[net] # Testing #batch=1 #subdivisions=1 # Training batch=64 subdivisions=16 width=512 height=512 channels=3 momentum=0.9 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.0001 burn_in=1000 max_batches = 500200 policy=steps steps=400000,450000 scales=.1,.1 max_epochs = 300 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky # Downsample [convolutional] batch_normalize=1 filters=64 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=32 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear # Downsample [convolutional] batch_normalize=1 filters=128 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear # Downsample [convolutional] batch_normalize=1 filters=256 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear # Downsample [convolutional] batch_normalize=1 filters=512 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear # Downsample [convolutional] batch_normalize=1 filters=1024 size=3 stride=2 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [shortcut] from=-3 activation=linear ###################### [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1024 activation=leaky [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1024 activation=leaky [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=1024 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=57 activation=linear [Gaussian_yolo] mask = 6,7,8 anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291 classes=10 num=9 jitter=.3 ignore_thresh = .5 truth_thresh = 1 iou_thresh=0.213 uc_normalizer=1.0 cls_normalizer=1.0 iou_normalizer=0.5 iou_loss=giou scale_x_y=1.0 random=1 [route] layers = -4 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 61 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=leaky [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=leaky [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=57 activation=linear [Gaussian_yolo] mask = 3,4,5 anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291 classes=10 num=9 jitter=.3 ignore_thresh = .5 truth_thresh = 1 iou_thresh=0.213 uc_normalizer=1.0 cls_normalizer=1.0 iou_normalizer=0.5 iou_loss=giou scale_x_y=1.0 random=1 [route] layers = -4 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [upsample] stride=2 [route] layers = -1, 36 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=leaky [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=leaky [convolutional] size=1 stride=1 pad=1 filters=57 activation=linear [Gaussian_yolo] mask = 0,1,2 anchors = 7,10, 14,24, 27,43, 32,97, 57,64, 92,109, 73,175, 141,178, 144,291 classes=10 num=9 jitter=.3 ignore_thresh = .5 truth_thresh = 1 iou_thresh=0.213 uc_normalizer=1.0 cls_normalizer=1.0 iou_normalizer=0.5 iou_loss=giou scale_x_y=1.0 random=1