[net] batch=128 subdivisions=1 height=32 width=32 channels=3 momentum=0.9 decay=0.0005 learning_rate=0.4 policy=poly power=4 max_batches = 50000 [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [dropout] probability=.5 [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [dropout] probability=.5 [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [convolutional] batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [dropout] probability=.5 [convolutional] filters=10 size=1 stride=1 pad=1 activation=leaky [avgpool] [softmax] groups=1 temperature=3 [cost]