contribute a total of 11`10 logpℓ`4q

group elements and 7 field elements.
The prover computes 30ℓ`2 logpℓ`4q`102 scalar multiplications. It computes A “ σpaq`r1

Aˆh
costing ℓ ` 4, R “ a ˆ R and S “ a ˆ S costing 2ℓ. The group commitments to cmT , cmU cost
2 each (4). It computes A1 using only additions. Computing the proofs contributes a total of
23ℓ ` 2 logpℓ ` 4q ` 98.

The verifier computes 5ℓ ` 10 logpℓ ` 4q ` 32 scalar multiplications. Computing A1 requires
only additions. Computing check4 and check5 requires accumulating 2 MSMs, costing 2 scalar

Protocol Proof Size Prover Computation Verifier Computation
Shuffle 18 ` 10 logpℓ ` 4q G, 7 F 30ℓ ` 2 logpℓ ` 4q ` 102 5ℓ ` 10 logpℓ ` 4q ` 32

Same Scalar 4 G, 3 F 6 10
Same Permutation 4 ` 4 logpℓ ` 4q G, 3 F 11ℓ ` 2 logpℓ ` 4q ` 44 4 logpℓ ` 4q ` 9
Same Multi Scalar 3 ` 6 logpℓ ` 4q G, 1 F 12ℓ ` 48 6 logpℓ ` 4q ` 6
Accumulated MSMs 0 0 5ℓ ` 5

Table 6.1: Proof size is counted by number of group elements G and number of field elements F. Prover
computation counts the number of scalar multiplications. Verifier computation also counts the number of
scalar multiplications.

55



multiplications. Verifying all of the proofs costs 10 logpℓ ` 4q ` 25 and checking the accumulated
MSMs at the end costs 5ℓ ` 5.

6.1.1 Verifier Optimisation: Accumulate MSM Operations
Throughout the protocol there are checks of the form

C
?
“ x ˆ pg || h || GT || GU || H || R || S || T || Uq

These checks form the bottleneck of the verifiers computation and we can save significant amounts
of work by accumulating these checks into a single multiscalar multiplication that is checked at the
end of the protocol. This accumulated check costs |pg || h || GT || GU || H || R || S || T || Uq|

group multiplications for the verifier to check, i.e. 5ℓ ` 5.
We use the fact that

C1 “ x1 ˆ V and C2 “ x2 ˆ V ñ α1C1 ` α2C2 “ pα1x1 ` α2x2q ˆ V

for all α1, α2. If α1, α2
$

ÐÝ F then the probability that

α1C1 ` α2C2
?
“ pα1x1 ` α2x2q ˆ V

passes is negligible unless C1 “ x1 ˆ V and C2 “ x2 ˆ V .
We define an operation, AccumulateCheckpq that accumulates checks of the form C

?
“ x ˆ V

into a single check AC
?
“ w ˆ W . Running AccumulateCheckpq costs a single group multiplication.

Then AccumulateVerifypq is defined to return 1 if and only if the accumulated check passes. See
Figure 6.1.

The inputs C,x,V to AccumulateCheck must be such that V Ă W . The AccumulateCheck
algorithm first generates x1 which is a padded version of the x vector that has 0 entries whenever
Vi R W . It then updates AC “ AC ` αC and w “ w ` αx1 such that they include this new check.
Here α

$
ÐÝ F is sampled uniformly at random. To use this accumulating msms optimisation we must

edit our Curdleproofs construction slightly to initialise W , AC ,w and to run a final accumulated
msm check. See Figure 6.2

56



Initialise W Ð pg || h || GT || GU || H || R || S || T || Uq

Initialise AC Ð 0
Initialise w Ð 0

AccumulateCheckpC
?
“ x ˆ V q

for 1 ď j ď |W |:
if Wj “ Vi for some i:

x1
j Ð xi

else x1
j Ð 0

α
$

ÐÝ F
AC Ð AC ` αC
w Ð w ` αx1

AccumulateVerifypq

return AC
?
“ w ˆ W

Figure 6.1: Accumulator that gathers msm checks and verifier that evaluates the acculated msm check. The
AccumulateCheck and AccumulateVerify algorithms are stateful.

6.2 Breakdown of Efficiency
6.2.1 Same Scalar Efficiency
The proof consists of 4 group elements and 3 field elements. To see this observe that

πsamescalar “ pcmA, cmB, zk, zT , zU q

for cmA and cmB group commitments and zk, zT , zU field elements. Each group commitment
consists of 2 group elements.

The prover computes 6 scalar multiplications. It computes A “ rkR and B “ rkS in addition
to 2 group commitments. Each group commitment costs 2 scalar multiplications.

The verifier computes 10 scalar multiplications. There are 4 from computing αcmT and αcmU

where multiplying group commitments costs 2 scalar multiplications. There are 2 from computing
zkR and zkS. There are 4 from computing 2 group commitments.

6.2.2 Same Multiscalar Efficiency
The proof consists of 3 ` 6 logpℓ ` 4q group elements and 1 field elements. To see this observe that

πsamemsm “ pBA, BT , BU ,π, xq

for BA, BT , BU group elements and x a field element. The proof π consists of

tLA,j , LT,j , LU,j , RA,j , RT,j , RU,ju
logpnq

j“1

for n “ |G|. We have that G “ pg || hr:nbl´2s || GT || GU q where |g| “ ℓ and |hr:nbl´2s| “ nbl´2 ě 2.
Assuming ℓ ě 4 we can set nbl ´ 2 ě 2 such that ℓ ` nbl is a power of 2. We optimistically assume
nbl “ 4 in our efficiency evaluation.

57



The prover computes 12ℓ ` 48 scalar multiplications. It computes BA “ r ˆ G, BT “ r ˆ T ,
BU “ rˆU costing n “ |G| operations each (3n). During the recursion, computing LA,1, . . . , LA,m

costs n operations (n). This is because the size of |G| is halving in each step of the recursion,
thus computing LA,1 costs n{2, LA,2 costs n{4, . . ., LA,m costs n{n. Together this gives us n “

pn2 ` n
4 ` . . . nnq. Similarly, during the recursion, computing LT ,LU ,RA,RT ,RU costs n operations

each (5n) and updating T ,U ,G costs n operations each (3n). Assuming n “ ℓ ` 4 this gives us
12pℓ ` 4q scalar multiplications.

The verifier computes 6 logpℓ ` 4q ` 6 scalar multiplications. These operations all occur during
the 3 checks added to the MSM accumulator

AccumulateCheckpγ ˆ LA ` pBA ` αAq ` γ´1RA
?
“ xs ˆ Gq

AccumulateCheckpγ ˆ LT ` pBT ` αZT q ` γ´1RT
?
“ xs ˆ T q

AccumulateCheckpγ ˆ LU ` pBU ` αZU q ` γ´1RU
?
“ xs ˆ Uq

Computing γˆLA`pBA`αAq`γ´1RA costs 2 logpnq`1 for n “ |G| “ ℓ`4. Similarly computing
the inputs to the other accumulated checks also costs 2 logpnq`1. Each accumulation costs 1 scalar
multiplication.

IPA Verifier Optimisation

In Figure 6.3 we describe an optimised version of our SameMultiScalar verifier. In particular we use
an optimisation by Bünz et al [BBB`18] to reduce the verifier overhead in inner product arguments
that is also used in the Dalek implementation of Bulletproofs.

The verifier computes only three checks in the entire SameMultiScalar argument: namely in
Step 3 it checks that A “ xG1, ZT “ xT1, and ZU “ xU1. This means that although the prover
needs to compute the intermediate vectors G,T ,U at each step in order to compute the πj values,
the verifier does not and it can compute the final A,ZT , ZU , G1, T1, U1 directly from the initial
A,ZT , ZU ,G,T ,U and the BA, BT , BU ,γ values.

Using a simple example where the starting |G| “ 8, we see that G gets changed as follows:

Start G “ pG1
1 || G1

2 || G1
3 || G1

4 || G1
5 || G1

6 || G1
7 || G1

8q

Fold 1 G “ pG1
1 ` γ1G

1
5 || G1

2 ` γ1G
1
6 || G1

3 ` γ1G
1
7 || G1

4 ` γ1G
1
8q

Fold 2 G “ pG1
1 ` γ2G

1
3 ` γ1G

1
5 ` γ1γ2G

1
7 || G1

2 ` γ2G
1
4 ` γ1G

1
6 ` γ1γ2G

1
8q

Fold 3 G “ pG1
1 ` γ3G

1
2 ` γ2G

1
3 ` γ2γ3G

1
4 ` γ1G

1
5 ` γ1γ3G

1
6 ` γ1γ2G

1
7 ` γ1γ2γ3G

1
8q

such that the final G1 value is equal to

p1, γ3, γ2, γ2γ3, γ1, γ1γ3, γ1γ2, γ1γ2γ3q ˆ G

If we set δ “ pγm, . . . , γ1q to be the reverse of γ then we see a useful structure

G1 “ p1, δ1, δ2, δ1δ2, δ3, δ1δ3, δ2δ3, δ1δ2δ3q ˆ G

namely that G1 “ s ˆ G where

si “

m
ÿ

j“1

δ
bi,j
j for bi,j such that i “

m
ÿ

j“1

bi,j2
j is the binary decomposition of i

58

https://doc-internal.dalek.rs/bulletproofs/inner_product_proof/index.html


Protocol Proof Size Prover Computation Verifier Computation
Same Permutation 4 ` 4 logpℓ ` 4q G, 3 F 11ℓ ` 2 logpℓ ` 4q ` 44 4 logpℓ ` 4q ` 9

Grand Product 3 ` 4 logpℓ ` 4q G, 3 F 10ℓ ` 2 logpℓ ` 4q ` 43 4 logpℓ ` 4q ` 7
DL IPA 2 ` 4 logpℓ ` 4q G, 2 F 8ℓ ` 2 logpℓ ` 4q ` 33 4 logpℓ ` 4q ` 5

Table 6.2: Proof size is counted by number of group elements G and number of field elements F. Prover
computation counts the number of scalar multiplications. Verifier computation also counts the number of
scalar multiplications.

6.2.3 Same Permutation Efficiency
The SamePerm argument uses a grandproduct argument which uses a DL IPA argument. We
give a breakdown of efficiencies for each of these components in Section 6.2.3 and describe how we
calculated these costs.

In Figure 6.5 we describe an optimised version of the SamePerm verifier.
The proof consists of 4 ` 4 logpℓ ` 4q group elements and 3 field elements. To see this observe

that
πsameperm “ pB, πgprodq

for B a group element and πgprod a gprod proof. The gprod argument has 3 ` 4 logpℓ ` 4q group
elements and 2 field elements.

The prover computes 11ℓ ` 2 logpℓ ` 4q ` 44 scalar multiplications. They compute B “ A `

αM `βˆg costing ℓ`1 operations. The prover also computes πgprod costing 10ℓ`2 logpℓ`4q `43
scalar multiplications.

The verifier computes 4 logpℓ ` 4q ` 9 scalar multiplications. Computing p requires only field
elements. They add one check to the MSM accumulator

AccumulateCheckpB ´ A ´ αM
?
“ β ˆ gq

Computing B ´ A ´ αM costs 1 and the accumulation costs 1 scalar multiplication. Verifying a
gprod argument uses 4 logpℓ ` 4q ` 7.

Grand Product Efficiency

In Figure 6.5 we describe an optimised version of the gprod verifier.
The proof consists of 3 ` 4 logpℓ ` 4q group elements and 3 field elements. To see this observe

that
πsameperm “ πgprod

which has the claimed number of elements.
The prover computes 10ℓ ` 2 logpℓ ` 4q ` 43 scalar multiplications. They compute C “ c ˆ g `

rC ˆ h costing ℓ ` nbl operations where nbl “ 4. The prover also computes g1 using ℓ operations
and h1 using nbl “ 4 operations. Setting gsum “

řℓ
i“1 gi and hsum “

řℓ
i“1 hi the prover computes

D Ð B ´ β´1gsum ` αhsum

59



in just 2 scalar multiplications. Finally the prover computes πdl-inner costing 8ℓ ` 2 logpℓ ` 4q ` 33
scalar multiplications.

The verifier computes 4 logpℓ ` 4q ` 7 scalar multiplications. Using the first optimisation in
Section 6.2.3 we see that the verifier can compute a vector u rather than G1 using only field
operations. Using the second optimisation in Section 6.2.3 the verifier computes D using 2 scalar
multiplications. Finally the verifier checks πdl-inner. Verifying a dl-inner argument uses 4 logpℓ`4q`5.

Grandproduct Verifier Optimisations

The non-optimised grandproduct verifier is required to compute a vector G1 “ u ˝ G for some
public vector u. Then G1 is used as input to the dl-inner common reference string. Computing
G1 “ u ˝ G would cost n scalar multiplications that cannot be accumulated efficiently. However,
when we look into how the vector G1 is used in dl-inner, it is used only once during

AccumulateCheckpγ ˆ LD ` pBD ` αDq ` γ´1 ˆ RD
?
“ ds1 ˆ G1q

This check is equivalent to accumulating the check

AccumulateCheckpγ ˆ LD ` pBD ` αDq ` γ´1 ˆ RD
?
“ pds ˝ uq ˆ Gq

We thus edit the dl-inner verifier to only take the original generators as input in crsdl-inner “ pG,Hq,
however to take u one of the public inputs ϕdl-inner “ pC,D, z,uq. The accumulated check can then
be run efficiently.

A second optimisation we run is that the non-optimised grandproduct verifier is required to
compute a group element

D Ð B ´ p1, β, . . . , βℓ´1q ˆ g1 ` αβℓ`11 ˆ h1

for
g1 Ð pβ´1g1, β

´2g2, . . . , β
´ℓgℓq ^ h1 Ð β´pℓ`1qh

Expanding we see that

p1, β, . . . , βℓ´1q ˆ g1 “ p1, β, . . . , βℓ´1q ˆ pβ´1g1, β
´2g2, . . . , β

´ℓgℓq

“ pβ´1g1, β
´1g2, . . . , β

´1gℓq

“ β´1
ℓ

ÿ

i“1

gi

Similarly

αβℓ`11 ˆ h1 “ αβℓ`11 ˆ β´pℓ`1qh

“ α
nbl
ÿ

i“1

hi

If we store gsum “
řℓ

i“1 gi and hsum “
řℓ

i“1 hi in the CRS then we can compute

D Ð B ´ β´1gsum ` αhsum

in just 2 scalar multiplications.

60



DL Inner Product Efficiency

The proof consists of 2 ` 4 logpℓ ` 4q group elements and 2 field elements. To see this observe that

πsamemsm “ pBC , BD,π, c, dq

for BC , BD group elements and c, d field elements. The proof π consists of

tLC,j , LD,j , RC,j , RD,ju
logpnq

j“1

for n “ |G|. We have that G “ pg || hq where |g| “ ℓ and |h| “ nbl “ 4. Hence n “ ℓ ` 4
The prover computes 8ℓ ` 2 logpℓ ` 4q ` 33 scalar multiplications. Set n “ |G|. The prover

computes BC “ rC ˆG`rC ˆrDH, BD “ rD ˆG1 costing n`1 and n operations (2n`1). During
the recursion, computing LC,1, . . . , LC,m costs n ` logpnq operations (n ` logpnq ). This is because
the size of |G| is halving in each step of the recursion, thus computing LA,1 costs n{2`1, LA,2 costs
n{4`1, . . ., LA,m costs n{n`1. Together this gives us n`logpnq “ pn2 ` n

4 `. . . nnq`logpnq. Similarly,
during the recursion, computing RC costs n ` logpnq operations and LD,RD costs n operations
each (3n` logpnq) and updating G,G1 costs n operations each (2n). Assuming n “ ℓ` 4 this gives
us 8n ` 2 logpnq ` 1 “ 8pℓ ` 4q ` 2 logpℓ ` 4q ` 1 scalar multiplications.

The verifier computes 4 logpℓ ` 4q ` 5 scalar multiplications. These operations all occur during
the 2 checks added to the MSM accumulator

AccumulateCheckpγ ˆ LC ` pBC ` αC ` pα2zqHq ` γ´1 ˆ RC
?
“ pcs || cdβq ˆ pG || Hqq

AccumulateCheckpγ ˆ LD ` pBD ` αDq ` γ´1 ˆ RD
?
“ ds1 ˆ G1q

Computing γ ˆ LC ` pBC ` αC ` pα2zqHq ` γ´1 ˆ RC costs 2 logpnq ` 2 for n “ |G| “ ℓ ` 4.
Computing γ ˆLD ` pBD `αDq ` γ´1 ˆRD costs 2 logpnq ` 1. Each accumulation costs 1 scalar
multiplication.

IPA Verifier Optimisation: In Figure 6.6 we describe an optimised version of our dl-inner verifier
that uses the same optimisation as in Section 6.2.2 to avoid rescaling the generators at each fold
in the recursion.

61



6.3 Figures of Optimised Constructions

Verifyshufflepcrsshuffle, ; ϕshuffle; πshuffleq

Step 1:
pg,h, GT , GU ,H, gsum, hsumq Ð parsepcrsshuffleq

pR,S,T ,U ,Mq Ð parsepϕshuffleq

pA, cmT , cmU , R, S, πsameperm, πsamescalar, πsamemsmq Ð parsepπshuffleq

a “ pa1, . . . , aℓq Ð HashpR,S,T ,U ,Mq

W Ð pg || h || GT || GU || H || R || S || T || Uq

AC Ð 0
w Ð 0

Step 2:
check1 Ð Verifysamepermppg,h,H, gsum, hsumq; pA,Mq; πsamepermq

Step 3:
check2 Ð VerifysamescalarppGT , GU ,Hq; pR,S, cmT , cmU q; πsamescalarq

Step 4:
A1 Ð A ` cmT,1 ` cmU,1

G Ð pg || hr:nbl´2s || GT || GU q

T 1 Ð pT || 0 || H || 0q

U 1 Ð pU || 0 || 0 || Hq

check3 Ð VerifysamemsmpG; pA1, cmT,2, cmU,2,T
1,U 1q;πsamemsmq

check4 Ð AccumulateCheckpR
?
“ a ˆ Rq

check5 Ð AccumulateCheckpS
?
“ a ˆ Sq

check6 Ð AccumulateVerifypq

return 1 if pcheck1, check2, check3, check4, check5, check6q “ p1, 1, 1, 1, 1, 1q

else return 0

Figure 6.2: The optimised Curdleproofs verification algorithm to check that T ,U “ σpkRq, σpkSq for some
unknown field element k and unknown permutation σ committed in M .

62



Verifysamemsmpcrssamemsm; ϕsamemsm; πsamemsmq

Step 1:
G Ð parsepcrssamemsmq

pA,ZT , ZU ,T ,Uq Ð parsepϕsamemsmq

pBA, BT , BU ,π, xq Ð parsepπsamemsmq

α Ð HashpA,ZT , ZU ,T ,U , BA, BT , BU q

Step 2:
m Ð logpnq

for 1 ď j ď m :
pLA,j , LT,j , LU,j , RA,j , RT,j , RU,jq Ð parsepπjq
γj Ð Hashpπjq

Step 3:
δ Ð pγm, . . . , γ1q

for 1 ď j ď n :

si “
řm

j“1 δ
bi,j
j for bi,j P t0, 1u such that i “

řm
j“1 bi,j2

j

AccumulateCheckpγ ˆ LA ` pBA ` αAq ` γ´1RA
?
“ xs ˆ Gq

AccumulateCheckpγ ˆ LT ` pBT ` αZT q ` γ´1RT
?
“ xs ˆ T q

AccumulateCheckpγ ˆ LU ` pBU ` αZU q ` γ´1RU
?
“ xs ˆ Uq

return 1

Figure 6.3: Optimised SameMultiScalar verification algorithm to check that that pA,ZT , ZU q “ px ˆ G,
x ˆ T , x ˆ Uq for some vector of field elements x. Here we use γ´1 to denote pγ´1

1 , . . . , γ´1
m q. This verifier

is satisfied if and only if the verifier in Figure 4.2 is satisfied.

63



Verifysamepermpcrssameperm, ; ϕsameperm; πsamepermq

Step 1:
pg,h,H, gsum, hsumq Ð parsepcrssamepermq

pA,M,aq Ð parsepϕsamepermq

pB, πgprodq Ð parsepπsamepermq

pα, βq Ð HashpR,S,T ,U ,Mq

Step 2:
p Ð

śℓ
i“1pai ` iα ` βq

AccumulateCheckpB ´ A ´ αM
?
“ β ˆ gq

check Ð Verifygprodppg,h,Hq; pB, pq; πgprodq

return 1 if check “ 1
else return 0

Figure 6.4: Optimised sameperm verification algorithm to check that A,M are commitments to
σpaq, σp1, . . . , ℓq for some permutation σ. Here we denote β “ pβ, β2, . . . , βℓq

64



Verifygprodpcrsgprod; ϕgprod; πgprodq

Step 1:
pg,h,H, gsum, hsumq Ð parsepcrsgprodq

pB, pq Ð parsepϕgprodq

pC, rp, πdl-innerq Ð parsepπgprodq

α Ð HashpB, pq

Step 2:
β Ð HashpC, rpq

Step 3:
u Ð pβ´1, β´2, . . . , β´ℓ || β´pℓ`1q1q

D Ð B ´ β´1gsum ` αhsum

Step 4:
G Ð pg || hq

z Ð pβℓ ` rpβ
ℓ`1 ´ 1

check Ð Verifydl-innerppG,Hq, pC,D, z,uq, πdl-innerq

return 1 if check “ 1
else return 0

Figure 6.5: Verify algorithm to check that the prover knows b, rB such that B “ b ˆ g ` rB ˆ h such that
p “

śℓ
i“1 bi. Here gsum “

řℓ
i“1 gi and hř “

řnbl

i“1 hi

65



Verifydl-innerpcrsdl-inner; ϕdl-inner; πdl-innerq
Step 1:
pG,Hq Ð parsepcrsdl-innerq
pC,D, z,uq Ð parsepϕdl-innerq
pBC , BD,π, c, dq Ð parsepπdl-innerq
α, β Ð HashpC,D, z,BC , BDq

Step 2:
m Ð logpnq

for 1 ď j ď m :
n Ð n

2
pLC,j , LD,j , RC,j , RD,jq Ð parsepπjq
γj Ð Hashpπjq

Step 3:
δ Ð pγm, . . . , γ1q

for 1 ď j ď n :

si “
řm

j“1 δ
bi,j
j for bi,j P t0, 1u such that i “

řm
j“1 bi,j2

j

s1
i “

řm
j“1 δ

´bi,j
j

AccumulateCheckpγ ˆ LC ` pBC ` αC ` pα2zqHq ` γ´1 ˆ RC
?
“ pcs || cdβq ˆ pG || Hqq

AccumulateCheckpγ ˆ LD ` pBD ` αDq ` γ´1 ˆ RD
?
“ dps1 ˝ uq ˆ Gq

return 1

Figure 6.6: Optimised dl-inner verification algorithm to check that pC,D, zq “ pc ˆ G,d ˆ G1, c ˆ dq.

66



Chapter 7

Deferred Security Preliminaries

Assumption 7.0.1 (q-ddh assumption). For an adversary A, define Advq-ddhA pλq “ |1´2PrrGameq-ddhA s|

where Gameq-ddhA is given by

main Gameq-ddhA pλq

G Ð GroupGenpλq

b
$

ÐÝ t0, 1u if b “ 0:
A

$
ÐÝ Gq; y

$
ÐÝ F, B Ð y ˆ g; C Ð yA

if b “ 1:
A

$
ÐÝ Gq; y

$
ÐÝ F, B Ð y ˆ g; C

$
ÐÝ Gq

b1 $
ÐÝ ApG,A, B,Cq

return b1 “ b

The q-ddh assumption holds if for all PPT adversaries A we have that Advq-ddhA pλq ď neglpλq is
negligible in λ.

Lemma 7.0.2. The q-ddh assumption is implied by the ddh assumption.

Proof. We shall show that Advq-ddhA pλq ď 2qAdvddhB pλq. We do this by hopping through a series of
hybrids Game1, . . . ,Gameq such that Gameq is statistically hard.

Gamei ÞÑ Gamei`1 : Let Game0 be the initial q-ddh game. Define Game1 to run identically to
Game0 except that, C1 is chosen randomly for both b “ 0 and b “ 1. Similarly define Gamei to run
identically to Gamei´1 except that, Ci is chosen randomly for both b “ 0 and b “ 1.

Let Bi be an adversary against the ddh game. Then Bi simulates Gamei for A. It takes as input
pG, R, S, T q and selects a1, . . . , aq

$
ÐÝ F. Then Bi flips a coin to get b P t0, 1u. If b “ 0 then Bi sets

Aj , Cj Ð

$

’

&

’

%

gaj , Saj if j ă i

R, T if j “ i

random if j ą i

, B Ð S

and b “ 1 then Bi generates A, B,C randomly. Next Bi sets ϕi “ pG,A, B,Cq. Finally Bi runs
b1 $

ÐÝ Apϕiq. When A returns b1, then if b “ b1 then Bi returns 0, else Bi returns 1.

67



Then

PrrBipG, R, S, T q “ 0 | b̄ “ 0s

“
1

2
pPrrApϕiq “ 0 | Gamei´1, b “ 0s ` PrrApϕiq “ 1 | Gamei´1, b “ 1sq

PrrBipG, R, S, T q “ 1 | b̄ “ 1s

“
1

2
p2 ´ PrrApϕiq “ 0 | Gamei, b “ 0s ´ PrrApϕiq “ 1 | Gamei, b “ 1sq

and

AdvddhBi
pλq “ |1 ´ 2PrrGameddhBi

pλqs|

“ |1 ´ PrrBpG, R, S, T q “ 0 | b̄ “ 0s ´ PrrBpG, R, S, T q “ 1 | b̄ “ 1s|

“

ˇ

ˇ

ˇ
1 ´

1

2
pPrrApϕiq “ 0 | Game0, b “ 0s ` PrrApϕiq “ 1 | Game0, b “ 1sq

´
`

1 ´ PrrBpG, R, S, T q “ 0 | b̄ “ 1s
˘

ˇ

ˇ

ˇ

“
1

2

ˇ

ˇ

ˇ
1 ´ PrrApϕiq “ 0 | Game0, b “ 0s ´ PrrApϕiq “ 1 | Game0, b “ 1s

´ 1 ` PrrApϕiq “ 0 | Game1, b “ 0s ` PrrApϕiq “ 1 | Game0, b “ 1s

ˇ

ˇ

ˇ

“
1

2
|Adv

Gamei´1

A pλq ´ AdvGamei
A pλq|

This means that

Adv
Gamei´1

A pλq ď 2AdvddhB pλq ` AdvGamei
A pλq

Observe that Adv
Gameq
A pλq “ 0 for all A because the adversary receives identically distributed

inputs on both coin flips. Hence we have that Adv
Gameq-ddh
A pλq ď 2qAdvddhB pλq

Assumption 7.0.3 (q-dlog assumption). For an adversary A define Advq-dlogA to be

Advq-dlogA pλq “Prrx ˆ g “ y ˆ g ^ x ‰ y | G Ð GroupGenpλq, g
$

ÐÝ Gq, px,yq
$

ÐÝ ApG, gqs

The q-dlog assumption holds if for all PPT adversaries A we have that Advq-dlogA pλq ď neglpλq is
negligible in λ.

Lemma 7.0.4. The q-dlog assumption is implied by the dlog assumption.

Proof. Let A be an adversary that breaks q-dlog. We describe an adversary B against the discrete
logarithm assumption. The adversary B takes as input pg, hq and chooses i

$
ÐÝ r1, qs (for q the

length of g). It chooses a to have random entries in F such that ai “ 0 but all other values are
strictly non-zero. It sets g such that gi “ h and gj “ ajg for all other j ‰ i. Observe that g is
perfectly distributed as a valid q-dlog instance. Then B runs

px,yq
$

ÐÝ Apgq

68



If A wins then x ˆ g “ y ˆ g for x ‰ y.
Thus

px ´ yq ˆ g “ 0 ñ pyi ´ xiqh “ ppx ´ yq ˆ aqg

If xi ‰ yi then B returns the discrete logarithm pyi ´ xiq
´1ppx ´ yq ˆ aq.

If x ‰ y then yi ‰ xi with probability 1
q and thus

Advq-dlogA pλq ď qAdvdlogB pλq

7.0.1 Generalised Inner Product Arguments
Bünz et al. [BMM`21] prove a general theorem for the knowledge soundness of inner product
arugments that we refer to during our security proofs. We state this theorem below. This theorem
is given in the interactive model. It can be compiled into a non-interactive argument by replacing
the verifier challenges with hash queries. This is secure in the random oracle model due to the
transforms by Attema et al. [AFK21] and by Wikstöm [Wik21]. Alternatively it has been proven
that compiling inner product arguments into a non-interactive arguments is secure in the algebraic
group/commitment model [GT21, BMM`21].

Theorem 7.0.5 (Theorem 1 from [BMM`21]). If ppSetup,Commitq, ¨q is a binding inner product
commitment (see Definition 7.0.8), then pSetup,Prove,Verifyq from [[BMM`21], Figure 1] has
completeness and knowledge soundness for the relation

RIPA “
`

pck, cmq; pa, bq cm “ Commitpck; pa, b, xa, byqq
˘

To prove the knowledge soundness of an inner product argument that instantiates their gener-
alised argument for a specific commitment scheme, it thus suffices to show that the commitment is
an inner product commitment. We summarise their definition of an inner product commitment in
Section 7.0.1.

Inner Product Commitment

A commitment scheme consists of two algorithms pSetup,Commitq where

• ck
$

ÐÝ SetuppGq takes as input some public parameters defined by a security parameter (in our
case the group description G) and outputs a commitment key ck. We denote the key space
K to be the set of possible commitment keys.

• cm
$

ÐÝ Commitpck; a; rq takes as input the commitment key, a message, and some randomness.
Ir outputs a commitment cm. We denote the message space M to be the set of possible
message inputs. If Commit is deterministic (i.e. r “ K) then we simply write Commitpck; aq

We say that a commitment scheme is binding (see [BMM`21], Definition 9) if it is hard to find
a, r, a1, r1 such that Commitpck; a; rq “ Commitpck; a1; r1q but m ‰ m1.

Definition 7.0.6 (Doubly homomorphic commitment scheme [BMM`21]). A binding commitment
scheme pSetup,Commitq is doubly homomorphic if pK,`q, pM,`q and pImagepCommitq,`q define
abelian groups such that for all ck, ck1 P K and all a, a1 P M it holds that

69



1. Commitpck; aq ` Commitpck; a1q “ Commitpck; a ` a1q

2. Commitpck; aq ` Commitpck1; aq “ Commitpck ` ck1; aq

Definition 7.0.7 (Inner product [BMM`21]). A function ¨ : M1,M2 ÞÑ M3 from two groups of
prime order p to a third group of prime order p is and inner product map if for all a, b P G1 and
c, d P G2 we have that

pa ` bq ¨ pc ` dq “ a ¨ c ` a ¨ d ` b ¨ c ` b ¨ d

Given an inner product ¨ between groups we define the inner product between vector spaces xy :
Mm

1 ˆ Mm
2 ÞÑ M3 to be

xa, by “

m
ÿ

i“1

ai ¨ bi

Definition 7.0.8 (Inner Product Commitment [BMM`21]). Let pSetup,Commitq be a doubly homo-
morphic commitment with message space M “ Mm

1 ˆMm
2 ˆM3 and key space K “ Km

1 ˆKm
2 ˆK3

defined for all m P N, where |Mi| “ |Ki| “ p is prime for 1 ď i ď 3. Let ¨ : M1 ˆ M2 ÞÑ M3.
We call pSetup,Commit, ¨q an inner product commitment if there exists an efficient deterministic
functions Collapse such that for all m P t2jujPN, a P M, and ck, ck1 P K such that ck3 “ ck1

3 it holds
that

Collapse

¨

˝Commit

¨

˝

ck1 || ck1
1 a1 || a1

ck2 || ck1
2 a2 || a2

ck3 a3

˛

‚

˛

‚“ Commit

¨

˝

ck1 ` ck1
1 a1

ck2 ` ck1
2 a2

ck3 a3

˛

‚

We refer to the requirement above as the collapsing property.

7.0.2 The Generalized Forking Lemma
Several of the non-interactive protocols in this work rely on rewinding an adversary in order to
extract a valid witness. The extractors will require at least two successful transcripts with respect
to the same first messsage. We thus use the generalised forking lemma as proven by Bagherzandi
et al.[BCJ08] (first stated in [BN06]) to quantify the probability of an extractor obtaining these
transcripts. Consider an algorithm A that takes as input some parameters par and some randomness
f “ pω, h1, . . . , hQq, where ω is A’s random coins and h1, . . . , hQ are responses received by querying
a random oracle Hash : t0, 1u˚ ÞÑ F, and Q is the maximal number of the hash queries. Suppose A
outputs a pair pL, toutℓuℓPLq, where L is a set of hash responses, and each outℓ is the corresponding
output message for ℓ P L. Let ϵ be the probability that the output of Appar, fq is successful. We
define the game GameforkA pparq as in Section 7.0.2.

Lemma 7.0.9 (Generalized Forking Lemma [BCJ08]). Let Hash : t0, 1u˚ ÞÑ F be a uniformly
random function, and A be an adversary that runs in time τ and succeeds with probability ϵ. If
|F| ą 8mQ{ϵ, then the game GameforkA pparq runs in time at most τ ¨ 8m2Q{ϵ ¨ lnp8m{ϵq, and is
successful with probability at least ϵ{8.

70



mainpparq

f “ pω, h1, . . . , hQq
$

ÐÝ F
pL, toutℓuℓPLq

$
ÐÝ Appar, fq

If L “ H output 0
Else, let L “ pℓ1, . . . , ℓmq be such that ℓ1 ď ¨ ¨ ¨ ď ℓm

for 1 ď i ď m:
set succi Ð 0, ki Ð 0, kmax Ð 8mQ{ϵ ¨ plnp8m{ϵqq

while succi “ 0 and ki ă kmax :

f 1 $
ÐÝ F such that f 1

|ℓi
“ f|ℓi

let f 1 “ pω, h1, . . . , hℓi´1
, h1

ℓi
, . . . , h1

Qq

pL1, tout1
ℓuℓPL1q Ð Appar, f 1q

if h1
ℓi

‰ hℓi and L1 ‰ H and ℓi P L1 then keep out1
ℓi

and set succ Ð 1

else set ki Ð ki ` 1

If succi “ 1 for all i P rms, then output pL, toutℓuℓPL, tout1
ℓuℓPLq

Else output 0

Figure 7.1: Game Gameforkpar,A where an algorithm is forked in the Generalized Forking Lemma.

71



Bibliography

[ABG`21] Diego F. Aranha, Carsten Baum, Kristian Gjøsteen, Tjerand Silde, and Thor Tunge.
Lattice-based proof of shuffle and applications to electronic voting. In Kenneth G.
Paterson, editor, Topics in Cryptology - CT-RSA 2021 - Cryptographers’ Track at the
RSA Conference 2021, Virtual Event, May 17-20, 2021, Proceedings, volume 12704 of
Lecture Notes in Computer Science, pages 227–251. Springer, 2021.

[AC21] Sarah Azouvi and Daniele Cappelletti. Private attacks in longest chain proof-of-stake
protocols with single secret leader elections. In Foteini Baldimtsi and Tim Roughgar-
den, editors, AFT ’21: 3rd ACM Conference on Advances in Financial Technologies,
Arlington, Virginia, USA, September 26 - 28, 2021, pages 170–182. ACM, 2021.

[ACF21] Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n
partial knowledge. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part IV, volume 12828 of Lecture
Notes in Computer Science, pages 65–91. Springer, 2021.

[AFK21] Thomas Attema, Serge Fehr, and Michael Klooß. Fiat-shamir transformation of multi-
round interactive proofs. IACR Cryptol. ePrint Arch., page 1377, 2021.

[BBB`18] Benedikt Bünz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Gregory Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA, pages 315–334, 2018.

[BCC`16] Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II, pages 327–357, 2016.

[BCJ08] Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under
the discrete logarithm assumption and a generalized forking lemma. In Peng Ning,
Paul F. Syverson, and Somesh Jha, editors, Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA,
October 27-31, 2008, pages 449–458. ACM, 2008.

[BCS21] Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments and
their applications. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology

72



- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part I, volume 12825 of Lecture Notes
in Computer Science, pages 742–773. Springer, 2021.

[BEHG20] Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader
election. In AFT ’20: 2nd ACM Conference on Advances in Financial Technologies,
New York, NY, USA, October 21-23, 2020, pages 12–24. ACM, 2020.

[BG12] Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of
a shuffle. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, pages 263–280, 2012.

[BMM`21] Benedikt Bünz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs
for inner pairing products and applications. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology - ASIACRYPT 2021 - 27th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part III, volume 13092 of Lecture Notes in Computer
Science, pages 65–97. Springer, 2021.

[BN06] Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capi-
tani di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, VA, USA, October 30 - November
3, 2006, pages 390–399. ACM, 2006.

[CFG21] Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and universally compos-
able single secret leader election from pairings. IACR Cryptol. ePrint Arch., page 344,
2021.

[Cha03] David Chaum. Untraceable electronic mail, return addresses and digital pseudonyms.
In Dimitris Gritzalis, editor, Secure Electronic Voting, volume 7 of Advances in Infor-
mation Security, pages 211–219. Springer, 2003.

[CMM19] Núria Costa, Ramiro Martínez, and Paz Morillo. Lattice-based proof of a shuffle. In An-
drea Bracciali, Jeremy Clark, Federico Pintore, Peter B. Rønne, and Massimiliano Sala,
editors, Financial Cryptography and Data Security - FC 2019 International Workshops,
VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February 18-22, 2019, Revised
Selected Papers, volume 11599 of Lecture Notes in Computer Science, pages 330–346.
Springer, 2019.

[DK00] Yvo Desmedt and Kaoru Kurosawa. How to break a practical MIX and design a new
one. In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques, Bruges,
Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer
Science, pages 557–572. Springer, 2000.

[FLSZ17] Prastudy Fauzi, Helger Lipmaa, Janno Siim, and Michal Zajac. An efficient pairing-
based shuffle argument. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in

73



Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science,
pages 97–127. Springer, 2017.

[GT21] Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness in the alge-
braic group model. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture
Notes in Computer Science, pages 64–93. Springer, 2021.

[HKR19] Max Hoffmann, Michael Klooß, and Andy Rupp. Efficient zero-knowledge arguments
in the discrete log setting, revisited. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, November 11-15,
2019, pages 2093–2110. ACM, 2019.

[HMS21] Javier Herranz, Ramiro Martínez, and Manuel Sánchez. Shorter lattice-based zero-
knowledge proofs for the correctness of a shuffle. In Matthew Bernhard, Andrea Brac-
ciali, Lewis Gudgeon, Thomas Haines, Ariah Klages-Mundt, Shin’ichiro Matsuo, Daniel
Perez, Massimiliano Sala, and Sam Werner, editors, Financial Cryptography and Data
Security. FC 2021 International Workshops - CoDecFin, DeFi, VOTING, and WTSC,
Virtual Event, March 5, 2021, Revised Selected Papers, volume 12676 of Lecture Notes
in Computer Science, pages 315–329. Springer, 2021.

[JT20] Joseph Jaeger and Stefano Tessaro. Expected-time cryptography: Generic techniques
and applications to concrete soundness. In Rafael Pass and Krzysztof Pietrzak, editors,
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC,
USA, November 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in
Computer Science, pages 414–443. Springer, 2020.

[LMR19] Russell W. F. Lai, Giulio Malavolta, and Viktoria Ronge. Succinct arguments for
bilinear group arithmetic: Practical structure-preserving cryptography. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019, pages 2057–2074. ACM, 2019.

[Nef01] C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Michael K.
Reiter and Pierangela Samarati, editors, CCS 2001, Proceedings of the 8th ACM Con-
ference on Computer and Communications Security, Philadelphia, Pennsylvania, USA,
November 6-8, 2001, pages 116–125. ACM, 2001.

[RMM21] Michael Rosenberg, Mary Maller, and Ian Miers. Snarkblock: Federated anonymous
blocklisting from hidden common input aggregate proofs. IACR Cryptol. ePrint Arch.,
page 1577, 2021.

[Wik21] Douglas Wikstöm. Special soundness in the random oracle model. IACR Cryptol.
ePrint Arch., page 1265, 2021.

74



[WTS`18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zksnarks without trusted setup. In 2018 IEEE Symposium on Se-
curity and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA, pages 926–943. IEEE Computer Society, 2018.

75


	Introduction
	Preliminaries
	Public Coin Setup


	Full Curdleproofs Construction
	Problem Statement
	Curdleproofs Construction
	Informal Overview
	Relations
	 Full Zero Knowledge Construction 
	Security


	SameScalar Argument 
	Full Zero-Knowledge Construction
	Security


	SameMultiscalar Argument
	Informal Overview
	 Full Zero Knowledge Construction 
	Security


	Same Permutation Argument
	Same Permutation Argument
	Neff's Trick
	Informal Overview
	GrandProd Relation
	 Full Zero Knowledge Same-Permutation Construction 
	Security

	Grand-Product Argument
	Informal Overview
	Discrete Logarithm Inner Product Relation
	Full Zero Knowledge Grand Product Construction
	Grand-Product Security

	Discrete Logarithm Inner Product Argument
	Informal Overview
	Full Zero-Knowledge DL Inner Product Construction
	Security


	Efficiency
	Full Curdleproofs Construction Efficiency
	Verifier Optimisation: Accumulate MSM Operations

	Breakdown of Efficiency
	Same Scalar Efficiency
	Same Multiscalar Efficiency
	Same Permutation Efficiency

	Figures of Optimised Constructions

	Deferred Security Preliminaries
	Generalised Inner Product Arguments
	The Generalized Forking Lemma



