Curdleproofs: A Shuffle Argument Protocol

The Ethereum Foundation Cryptography Research Team

September 14, 2022

Abstract

Curdleproofs is a zero-knowledge shuffle argument which is inspired by the work of Bayer and Groth
[BG12]. Curdleproofs has applications to secret leader elections which prevents DDOS attacks on
the Ethereum Proof of Stake consensus layer. Curdleproofs runs over a public coin setup in any
group where the DDH assumption holds.

Curdleproofs is built from well established inner product arguments and does not need a trusted
setup. The prover and verifier both run in linear time asymptotically with small constants because
there is no reduction to NP constraints. Their concrete run time is highly practical: shuffling 252
elements requires 0.5 seconds for the prover and 25 milliseconds for the verifier on an Intel i7-
8550U CPU at 1.80GHz over the BLS12-381 curve. The proof size is logarithmic size (dominated
by 10log(¢) for ¢ the number of elements).

Contents

Introduction

1.1 Preliminaries L
1.1.1 Public Coin Setup

Full Curdleproofs Construction

2.1 Problem Statemento

2.2 Curdleproofs Construction
2.2.1 Informal Overview e
2.2.2 Relations e e
2.2.3 Full Zero Knowledge Construction
2.2.4 Security e e

SameScalar Argument
3.0.1 Full Zero-Knowledge Construction
3.0.2 Security e

SameMultiscalar Argument
4.0.1 Informal Overview e
4.0.2 Full Zero Knowledge Construction
4.0.3 Security e e

Same Permutation Argument

5.1 Same Permutation Argument oL
5 1.1 Neff’s Trick o e
5.1.2 Informal Overview e e
5.1.3 GrandProd Relation e
5.1.4 Full Zero Knowledge Same-Permutation Construction
5.1.5 Securityo e e

5.2 Grand-Product Argument L
5.2.1 Informal Overview e
5.2.2 Discrete Logarithm Inner Product Relation
5.2.3 Full Zero Knowledge Grand Product Construction
5.2.4 Grand-Product Security L L

5.3 Discrete Logarithm Inner Product Argument
5.3.1 Informal Overview e
5.3.2 Full Zero-Knowledge DL Inner Product Construction

5.3.3 Security e

19
19
20
20

6 Efficiency 55

6.1 Full Curdleproofs Construction Efficiency 55
6.1.1 Verifier Optimisation: Accumulate MSM Operations 56

6.2 Breakdown of Efficiency L 57
6.2.1 Same Scalar Efficiency 57

6.2.2 Same Multiscalar Efficiency 57

6.2.3 Same Permutation Efficiency 59

6.3 Figures of Optimised Constructions 62

7 Deferred Security Preliminaries 67
7.0.1 Generalised Inner Product Arguments L Lo 69

7.0.2 The Generalized Forking Lemma L 0oL 70

Chapter 1

Introduction

In Ethereum proof of stake, single secret leader elections (SSLE) [BEHG20, AC21] have been
proposed as a privacy-preserving method for electing block proposers on the Ethereum beacon
chain. The beacon chain currently elects the next 32 block proposers at the beginning of each
epoch. The results of this election are public and everyone gets to learn the identity of those
future block proposers. This information leak enables attackers to launch DoS attacks against each
proposer sequentially in an attempt to disable Ethereum.

The proposal Whisk is a practical SSLE scheme that uses a shuffle argument as a backend.
In Whisk the beacon chain first randomly picks a set of election candidates. Then and for an
entire day, block proposers continuously shuffle that candidate list thousands of times. After the
shuffling is finished, we use the final order of the candidate list to determine the future block
proposers for the following day. Due to all that shuffling, only the candidates themselves know
which position they have in the final shuffled set. For the shuffling process to work, Whisk does not
shuffle the validators themselves, but cryptographic randomizable commitments that correspond to
them. Election winners can open their commitments to prove that they won the elections.

Verifiable shuffling has been a research topic for decades due to its application in mixnets and
hence to online anonymity and digital election schemes [Cha03, DKO00]. Already since twenty years
ago, zero-knowledge proofs based on randomizable El-Gamal ciphertexts have been proposed, and
in recent years we've seen proofs based on pairings [CFG21, FLSZ17] as well as post-quantum
proofs based on lattices [CMM19, HMS21, ABG™*21].

In Whisk we use shufling ZKPs that solely rely on the discrete logarithm assumption and don’t
require a trusted setup while still maintaining decent proving and verification performance. In this
document we specify the zero-knowledge proving system Curdleproofs used by Whisk. The scheme
is a modernisation of the Bayer-Groth shuffle argument [BG12] that makes use of inner product
arguments as a backend.

1.1 Preliminaries

To denote a relation R,e where a public instance ¢ and a private witness w is in R,e if and only if
certain properties hold, we write

Re={¢; w ‘ properties that ¢ and w satisfy }.

Proving algorithms Prove, take as input (crsye|, ¢, w) where crs,g is a common reference string.

They return a proof .. Verification algorithms Verify,. take as input (crsyel, @, rel) Where crs is
a common reference string, ¢ is an instance the prover is claiming to be in the language, and 7y
is a proof. They return a bit 1 to indicate acceptance and 0 to indicate rejection.

We use bold font a to denote a vector with coordinates a1, as,...,a, and x is the dot product
of vectors. We write ka to denote the vector (kai, kag, ..., ka,). We write (a || b) to denote the
concatenated vector (ai,...,an,b1,...,b,). We write k o a to denote the vector (kiai, ..., knay).

1.1.1 Public Coin Setup

Curdleproofs is built over a cryptographic group G in which both the discrete logarithm problem
and the decisional Diffie-Hellman problem is hard. Curdleproofs requires a common reference string
(crs) consisting of ¢ random group elements g. This allows us to generate Pedersen commitments
V' to vectors of scalars v of the form

V = Commit(crs; v) =v x g

We are shuffling ¢-tuples of group elements. In order to mask the resulting positions of these group
elements we require that our Pedersen commitments use blinders. Specifically we need up to ny = 4
blinders in each commitment. We thus include ny additional random group elements h such that
blinded commitments V have the form

V = Commit(crs; v; ry) =v xg+7ry xh

with random ry. We additionally require a random group elements G, Gy, H that are used for
committing a group element

GroupCommit((Gr, H); T; rr) = cmp = (cmp 1, cmy2) = (reGr, T + rrH)

This group commitment scheme is statistically binding and hiding under the DDH assumption. It
is also equipped with a homomorphism such that

GroupCommit((Gr, H); A; ra) + GroupCommit((Gr, H); B; rp)
= GroupCommit((Gp,H); A+ B; 14 +1rp)
= ((ra+rp)Gr, (A+ B)+ (ra+rp)H)

It is based of the El-Gamal encryption scheme.

Chapter 2

Full Curdleproofs Construction

2.1 Problem Statement

The aim of Curdleproofs is to build a shuffle argument that preserves discrete logarithm relations
between pairs of group elements. More precisely, given a public set of 2¢ group elements

R = (Ry,...,Ry) and S = (S1,...,S0)
a shuffler computes a second set of group elements
T=(T1,...,7) and U = (Uy,...,Uy)
and proves in zero knowledge that there exists a permutation
o() ¢ [1,6] — [1,4]
and a field element k € F such that for all 1 <i < ¢
T; = kRyiy ~ Ui =kSy@) -

We use the same scalar k for each i. The permutation o() is committed to in M € G under some

randomness r,; € F"
M =o([1,0]) xg+rm xh

Note that by the ¢-ddh assumption (Assumption 7.0.1) it is difficult to distinguish the randomised
ciphertexts from truly random values.
In other words we define a zero-knowledge proof for the relation

(R,S, T, U,M); o) T =o0(kR)
keF/{0} | U = o(kS)
ry €F™ | M =o0(1,....,0) xg+7y xh
o() € permutations over [1,...,¢]

Rapule =

To do this we make use of a permutation argument by Bayer and Groth [BG12] which we modify to
make use of more recent work on inner product arguments. All modifications are formally justified.
If any mistakes are spotted please file an issue on the github repo.

2.2 Curdleproofs Construction

We begin by giving a full overview of the construction. For an informal overview see Figure 2.1
and for the formal construction see Figures 2.2 and 2.3. The security arguments are deferred
to Theorems 2.2.1 and 2.2.2. The construction makes use of three subprotocols: a SameScalar,
SameMultiScalar, and SamePerm arguments. We specify the relations for these subprotocols in
Section 2.2.2 below but we defer discussing their proving and verifying algorithms to Chapter 3, 4,
& 5.

T=axkR,U =a x kS

Statement
Input [T =o(kR), U = a(k-S))]
R (0 U)
A=o(a)xg
‘ Fiat-Shamir

__— | —

SamePerm:

. SameMultiScalar: SameScalar:
exists o s.t. exists ¢ s.t. exists k s.t.
A=o(a)xg
A=cxg T=cxT; U=ecxU T =k(axR),U==k(ax8)

M=0(1,2,...,4) xg

Figure 2.1: Overview of the shuffle argument. There are three subprotocols: SamePerm argument, Same-
MultiScalar argument, and SameScalar argument.

2.2.1 Informal Overview

Let ¢ > 1. The prover will take as input the R, S,T,U, M and aims to prove knowledge of o(), k
such that:

o M =0(1,2,...,0) x g is a commitment to the permutation ()
e T =o(kR) is a randomised permutation of R
o U =0(kS) is a randomised permutation of S

Initially all the public inputs are hashed to get a vector a of challenges. Then the prover computes

values A = o(a) x g, T = a x kR, and U = a x kS which it sends to the verifier. As part of our

full construction we require zero-knowledge algorithms for proving and verifying three additional

relations: a same permutation relation, a same scalar relation, and a same multiscalar relation.
The prover runs

o SamePerm argument to demonstrate that A is a commitment to o(a) for o() the permutation
committed to with M.

o SameMultiScalar argument to show knowledge of some « such that A =x xg, T =x x T
and U = ¢ x U. Given that A = o(a) x g = « x g this implies that 7" = o(a) x T and
U=o0c(a)xU.

o SameScalar argument to show the existence of k such that T'= k(a x R) and U = k(a x S).

Together this means that
T=k(laxR)=0(a)xT and U =0o(a) xU = k(a x S)

Where a is random this means that kR, = T; for all i except with negligible probability.
Note that the full protocol has some additional masking values that are included to ensure
zero-knowledge. For simplicity we have ignored these terms in this overview.

2.2.2 Relations
SamePerm Relation

SamePerm relation demonstrates that given public input (A, M) € G? there exists o(1,...,¢) such
that M is a commitment to o() and A is a commitment to a. These commitments are blinded. In
other words

(A7Maa'); (0()7TA7TM) A:U(a) Xg+7’AXh
Rsameperm: MZO'(l,...,f)Xg—FTMXh
o() € permutations over [1,...,¢]

SameScalar Relation

SameScalar relation demonstrates that given public input (R, .S, cmp, cmy) there exists k such that
cmp is a commitment to T = kR and cmy; is a commitment to k£S. In other words

R [(R,S,emp,cmy); (k,ry,r7) | emp = GroupCommit((Gr, H); kR; rr)
samescalar = cmy = GroupCommit((Gy, H); kS; my)

where Gy, Gr and H are fixed group elements.

SameMultiScalar Relation

SameMultiScalar relation demonstrates that two group elements (7,U) € G? are bound together
by the same vector @ € F" under the bases T' € G™ and U € G". The vector « is contained in a
commitment A € G that is computed under a binding commitment key G € G™ which is not chosen
by the prover. In other words

(A,ZT,ZU,T,U); x| A=xxG
Rsamemsm = ZT =xxT
ZU =xxU

2.2.3 Full Zero Knowledge Construction

A formal description of Curdleproofs is provided in Figures 2.2 and 2.3. Here we describe the
additional steps that we have added compared to the informal overview in Section 2.2.1 to achieve
zero-knowledge. We defer the security proofs of zero-knowledge, and soundness to Section 2.2.4,
Theorems 2.2.2 and 2.2.1.

Step 1: In the first step the prover and verifier both hash the instance to get a random vector of
field elements a € FY. There are no secrets involved in this step. The verifier parses all inputs to
check that they are group or field elements. When parsing T' the verifier checks that 77 # 0 to
prevent the prover from choosing k = 0.

Step 2: In the second step the prover computes a commitment A to the permuted o(a). The
vector o(a) is private because it reveals information about the secret permutation o(). The prover
therefore chooses a random blinding vector r4 € F™ =2, Looking ahead, the same-permutation
argument is only zero-knowledge provided |r4| = 2, thus we choose np > 4.

The prover outputs A together with a proof Tsameperm demonstrating that A is a blinded com-
mitment to o(a) for o() committed to in the blinded commitment M. The verifier simply checks
that this proof verifies.

Step 3: In the third step, the prover computes R = a x R and S = a x S and the verifier checks
that R and S have been computed correctly. Note that due to the optimisations in 7?7 it is faster
for the verifier to check correctness of R and S than it is to compute them itself. The prover then
computes commitments cmp = (rpGp, T +rpH), cmy = (ryGy, U +rgH) to T = kR and U = kS
respectively. The commitments are blinded with the masking values r7 and ry. The prover then
outputs cmp, cmy together with a proof mgamescalar demonstrating that cmp and cmy open to (T, U)
such that T'= kR and U = kS for the same scalar k.

Step 4: In the fourth and final step, The prover and verifier first extends A’ = A +roGr +ryGy
such that A’ includes the blinders r and ryy. They also extend the basis G such that A’ is a
commitment to = (o(a || 74 || 77 || rv)) under the basis G. Now if T = (T || 0 || H ||0) for O
a vector of length np — 2 with every element equal to the identity element then

cmpy =kR+rrH =x xT' =o0(a) xT +rrH
then we have that kR = o(a) x T as required. A similar argument shows that kS = o(a) x U.
Thus the prover outputs a proof Tsamemsm demonstrating that cmy and cmy contain o(a) x T' and
o(a) x U respectively.
Outcome: The prover returns the proof

Tlshuffle = (Aa cmr,cmy, R7 S, Tlsameperm s TTsamescalar 7rsamemsm)'

The verifier returns 1 if and only if all checks pass.

2.2.4 Security

We first prove the zero-knowledge of our arguments, i.e. a verifier learns no information from an
honest proof except for the truth of the statement. The SamePerm and SameScalar are uncondi-

tionally zero-knowledge. The SameMultiScalar argument is zero-knowledge assuming that we set
np) such that ny = 4 and ny + £ = 6

Theorem 2.2.1 (Shuffle argument is zero-knowledge). If SamePerm argument, SameScalar argu-
ment, and SameMultiScalar argument are zero-knowledge then the shuffle argument described in
Figures 2.2 and 2.3 is zero-knowledge.

Proof. We design a simulator Simulate that takes as input an instance
(R,S, T, U, M)

and outputs a proof 7ghusfle that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
determined by the adversary.

During the setup the simulator chooses the crsghyffie = (g, h, G, Gy, H) uniformly at random.
During proving the simulator Simulate proceeds as follows

1. In Step 1 they hash to find a1, ..., a, identically to the honest prover.

2. In Step 2 they choose A Sel uniformly at random and run

Tsameperm = Simulatesameperm ((g, 1, H); (A, M, a))

3. In Step 3 they generate R = a x R and S = a x S identically to the honest prover. They

$.
sample cmp, cmyy < G* uniformly at random and run

T'samescalar = SimUIatesamescalar((GT; Gu, H); (R7 S, cmr, CmU))

4. In Step 3 they set A’ — A+cmpy+cmy 1, G — (g || k|| Gr || Gy), T <~ (T || 0| H || 0),
U — (U ||0]]0]| H), identically to the honest prover and run

. ’) Tl
Tsamemsm = Simulatesamemsm (G§ (A ,CM72,CMy 2, T,U))

Finally they return mTehyfre = (Wsamepermy Tlsamescalar 7"'samemsm)-

Now we must argue that the simulated proof is indistinguishable from the real proof.
We design an adversaries B1, Bo, Bs, B4, Bs such that

AdvMe () < 2(Advig U™ (A) + AdvETSRN(X) + AdvEM™ () + AdvE () + AdviE" (V)

We proceed via a series of games Game;, Gameo, Games, Gamey, Games such that

AdvUTE(X) < 2AdVETP™(N) + AdvET (A)
Adv Gamel) < 2AdvEMSE (X)) + Ay ()
) < 2AdVEM™M(A) + AdvE™ ()
)
)
)=

AdvGmes
Adv Game4 A

ddh ()\) + AdVGame4 ()\)

(
(

Adv Game2(>\
(A) < 2Adv
(A) < 2Ad ddh(A)+AdvGameo(A)
(

Adv Game5 A

which combined give us our final result.

Gameg — Game; : Let Gameg be the initial zero-knowledge game. Define Game; to run identicallly
to Gamey except that, the crs and the Tsameperm proof are generated by the sameperm simulator for
both b =0 and b = 1.

Let By be an adversary against the sameperm zero-knowledge game. Then B; simulates the
zero-knowledge game for A. It takes as input (g, h, H), generates the remaining terms (Gp, Gy)
randomly, and runs A(crs). It flips a coin to get b € {0,1}. When A makes a valid prover query
(R,S, T, U,M),(c(),k,rrr), if b =0 then B; generates A, a,r4 honestly and queries its oracle on
input (A4, M, a) and (o(),ra,7r) for A = o(a) x g+ ra x h. It receives back a proof Tsameperm- It
computes the remaining proofs Tsamescalar, Tsamemsm the same as the honest prover. Then B; returns

(Tsameperm, Msamescalar, Tsamemsm). 1f b = 1 then B; runs the simulator to compute the response.
When A returns b’ then if b = b’ then B returns 0, else B; returns 1.
Then
- 1
Pr[Bi(crs) =0 | b=10] = 5 (Pr[A(crs) = 0 | Gameg, b = 0] + Pr[A(crs) = 1 | Gameg, b = 1])
- 1
Pr[Bi(crs) =1 |b=1] = 5 (2 — Pr[A(crs) = 0 | Gamey, b = 0] — Pr[A(crs) = 1 | Gamey,b = 1])

and

AdVSBalmeperm() |1 _ 2Pr[Gamesameperm()]|
=1-— Pr[Bl(crs) =0]|b=0]—Pr[Bi(crs) =1 | b=1]

’1 3 (Pr[A(crs) = 0 | Gameg, b = 0] + Pr[A(crs) = 1 | Gameg, b = 1])
— (1= Pr[Bi(ers) = 0| 5= 1]) |
- %‘1 — Pr[A(crs) =0 | Gameg, b = 0] — Pr[A(crs) = 1 | Gamey, b = 1]
— 14 Pr[A(crs) =0 | Gamey,b = 0] + Pr[A(crs) =1 | Gameg, b = 1]
- %‘Advﬁame‘w — AdvF™e (V)]
This means that

AdvE™ ()) < 2AdVEPE™ (N + AdvE™ (\)

Game; — Games : Define Games to run identicallly to Game; except that, the crs and the Tsamescalar
proof are generated by the samescalar simulator for both b =0 and b = 1.

Let Bs be an adversary against the samescalar zero-knowledge game. Then By simulates the
zero-knowledge game for A. It takes as input (Gr,Gy), generates the remaining terms g, h, H
randomly, and runs A(crs). It flips a coin to get b € {0,1}. When 4 makes a valid prover query
(R,S,T,U,M),(0(),k,rr), if b = 0 then By generates a, A honestly and simulates Tsameperm-
Then By generates rr, ry, R, S, cmp, cmy honestly and queries its oracle on input (R, S,cmp, cmy)
and (k,rp,ry). It receives back a proof Tgamescalar- 1t computes the remaining proof msamemsm the

same as the honest prover. Then By returns (msameperm, Tsamescalars Tsamemsm)- 1f b = 1 then By runs
the simulator to compute the response. When A returns b’ then if b = b’ then By returns 0, else Bo
returns 1.

By the same argument as in Gamey — Game; we have that

Adv@™e (\) < 2AdvEmesealr(y) ¢+ Adv™e2())

Games — Games : Define Games to run identicallly to Games except that, the crs and the Tsamemsm
proof are generated by the samemsm simulator for both b = 0 and b = 1.

Let B3 be an adversary against the samemsm zero-knowledge game. Then Bs simulates the
zero-knowledge game for A. It takes as input (g || h ||Gr || Gu), generates the remaining
terms H randomly, and runs A(crs). It flips a coin to get b € {0,1}. When A4 makes a valid
prover query (R,S,T,U,M),(o(),k,ry), if b = 0 then B3 generates a, A,cmp,cmy honestly
and simulates Tsameperm, Tsamescalar- Lhen Bz generates A', TV, U’, « honestly and queries its ora-
cle on input (A’,cmy2,cmy 2, T/, U’) and x. It receives back a proof msamemsm. Then Bs returns
(Tsameperm Tsamescalars Tsamemsm)- 1f b = 1 then Bs runs the three simulators to compute the response.
When A returns o’ then if b = b’ then B3 returns 0, else B3 returns 1.

By the same argument as in Gamey — Game; we have that

AdvE™2 (X) < 2AdVET™™(X) + Adv T3 ()

Games — Gamey : Define Gamey to run identically to Games except that, for both b =0 and b =1
, the cmr is selected uniformly at random.

Let B4 be an adversary against the ddh. Then By gets as input (G1, G2, Gs,G4) and aims to
distinguish whether these equal (G1,x2G1,yG1, zyGy) for some x,y or not. It simulates the zero-
knowledge game for A setting Gr = G1, H = G2, and generating the remaining terms (g, h, Gyr)
randomly, and runs A(crs). It flips a coin to get b € {0,1}. When A makes a valid prover query, if
b = 0 then B4 computes all elements the same as in Games apart from it sets cmp = (G3, kR + Gy).
If b = 1 then By runs the simulator to compute the response. When A returns b’ then if b = o’ then
By returns 0, else By returns 1.

Then

Pr[B1(G1,G2,G3,G4) =0 | b=0] = %(Pr[A(crs) =0 | Games,b = 0] + Pr[A(crs) =1 | Games, b = 1])

- 1
Pr[Bi(G1,G2,G3,G4) =1 | b=1] = 5 (2 — Pr[A(crs) =0 | Gameyg, b = 0] — Pr[A(crs) = 1 | Gamey, b = 1])

Thus by the same argument as in Gameg — Game; we have that

AdvE™ (A) < 2AdvEER (A) + AdvE™ ()

Gamey — Gamej : Define Games to run identically to Gamey except that, for both b =0 and b =1
, the cmy is selected uniformly at random. Then by the same argument as in Games — Gamey we

have that there exists Bs such that

AdvE™e (\) < 2AdvEER () + AdvE™® ()

Games — 0 : In Games the simulated proofs are generated identically and are thus indistinguishable.
O

Theorem 2.2.2 (Shuffle Argument is knowledge-sound). If SamePerm arqument, SameScalar argu-
ment, and SameMultiScalar argument are knowledge-sound, and the q-dlog assumption holds, then
the Curdleproofs shuffle argument described in Figures 2.2 and 2.3 is knowledge-sound.

Proof. We design an extractor Xgh.fe such that for any adversary A that convinces the verifier,
with overwhelming probability returns either a discrete logarithm relation between g, h, Gr, Gy, H
or a permutation o() and field element k such that

((R, S,T, U, M); (O‘(), /{3)) € Rshufﬂe.

By the knowledge-soundness of SamePerm argument, SameScalar argument, and SameMultiScalar
argument there exist extractors Xsameperm, Xsamescalars Xsamemsm such that if A returns verifying
(Tsameperm Tsamescalars Tsamemsm) then they return valid witnesses for their respective languages with
overwhelming probability.

The extractor Xg,fe Works as follows

1. Run (R7 S, T,U, M); (A7 CM7, CMy, Tsameperm; samescalar Wsamemsm) — A(CFS).

2. Let By be the adversary that returns ((A, M, a), Tsameperm) and Xsameperm its corresponding
SamePerm extractor. Extract o(), 74,7 such that

M=0c(1,....0) xg+ry xh n A=o0(a)xg+raxh

3. Let Bs be the adversary that returns ((cmp, cmg), Tsamescalar) and Xsamescalar its corresponding
SameScalar extractor. Extract k,rp,ry such that

cmpy = rpGrp, cmp o = kR+rrH, A cmy1 = ryGu, cmyo = kS + ryH.
Return (o(), k).

We must show that whenever A convinces the verifier, then either Xyhuee succeeds or we can
extract a discrete logarithm relation between (g, h, G, Gy, H). First see that Xghuffe terminates
in polynomial time because Xsameperm and Xsamescalar terminate in polynomial time.

We design adversaries By, Ba, B3, B4 such that for all extractors Xsameperm, Xsamescalar, Xsamemsm
we have that

AQV A4 (V) < AVETSE™ (0) + AdVEPSES (X) + AdVEMTS™ () + AdvE I (A) + %TH!

10

We proceed via a series of games Game;, Gamey, Games, Gamey such that

Adwhuﬁ.m T (0) + AVGREL ()
AR (3) < Ady Same::;':;.m F AT ()
AVEREE (3) < AVEMSTST () + AdVERS (V)
AVTRE () < AdVETE(N) + AT (V)
AdvRe, () <

which combined give us our final result.

Gamey — Game; : Let Gameg be the initial knowledge-soundness game. Then Game; is identical
except in the following case. If A outputs a verifying proof then define B; be the adversary that
returns ((A4, M, a), Tsameperm) and Xsameperm its corresponding extractor. Return 0 if Xsameperm fails.
If Game returns 1 but Game; returns 0 then this means that Tsameperm verifies and Xsameperm fails,
and hence that By succeeds.

Game; — Games : Define Gamey to be identical to Game; except in the following case. If A out-
puts a verifying proof then define By be the adversary that returns ((cmq,cm), Tsamescalar) and
XNsamescalar its corresponding extractor. Return 0 if Xgymescalar fails. such that Xgmescalar fails then
Gamey returns 0. This is in addition to returning 0 if Xsameperm fails. If Game; returns 1 but Games
returns 0 then this means that msamescalar verifies and Xgamescalar fails ,and hence that By succeeds.

Games — Gameg : Define Gameg to be identical to Gamey except in the following case. If A outputs
a verifying proof then define B3 to be the adversary that returns ((B,cmy 2, cmy2, V, W), Tsamemsm)
for

B=A+cmpi+cempy, V=(T||0]HI0), W=(U]|0] 0] H)

and Xsamemsm its corresponding extractor. Return 0 if Xsamemsm fails. This is in addition to return-
ing 0 if Xsameperm fails or if Xgamescalar fails. If Games returns 1 but Games returns 0 then this means
that Tsamemsm verifies and Xssmemsm fails, and hence that Bs succeeds.

Games — Gamey : Define Gamey to be identical to Games except in the following case. If Xsameperm
and Xgamescalar Output (o(),r4,7a) and (k,rp,ry) and if Xsamemsm outputs @ such that

@ # (o(a) || ra |l rr |l rv)

then return 0.
We define the adversary By against the (¢+mnyp+3)-dlog assumption that takes as input (£+np+3)
random group elements g’ and aims to output two vectors x and y such that

xxg =yxg A x#y

First By splits (g || h || Gr || Gu || H) < g’ and runs Aoncrs = (g || h || Gr || Gu || H). When
A returns a verifying proof

(<R7 Sv T,U, M); (A7 cmr, CMy, Msameperm; Msamescalar 7"'samemsm)) <« A(CI’S)

11

then By runs Xsameperm and Xgamescalar to obtain (o (), 74, 7ar), (k, 77, 707) and Xsamemsm to obtain x
such that

A+rrGr+1yGy =x x g =0(a) x g+ra x h+rrGr +ryGy
See that if Gameg returns 1 then these extractors will succeed. Then By returns (x, (o(a) || ra || rr || Tv)).

If Gamey returns 0 then this output is a valid g-dlog solution.

Gamey — negl(A) : If Gamey returns 1 then we have that Xghusre outputs (o(),rar, k) such that
M = o(a) x g + ryrh and there exists r4 with

A+rrGr +roGu = (o(a) [ra |l rr |l rv) x (gl k]l Gr || Gu)
kR +rrH = (o(a) |[7a || rr [ro) x (T || O[] H || 0)
kS +ruH = (o(a) [rallrr |l rv) x (U [0 0] H)

Thus

kR +rrH =o(a) x T +rpH
kS +ryH =o0(a) xU +rgH

and
axkR=0(a)xT A axkS=o0c(a)xU

Where a is selected after (R, S,T,U, M) are determined, and ¢ > 1, this happens with maximum
probability g /|F|. O

12

Proveshufrie (Crsshufiie; (R, S, T, U,M); (o(),k,rar))
Step 1:

(ga h’7 GT? GUa H) <~ parse(crsshuffle)

a = (ai,...,ay) < Hash(R,S, T, U, M)

Step 2:

TA ﬁ [Frei—2

Ty < (ra | (0,0))

A—o(a)xg+7ryxh

Tsameperm <— Provesameperm ((g, h, H); (A, M, a); (o(),7'y,70m))

Step 3:

rr,TU i F

R—ax R

S—ax§8

cmy «— GroupCommit((Gr, H); kR; rr)

cmy «— GroupCommit((Gy, H); kS; ry)

T'samescalar < Provesamescalar((GTa Gu, H)7 (R7 S,cmr, CmU); (k7 T, 7”U))

Step 4:

A — A+ cmpy +cmy g

G — (gl hpny—2 Il G || Gv)

T —(T|[0] H[0)

U'—@Ullo]|o] H)

x — (o(a) |[rallrr || rv)

Tsamemsm <— ProvVesamemsm (G; (A/acmT,Qach,%TlvU,); T)

return (A7 cmr,cmy, R, S, Tlsameperm > Tsamescalar Wsamemsm)

Figure 2.2: The Curdleproofs proving algorithm to demonstrate that T, U = o(kR),o(kS) for some field
element k and permutation o committed in M.

13

Verifyshufie (CrSshuffle, ; Pshuffle; Tshuffle)

Step 1:

(g,h,Gr, Gy, H) < parse(crsshufe)

(Ra S7 Tv Ua M) - parse(¢shuffle)

(A, cmr, cmyr, R, S, T'sameperm; Tsamescalar 71'samemsm) <« pa rse('/Tshufer)

a = (ay,...,ay) < Hash(R,S, T, U, M)

Step 2:
CheCkl <~ VerifYSameperm((ga h’a H)a (A> M)a 7"-Sameperm)

Step 3:

R—axR

S—ax§8

checky «— Verify g mescalar ((G1, Gu, H); (R, S, cmp,cmy); Tsamescalar)

Step 4:

A — A+ cmr1 +Cmy1

G < (g || hpny—21 Il Gr || Gu)

T (T |0 1] 0)

U —(U/o]|o] H)

checks « Verifygmemsm (G5 (A',cmr o, cmy o, TV, U’); Tsamemsm)

return 1 if (checky, checkg, checks) = (1,1,1)
else return 0

Figure 2.3: The Curdleproofs verification algorithm to check that T, U = o(kR), o (kS) for some unknown
field element k and unknown permutation ¢ committed in M.

14

Chapter 3

SameScalar Argument

In this chapter we discuss a zero knowledge argument for the relation

Rsamescalar =

{(R,S,cmT,ch); (k?,T‘U,’I”T)

cmy = GroupCommit((Gr, H); kR; r7)
cmy = GroupCommit((Gy, H); kS; rv)

It demonstrates that given public input (R, S,cmy,cmy) there exists k such that cmp is a commit-
ment to T = kR and cmy is a commitment to kS.

The same scalar argument does not depend on any subroutines. This chapter consists of a single
section discussing the argument. We first describe the full zero-knowledge SameScalar construction.
We then prove its security in Theorems 3.0.1 and 3.0.2.

3.0.1 Full Zero-Knowledge Construction

A formal description of SameScalar argument is provided in Figure 3.1. The protocol is a simple
sigma-protocol and makes use of the additive homomorphism of the commitment scheme.

In order to convince the verifier the prover chooses a random statement that satisfies the same-
scalar relation. In other words it chooses a random scalar r; and computes two group elements
A =riR and B = 1S with the same scalar. The prover then outputs the commitments: (1) cm4
a commitment to A under randomness r4; and (2) cmp a commitment to B under randomness r 3.
These commitments are hashed, together with the instance, to get a challenge «.

The commitment scheme is homomorphic and thus cm 4 + acmy is a commitment to A + oT
where T is the contents of cmp. Similarly cmp + acmy is a commitment to B + aU where U is
the contents of cmy. If T'= kR, U = kS, A = rpR, and B = rS then we have that A + oT and
B + aU have the same scalar (namely 7, + ak). This is negligibly unlikely to occur if either T
and U or A and B do not have the same scalar because « is chosen randomly. Thus the prover
returns z; = rp + ak together with the commitment randomness zp = rp+ar4 and zy = rp +arp.
The verifier checks that (1) cm4 + acmy is a commitment to zx R under randomness zr; and (2)
cmp + acmy is a commitment to z;S under randomness zy .

3.0.2 Security

Theorem 3.0.1 (SameScalar argument is zero-knowledge). SameScalar argument in Figure 3.1 is
zero-knowledge in the random oracle model.

15

Provesamescalar (Crssamescalaﬁ (R7 S,cmr, CmU); (ka rr, TU))
Step 1:

(Gr,Gu, H) < parse(crs)

TATB, Tk & F

cmy <« GroupCommit((Gr, H); ripR; 74)

cmp «— GroupCommit((Gy, H); mS; rB)

a «— Hash(R, S,cmp, cmy,cmy, cmp)

Step 2:

zE <— T + ak
Zr <— 1A+ ary
2y < rp + ary

return (cm4,cmp, 2k, 27, 2U)

Verif}’samescalar(Crssamescalar; Psamescalar; 7Tsamescalar)
Step 1:

(GT7 GU7 H) <~ parse(crssamescalar)

(R7 S,cmr, CmU) <~ parse(¢samesca|ar)

(CmA, cmp, 2k, 2T, ZU) A parse(ﬂ'samescalar)

a «— Hash(R, S,cmp,cmy, cmy, cmp)

Step 2:
check cm 4 + acmp = GroupCommit((Gp, H); zkR; 27)
check cmp + acmy = GroupCommit((Gy, H); 2z1S; zu)

return 1 if both checks pass, else return 0

Figure 3.1: Proving and verifying algorithms to demonstrate that cmp and cmy open to some T and U such
that T = kR amd U = kS for the same scalar k.

16

Proof. We design a simulator Simulate that takes as input an instance
(R, S,cmp,cmp)

and outputs a proof Tsymescalar that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
queried by the adversary.

The simulator chooses zy, zr, zi7, & S They set

cmy = cmp — aGroupCommit((Gr, H); zixR; zr)
cmp = cmy — aGroupCommit((Gy, H); z1S; zv)

They program the random oracle to return a on input (R,S,cmp,cmy,cmy,cmp) and return
(CmA7 cmp, 2k, 2T, ZU)'

First observe that cm 4, cmp are randomised and thus with overwhelming probability the oracle
will not have already been programmed at this point. Second we see that if the commitments cmp
and cmy are in Rgymescalar then there exists k, rp, vy such that

cmp = GroupCommit((Grp, H); kR; rr)
cmy = GroupCommit((Gy, H); kS; mv)

Thus for 7, = (1, — azi) , ra = (rr — azr) and 7 = (ry — azy) we have that

cmy = GroupCommit((Gr, H); r.R; r4)
cmp = GroupCommit((Gy, H); 1,55 rB)

Where 77, r4, rp are randomised by 2y, z7, 2y respectively we see that these outputs are indistin-
guishable from the honest provers output.

The remaining outputs 2y, z7, zy are the unique openings of cm 4 + acmp and cmp + acmy and
thus the only values that satisfy the verifiers equations for both prover and verifier. This is because
our commitment scheme is perfectly binding. Thus the prover and simulator values are sampled
from the same distribution. O

Theorem 3.0.2 (SameScalar argument is knowledge-sound). The same scalar argument described
in Figure 3.1 is statistically knowledge-sound in the random oracle model.

Proof. We design an extractor Xsameperm such that: if there exists an adversary A that convinces
the verifier with non-negligible probability then with overwhelming probability Xsameperm returns
field elements k, rp,ry such that

((R7 S,cmr, CmU); (k7 rT, TU)) € Rsamescalar-

The extractor Xsameperm Works as follows

1. Generate crs = (G, Gy, H) and set trans = 0. While trans = 0 run trans < Game'$"™(

Game's™(crs) defined in Section 7.0.2. Parse

crs) for

(a,), ((R, S,emp,cmy); (ema,cmp)), (2k, 27, 20), (21, 2, 217)) = trans

17

2. Compute

e = (2 — 2) /(@ — o)
rr = (21 = 27)/(a = &)
ru = (2v — 217)/ (e = &)

and return (rg, 7, ry7).

We must show that whenever A convinces the verifier then Xgameperm succeeds.
First see that Xsameperm terminates in polynomial time with overwhelming probability. Let 7
be the run time of A, € be the probability that A outputs a valid response and ¢y be the total

number of hash queries that A can make. Assuming SﬁTﬁI < € then the game Gameerk(par) runs in

time at most ST% -In(8/€) and is successful with probability at least €/8. Thus the expected run
time of Xsamemsm 1S less than 7¢g - In(8/€), which is polynomial time assuming that 7, € and ¢y are
polynomial in the security parameter.

Second see that where both proofs verify we have that

cmy + acmp = GroupCommit((Gr, H); ziR; zr)
cmy + o’emp = GroupCommit((Gr, H); z,R; 27)

and hence
(a — o'Yemp = GroupCommit((Gr, H); (zx — 2)R; 2r — 27)

Multiplying both sides by (o — a/)~! yields

2r — 2
/

/
Zk — 2

P
o — o —

cmp = GroupCommit ((GT,H);) = GroupCommit((Gr, H); rpR; rr)

Similarly see that where both proofs verify we have that

cmp + acmy = GroupCommit((Gy, H); zxS; zv)
cmp + o’ecmy = GroupCommit((Gy, H); 2,S; z17)

and hence
(a — a')emy = GroupCommit((Gy, H); (21 — 21,)S; 2u — 217)

Multiplying both sides by (o — a/)~! yields

! S
cmy = GroupCommit <(GU,H); “k ZkS; U ZU) = GroupCommit((Gr, H); riS; rv)

a—ao a—ao

Thus (rg, 77, ry) is a valid witness. O

18

Chapter 4

SameMultiscalar Argument

In this chapter we discuss a zero knowledge argument for the relation

(A,ZT,ZU,T,U); | A=xxG
Rsamemsm = Zr=xxT
ZU =xxU

SameMultiScalar argument does not depend on any subroutines. This chapter consists of a single
section discussing the argument. We first provide an informal overview and then describe the full
zero-knowledge SameMultiScalar construction. We finish by proving its security in Theorems 4.0.1
and 4.0.3.

4.0.1 Informal Overview

Our SameMultiScalar relation can be seen as a form of inner product relation where one is interested
in verifying whether A = x x G, Zr = « x T and Zy = x x U for some «. Inner product relations
have proven popular in recent years and have been the focus both of a long line of both academic
work [BCC*16, BBB*18, WTS*18, LMR19, HKR19, JT20, BMM*21, ACF21, GT21, BCS21,
RMM21] and implementation work. By expressing our multiscalar relation as an inner product we
can thus capitalise on this preexisting work.

In our case we consider that A is a commitment to @ and T is the identity commitment to
T. We then wish to show that Zp = @ x T. Here x is private while T is known to the verifier.
For simplicity we ignore the proof that Z;; = & x U because this behaves identically. The inner
product argument is recursive. At each stage of the recursion, the aim is to find new commitments
A", T’ to values &', T" of half the length. Further we need a new Z/. such that Z7, = ' x T" if and
only if Zp = & x T. After sufficient rounds of recursion we have that ' is a vector of length 1, and
thus can be sent in the clear. The verifier checks that the inner product relation holds for the final
revealed openings, and this suffices to show that the relation holds for the original longer openings.

Each round of the recursion proceeds as follows. The prover first computes auxiliary cross
product commitments (that will later be used to define A" and T”) as

La =@ X Gl Ba = @) X Gpenys L = @pin) X Ty Br = g X T

Here n is a power of two. These are then hashed to find a random challenge v .

19

The verifier updates the claimed inner product result to Z,. = yLy + Zp + v~ 'Ry and the
prover updates the commitment contents to

/ 1

T = Tn] +v Cln:]» T = T[n] + PYT[n]

such that Z), = &’ x T'. See that «’ and T” are half the length of and T". We then update the
commitment A to and the commitment key G as

Al = /VLA + A+ PY—IRA7 G = G[n] + V_IG[n:]

such that A’ = &’ x G’ is a commitment to x’.

Putting this together means we have (A", T") = (' x G',x’ x T") for some &’ that is half the
length of . Due to the randomised nature of + this statement is true if and only if the original
(A, Zr) = (& x G,z x T) for some x. The protocol then recurses until the final round, where x
and T have length 1. Then the prover sends & = x; in the clear and verifier accepts if and only if
Z7p = x1T1. Note that the full protocol has some additional masking values that are included to
ensure zero-knowledge. For simplicity we have ignored these terms in this overview.

4.0.2 Full Zero Knowledge Construction

A formal description of SameMultiScalar construction is provided in Figures 4.1 and 4.2. Inner
product arguments are not, by default, zero-knowledge. In order to get a zero-knowledge argument
we introduce a step at the beginning to randomise the provers witness. In particular the prover first
blinds the argument by sampling r randomly. They compute B4, By, By = (r x G,r x T,r x U)
to blind the witness relating to A, Zr and Zy respectively. They hash to obtain the field element
«. The prover resets the private inputs to equal r + cx and the verifier resets the public inputs to
equal
A=By+aAand Zr = Br + aZr and Zy = By + aZy

At this point the provers private input @ is fully randomised and the prover could, theoretically,
reveal it in the clear. Doing so however would increase the proof size significantly. Instead we run
the inner product argument as specified in Section 4.0.1.

4.0.3 Security

Theorem 4.0.1 (SameMultiScalar argument is zero-knowledge). SameMultiScalar argument in Fig-
ures 4.1 and 4.2 is zero-knowledge in the random oracle model.

Proof. We design a simulator Simulate that takes as input an instance
(A7 ZT7 ZU7 T7 U)

and outputs a proof Tsamemsm that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
determined by the adversary.

The simulator Simulate samples x/, « S Fand computes

A =2 xG
Zh =2’ xT
Z =x' xU

20

They set
Bys=A"—aA
BT = Z:/Z'v - OéZT
BU = Z{] — aZU

program Hash(A, Zr, Zy,T,U, Ba, Br, By) to equal a. In the remaining steps they behave exactly
as the honest prover with respect to the inputs x’.

Now we must argue that the simulated proof is indistinguishable from the real proof and that
the simulator doesn’t abort. First observe that B4, Br and By are randomly sampled so the
probability that the adversary has already queried these points (causing the simulator to fail)
is negligible. Second observe that the provers commitment openings x + ar and the simulaters
commitment openings x’ are distributed uniformly at random. These random values completely
determine the form of the honest provers output and the simulators output.

Indeed, for convenience denote the provers xp = r + ax Then the provers elements

{Ba,Br,By} ={xp x G—aA,xp xT —aZp,xp x U — aZy}

are distributed identically to the simulated elements. Likewise 7, x are determined according to
the same recursive argument.]

Lemma 4.0.2. The algorithm in Steps 2 and 3 of the prover and verifier in Figures 4.1 and 4.2 is
a knowledge sound argument for the relation Rsamemsm assuming the q-dlog problem holds.

Proof. The algorithms implement a generalised inner product argument with respect to the com-
mitment scheme

(G, k, k) < Setup(G)

xx G G x
(koT,koU) |« Commit| k| (T,U)
(kZp,kZy) k| (Zr, Zy)

and the inner product

:FxG?— G? z-(T,U) = (2T, 2U)

Note that Figures 4.1 and 4.2 have been optimised such that the commitments (koT', koU, kZr, kZy)
are neither computed nor sent. This is because the verifier can compute the openings of these com-
mitments in the final round of recursion for itself.

By Theorem 7.0.5 it suffices to show that (Setup, Commit,-) is an inner product commitment.
We first show that (Setup, Commit) is binding. We second show that (Setup, Commit) is doubly ho-
momorphic. We third show the existence of a correct Collapse function (Definition 7.0.8). Together
these suffice to prove the lemma.

Binding commitment: Let A be an adversary that breaks binding. We describe an adversary B
against g-dlog. The adversary B takes as input G and sets a, k, k to have random entries in F*.
Then B runs

A T x’
(V,w) |, (T,u) |, | (TU) | « AG,k,k)
(Zv, Zw) (Zr, Zy) (Z7, Zy)

21

and then B returns (x,z’).
If A wins then A =x x G =’ x G for # x’ Thus B returns a correct q-dlog response and

AdvP" M8 ()) < Adv B (N)

Doubly homomorphic commitment: First see that the key space is homomorphic
G+G x xx (G+ G
Commit k+ K (T,U) =| (k+K)oT,(k+k)oU)
k+ Kk (ZT, ZU) ((k + k‘/)ZT, (k + k/)ZU)
Tz xG zx G
= (koT,koU) |+ | (KoT,KoU)
(kZp,kZy) (K'Zp, k' Zy)

G x G’ x
= Commit | k| (T,U) + Commit | k' | (T,U)
k | (Zr, Zy) K | (Zr, Zv)

Second see that the message space is homomorphic

G x+ (x+2')x G
Commit(k| (T,U)+ (T, U) ((ko (T +T'),ko(U+U")))

k (ZT7ZU> +(Z%7ZI/J) k(ZT_’_Z’%aZU"i'Z{])

x x G ' xG
=| (koT,koU) |+ | (koT',koU’)

(kZT7 kZU) k(Zé“v Z/U)
G x G x’
=Commit | k| (T,U) |+ Commit| k| (T',U’)
k| (Zr, Zy) k| (Z7, 2y)

Collapsible commitment: Let Collapse be the function

A A
Collapse ((Vi [| Va), (W || Wa)))H ((Vi + Vo, W1 + W))
(Zv, Zw) (Zv, Zw)

Then

((G| G x|z))
Collapse [Commit [k|| k' | (T || T),(U || U))
k (Zr, Zy)

rxG+xxG
Collapse | ((koT || k' oT),(koU || k' oU))
(kZr,kZy)

zx (G+G)
(koT +K oT),(kolU+ Kk oU))
((kZ7,kZy))
zx (G+G)
(((k+k’)oT,(k+k:’)oU))
(kZr,kZy)
G+G x
= Commit(kE+K | (T,U))

k (Zr, Zv)

22

as required.
O

Theorem 4.0.3 (SameMultiScalar argument is knowledge-sound). SameMultiScalar argument de-
scribed in Figures 4.1 and 4.2 is knowledge-sound in the random oracle model assuming the q-dlog
s hard.

Proof. We design an extractor Xsamemsm such that: if there exists an adversary A that convinces
the verifier with non-negligible probability then with overwhelming probability Xsamescalar returns
field elements x such that

((A7 Zr, Zy, T, U), m) € Rsamemsm-

By Lemma 4.0.2, whenever an adversary B outputs a valid proof, there exists an extractor Xg
that takes as input B’s transcript and outputs x such that

(Ba,Br,By) + a(A, Zr, Zy) = (& x G, x x T, x x U)

such that Adv%af}};msmz()\) is negligible assuming the dlog problem is hard. Here samemsm2 refers
to the knowledge-soundness game for the (non-zk) protocol in steps 2 and 3 of Figures 4.1 and 4.2.
The extractor Xsamemsm Works as follows

1. Randomly sample coins w.

2. Define an adversary B; that behaves as follows:

o Generate crs = G and set trans = 0. While trans = 0 run trans <« Gamefﬁrk(

Game's™(crs) defined in Section 7.0.2. Parse

crs;w) for

(o, o), ((A, Z7, Zy, T,U); (Ba,Br,By), (m,z), (', 2")) = trans

o Return (B4 + @A, By + aZp, By + aZy), (7,)
3. Define an adversary Bs that behaves as follows:
e Compute
(a,), (A, Zr, Zy, T,U); (Ba, B, By), (mw,x), (n’,2')) = trans

the same as By

o Return (By + &’A,Br + &' Zp, By + &' Zy), (7', 2')

4. Let A, be B;’s samemsm2 extractor. Extract y such that B4 + A =y x G, Br + aZy =
yxT By+aZy=yxU.

5. Let X, be By’s samemsm?2 extractor. Extract y’ such that By + /A =y’ x G, Br+d'Zp =
y/XT, BU—|—O/ZU=y,>< U.

6. Compute = = (o — o')~!(y — y') and return =.

23

We must show that whenever A convinces the verifier then Xsamemsm succeeds.
First see that Xsamemsm terminates in polynomial time with overwhelming probability. Let 7 be
the run time of A, € be the probability that A outputs a valid response and gz be the total number

of hash queries that A can make. Assuming SﬁTIlf < € then the game Gamefﬁrk(par) runs in time at

most ST% -In(8/€) and is successful with probability at least €/8. The expected run time of Bj, B
is less than 7qg - In(8/€), which is polynomial time assuming that 7, € and gg are polynomial in
the security parameter. By Lemma 4.0.2 this means that the expected run times of A, and Xp,
are also polynomial.

We show that for all extractors X,, X5, we have that

AQV A e (A) < AdVETET2(V) + AdVETET"2 ()

We proceed via a series of games Game;, Games such that

AGVA Ko (V) < AQVETZT2(A) + AdVIERS ()

By A, Xsamemsm
Game samemsm?2 Gamesg
AdV-AaXsamemsm ()\) < AdVBQvXBQ ()\) + AdV-A7Xsamemsm ()\)
Gameo o
AdV-A:Xsamemsm ()\) =0

which combined give us our final result.

Gamey — Game; : Let Gameg be the initial knowledge-soundness game. Then Game; is identical
except in the following case. If A outputs a verifying proof then define B; be the adversary as in
Xsamemsm that returns (Ba + A, Br+aZr, By +aZy), (7, x) and Aj, its corresponding extractor.
Return 0 if A, fails. If Gamey returns 1 but Game; returns 0 then this means that (7, z) verifies
and A, fails, and hence that B; succeeds. By Lemma 4.0.2 the probability of this is negligible if
the g-dlog assumption holds.

Game; — Games : Define Gamesy to be identical to Game; except in the following case. If A out-
puts a verifying proof then define By be the adversary as in Xsamemsm that returns (B4 + o’ A, By +
o' Zp,By + o' Zy), (7', 2') and A, its corresponding extractor. Return 0 if X, fails. If Game;
returns 1 but Gamey returns 0 then this means that (7', 2’) verifies and X, fails, and hence that
By succeeds. By Lemma 4.0.2 the probability of this is negligible if the g-dlog assumption holds.

Gameg — negl(A) : See that

By +aA yxG By +d' A Yy x G
Br+aZr |=| yxT | and Br+dZr |=| y xT
By + aZy yxU By +d' Zy y xU
(a—a)A (y—y)xG

= | (a=a)2r |=| (y—y)xT

(a—a)Zy (y—y)xU

Thus the value * = (o — /)" (y — y') output by Xsamemsm in Games is a correct witness for
(AaZT>ZU1T7 U) O

24

Provesamemsm (Crssamemsm§ <A7 Zr, Zy, T, U); "B)
Step 1:

G «— parse(Crssamemsm)

T & Fm

By<—rxG

BT —rxT

BU —rxU

(67 ot Hash(A, ZT, ZU, T, U, BA, BT, BU)

T <—7T+ar

Step 2:

m <—n

while 1 <3< m:
ne g

Lag = @pn) < G

LT,j < L) X T[n]

LU,j — Ip] X U[n]

Raj < @) % Gl

Brj < 2y X I

Ruj < @[X Ul

mj < (Lag, L1y, Lus, Raj, Rrj, Ru,;)

7; < Hash(;)

T) T)

T T[:n + ’YjT[n:]

U < Upn) +7Uny

G — Gy + 7 Gy

Step 3:
Tr < I

return (By, Br, By, ™, x)

Figure 4.1: Proving algorithm to demonstrate that (A, Zp, Zy) = (£ x G, € x T, x U) for some vector of
field elements x.

25

Verif}’samemsm (Crssamemsm§ Qbsamemsm; 7Tsamemsm)
Step 1:

G parse(crssamemsm)

(A7 Zr, Zy, T, U) N parse(d’samemsm)

(BA7 Br, By, , ZL‘) A parse(ﬂ'samemsm)

Q< Hash(A, ZT, ZU, T, U, BA, BT, BU)

A<— By+aA

Zr «— Br+aZr

Zy «— By + aZy

Step 2:

m<—n

while 1 <j<m:
ne gy
(Lajs Lrj, Lo, Rajy Rrj, Ru ;) — parse(;)
vj < Hash(m;)
A<—vjLaj;+A+ ’yj_lRAJ'
Zp —~jLrj+ Zr +7; 'Ry
Zy < iLu; + Zu +; 'Ru,
G« G + 175Gy
T — Tjny + 7T
U < Upn) + 75Uy

Step 3:
check; « A £ 2G4
checky «— Zp L T

?

checks «— Zy = zUy

return (checky, checks, checks) = (1,1,1)
else return 0.

Figure 4.2: Verify algorithm to check that that (A, Z7, Zy) = (& x G, * x T, x U) for some vector of
field elements .

26

Chapter 5

Same Permutation Argument

In this chapter we discuss a zero knowledge argument for the relation

(A, M,a); (o(),ra,mm) | A=0c(a)xg+raxh
Rsameperm: M:U(l,...,e)xg—i—’erh
o() € permutations over [1,...,/]

This chapter consists of three sections each discussing a unique argument: (1) SamePerm argument;
(2) GrandProd argument; and (3) an inner product for pedersen commitments. SamePerm uses
GrandProd as a subroutine. The grand-product then uses the inner-product as a subroutine.

5.1 Same Permutation Argument

We begin by giving a full overview of the same-permutation construction. For an informal overview
see Section 5.1.2 and for the formal construction see Figure 5.1. The security arguments are given
in Theorems 5.1.1 and 5.1.2. The construction makes use of GrandProd argument as a subprotocol.
We specify GrandProd relations below and describe GrandProd construction in Section 5.2.

5.1.1 Nefl’s Trick

The argument takes advantage of an observation (first applied in the proof context by Neff [Nef01])
that two polynomials are equal if and only if their roots are the same up to permutation. In other
words

ocla)=c < (a1+Y)(a2+Y) - (a+Y)=(14+Y)(c2+Y) (et +Y)

as polynomials of Y. We can additionally bind a and ¢ to a specific permutation o() through
including an additional indeterminate X. Indeed whenever the polynomial equation

(a1 +X+Y)(a2+2X+Y) - (ap+lX+Y)=(c1+mX+Y)(ca+maX+Y) - (¢, +mX +Y)
holds we have that there exists o() such that
olar + X,a0+2X,...ap+0X) = (c1 + m1X,co + maX, ... cp+myX)

This implies that o() is a permutation, o(a) = ¢ and o(1,...,¢) = m.

27

Statement

Input ‘ A=o(a)xg M:a(1,2,...,€)ng
[[A (M][a))
y
g 4
(a1 +a+) (ag+ Lo+ B) a, B H Fiat-Shamir J
B=A+aM+fg=bxg
Grandproduct:
exists b s.t.
d=1"by-by---by
B=bxg

Figure 5.1: Overview of SamePerm argument. The protocol uses GrandProd argument as a subroutine.

5.1.2 Informal Overview
The prover will take as input the A, M, a and aims to prove knowledge of o() such that:

o A=o0(a)x g isacommitment to o(a)

o M =o0(1,2,...,¢) x g is a commitment to o()
The verifier wishes to check that A and M are commitments to ¢ and m respectively such that
(a1 +X+Y) (a2 +2X+Y) - (ap+lX+Y)=(cr+miX +Y)(ca+maX+Y) - (¢ +mX +Y)
Initially all the public inputs (A, M, a) are hashed to get challenges «, § and we must show that

(a1 + o+ B)(ag + 20+ B) -+ (ag + ba+ B) = (c1 + mia + B)(ca + maac+ B) - - - (¢ + myac + J3)

By the Schwartz-Zippel Lemma this implies that the polynomial expression holds except with
negligible probability.

Next the prover and verifier both compute values p = Hle(ai +ia+f)and B=A+aM+3xg
where 8 = (3, ,...,). By the homomorphic properties of the Pedersen commitment we see that
B is thus a commitment to

b=c+am+ 1l =(c; +ma+pB,co+moa+f,...,co +mya+f)
Here 1 = (1,...,1) is the length ¢ vector where every entry equals 1. Then the prover uses a
grand-product argument to describe knowledge of b such that B is a commitment to b and p is a
grandproduct of b. This implies that

(a; + i+ B) = | |(¢; + miae + B)

e
:e\

i=1

28

and hence that m = o(1,...,¥), ¢ = o(a) for some o().
Note that the full same-permutation protocol has some additional masking values that are
included to ensure zero-knowledge. For simplicity we have ignored these terms in this overview.

5.1.3 GrandProd Relation

GrandProd relation demonstrates that given public input (B, p) € G x F there exists b such that B
is a commitment to b and p is the grand-product of b. This commitment is blinded. In other words

(B,p); (b,rg) | B=bxg+rpxh }

Rgprod = { D= Hlf_l bz

Provesameperm (Crssameperm; (A, M» a); (U()a TA, T']V[))
Step 1:

(ga h, H) ~ parse<crssameperm)

(Oé, 5) A HaSh(A) M: (I)

Step 2:

b—o(a;)+o((1...0)a+p

D Hf:l bi

B—A+aM+B8xg

TR < TA+ ar)yy

Tgprod < Provegprod ((g, h,H); (va); (b7 TB))

return (B, Tgprod)

Verifysameperm (Crssameperm7 ; ¢sameperm§ Wsameperm)
Step 1:

(g,h,H) parse(crssameperm)

(A7 M, a‘) - parse((bsameperm)

(B, ngrod) <« parse(ﬂ'sameperm)

(cr, B) < Hash(A, M, a)

Step 2:

p—[Tisi (@i +ia+ B)

checki — BZA+aM +8xg

checky «— Verifygprod((g, h,H); (B,p); Tgprod)

return 1 if (checky, checks) = (1,1)
else return 0

Figure 5.2: Proving and verifying algorithms to demonstrate that A, M are commitments to o(a),o(1,...,¥)
for some permutation o. Here we denote 8 = (4,0,...,0)

29

5.1.4 Full Zero Knowledge Same-Permutation Construction

The full zero-knowledge construction for SamePerm argument is given in Figure 5.2. In the first
step the prover and verifier both hash the instance (A, M, a) to get a challenge «, f3.

In the second step the prover and verifer both compute the grandproduct p < Hle(ai +ia+)
and a value B which is a commitment to b = ¢ + am + 3 where

A=cxg+raxh n M=mxg+ry xh

and where B is a vector of length ¢ in which every entry is 8. For later optimisations to the
verifier, the verifier checks that B is correct rather than computing the value for itself. The prover
additionally computes the randomness rp of the commitment B such that

B=bxg+rpxh

Finally the prover runs a grandproduct argument to demonstrate that the prover knows (b, rpg)
such that B is as above and p = Hle b;.

The final proof is simply the grand-product proof mgproq and thus msameperm is zero-knowledge
provided that mgproqd is zero-knowledge.

5.1.5 Security

Theorem 5.1.1 (Same-permutation argument is zero-knowledge). If the grandproduct argument
is zero-knowledge, then the same-permutation argument described in Figures 5.2 and 5.2 is zero-
knowledge.

Proof. We design a simulator Simulate that takes as input an instance
(A, M, a)

and outputs a proof Tsameperm that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
determined by the adversary.

During the setup the simulator chooses the crsgproq = (g, h, H) uniformly at random. During
proving the simulator Simulate proceeds as follows

1. They compute p, B identically to the honest prover.

2. They run
Trgprod = SimU|atedI—inner((g) h, H)> (B,p))

and return mgprod-

Now we must argue that the simulated proof is indistinguishable from the real proof.
We design an adversary B such that

Adv 4 () < 2AdvEP©Y())

Gamey — Game; : Let Gameg be the initial zero-knowledge game. Define Game; to run identicallly
to Gameg except that, the crs and the mgp0q4 proof are generated by the gprod simulator for both
b=0and b=1.

30

Let B be an adversary against the gprod zero-knowledge game. Then B simulates the zero-
knowledge game for A. It takes as input crs and runs A(crs) on the same input. It flips a coin to
get b e {0,1}. When A makes a prover query, if b = 0 then B generates (B, p) honestly and queries
its oracle on input (B, p) and (b,rg) for b = o(a) + ac([1,¢]) + B8 and rp = r4 + arys. It receives
back a proof mgproq. Then B returns mgproq. If b = 1 then B runs the simulator to compute the
response. When A returns b’ then if b = o’ then B returns 0, else B returns 1.

Then

Pr[B(crs) =0 | b= 0] = = (Pr[A(crs) = 0 | Gameg, b = 0] + Pr[A(crs) = 1 | Gameg, b = 1])

N =N =

Pr[B(crs) =1 | b=1] = = (2 — Pr[A(crs) = 0 | Gamey,b = 0] — Pr[A(crs) = 1 | Gamey, b = 1])

and
AdvEE(X) = [1 — 2 Pr[GameZ™¢ (V)]
= |1 —Pr[B(crs) =0 | b=0] — Pr[B(crs) =1 | b = 1]|
= ‘1 - % (Pr[A(crs) = 0 | Gameg,b = 0] + Pr[A(crs) = 1 | Gameg, b = 1])
~ (1= Pr[B(ers) =0 | b= 1]) |
= %‘1 — Pr[A(crs) = 0 | Gameg,b = 0] — Pr[A(crs) = 1 | Gameg, b = 1]
— 1+ Pr[A(crs) = 0 | Gamey, b = 0] + Pr[A(crs) = 1 | Gameg, b = 1]
1 ame ame
= 5|Ao|v§l O(A) — AdvE™e ()]
This means that

AdvE™E (\) < 2AdVEPY(N) + AdvE™! ()

Game; — 0 : In Game; the simulated proofs are generated identically and are thus indistinguishable.
O

Theorem 5.1.2 (SamePerm argument is knowledge-sound). If GrandProd argument is knowledge-
sound, and the q-dlog assumption holds, then the SamePerm argument described in Figure 5.2 is
knowledge-sound.

Proof. We design an extractor Xsameperm such that for any adversary A that convinces the veri-
fier, with overwhelming probability returns either a discrete logarithm relation between g, h or a
permutation o() and randomness r 4,) such that

((A7 M, a); (U(),TA,T‘M)) € Rsameperm‘

By the knowledge-soundness of the grand-product argument there exists an extractor &Xgproq such
that if A returns verifying (B,p, Tgprod) then they return valid witnesses for their respective lan-
guages with overwhelming probability.

The extractor Xsameperm Works as follows

31

1. Randomly sample coins w.

2. Define an adversary B; that behaves as follows:

« Generate crs = (g, h, H) and set trans = 0. While trans = 0 run trans < Game's™(crs; w)
for Game/$™(crs) defined in Section 7.0.2. Parse
((a) 6)7 (O/’ 5,))7 (A7 M, a');) (ngroda 7Téprod) = trans
o Return (A + oM + B X g, Tgprod)
3. Define an adversary Bs that behaves as follows:
« Generate crs = (g, h, H) and set trans = 0. While trans = 0 run trans < Games™ (crs; w)

for Game/§™(crs) defined in Section 7.0.2. Parse

((a7 ﬁ)’ (a/wB/))? (A7 M7 a); "y (ﬂ'gprod, Tréprod) = trans

e Return (A +o'M + 3 x gyﬂéprod)

4. Let X, be By’s gprod extractor. Extract b, rp such that B=bx g+ rp xhand p =[], b;.
5. Let X, be By’s gprod extractor. Extract b’, rl; such that B’ = b’ x g+ry x h and p' = [, b;.
6. Set m — (a —a')"L((b—B8) — (¥ — 8))

7. Set rpr — (a— o) H(rp — 1)

8. Set r4 «— rp — ary and return m, T4,).

We must show that whenever A convinces the verifier, then either Xsymeperm Succeeds or we can
extract a discrete logarithm relation between (g || k). First see that Xsameperm terminates in
polynomial time. Let 7 be the run time of A, € be the probability that A outputs a valid response

and qg be the total number of hash queries that A can make. Assuming 8|?T? < € then the game

Game'3™(par) runs in time at most -In(8/€) and is successful with probability at least ¢/8.
The expected run time of By, By is less than 7¢z - In(8/¢), which is polynomial time assuming that
7, € and gp are polynomial in the security parameter. By the knowledge soundness of the gprod
argument this means that the expected run times of X, and Xp, are also polynomial.

We design an B3, By such that for all extractors X, , X,, X, we have that

fork(31qm
€

rod rod rod dlo qH
AV A g (A) < AVEP'S (A) + AV (A) + AdVEPSE (M) + AdvE B () + H

We proceed via a series of games Game;, Gameo, Games such that

AV A Kamaper (V) < AR () + AdVETS ()

AdVGTE (V) < Adv %;;f‘;?B (V) +AdvER= (V)

A e () < A %‘;,iiéLSmHAdvq S ANERS L)
AQV R e (V) <

32

which combined give us our final result.

Gamey — Game; : Let Gameg be the initial knowledge-soundness game. Then Game; is identical
except in the following case. If A outputs a verifying proof then define 3; be the adversary as in
Xsameperm that returns (A + oM + B x g,ﬂgprod) and Xp, its corresponding extractor. Return 0
if A, fails. If Gameg returns 1 but Game; returns 0 then this means that mgp0q verifies and X,
fails, and hence that B; succeeds.

Game; — Games : Define Games to be identical to Game; except in the following case. If A outputs
a verifying proof then define By be the adversary as in Xsameperm that returns (A+aM+8'x g, wéprod)
and Aj, its corresponding extractor. Return 0 if Az, fails. If Game; returns 1 but Gamey returns

0 then this means that Wéprod verifies and X, fails, and hence that By succeeds.

Games — Gameg : Define Games to be identical to Games except in the following case. We define
an adversary Bs that behaves as follows:

o Generate crs = (g, h, H) and set trans = 0. Choose random coins w’ such that during the

Ga meiﬁ’{k(crs) the original f values are sampled identically but the f’ values are sampled differ-

ently. While trans = 0 run trans < GameS™(crs; w’) for GameS™(crs) defined in Section 7.0.2.
Parse

((Oé, /8)7 (allv /B//))7 (A7 M7 a’); B (ngrod7 Trgp"Od) = trans
o Return (A +aM + 3 x g, ngrod)

Let X, be Bs’s gprod extractor. Then Games runs Bs and then A, to extract b”, 7/ such that
B=0b"xg+7r} xhandp=1][b/ It computes x — b—am— 3. If

" rE) # (2 +a"m+8" || ra+d"ry)

then return 0.
Let By be the adversary that takes as input g, h, samples H randomly, and runs Bs(crs; w) and
X, on Bs’s transcript, and returns

(6" 1| 7). (@ +a"m+ 8" |lra+a"rar))

If Gameg returns 1 but Gameg returns 0 then this means that either (1) Wé’prod verifies and X, fails,

and hence that B3 succeeds; or (2) (b” || %) # (x + o"m + B" ||ra + a"ryr).
In the latter case we have that

A+amxg+ary xh+8=bxg+rpxh
implies that A = x x g + r4 x h. Thus

A+aM+Bxg=b"xg+r5xh
=(@+a"m+p")xg+(ra+a’ry) xh

and so B4 breaks the g-dlog assumption.

33

Games — negl(X) : If Gamey returns 1 then we have that Xsameperm outputs (m, 4, 7)) such that
for x defined in Games and for random «”, 3” we have that

(z; + "m; + B")

1~

(a; +ia" + ") =
i=1 i=1

1~

Where o, " is selected after (x,m,r4, 7)) are determined, this happens with maximum proba-
bility gz /|F| unless € = o(a) and m = o(1,...,4). O

34

5.2 Grand-Product Argument
In this section we discuss a zero knowledge argument for the relation

{ (B,p); (b,rg) | B=bxg+rpxh }
’
p:Hizlbi

For an informal overview see Section 5.2.1 and for the formal construction see Figures 5.4 and 5.5.
The security arguments are deferred to Theorems 5.2.1 and 5.2.3. The construction makes use
of a discrete-logarithm inner product argument as a subprotocol. We specify the inner-product
relations below and describe the inner-product construction in Section 5.3.

Rgprod =

5.2.1 Informal Overview

The prover will take as input the B, p and aims to prove knowledge of b such that:
e B =0>bxgisacommitment to b
o p= Hle b; is the grandproduct of b

On a high level we aim to express this relation as an inner product argument. Doing this consists
of the following steps:

1. We separate the grandproduct into multiple single product equations;
2. We compress all our equations into a polynomial;
3. We rearrange the polynomial into an inner product equation;

4. We compile the proving system by obtaining commitments to the inputs to the inner product
equation;

See Figure 5.3.

O-0-m o=(0-0-[) 0 M-)
‘lll:lED 6[(D-].x e_t‘ljﬂx-1]
E-0-m +(0-0-B)= o @e (Cexe-x)
E-O-1 +(H-0-E)w o W (1= xs-x2)

Compile

1

- AEEE
- EEEE

Figure 5.3: The grandproduct argument is compiled into an inner product argument.

35

Separate

The product p = Hle b; consists of £—1 multiplications. Initially we separate these multiplications
into ¢ + 1 separate multiplication checks

c1=1 A ciy1 =bic, i€ [1,0) A p=bycy

that iteratively define a vector ¢. The final check enforces that p = Hle b; is the grandproduct of
b.

Compress

To ensure that each of our multiplication checks hold we compress them into a single polynomial
equation

0=(1—c1)+ (bier — 2)X + (baco — e3) X% + ... + (bp—1co—1 — co) X1 + (beee — p) X°

or equivalently
-1

0=(1—c1)+ > (bici — cis1) X" + (beey — p) X
=1

in the indeterminate X where each coefficient is checking a single constraint.

Rearrange

Our eventual goal is to express (5.1) as an inner product equation such that we can run an inner
product argument. We thus rearrange the c terms and see that

pX =1 =c1(Xby —1) + (X% — X) + ...+ co1 (X b1 — X72) + (X by — X1
or equivalently
pX'—1=> a(X'b— X"
i=1
Compile

By the Schwartz-Zippel Lemma our inner product equation holds with overwhelming probability if
at a random point 8

pBf—1="> ci(Bb — 1) (5.1)
i=1
Equivalently
z=cxd

where ' '
z=pB'—1 A di = (B0 — BV, ie[1,4]

We thus require a commitment to ¢ and d.
Initially the prover provides a commitment C' = ¢ x g to

C = (1, bl, ble, blbgbg, oy b1 e bg,l)

36

The commitment C'is hashed to get 5. We now require a commitment D to the vector d. We have
a commitment B = b x g to b. Recall that

v xw = (av1,. .., amvp) X (al_lwh“"af_lwg)

for all invertible @a. Thus we can view B as being a commitment to a rescaled vector b’ under an
appropriately rescaled commitment key g’

W = (5'..... ')
"= (87g1,...,8 gy

Now
d=b —(1,8,....6h

Hence the prover and verifier compute
K .
D=B-) 8"y
i=1

such that D = d x g’ is a commitment to d under g’.
To finish, the prover provides a discrete log inner product argument, the relation for which is
formally defined below, attesting to the existence of ¢ and d such that

C=cxg, D=dxg, pff—-1=cxd

By design there exists a non-trivial relation between g and g’. The full construction has some
additional masking values that are included to ensure zero-knowledge. For simplicity we have
ignored these terms in this overview.

5.2.2 Discrete Logarithm Inner Product Relation

The discrete logarithm inner product relation demonstrates that given public input C, D € G, v €
F", 2 € F there exists ¢ and d such that C = ¢ x G, D =d x G’ and z = ¢ x d. In other words

(C,D,z2); (e¢,d)|C=¢cxG
Rdl—inner = D =d x G/
z=cxd

When we use this relation we will have that the adversary knows a non-trivial relation between
G and G’ but it will not know: (1) any non-trivial relations between the elements in G; (1) any
non-trivial relations between the elements in G’.

5.2.3 Full Zero Knowledge Grand Product Construction

A formal description of the grand-product argument is provided in Figures 5.4 and 5.5. Here we
describe the additional steps that we have added compared to the informal overview in Section 5.2.1

37

to achieve zero-knowledge. We defer the security proofs of zero-knowledge, and soundness to Sec-
tion 5.2.4, Theorems 5.2.3 and 5.2.1.

Step 1: In the first step the prover and verifier both hash the instance to get a random value a.
This allows the prover to mask rp in the next step even when rg = 0. There are no secrets in this
step. The verifier parses all inputs to check that they are group or field elements.

Step 2: In the second step the prover computes a commitment C' to e¢. The vector ¢ depends on b
and thus must be kept private. Thus the prover chooses a random blinding vector r¢ € F"!. This
vector r¢ is included in the inner product argument in the final step, and thus the prover provides
a field element r, = (rp+al) x r¢ that cancels out the blinders contributions to the inner product.
See here that the a(1 x r¢) component ensures that , is satistically blinded provided that |r¢| = 2.

Step 3: In the third step the prover and verifier compute b’ = 8-+ h as the rescaled part of
the commitment key that is used for blinding commitments. The prover additionally computes
randomness rp = 1 (rg + al) such that D = d x g’ +rp x h' is a commitment to d. Here 3*!
does not overlap with the (3, 32, ...,) values that are used to rescale b'.

Step 4: In the fourth and final step the prover and verifier compute the commitment key G =
(g || h) so that they can view C as a commitment to the extended vector (¢ || 7). They do
the same for G’ such that D is a commitment to the extended vector (d || rp). They compute
z = pB* + 1Bt — 1 as the inner product of the extended vectors z = (c || 7¢) x (d || 7p). See
that rpﬂg*'l = ro X rp. There are no secrets involved in this step.

5.2.4 Grand-Product Security

Theorem 5.2.1 (Grand product argument is zero-knowledge). The grand-product argument de-
scribed in Figures 5.4 and 5.5 is zero-knowledge when |h| = 2 and the discrete logarithm inner
product argument is zero-knowledge.

Proof. We design a simulator Simulate that takes as input an instance (B, p) and outputs a proof
Tgprod that is indistinguishable from a proof generated by an honest prover that knows the witness.

During the setup the simulator chooses the crsgpoq = (g, b, H) uniformly at random. During
proving the simulator Simulate proceeds as follows

1. They sample C S G and Tp S
2. They compute G, G’, D, z identically to the honest prover.

3. They run
Ttdl-inner = SimU|ated|—inner(<Ga Gla H), (C, D, Z))

and return (C, Tp, 7"'dl—inner)'

Now we must argue that the simulated proof is indistinguishable from the real proof.
We design an adversary B such that

. 1
Adv4(X) < 2AdviTmmer()) + H

38

Provegprod(crsgprod; (va); (b>rB))
Step 1:

(9., H) « parse(crsgroa)

a — Hash(B, p)

Step 2:

C «— (1, bl, ble, blbgbg, ooy b1 s bgfl)
rC ﬁFnb'

C—cxg+rcxh

rp < (rp+al) x r¢

B < Hash(C,r})

Step 3:

g < (B7'91,8%g2,.... 67 q0)

h <_B—(f-i-l)h

b~ (blﬂa b2627 O] bfﬁg)
d—b—(1,8...,6

rp <« B (rp + al)
D<—B—(1,06,....8) x g + aB*11 x b/

Step 4:
G—(gllh)
G — (g || h)

e (_pﬁé + ,rpﬁf+1 -1
Tdl-inner <~ ProVedi-inner ((G, G/,H); (C,D,Z); ((C H TC)v (d H TD)))

return (C, 7p, Tdl-inner)

Figure 5.4: Proving algorithm to demonstrate that (B,p) is such that B = b x g + 7 x h such that
p= Hf=1 b;. Here 1 = (1,...,1) denotes the length ¢ vector with all entries equal to 1.

39

Veringprod(Crsgprod§ ngprod; ngrod)
Step 1:

(g, h, H) < parse(crsgprod)

(B,p) « parse(dgpod)

(Ca Tp, 7Td|—inner) <~ parse(ﬂ'gprod)

a — Hash(B,p)

Step 2:
B < Hash(C,rp)

Step 3:

g — (B9, %g2,.... 67)

h — B—(Z+1)1 < h

D<—B—(1,0,....8) x g + a1 x b

Step 4:
G —(gllh)
G' (g |l h)

check «— Verifyyi_inne: (G, G, H), (C, D, 2), Tdi-inner)

return 1 if check = 1
else return O

Figure£5.5: Verify algorithm to check that the prover knows b, rp such that B = b x g + rp x h such that
p=Tli_bi

40

Gamey — Game; : Let Gameg be the initial zero-knowledge game. Define Game; to run identicallly
to Gameg except that, the crs and the 7gj-jnner proof are generated by the dl-inner simulator for both
b=0and b=1.

Let B be an adversary against the dl-inner zero-knowledge game. Then B simulates the zero-
knowledge game for A. It takes as input crs and runs A(crs) on the same input. It flips a coin
to get b € {0,1}. When A makes a prover query, if b = 0 then B generates (C,,) honestly and
queries its oracle on input (C, D, z) and (¢ || r¢), (d || 7p) to get a proof myi-inner- Then B returns
(C, rp, Tdi-inner). If b = 1 then B runs the simulator to compute the response. When A returns ¥/
then if b = b’ then B returns 0, else B returns 1.

Then

Pr[B(crs) =0 | b= 0] = = (Pr[A(crs) = 0 | Gameg, b = 0] + Pr[A(crs) = 1 | Gameg, b = 1])

N =N =

Pr[B(crs) =1 | b=1] = = (2 — Pr[A(crs) = 0 | Gamey,b = 0] — Pr[A(crs) = 1 | Gamey, b = 1])

and

AdvE(X\) = |1 — 2Pr[Gamed e ())]|
=1 —Pr[B(crs) =0 | b=0] — Pr[B(crs) =1 | b= 1]|

= ‘1 - % (Pr[A(crs) = 0 | Gameg, b = 0] + Pr[A(crs) = 1 | Gameg, b = 1])
— (1= Pr[B(crs) =0 | b= 1))]
_ %\1 — Pr[A(crs) = 0 | Game, b — 0] — Pr[A(crs) — 1 | Gameg, b — 1]
— 1+ Pr[A(crs) =0 | Gamey, b = 0] + Pr[A(crs) = 1 | Gameg, b = 1]
= %|Advjame°()\) — Adv@™e ()]
This means that

Adv@™ (\) < 2AdvEMeT(\) + AdvE™e (M)

Game; — negl()\) : In Game; the simulated proofs are generated identically. The remaining honest
prover elements C, 1, are such that C' is randomised by r¢. The value r, = r¢ x (rp + al) is ran-

domised by r¢ provided that [r¢| > 1 and rp # al. The latter happens with maximum probability

ITll' The simulated elements C,), are also generated randomly and are thus indistinguishable. [

41

Lemma 5.2.2. There does not exist an adversary A such that

(aux, (a,b,c), (x,y, 2)) bl A(g,h,H)
B « Hash(aux)
G (gl h)

G’ — ((57191,57292,...,ﬁ*€g£) I ﬁf(éﬂ)h)
Commit((G,G', H), (a,b,c)) = Commit((G,G', H), (x,y, 2))
(a’ b’ C) # (w,y,z)

where
(x x G+ zH, y x G') «— Commit((G,G', H); (x,y,2))

assuming the q-dlog assumption holds.

Proof. We show the existence of an adversary B such that
Adv4(\) < Adv§; %8 ())

Initially B takes as input a g-dlog instance (g || h || H) and runs

(aux, (a, b, c), (z,y,2)) < Alg, h, H)

If A succeeds then
(axG+cH, bxG')=(xxG+:zH, yxG)

If (a,c) # (x, z) then B returns (a || ¢), (z || 2).
Else B sets

b — (B7'br,...,87%), || B~ byig] 0)
Y — By B), | B Dy 1] 0)

and returns (b',y’).
If A succeeds then
(a |l e) x (GlIh) = (z || 2) x (G]||h)

and so if (a,c) # (x, z) then B succeeds. If (a,c) = (x, z) then b # y. In this case
' x (Gl[h) =y x (GI|h)

and b’ # y’, hence B also succeeds.
]

Theorem 5.2.3 (Grand Product Argument is knowledge-sound). Suppose the dl-inner argument
is knowledge sound whenever crsqi-iner = (G, G', H) is sampled such that

(x x G+ zH, y x G') « Commit((G,G', H); (z,y,2))

1s a binding commitment. Then whenever the q-dlog assumption holds, the shuffle argument de-
scribed in Figures 5.4 and 5.5 is knowledge-sound.

42

Proof. We design an extractor Agproq such that: if there exists an adversary A that convinces
the verifier with non-negligible probability then with overwhelming probability Xgproq returns field
elements (b, rp) such that

((B,p); (b,7B)) € Reprod-

By Lemma 5.2.2 Commit() is a binding commitment with respect to crsqj-inner and hence we
can assume that the dl-inner argument is knowledge sound. By the knowledge-soundness of the
discrete-log inner product argument there exists an extractor Xg such that if B returns verifying
Tdl-inner then they return valid witnesses for Ryi-jnner With overwhelming probability.

The extractor Xgprog Works as follows

1. Randomly sample coins w.

2. Run ((B,p); (C,rp, Tdrinner)) < Alcrs; w).

Define an adversary B that behaves as follows:

« Generate crs = (g, h, H) and set trans = 0. While trans = 0 run trans < Games™ (crs; w)
for Game's™ (crs) defined in Section 7.0.2. Parse

((04: /8)7 (CK, B))? ((va); (Ca Tp)? (Wdl—innera 7T"dl—inner)) = trans

e Computes D, z the same as the honest verifier wrt .
e Return (C, D, 2), T inner

3. Let X, be B;’s corresponding discrete-logarithm inner-product extractor. Extract (c || r¢)
and (d || rp) such that

C=(cllre)xG A D=(d| rp)x G

4. Return
b=(dg",...,de™") A rp=p5""rp—al

We must show that whenever A convinces the verifier, then either Xgproq succeeds or we can extract
a discrete logarithm relation between (g, h, H).

First see that Xgproq terminates in polynomial time with overwhelming probability. Let 7 be
the run time of A, € be the probability that A outputs a valid response and gy be the total number
of hash queries that A can make. Assuming SﬁTIr < ¢ then the game Game/$™(par) runs in time at

most 87% -In(8/¢) and is successful with probability at least /8. The expected run time of B;
is less than 7qg - In(8/¢), which is polynomial time assuming that 7, ¢ and ¢y are polynomial in
the security parameter. By the assumption that dl-inner is knowledge sound this means that the
expected run time of A, is also polynomial.

We design adversaries By, Bz, B3 such that for all extractors Xj,, X5, we have that

-inner -inner el qH
AV, X0 (A) < AdVETTET(A) + AdV, B (M) + AdvE T8 (N) +]

43

for qpr the maximum number of hash queries the adversary can make. We proceed via a series of
games Gamej, Games, Games such that

Gameo

AT (A) < AdVETTET + AdvERe (M)
ja;;lmd (A) < +AdVE T (A) + Advjag;fod (\)
AdVER2, () < AdVETE0) + AR ()
AN) <

which combined give us our final result.

Gamey — Game; : Let Gameg be the initial knowledge-soundness game and define Game; to initially
run identicallly to Gameg. However, in Game;, when A outputs a verifying proof then define B; to
be the adversary in Xgproq that returns ((C, D, z), mgi-inner) and Xp, its corresponding extractor.
Return 0 if Xy-inner fails.

If Gameg returns 1 but Game; returns 0 then this means that mg-inner verifies and Az, fails,
and hence that By succeeds.

Game; — Games : Let Gamey be identical to Game; except in the following case.
Define an adversary By that behaves as follows:

o Generate crs = (g, h, H) and set trans = 0. While trans = 0 run trans < Game'§s™(

Game's™(crs) defined in Section 7.0.2. Parse

((Oé, /8)7 (047 B))v ((Bap); (Ca rp)v (Wdl—innera 7_Td|—inner)) = trans

crs;w) for

« Computes D, Z the same as the honest verifier wrt 3.
e Return (C, D, Z), Tdl-inner

Let A, be By’s corresponding discrete-logarithm inner-product extractor. Then Gamey runs Bs
and A, to extract (€ || ¥#¢) and (d || 7p). Then Games checks whether

C=(€||7c)xG A D=(d|| 7p) xG A (|| Fc)x (d]|| 7p) = Z

and returns 0 if not.

First see that Games terminates in polynomial time with overwhelming probability. By the
same argument as B, X, we have that the expected run time of Ba, A, is polynomial. If Game;
returns 1 but Games returns 0 then this means that 7q-inner verifies and Az, fails, and hence that
Bs succeeds.

Gamey — Games : Define Games to be identical to Gamey except in the following cases. When X3,
outputs ((¢ || r¢), (d || rp)) compute

b=(dif™",...,dip™") A rp=p5""rp—al

44

After Xp, has output ((€ || #¢), (d || #p)) then return 0 if (c || r¢) # (€ || 7o) or if

J # (b16/7 b2/8127 DRI bfﬁ/e> - (17 /Blv s 76/€)
7o # B8 rg + al)

Let B3 be the adversary that takes as input a g-dlog challenge (g || h || H) and runs B;, &g,
By and X, as subroutines under the crs with respect to random coins w. When X, and X, have
returned ((c || 7¢), (d || rp)) and ((€ || 7o), (d || 7p)). If ((c || rc) # ((€ || #¢) then Bs returns
these as a correct g-dlog output.

Else compute
b= (87" ..., dB7Y A rp=p"Hrp —a1

and
b=(di(B)",...,de(B)") A Fp=(8)"""Vrp—al
If (b || rp) # (b || #B) then Bs returns these as a correct g-dlog output.
If Games returns 1 but Games returns 0 then this means that Bs succeeds.

Games — negl(A) : If Games returns 0 then

B=bxg+rpxh
C=cxg+rcxh

is such that, for random /', we have that
pB" + B = 1= (e |l me) x (d ||)
for random /’. Substituting for d’ and 7/,
pﬂ’e + rpﬁ/“l —1l=cx ((blﬁ’, bg,@/27 - bgﬁ’f) —(1,48,... ,6’4_1)) +ro x 5’€+1(7'B +al)
Expanding we see that
pB BT =B — 1) 0B = BT + 8 e x (4 al)
By the Schwatz-Zippel Lemma this holds with maximum probability (‘ITH‘ unless
pX X 1= (01X — 1) + . 4 (b X — XY + X o x (rp + al)
If this polynomial expression holds then 7, = r¢ x (rp + 1) and

pXE—1=ci(biX — 1)+ ... +co(b X — X1
= —C + (Clbl — CQ)X + ...+ (Cg_lbg_l — Cg)Xe_l + Cgbg)(Z

Thus
=1, CQZbl, ey Cg=b1...bg_1, bl...bgzp

This means that p is the grandproduct of b extracted by Xgproq as required. O

45

5.3 Discrete Logarithm Inner Product Argument

In this section we discuss a zero knowledge argument for the relation

(C,D,z2); (e,d)|C=cxG
Rdl-inner = D =d x G/
z=cxd

which is given in Figures 5.6 and 5.7. This protocol was originally by Bootle et al. [BCCT16]. We
make minor adjustments in order to achieve zero-knowledge. We did not use all the optimisations by
Biinz et al. [BBB*18] because we decided that the improvements to the proof size is not justified by
the additional cost to the verifier for our application. However we did use their method for inserting
the inner product into the commitment. We prove our construction sound and zero-knowledge in
Theorems 5.3.1 and 5.3.3.

5.3.1 Informal Overview

Our relation is a form of inner product relation where one is interested in verifying whether we
know (e¢,d) such that C = e¢x G+ zH, D = d x G’ where z = ¢ x d. The inner product argument
is recursive. At each stage of the recursion, the aim is to find new commitments C’, D’ to values ¢/,
d’ of half the length. Further we need a new 2’ such that 2’ = ¢/ x d’ if and only if 2 = ¢ x d. After
sufficient rounds of recursion we have that ¢, d are vectors of length 1, and thus can be sent in the
clear. The verifier checks that the inner product relation holds for the final revealed openings, and
this suffices to show that the relation holds for the original longer openings.

One initial subtlety is that C' is a commitment to (¢ || 0) whereas the inner product argument
as described in Section 5.3.1 assumes that C' is a commitment to (¢ || z). We thus have an initial
step where: (1) we obtain a random challenge by hashing the public inputs § = Hash(C, D, z); (2)
the verifier updates the public input

C=C+z8H

to include z; (3) we update H = SH. Here the random f term prevents a cheating prover from
initially providing C' that is not a commitment to (- || 0).
Each round of the recursion proceeds as follows. The prover first computes cross product
commitments (that will later be used to define C" and C’) as
Lo = Cl:n] X G[n] + (C[:n] X d[n])H Rc = Cln:] X G[n] + (C[n:] X d[n])H
LD = d[n] X G/[n] RD = d[n] X G/[n]
These are then hashed to find a random challenge ~ .

The prover updates the commitment contents to

d =cp+7 ey, d =dpay +vdpg, 2 = (e X i) + 2+ 77 ep X i)

such that 2/ = ¢’ x d’. See that ¢’ and d’ are half the length of ¢ and d. We then update the
commitments C, D to ¢, d and the commitment keys G, G’ as

C'=vLc+C+~"'Ro, D' =vLp+ D+~ 'Rp, G =Gy + Gy G = Gy +7 Gy

such that C' = ¢/ x G + 2'H is a commitment to (¢/,2’) and D’ = d’ x D is a commitment to d’ .

46

Putting this together means we have (C', D’) = (¢! x G + zH,d’ x G') for some ¢, d’ that are
half the length of ¢, d. Due to the randomised nature of v this statement is true if and only if
the original (C,D) = (¢ x G + (¢ x d)H,d x G') for some ¢, d. The protocol then recurses until
the final round, where ¢ and d have length 1. Then the prover sends ¢ = ¢; and d = d; in the
clear and verifier accepts if and only if C' = ¢G; + zH, D = dG. Note that the full protocol has
some additional masking values that are included to ensure zero-knowledge. For simplicity we have
ignored these terms in this overview.

5.3.2 Full Zero-Knowledge DL Inner Product Construction

The full zero-knowledge construction for the same-permutation argument is given in Figures 5.6 and
5.7. Inner product arguments are not, by default, zero-knowledge. In order to get a zero-knowledge
argument we introduce an intermediary step to randomise the provers witness.

Step 1: The prover blinds the argument by sampling r¢, rp randomly such that
rocxd+rpxc=0and roc xrp=0

Then the prover computes
(Be,Bp) = (r¢ x G,rp x G')

to blind the witness relating to ¢, d respectively.
Next they hash to obtain the field elements «, 5. The prover resets the private inputs to equal
rc + ac and rp + ad and the verifier resets the public inputs to equal

C = Be+aC +a*2H and D = Bp + aD

Observe that the updated C is a commitment to (rc+ac,a?z) and D is a commitment to (rp-+ad).
Thus

(rc +ac) x (rp +ad) = rc x rp + a(re x d+rp x ¢) + o’z
and oz is the correct inner product of the updated commitments.
Step 3: We now run the inner product argument as specified in Section 5.3.1. If |G| = 8 then the
randomisers given in ¢ and rp suffice to fully blind the inner product argument, which we argue
formally in Theorem 5.3.1.
5.3.3 Security

Theorem 5.3.1 (DL inner product argument is zero-knowledge). The discrete logarithm inner
product argument described in Figures 5.6 and 5.7 is zero-knowledge in the random oracle model
provided that |G| = 8.

Proof. We design a simulator Simulate that takes as input an instance
(B,C,2)

and outputs a proof myiinner that is indistinguishable from a proof generated by an honest prover
that knows the witness. The simulator can program the random oracle on any points yet to be
determined by the adversary.

47

The simulator Simulate takes as input (G, G’, H; C, D, z), and samples &, d, o, 3 randomly from
the field and compute

x G+ (e xd)H
x G’

S Q
I
Q ol

Then they set

Be =C —aC —o?BzH

Bp=D—aD

and program Hash(B¢, Bp) to equal a, 8. They rescale queries «<— Hash(C, D, z). In the remaining
steps they behave exactly as the honest prover with respect to the inputs €, d.

Now we must argue that the simulated proof is indistinguishable from the real proof and that
the simulator doesn’t abort. First observe that B, Bp are randomly sampled so the probability
that the adversary has already queried these points (causing the simulator to fail) is negligible.

Second observe that the provers commitment openings

TD—Fﬁd

and the simulaters commitment openings d are distributed uniformly at random and could be
revealed in the clear. Hence elements relating to these values Bp, Lp ;, Rp ; are identically dis-
tributed.

The proof element B¢ are blinded by r¢ o for the honest prover and ¢y for the simulator. The
proof elements L¢ 1 are blinded by r¢ 1 for the honest prover and ¢; for the simulator. The proof
elements Rc 1 are blinded by rosn for the honest prover and Cn for the simulator. The updated

commitment vLc; + C + v ' Rey contains

¢ = E[:n] + 7_16[71:]

If |e] = 8 then ¢, is blinded by Cnit The remaining E’[L] is blinded by €[;.}. Thus the openings
¢, d, 7z could theoretically be revealed in the clear for z = & x d’. Where the remaining proof

elements are deterministically computed from these openings, the provers and simulators responses
are distributed identically. O

Lemma 5.3.2. The algorithm in Steps 2 and 3 of the prover and verifier in Figures 5.6 and 5.7 is
a knowledge sound argument for the relation Rgi-inner assuming the q-dlog problem holds.

Proof. The algorithms implement a generalised inner product argument with respect to the com-
mitment scheme

(G,G',H) & Setup(G)

G |c

(CXG+;ZH><—Commit G | d
dx G

H |z

and the inner product
:GxG,ec-d=cxd

48

By Theorem 7.0.5 it suffices to show that (Setup, Commit, -) is an inner product commitment.
We first show that (Setup, Commit) is binding. We second show that (Setup, Commit) is doubly ho-
momorphic. We third show the existence of a correct Collapse function (Definition 7.0.8). Together
these suffice to prove the lemma.

Binding commitment: Binding follows from the g-dlog assumption by Lemma 5.2.2.

Doubly homomorphic commitment: First see that the key space is homomorphic

G+G |ec _ _
Commit [G'+G' |d |= cx (G+G)+2(H+ H)
H+H p dX(G/—I—G/)
_(exG+zH n cx G+ zH
B dx G’ dx G
G |c Gle
= Commit | G'|d |+ Commit| G’ |d
H |z H |z

Second see that the message space is homomorphic

Commit | G'|d+d |=

Gle+re ((c+é)xG+(z+Z)H>

!/
H| 24z (d+d)xG
([exG+zH N cxG+zH
N dx G’ dx G
G |c G |c
=Commit| G'|d |+ Commit| G'|d
H |z H |z

Collapsible commitment: Let Collapse be the identity function

cama(5)(5)

Then

GG |(clle
Collapse [Commit | G’ || G' | (d || d) = Collapse (

ch+c><G_'+zH>
H z

dxG +dxG'
B cx (G+G)+zH
- dx (G +G"
G+G |c
= Commit| G'+G | d
H z

49

Theorem 5.3.3 (DL inner product argument is knowledge-sound). The inner product argument
described in Figures 5.6 and 5.7 is knowledge-sound in the random oracle model assuming the q-dlog
s hard.

Proof. We design an extractor Xgi-inner such that: if there exists an adversary A that convinces the
verifier with non-negligible probability then with overwhelming probability Xgi-inner returns field
elements (c,d) such that

((C, D, Z); (C, d)) € Rdl—inner~

By Lemma 5.3.2, whenever an adversary B outputs a valid proof, there exists an extractor Xg
that takes as input B’s transcript and outputs (x,y) such that

(Be,Bp) + a(C,D) = (£ x G+ (x x y)H, y x G')

such that Adv%'?}é‘gerz()\) is negligible assuming the g-dlog problem is hard. Here dl-inner2 refers to
the knowledge-soundness game for the (non-zk) protocol in steps 3 and 4 of Figures 5.6 and 5.7.
The extractor Xgi-inner works as follows

1. Randomly sample coins w.
2. Define an adversary Bj that behaves as follows:

o Generate crs = G, G’, H and set trans = 0. While trans = 0 run trans « Gameff{rk(

for Game/$™(crs) defined in Section 7.0.2. Parse

((a7 5)7 (O/, 6/))7 ((07 D, Z); (BC) BD)? (7‘-’ L, y)? (77,7 xlv y/)) = trans

e Return (Bo + aC + o?BzH, Bp + 8D), (w, c,d)

crs; w)

3. Define an adversary Bs that behaves as follows:

o Compute

((e,), (&, 8')), ((C, D, 2); (Be, Bp), (w,z,y), (x',2',y')) = trans
the same as B;
e Return (Bo + B'C + /(8')?zH, Bp + 8'D), (n',2',y/)

4. Let Xp, be By’s dl-inner2 extractor. Extract (z,y) such that Be + aC + o?B8zH = x G +
(x xy)BH, Bp + aD =y x G'.

5. Let Xp, be By's dl-inner2 extractor. Extract (z’,4y’) such that Be + o/C + (o/)?p'zH =
' xG+ (2 xy')8H,Bp+dD=y xG'.

6. Compute ¢ = (B — ') Yz —=x'),d= (8-)" (y —v') and return (c,d).

We must show that whenever A convinces the verifier then Xyi_jnner Succeeds.
First see that Xgj-jnner terminates in polynomial time with overwhelming probability. Let 7 be
the run time of A, € be the probability that A outputs a valid response and gy be the total number

of hash queries that A can make. Assuming 8|?1TI|{ < € then the game Gamefzrk(par) runs in time at

most ST% -In(8/€) and is successful with probability at least €/8. The expected run time of By, By

50

is less than 7qg - In(8/¢), which is polynomial time assuming that 7, ¢ and ¢g are polynomial in
the security parameter. By Lemma 4.0.2 this means that the expected run times of X, and A’p,
are also polynomial.

We show that there exists B3, B4 such that for all extractors X, , A,, A, we have that

AVA i (A) < AdVETTE2(0) 4+ AV (1) + AdvETe2(3) + AdvE I8 ()) + %

We proceed via a series of games Game;, Games, Gameg such that

AV A Xy (V) < AVETREZ (V) + AdVERSL (M)

AdVETE (X)) < Advi, T2 (A) + Adv Somez ()

AdvT () < AdVETEP (V) + AdvgE()) + AdVERS (A
AN, () < i

which combined give us our final result.

Gamey — Game; : Let Gameg be the initial knowledge-soundness game. Then Game; is identical
except in the following case. If A outputs a verifying proof then define By be the adversary as in
Xg-inner that returns (B¢ + aC + o?BH, Bp + aD), (m,z,y) and Xp, its corresponding extractor.
Return 0 if A3, fails. If Gameg returns 1 but Game; returns 0 then this means that (7, z,y) verifies
and A, fails, and hence that B; succeeds. By Lemma 4.0.2 the probability of this is negligible if
the g-dlog assumption holds.

Game; — Games : Define Gamey to be identical to Game; except in the following case. If A out-
puts a verifying proof then define By be the adversary as in Xgiinner that returns (Bo + o/C +
(/)28 H,Bp + o'D),(w',2',y/) and X, its corresponding extractor. Return 0 if X, fails. If
Game; returns 1 but Gamey returns 0 then this means that (7, 2’,y’) verifies and X, fails, and
hence that Bs succeeds. By Lemma 4.0.2 the probability of this is negligible if the g-dlog assump-
tion holds.

Gamesy — Games : Define Games to be identical to Games except in the following case.
We define an adversary Bs that behaves as follows:

o Generate crs = (G, G’, H) and set trans = 0. Choose random coins w’ such that during the

Ga meerk(crs) the original f values are sampled identically but the f’ values are sampled differ-
ently. While trans = 0 run trans < Game'$"™(crs;w’) for Game/$™(crs) defined in Section 7.0.2.
Parse

(. 8), (0", 8)), (C, D, 2); (Bo, Bp), (m, 2,), (", a",y/")) = trans
R Return (Bgv _"_ a//C + <a//)2B”ZH, (Tl'”,x”,y”))

Let X, be B3’s dl-inner2 extractor.
Then Games runs Bz and then A, to extract ”,y”. Using By, X, , B2, A, it extracts ¢, d, z.
such that
C=cxG+z2H, D=dxG'

o1

where ¢, d are computed the same as in Xg-jnner, and

0= Bla—a) (@ xy—a xy —(a? - ('))z)

Additionally Gameg sets
ro=x—ac,rp =y —ad, rzzﬁ(a:xy—ozzc—a2z)

If
(rc + B"c) x (rp +d"d) = (1. + o"z¢ + (a”)?2)

then Games returns 0.
Let By be the adversary that takes as input G, G’, H and runs Bs(crs; w) and X, on Bs’s
transcript, and returns either

((mll || 33” X yl/)’ (’l"C-l—Oé”C || T, +Oé”ZC + (OZN)QB//Z))

or
(y//) (TD+()[//d))

If Gamey returns 1 but Games returns 0 then this means that either (1) w”, 2", y” verifies and
Xp, fails, and hence that B3 succeeds; or (2) (" || " x y”) # (r¢ + a"c || . + "z + (”)?B"2)
or (3) y" # (rp + "d)

In the second case we have that

(rc+a"c) x G+ (ro +o"zc + (o")?8"2) =" x G+ (2" x y")3"H
implies that B4 returns a valid discrete logarithm solution. In the third case we have that
(TD +O[”d) X G/ — yl/ X G/

implies that By returns a valid discrete logarithm solution. Thus B4 breaks the g-dlog assumption.

Games — negl()\) : If Games returns 1 then we have that

(r¢ +d"c) x (rp +"d)3" = (r, + " 2¢ + (04”)2 "2)

Where ¢, ¢, rp,d,r,, zc are determined before o, 3” the probability of this occurring is bounded
by %TH‘ unless 7, = zc = 0 and z = ¢ x d. Thus the values ¢ = (o — /)" }(x — ') and d =

(a — o)7L (y — y') output by Xyinner in Games is a correct witness for (C, D, 2). O

52

I:)rovedl—inner(Crsdl—innera (C, D, Z)? (Ca d))
Step 1:

rc,rpﬁlﬁ'" such that (r¢ xd+rp x¢) =0and r¢ x rp =0
BC‘*"‘C x G

BD<—TD XG/

a, 3 — Hash(C, D, z, Bc, Bp)

Cc<—Trc+ ac

d—rp+ad

H — pH

Step 2:

m<—n

while 1 < j <log(m) :
ne s

LCJ' < Clip] X G[n] + (C[:n] X d[n])H

LD,j <« d[n:] X G/[n]

RC,J’ < Clp] X G[n] + (C[n:] X d[n])H

RDJ‘ «— d[n] X G/[n]
nj < (Lcj, Lp,j, Rc,j, Rp,j)
7; < Hash(m;)

€ €] + 75 Cfn

d — d.p) + 7

G — G[:n] + ’ij[n;]

G/ N G/[n] + Vflgl[n:]

Step 3:
C < C1

d <« d;

return (B¢, Bp, 7, ¢, d)

Figure 5.6: Proving algorithm to demonstrate that (C, D, z) = (¢ x G,d x G', ¢ x d) for some ¢, d.

53

Verif}/dl—inner(Crsdl—inner; Ddi-inner; 7le—inner)
Step 1:

(G,G', H) < parse(crsdi-inner)

(C’ D, Z) - parse(d)dl-inner)

(Bc, Bp, 7, ¢, d) < parse(Td-inner)

a, 3 < Hash(C, D, z, Be, Bp)

H «— pH

C < Beg +aC + (a?2)H

D — Bp +aD

Step 2:
m < log(n)
forl<j<m:
ne— g
(LC,]', LD,J', RCJ, RD,J') «— parse(wj)
7; < Hash(m;)
C <« vjLc; +C+ ’)/j_lRCJ
D <« ~;jLp;+D + ’}/j_lRD’j
G < G + 175Gy
G — Gl +75 Gy
Step 3:
check C =c¢x Gy +cdH
check D = d x G}

return 1 if both checks pass, else return 0.

Figure 5.7: Verify algorithm to check that (C, D, z) = (¢ x G,d x G',¢c x d).

54

Chapter 6

Efficiency

In this section we provide a breakdown of the costs in our shuffle argument. We first provide a
full overview of costs and then explain how we got to each of these numbers. We also explain any
optimisations that have been used.

6.1 Full Curdleproofs Construction Efficiency

The proof consists of 18 + 10log(¢ + 4) group elements and 7 field elements. To see this observe
that
Tshuffle = (A7 cmr,cmy, R, S, Tlsameperm > Tsamescalar 71'samemsm)

for cm and cmy group commitments and A, R, S group elements. Each group commitment consists
of 2 group elements. The proofs Tsameperm; Tsamescalar; Tsamemsm contribute a total of 11+ 101log(¢+4)
group elements and 7 field elements.

The prover computes 30¢+2log(£+4)+102 scalar multiplications. It computes A = o(a)+r'y xh
costing £ +4, R = a x R and S = a x S costing 2¢. The group commitments to cmy, cmg cost
2 each (4). It computes A’ using only additions. Computing the proofs contributes a total of
230 + 2log(¢ +4) + 98.

The verifier computes 5¢ + 10log(¢ + 4) + 32 scalar multiplications. Computing A’ requires
only additions. Computing checks and checks requires accumulating 2 MSMs, costing 2 scalar

Protocol Proof Size Prover Computation Verifier Computation
Shuffle 18 + 10log(¢ +4) G, 7F 300+ 2log(¢ +4) + 102 5¢+ 10log(¢ +4) + 32
Same Scalar 4G,3F 6 10

Same Permutation 4+ 4log(f+4)G,3F 114+ 2log(¢ +4) + 44 4log(f+4)+9
Same Multi Scalar 3+6log(f+4)G,1F 120 + 48 6log(£+4)+6
Accumulated MSMs 0 0 5¢ 45

Table 6.1: Proof size is counted by number of group elements G and number of field elements F. Prover
computation counts the number of scalar multiplications. Verifier computation also counts the number of
scalar multiplications.

95

multiplications. Verifying all of the proofs costs 10log(¢ + 4) + 25 and checking the accumulated
MSMs at the end costs 5¢ + 5.

6.1.1 Verifier Optimisation: Accumulate MSM Operations

Throughout the protocol there are checks of the form
?
C=xzx(@gllh|Gr||GullH|RI|S|TIU)

These checks form the bottleneck of the verifiers computation and we can save significant amounts
of work by accumulating these checks into a single multiscalar multiplication that is checked at the
end of the protocol. This accumulated check costs [(g || R || Gr || Gu || H|| R || S || T || U)|
group multiplications for the verifier to check, i.e. 5¢ + 5.

We use the fact that

Ci=x;xVand Oy =29 xV = a1C1 + agCy = (@) + agxe) X V
for all ay,ag. If a, s <~ F then the probability that

R
101 + asCy = (11 + agxa) x V

passes is negligible unless C; = x1 x V and Cy = o x V.
We define an operation, AccumulateCheck() that accumulates checks of the form C LaxV

into a single check A¢ LwxW. Running AccumulateCheck() costs a single group multiplication.
Then AccumulateVerify() is defined to return 1 if and only if the accumulated check passes. See
Figure 6.1.

The inputs C,x,V to AccumulateCheck must be such that V < W. The AccumulateCheck
algorithm first generates &’ which is a padded version of the & vector that has 0 entries whenever
V; ¢ W. It then updates Ac = A¢ + aC and w = w + ax’ such that they include this new check.

Here a <& Fis sampled uniformly at random. To use this accumulating msms optimisation we must
edit our Curdleproofs construction slightly to initialise W, Ac, w and to run a final accumulated
msm check. See Figure 6.2

56

Initialise W — (g [| R || Gr [|Gu [| H || R || S || T || U)
Initialise Ag <« 0
Initialise w < 0

AccumulateCheck(C Lax V) AccumulateVerify()
for 1 <j<|W]|:
it W; = V; for some 1:
Tl x

>
return Ac = w x W

else x; 0

aﬁlﬁ‘
Ac «— Ac + aC
w «— w + ax’

Figure 6.1: Accumulator that gathers msm checks and verifier that evaluates the acculated msm check. The
AccumulateCheck and AccumulateVerify algorithms are stateful.

6.2 Breakdown of Efficiency

6.2.1 Same Scalar Efficiency

The proof consists of 4 group elements and 3 field elements. To see this observe that

T'samescalar = (CmAa cmp, 2k, 2T, ZU)

for cmy and cmp group commitments and zg, z7, zy field elements. Each group commitment
consists of 2 group elements.

The prover computes 6 scalar multiplications. It computes A = rpR and B = r;S in addition
to 2 group commitments. Each group commitment costs 2 scalar multiplications.

The verifier computes 10 scalar multiplications. There are 4 from computing acmp and acmy
where multiplying group commitments costs 2 scalar multiplications. There are 2 from computing
zr R and 2 S. There are 4 from computing 2 group commitments.

6.2.2 Same Multiscalar Efficiency
The proof consists of 3 4+ 6log(¢ + 4) group elements and 1 field elements. To see this observe that
T'samemsm = (BA, Br, By, , 1’)
for Ba, By, By group elements and x a field element. The proof 7 consists of
{Laj,Lrj, Ly, Raj, Ry, RU,j};-"ﬂ")

for n = |G|. We have that G = (g || b, 2 || G7 || Gu) where |g| = £ and |h,, o) = np—2 = 2.
Assuming ¢ > 4 we can set np — 2 = 2 such that £ 4+ nyp is a power of 2. We optimistically assume
np = 4 in our efficiency evaluation.

57

The prover computes 12¢ + 48 scalar multiplications. It computes By = r x G, By =r x T,

By = r x U costing n = |G| operations each (3n). During the recursion, computing L4 1,...,Lam
costs n operations (n). This is because the size of |G| is halving in each step of the recursion,
thus computing L4 1 costs n/2, L costs n/4, ..., Lay, costs n/n. Together this gives us n =

(5 +%+...%). Similarly, during the recursion, computing Lt, Ly7, R4, Ry, Ry costs n operations
each (5n) and updating T',U, G costs n operations each (3n). Assuming n = ¢ + 4 this gives us
12(¢ + 4) scalar multiplications.

The verifier computes 6log(¢ + 4) + 6 scalar multiplications. These operations all occur during
the 3 checks added to the MSM accumulator

AccumulateCheck(y x La + (Ba + aA) + v 'Ra L 2s x G)
AccumulateCheck(y x Ly + (Br + aZr) + v 'Ry L 25 x T)
AccumulateCheck(~ x Ly + (By + aZy) + v 'Ry L s x U)

Computing v x L+ (Ba+aA)+~y R4 costs 2log(n) +1 for n = |G| = £+4. Similarly computing
the inputs to the other accumulated checks also costs 21log(n)+ 1. Each accumulation costs 1 scalar
multiplication.

IPA Verifier Optimisation

In Figure 6.3 we describe an optimised version of our SameMultiScalar verifier. In particular we use
an optimisation by Biinz et al [BBB*18] to reduce the verifier overhead in inner product arguments
that is also used in the Dalek implementation of Bulletproofs.

The verifier computes only three checks in the entire SameMultiScalar argument: namely in
Step 3 it checks that A = G, Zp = 2T}, and Zy = xU;. This means that although the prover
needs to compute the intermediate vectors G, T, U at each step in order to compute the 7; values,
the verifier does not and it can compute the final A, Zp, Zy, G1,T1, Uy directly from the initial
A, Zp, Zy,G,T,U and the By, By, By, values.

Using a simple example where the starting |G| = 8, we see that G gets changed as follows:

Stat G= (G || Gy || Gy || Gy | Gy | Gg | Gr o] Gs)
Fold1 G= (G} + mGs || Gy + mnGg || Gy + mnGr | Gy, + mGy)
Fold2 G= (G| + 7G5 + mG, + m7GE || G, + %G, + Gy + 717Gy)
Fold3 G= (G] + 7G5 + 7G; + 7nG, + Gy + miGy + G + 17213G6%)

such that the final G; value is equal to

(L 73, 72, 7273, " N8 M2 NRY3) X G
If we set & = (Y, -..,71) to be the reverse of v then we see a useful structure
G1 = (1, 01, 02, 0102, I3, 0163, 0203, 610203) x G

namely that G; = s x G where

m m
S$; = Z 5?” for b; j such that i = Z b¢7j2j is the binary decomposition of i
j=1 j=1

58

https://doc-internal.dalek.rs/bulletproofs/inner_product_proof/index.html

Protocol Proof Size Prover Computation Verifier Computation
Same Permutation 4+ 4log(¢+4) G,3F 114+ 2log(¢ +4) + 44 4log(f+4)+9

Grand Product 3+4log(t+4) G,3F 100+ 2log(¢ +4)+ 43 dlog(l +4)+7
DL TPA 2+4log(l+4)G,2F 80+ 2log(f+4)+33 4log(f+4)+5

Table 6.2: Proof size is counted by number of group elements G and number of field elements F. Prover
computation counts the number of scalar multiplications. Verifier computation also counts the number of
scalar multiplications.

6.2.3 Same Permutation Efficiency

The SamePerm argument uses a grandproduct argument which uses a DL TPA argument. We
give a breakdown of efficiencies for each of these components in Section 6.2.3 and describe how we
calculated these costs.

In Figure 6.5 we describe an optimised version of the SamePerm verifier.

The proof consists of 4 + 4log(¢ + 4) group elements and 3 field elements. To see this observe
that

T'sameperm = (B; 7rg;prod)

for B a group element and 7gproq a gprod proof. The gprod argument has 3 + 4log(¢ + 4) group
elements and 2 field elements.

The prover computes 11¢ + 2log(¢ + 4) + 44 scalar multiplications. They compute B = A +
alM + 3 x g costing £+ 1 operations. The prover also computes Tgproq costing 10¢ + 2log(¢ +4) + 43
scalar multiplications.

The verifier computes 4log(¢ + 4) + 9 scalar multiplications. Computing p requires only field
elements. They add one check to the MSM accumulator

AccumulateCheck(B — A — aM z B xg)

Computing B — A — aM costs 1 and the accumulation costs 1 scalar multiplication. Verifying a
gprod argument uses 4log(¢ 4+ 4) + 7.

Grand Product Efficiency

In Figure 6.5 we describe an optimised version of the gprod verifier.
The proof consists of 3 + 4log(¢ + 4) group elements and 3 field elements. To see this observe
that

T'sameperm = Tgprod

which has the claimed number of elements.

The prover computes 10¢ + 2log(¢ + 4) + 43 scalar multiplications. They compute C' = ¢ x g +
rc x h costing £ + ny operations where ny = 4. The prover also computes g’ using ¢ operations
and h’ using ny = 4 operations. Setting gsym = Zle g; and hgym = Zle h; the prover computes

D« B — 6_lgsum + ahsym

59

in just 2 scalar multiplications. Finally the prover computes mgi-inner costing 8¢ + 2log(¢ + 4) + 33
scalar multiplications.

The verifier computes 4log(¢ + 4) + 7 scalar multiplications. Using the first optimisation in
Section 6.2.3 we see that the verifier can compute a vector w rather than G’ using only field
operations. Using the second optimisation in Section 6.2.3 the verifier computes D using 2 scalar
multiplications. Finally the verifier checks mgi-inner. Verifying a dl-inner argument uses 4 log(¢+4)+5.

Grandproduct Verifier Optimisations

The non-optimised grandproduct verifier is required to compute a vector G’ = u o G for some
public vector u. Then G’ is used as input to the dl-inner common reference string. Computing
G’ = u o G would cost n scalar multiplications that cannot be accumulated efficiently. However,
when we look into how the vector G’ is used in dl-inner, it is used only once during

AccumulateCheck(y x Lp + (Bp + aD) + ™' x Rp L ds’ x G

This check is equivalent to accumulating the check

AccumulateCheck(y x Lp + (Bp + aD) + v ' x Rp z (dsou) x G)

We thus edit the dl-inner verifier to only take the original generators as input in crsqgi-inner = (G, H),
however to take u one of the public inputs @gi-inner = (C, D, z,u). The accumulated check can then
be run efficiently.

A second optimisation we run is that the non-optimised grandproduct verifier is required to
compute a group element

D—B—1,8,....0 Y xg + a1 x n

for
g — (6791, %g2,....87 %) ~ W —p Dp

Expanding we see that

(1757 cee 7&671) X g/ = (17/67 ... 7/8671) X (671917572927 o 7/872.9@)
= (891,87 g2, 8 a0)

¢
=gt Z gi
i—1

Similarly
af11 x ' = apt1 x gD

bl

= 042 hi
i=1

If we store gsum = Zle g; and heym = Zle h; in the CRS then we can compute
D <—B - ﬁ_lgsum + ahsym

in just 2 scalar multiplications.

60

DL Inner Product Efficiency

The proof consists of 2 + 41og(¢ + 4) group elements and 2 field elements. To see this observe that
Tsamemsm = (BC, Bp,m,c, d)

for B¢, Bp group elements and c, d field elements. The proof 7 consists of

1
{Lc;,Lp.,j, Rcj, Rp,; };ff”)

for n = |G|. We have that G = (g || h) where |g| = ¢ and |h| = ny = 4. Hence n = ¢ +4

The prover computes 8¢ + 2log(¢ + 4) + 33 scalar multiplications. Set n = |G|. The prover
computes Bo = ro x G+roxrpH, Bp = rp x G’ costing n+ 1 and n operations (2n+1). During
the recursion, computing L¢ 1, ..., Lc,m costs n + log(n) operations (n + log(n)). This is because
the size of |G| is halving in each step of the recursion, thus computing L 41 costs n/2+1, L4 2 costs
n/4+1, ..., Lam costs n/n+1. Together this gives us n+log(n) = (§+%+... %) +log(n). Similarly,
during the recursion, computing R¢ costs n + log(n) operations and Lp, Rp costs n operations
each (3n +log(n)) and updating G, G’ costs n operations each (2n). Assuming n = £+ 4 this gives
us 8n + 2log(n) + 1 = 8(¢ +4) + 2log(¢ + 4) + 1 scalar multiplications.

The verifier computes 4log(¢ + 4) + 5 scalar multiplications. These operations all occur during
the 2 checks added to the MSM accumulator

AccumulateCheck(y x L¢ + (Bc + aC + (a?2)H) + v ! x R¢ z (cs || edB) x (G || H))
AccumulateCheck(y x Lp + (Bp + aD) + v~ x Rp L ds' x G

Computing ¥ x Lc + (Be + aC + (a?2)H) + v~! x R¢ costs 2log(n) + 2 for n = |G| = £ + 4.
Computing v x Lp + (Bp +aD) + 4~ x Rp costs 21log(n) + 1. Each accumulation costs 1 scalar
multiplication.

IPA Verifier Optimisation: In Figure 6.6 we describe an optimised version of our dl-inner verifier

that uses the same optimisation as in Section 6.2.2 to avoid rescaling the generators at each fold
in the recursion.

61

6.3 Figures of Optimised Constructions

Verifyshufie (CrSshuffle, ; Pshuffle; Tshuffle)

Step 1:

(9,h,Gr,Gu, H, gsum, hsum) < parse(Crsshufrie)

(Ra S, T,U, M) - parse(¢shuffle)

(A7 cmr, cmyr, R, S, T'sameperm; Tsamescalar 71'samemsm) <« pa rSe(ﬂ'shuffle)

a=(ai,...,ap) < Hash(R,S,T,U, M)

W—(@llh|Gr||GullH|RI|SI|TI|U)
Ac <0
w<—0

Step 2:
checky < Verifygmeperm (9 By H, gsum), hisum); (A, M); Tsameperm)

Step 3:
checky « VerifYSamescaIar((GT’ Gu, H); (Ra S,cmr, CmU); 7rsamescalar)

Step 4:

A — A+ cmr;1 +Cmy1

G < (g || hpny—21 Il Gr || Gu)

T (T |0 1] 0)

U —(U/o]|o] H)

checks « Verify g memsm (G5 (A',cmrp o, cmy o, T, U'); Tsamemsm)

checky < AccumulateCheck(R = a x R)

axS)

NS

checks < AccumulateCheck(S
checkg < AccumulateVerify()
return 1 if (checky, checks, checks, checky, checks, checkg) = (1,1,1,1,1,1)
else return 0

Figure 6.2: The optimised Curdleproofs verification algorithm to check that T, U = o(kR), o(kS) for some
unknown field element k£ and unknown permutation o committed in M.

62

Verifysamemsm(Crssamemsm§ Psamemsm; Tsamemsm)
Step 1:

G « parse(Crssamemsm)

(A7 ZT, ZU; T7 U) <~ parse((bsamemsm)

(BA7 Br, By, , x) <~ parse(ﬂ'samemsm)

Q< Hash(A, ZT, ZU, T, U, BA, BT, BU)

Step 2:

m « log(n)

forl<j<m:
(Lags Lrj, Luj, Rajy Rrj, Ruj) — parse(m;)
7j < Hash(m;)

Step 3:

5 <~ (77717"'771)
forl<j<n:

Si =211 6?” for b;j € {0,1} such that i = 37", bi ;2
AccumulateCheck(y x La + (Ba + aA) + v R4 L 25 x G)
AccumulateCheck(y x Lt + (Br + aZr) + v 'Ry L ors x T)

AccumulateCheck(y x Ly + (By + aZy) + v 'Ry L 25 x U)

return 1

Figure 6.3: Optimised SameMultiScalar verification algorithm to check that that (A, Zr, Zy)

x x T, x U) for some vector of field elements x. Here we use v~! to denote (’yl_l, e
is satisfied if and only if the verifier in Figure 4.2 is satisfied.

63

(@ % G,
,YmL). This verifier

Verif}/sameperm (Crssameperma ; ¢sameperm; 7rsameperm)
Step 1:

(g, h, H, gsum, hsum) <~ parse(crssameperm)

(A, M, a) <~ parse(¢sameperm)

(Bﬂ 7rgprod) - parse(”sameperm)

(a, B) < Hash(R, S, T, U, M)

Step 2:

P — Hle(ai + i+ f)

AccumulateCheck(B — A — aM z B xg)
check « Verify,,4((g, b, H); (B,p); Tgprod)

return 1 if check =1
else return 0

Figure 6.4: Optimised sameperm verification algorithm to check that A, M are commitments to
o(a),o(1,...,¢) for some permutation o. Here we denote 3 = (3,52, ..., 3°)

64

Verifygprod (Crsgprod§ ¢gprod§ ngrod)
Step 1:

(g, h, H, gsum; hsum) < parse(crsgprod)
(B,p) < parse(¢gprod)

(Cv Tp, 7le—inner) “ parse(ﬂ'gprod)

a «— Hash(B,p)

Step 2:
B < Hash(C, 1)

Step 3:

U — (6—1’5—2’ e ﬁ—f || ﬁ—(é—&-l)l)
D «— B — Bilgsum + athsym

Step 4:

G (gl h)

2z pBt+r,pHt -1

check «— Verifyyi_innes (G, H), (C, D, z,u), Tdi-inner)

return 1 if check =1
else return 0

Figure£6.5: Verify algorithml to check that the prover knows b, rp such that B = b x g + rp x h such that
p= Hi:l bz Here Gsum = Zi:l 9i and hz = Z?:bll hz

65

Veridel—inner(Crsdl—inner; ¢d|—inner; 7le—inner)
Step 1:

(G’ H) A parse(crsdl—inner)

(07 D7 2, u) <~ parse(¢dl—inner>

(Bc, Bp,m,c,d) < parse(Tdi-inner)

a, B < Hash(C, D, z, Bc, Bp)

Step 2:

m < log(n)

forl<j<m:
ne— 3

(Lcj, Lp,j, Rc,j, Rp,j) < parse(m;)
7; < Hash(m;)

Step 3:
6 h (’Yﬂ’h"'a’yl)
forl<j<n:
S; = Z;ﬂ:l 5]b-i’j for bi,j € {0, 1} such that i = Z;n=1 bi7j2j
sh= Y, 0
AccumulateCheck(y x Lg + (Bo + aC + (a?2)H) + v~ ! x R¢ z (cs || cdB) x (G || H))

AccumulateCheck(y x Lp + (Bp + aD) + 71 x Rp z d(s' ou) x G)

return 1

Figure 6.6: Optimised dl-inner verification algorithm to check that (C, D, z) = (¢ x G,d x G',¢ x d).

66

Chapter 7

Deferred Security Preliminaries

Assumption 7.0.1 (¢-ddh assumption). For an adversary A, define Adv‘i{ddh()\) =]1-2 Pr[Gamei{ddh]\
where Game‘i{ddh is given by

MAIN Gamejﬂ{ddh()\)

G <« GroupGen(\)
b (0,1} if b=0:

AﬁGq,‘ yﬁF,B&ng; C —yA
ifb=1:

A&, yEF Bayxg cocEao
¥ < AG, A,B,C)
return b’ =

The qg-ddh assumption holds if for all PPT adversaries A we have that Advi{ddh()\) < negl(A) is
negligible in .

Lemma 7.0.2. The q-ddh assumption is implied by the ddh assumption.

Proof. We shall show that Advi{ddh()\) < 2¢Advie"(\). We do this by hopping through a series of
hybrids Game!, ..., Game? such that Game? is statistically hard.

Game; — Game;; 1 : Let Gameg be the initial g-ddh game. Define Game; to run identically to
Gamey except that, C'1 is chosen randomly for both b = 0 and b = 1. Similarly define Game; to run
identically to Game;_; except that, C; is chosen randomly for both b = 0 and b = 1.

Let B; be an adversary against the ddh game. Then B; simulates Game; for A. It takes as input

(G, R, S,T) and selects ay,...,aq EF. Then B; flips a coin to get b € {0,1}. If b = 0 then B; sets

g%, 5% if 7 <4
Aj,Cj<— R,Tiij’i 5 B<—S
random if j > i

and b = 1 then B; generates A, B, C randomly. Next B; sets ¢; = (G, A, B,C). Finally B; runs
y & A(¢;). When A returns ', then if b = b’ then B; returns 0, else B; returns 1.

67

Then
[Bi(G,R,S, T)=0|b=0]

5 (PrLA(6) = 0| Game; 1,5 = 0] + Pr[A(6) = 1 | Game; 1,b = 1])
[Bi(G,R,S,T)=1]|b=1]

= % (2 — Pr[A(¢;) =0 | Game;, b = 0] — Pr[A(¢;) =1 | Game;, b = 1])

Pr
Pr

and

AdvdB‘jh()\) =|1- 2Pr[Game%‘jh()\)]|
= |1 -Pr[B(G,R,S,T)=0|b=0] - Pr[B(G,R,S,T)=1]|b=1]

— [5 (Pr{A(6) = 0 | Gameo, b = 0] + Pr[A(6) = 1| Gameo, b = 1])
— (1-Pi[B(G,R,S,T) =0 | b=1]) ‘
_ %‘1 _ Pr[A(d:) = 0 | Gameg, b = 0] — Pr[A(y) = 1 | Gameo, b = 1]
14 Pr[A(¢) = 0 | Gamer,b = 0] + Pr[A(¢;) = 1 | Gameo, b = 1]
- %|Advjame"‘l()\) — AdVG™e (V)|

This means that

AdVE™ 1 (M) < 2AdvE () + AdvE™(\)

Observe that Advjameq()\) = 0 for all A because the adversary receives identically distributed
inputs on both coin flips. Hence we have that Adviameq_ddh()\) < 2qAdviE ()) O

Assumption 7.0.3 (g-dlog assumption). For an adversary A define Advi‘_d'c’g to be

Advi{dl"g()\) =Prlxxg=yxg A x#y |G« GroupGen()), g s GY, (z,y) & A(G,g)]
The q-dlog assumption holds if for all PPT adversaries A we have that Advj{dlog()\) < negl(A) s
negligible in .
Lemma 7.0.4. The q-dlog assumption is implied by the dlog assumption.

Proof. Let A be an adversary that breaks g-dlog. We describe an adversary B against the discrete

logarithm assumption. The adversary B takes as input (g,h) and chooses ¢ & [1,q] (for ¢ the
length of g). It chooses a to have random entries in F such that a; = 0 but all other values are
strictly non-zero. It sets g such that g; = h and g; = a;jg for all other j # i. Observe that g is
perfectly distributed as a valid g-dlog instance. Then B runs

(z,y) < Alg)

68

If A wins then x x g =y x g for « # y.
Thus
(x—y)xg=0=(yi —2)h=((x —y) x a)g
If x; # y; then B returns the discrete logarithm (y; — z;) "' ((z — y) x a).
If x # y then y; # x; with probability % and thus

Advi 8 (\) < gAdvEE(N)

7.0.1 Generalised Inner Product Arguments

Biinz et al. [BMM™21] prove a general theorem for the knowledge soundness of inner product
arugments that we refer to during our security proofs. We state this theorem below. This theorem
is given in the interactive model. It can be compiled into a non-interactive argument by replacing
the verifier challenges with hash queries. This is secure in the random oracle model due to the
transforms by Attema et al. [AFK21] and by Wikstom [Wik21]. Alternatively it has been proven
that compiling inner product arguments into a non-interactive arguments is secure in the algebraic
group/commitment model [GT21, BMM™*21].

Theorem 7.0.5 (Theorem 1 from [BMM™21]). If ((Setup, Commit),-) is a binding inner product
commitment (see Definition 7.0.8), then (Setup,Prove,Verify) from [[BMM*21], Figure 1] has
completeness and knowledge soundness for the relation

Ripa = ((ck,cm); (a,b) ‘ cm = Commit(ck; (a,b,{a,b))))

To prove the knowledge soundness of an inner product argument that instantiates their gener-
alised argument for a specific commitment scheme, it thus suffices to show that the commitment is
an inner product commitment. We summarise their definition of an inner product commitment in
Section 7.0.1.

Inner Product Commitment

A commitment scheme consists of two algorithms (Setup, Commit) where

e ck < Setu p(G) takes as input some public parameters defined by a security parameter (in our
case the group description G) and outputs a commitment key ck. We denote the key space
K to be the set of possible commitment keys.

e cm & Commit(ck; a; r) takes as input the commitment key, a message, and some randomness.
Ir outputs a commitment cm. We denote the message space M to be the set of possible
message inputs. If Commit is deterministic (i.e. 7 = L) then we simply write Commit(ck; a)

We say that a commitment scheme is binding (see [BMM™21], Definition 9) if it is hard to find
a,r,a’,r’" such that Commit(ck; a;r) = Commit(ck; a’; ') but m # m/.

Definition 7.0.6 (Doubly homomorphic commitment scheme [BMM™21]). A binding commitment
scheme (Setup, Commit) is doubly homomorphic if (IC,+),(M,+) and (Image(Commit), +) define
abelian groups such that for all ck,ck’ € K and all a,a’ € M it holds that

69

1. Commit(ck; a) + Commit(ck; a’) = Commit(ck; a + a’)
2. Commit(ck; a) + Commit(ck’; a) = Commit(ck + ck’; a)

Definition 7.0.7 (Inner product [BMM™21]). A function - : My, My — Ms from two groups of
prime order p to a third group of prime order p is and inner product map if for all a,b € Gy and
c,d € Gy we have that

(a+b)-(c+d)=a-c+a-d+b-c+b-d

Given an inner product - between groups we define the inner product between vector spaces) :
T x MGt — Mg to be

<avb> = iai - b;
=1

Definition 7.0.8 (Inner Product Commitment [BMM™21]). Let (Setup, Commit) be a doubly homo-
morphic commitment with message space M = MT' x M3* x M3 and key space K = KT* x K3* x K3
defined for all m € N, where |M;| = |K;| = p is prime for 1 <1i < 3. Let - : M1 x Mg — Ms.
We call (Setup, Commit,) an inner product commitment if there exists an efficient deterministic
functions Collapse such that for allm € {Qj}jeN, a € M, and ck,ck’ € K such that cks = ckj it holds
that

cky H Ckll a H ai cky + Ckll a1
Collapse | Commit [cko || ckf | as || a2 = Commit | cko + ckj | az
Ck3 as Ck3 as

We refer to the requirement above as the collapsing property.

7.0.2 The Generalized Forking Lemma

Several of the non-interactive protocols in this work rely on rewinding an adversary in order to
extract a valid witness. The extractors will require at least two successful transcripts with respect
to the same first messsage. We thus use the generalised forking lemma as proven by Bagherzandi
et al.[BCJO8] (first stated in [BN06]) to quantify the probability of an extractor obtaining these
transcripts. Consider an algorithm A that takes as input some parameters par and some randomness
f=(w,hi,...,hq), where w is A’s random coins and h1, ..., hg are responses received by querying
a random oracle Hash : {0,1}* — T, and @ is the maximal number of the hash queries. Suppose A
outputs a pair (L, {outg}ser,), where L is a set of hash responses, and each outy is the corresponding
output message for £ € L. Let ¢ be the probability that the output of A(par, f) is successful. We
define the game Game'$™(par) as in Section 7.0.2.

Lemma 7.0.9 (Generalized Forking Lemma [BCJO08]). Let Hash : {0,1}* — F be a uniformly
random function, and A be an adversary that runs in time T and succeeds with probability €. If
IF| > 8mQ/e, then the game Game'S™(par) runs in time at most T - 8m>Q/e - In(8m/e), and is
successful with probability at least €/8.

70

MAIN(par)
f = (w,hl,...,hQ) ﬁ]F
(L, {oute}ser) < Alpar, f)

If L = & output 0
Else, let L = (¢1,...,¢y) be such that {1 <--- < 4,

for 1 <i<m:

set succ; «— 0, k; < 0, kpaz <— 8mQ/e - (In(8m/e))

while succ; = 0 and k; < kppaz -
& F such that £, = fu,
let f/ = (w, hl, e 7h’51‘71’ hzi, ooy hb)
(L', {out)}rers) < A(par, ')
if h/ei # hy, and L' # ¢ and ¢; € L’ then keep out@i and set succ « 1
elseset k; — k; +1

If succ; = 1 for all 7 € [m], then output (L, {outs}ser,, {out)}ser)
Else output 0

Figure 7.1: Game Ga me;‘;':f 4 where an algorithm is forked in the Generalized Forking Lemma.

71

Bibliography

[ABG'21] Diego F. Aranha, Carsten Baum, Kristian Gjgsteen, Tjerand Silde, and Thor Tunge.

[AC21]

[ACF21]

[AFK21]

[BBB 18]

[BCC*16]

[BCJOS]

[BCS21]

Lattice-based proof of shuffle and applications to electronic voting. In Kenneth G.
Paterson, editor, Topics in Cryptology - CT-RSA 2021 - Cryptographers’ Track at the
RSA Conference 2021, Virtual Event, May 17-20, 2021, Proceedings, volume 12704 of
Lecture Notes in Computer Science, pages 227-251. Springer, 2021.

Sarah Azouvi and Daniele Cappelletti. Private attacks in longest chain proof-of-stake
protocols with single secret leader elections. In Foteini Baldimtsi and Tim Roughgar-
den, editors, AFT ’21: 8rd ACM Conference on Advances in Financial Technologies,
Arlington, Virginia, USA, September 26 - 28, 2021, pages 170-182. ACM, 2021.

Thomas Attema, Ronald Cramer, and Serge Fehr. Compressing proofs of k-out-of-n
partial knowledge. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part IV, volume 12828 of Lecture
Notes in Computer Science, pages 65-91. Springer, 2021.

Thomas Attema, Serge Fehr, and Michael Kloof}. Fiat-shamir transformation of multi-
round interactive proofs. TACR Cryptol. ePrint Arch., page 1377, 2021.

Benedikt Biinz, Jonathan Bootle, Dan Boneh, Andrew Poelstra, Pieter Wuille, and
Gregory Maxwell. Bulletproofs: Short proofs for confidential transactions and more.
In 2018 IEEE Symposium on Security and Privacy, SP 2018, Proceedings, 21-23 May
2018, San Francisco, California, USA, pages 315-334, 2018.

Jonathan Bootle, Andrea Cerulli, Pyrros Chaidos, Jens Groth, and Christophe Petit.
Efficient zero-knowledge arguments for arithmetic circuits in the discrete log setting. In
Advances in Cryptology - EUROCRYPT 2016 - 35th Annual International Conference
on the Theory and Applications of Cryptographic Techniques, Vienna, Austria, May
8-12, 2016, Proceedings, Part II, pages 327-357, 2016.

Ali Bagherzandi, Jung Hee Cheon, and Stanislaw Jarecki. Multisignatures secure under
the discrete logarithm assumption and a generalized forking lemma. In Peng Ning,
Paul F. Syverson, and Somesh Jha, editors, Proceedings of the 2008 ACM Conference
on Computer and Communications Security, CCS 2008, Alexandria, Virginia, USA,
October 27-31, 2008, pages 449-458. ACM, 2008.

Jonathan Bootle, Alessandro Chiesa, and Katerina Sotiraki. Sumcheck arguments and
their applications. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology

72

[BEHG20]

[BG12]

[BMM™*21]

[BNO6]

[CFG21]

[Cha03]

[CMM19]

[DK00]

[FLSZ17]

- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part I, volume 12825 of Lecture Notes
in Computer Science, pages 742—773. Springer, 2021.

Dan Boneh, Saba Eskandarian, Lucjan Hanzlik, and Nicola Greco. Single secret leader
election. In AFT ’20: 2nd ACM Conference on Advances in Financial Technologies,
New York, NY, USA, October 21-23, 2020, pages 12-24. ACM, 2020.

Stephanie Bayer and Jens Groth. Efficient zero-knowledge argument for correctness of
a shuffle. In Advances in Cryptology - EUROCRYPT 2012 - 31st Annual International
Conference on the Theory and Applications of Cryptographic Techniques, Cambridge,
UK, April 15-19, 2012. Proceedings, pages 263—280, 2012.

Benedikt Biinz, Mary Maller, Pratyush Mishra, Nirvan Tyagi, and Psi Vesely. Proofs
for inner pairing products and applications. In Mehdi Tibouchi and Huaxiong Wang,
editors, Advances in Cryptology - ASTACRYPT 2021 - 27th International Conference
on the Theory and Application of Cryptology and Information Security, Singapore,
December 6-10, 2021, Proceedings, Part I11, volume 13092 of Lecture Notes in Computer
Science, pages 65-97. Springer, 2021.

Mihir Bellare and Gregory Neven. Multi-signatures in the plain public-key model and
a general forking lemma. In Ari Juels, Rebecca N. Wright, and Sabrina De Capi-
tani di Vimercati, editors, Proceedings of the 13th ACM Conference on Computer and
Communications Security, CCS 2006, Alexandria, VA, USA, October 30 - November
3, 2006, pages 390-399. ACM, 2006.

Dario Catalano, Dario Fiore, and Emanuele Giunta. Efficient and universally compos-
able single secret leader election from pairings. TACR Cryptol. ePrint Arch., page 344,
2021.

David Chaum. Untraceable electronic mail, return addresses and digital pseudonyms.
In Dimitris Gritzalis, editor, Secure Electronic Voting, volume 7 of Advances in Infor-
mation Security, pages 211-219. Springer, 2003.

Ntria Costa, Ramiro Martinez, and Paz Morillo. Lattice-based proof of a shuffle. In An-
drea Bracciali, Jeremy Clark, Federico Pintore, Peter B. Rgnne, and Massimiliano Sala,
editors, Financial Cryptography and Data Security - FC 2019 International Workshops,
VOTING and WTSC, St. Kitts, St. Kitts and Nevis, February 18-22, 2019, Revised
Selected Papers, volume 11599 of Lecture Notes in Computer Science, pages 330-346.
Springer, 2019.

Yvo Desmedt and Kaoru Kurosawa. How to break a practical MIX and design a new
one. In Bart Preneel, editor, Advances in Cryptology - EUROCRYPT 2000, Interna-
tional Conference on the Theory and Application of Cryptographic Techniques, Bruges,
Belgium, May 14-18, 2000, Proceeding, volume 1807 of Lecture Notes in Computer
Science, pages 557-572. Springer, 2000.

Prastudy Fauzi, Helger Lipmaa, Janno Siim, and Michal Zajac. An efficient pairing-
based shuffle argument. In Tsuyoshi Takagi and Thomas Peyrin, editors, Advances in

73

[GT21]

[HKR19]

[HMS21]

[JT20]

[LMR19]

[Nef01]

[RMM21]

[Wik21]

Cryptology - ASIACRYPT 2017 - 23rd International Conference on the Theory and
Applications of Cryptology and Information Security, Hong Kong, China, December
3-7, 2017, Proceedings, Part II, volume 10625 of Lecture Notes in Computer Science,
pages 97-127. Springer, 2017.

Ashrujit Ghoshal and Stefano Tessaro. Tight state-restoration soundness in the alge-
braic group model. In Tal Malkin and Chris Peikert, editors, Advances in Cryptology
- CRYPTO 2021 - 41st Annual International Cryptology Conference, CRYPTO 2021,
Virtual Event, August 16-20, 2021, Proceedings, Part III, volume 12827 of Lecture
Notes in Computer Science, pages 64-93. Springer, 2021.

Max Hoffmann, Michael Kloof}, and Andy Rupp. Efficient zero-knowledge arguments
in the discrete log setting, revisited. In Lorenzo Cavallaro, Johannes Kinder, XiaoFeng
Wang, and Jonathan Katz, editors, Proceedings of the 2019 ACM SIGSAC Conference
on Computer and Communications Security, CCS 2019, London, UK, November 11-15,
2019, pages 2093-2110. ACM, 2019.

Javier Herranz, Ramiro Martinez, and Manuel Sanchez. Shorter lattice-based zero-
knowledge proofs for the correctness of a shuffle. In Matthew Bernhard, Andrea Brac-
ciali, Lewis Gudgeon, Thomas Haines, Ariah Klages-Mundt, Shin’ichiro Matsuo, Daniel
Perez, Massimiliano Sala, and Sam Werner, editors, Financial Cryptography and Data
Security. FC 2021 International Workshops - CoDecFin, DeFi, VOTING, and WTSC,
Virtual Event, March 5, 2021, Revised Selected Papers, volume 12676 of Lecture Notes
in Computer Science, pages 315-329. Springer, 2021.

Joseph Jaeger and Stefano Tessaro. Expected-time cryptography: Generic techniques
and applications to concrete soundness. In Rafael Pass and Krzysztof Pietrzak, editors,
Theory of Cryptography - 18th International Conference, TCC 2020, Durham, NC,
USA, November 16-19, 2020, Proceedings, Part III, volume 12552 of Lecture Notes in
Computer Science, pages 414-443. Springer, 2020.

Russell W. F. Lai, Giulio Malavolta, and Viktoria Ronge. Succinct arguments for
bilinear group arithmetic: Practical structure-preserving cryptography. In Lorenzo
Cavallaro, Johannes Kinder, XiaoFeng Wang, and Jonathan Katz, editors, Proceedings
of the 2019 ACM SIGSAC Conference on Computer and Communications Security,
CCS 2019, London, UK, November 11-15, 2019, pages 2057-2074. ACM, 2019.

C. Andrew Neff. A verifiable secret shuffle and its application to e-voting. In Michael K.
Reiter and Pierangela Samarati, editors, CCS 2001, Proceedings of the 8th ACM Con-
ference on Computer and Communications Security, Philadelphia, Pennsylvania, USA,
November 6-8, 2001, pages 116-125. ACM, 2001.

Michael Rosenberg, Mary Maller, and Ian Miers. Snarkblock: Federated anonymous
blocklisting from hidden common input aggregate proofs. IACR Cryptol. ePrint Arch.,
page 1577, 2021.

Douglas Wikstom. Special soundness in the random oracle model. TACR Cryptol.
ePrint Arch., page 1265, 2021.

74

[WTS*18] Riad S. Wahby, Ioanna Tzialla, Abhi Shelat, Justin Thaler, and Michael Walfish.
Doubly-efficient zksnarks without trusted setup. In 2018 IEEE Symposium on Se-

curity and Privacy, SP 2018, Proceedings, 21-23 May 2018, San Francisco, California,
USA, pages 926-943. IEEE Computer Society, 2018.

75

	Introduction
	Preliminaries
	Public Coin Setup

	Full Curdleproofs Construction
	Problem Statement
	Curdleproofs Construction
	Informal Overview
	Relations
	 Full Zero Knowledge Construction
	Security

	SameScalar Argument
	Full Zero-Knowledge Construction
	Security

	SameMultiscalar Argument
	Informal Overview
	 Full Zero Knowledge Construction
	Security

	Same Permutation Argument
	Same Permutation Argument
	Neff's Trick
	Informal Overview
	GrandProd Relation
	 Full Zero Knowledge Same-Permutation Construction
	Security

	Grand-Product Argument
	Informal Overview
	Discrete Logarithm Inner Product Relation
	Full Zero Knowledge Grand Product Construction
	Grand-Product Security

	Discrete Logarithm Inner Product Argument
	Informal Overview
	Full Zero-Knowledge DL Inner Product Construction
	Security

	Efficiency
	Full Curdleproofs Construction Efficiency
	Verifier Optimisation: Accumulate MSM Operations

	Breakdown of Efficiency
	Same Scalar Efficiency
	Same Multiscalar Efficiency
	Same Permutation Efficiency

	Figures of Optimised Constructions

	Deferred Security Preliminaries
	Generalised Inner Product Arguments
	The Generalized Forking Lemma

