[net] # Testing #batch=1 #subdivisions=1 # Training batch=64 subdivisions=16 #width=1536 #height=1536 width=896 height=896 channels=3 momentum=0.949 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.001 burn_in=1000 max_batches = 500500 policy=steps steps=400000,450000 scales=.1,.1 mosaic=1 letter_box=1 ### Start of Backbone ### [convolutional] batch_normalize=1 filters=80 size=3 stride=1 pad=1 activation=mish # Downsample [convolutional] batch_normalize=1 filters=80 size=3 stride=2 pad=1 activation=mish [convolutional] batch_normalize=1 filters=40 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=80 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Downsample [convolutional] batch_normalize=1 filters=160 size=3 stride=2 pad=1 activation=mish [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=80 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=80 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=80 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=80 size=1 stride=1 pad=1 activation=mish [route] layers = -1,-13 [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish # Downsample [convolutional] batch_normalize=1 filters=320 size=3 stride=2 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=160 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=160 size=1 stride=1 pad=1 activation=mish [route] layers = -1,-49 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish # Downsample [convolutional] batch_normalize=1 filters=640 size=3 stride=2 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [route] layers = -1,-49 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish # Downsample [convolutional] batch_normalize=1 filters=1280 size=3 stride=2 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -1,-25 [convolutional] batch_normalize=1 filters=1280 size=1 stride=1 pad=1 activation=mish # Downsample [convolutional] batch_normalize=1 filters=1280 size=3 stride=2 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -1,-25 [convolutional] batch_normalize=1 filters=1280 size=1 stride=1 pad=1 activation=mish # Downsample [convolutional] batch_normalize=1 filters=1280 size=3 stride=2 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -1,-25 [convolutional] batch_normalize=1 filters=1280 size=1 stride=1 pad=1 activation=mish ### End of backbone ### ### Start of CSPSPP ### [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [maxpool] stride=1 size=5 [route] layers=-2 [maxpool] stride=1 size=9 [route] layers=-4 [maxpool] stride=1 size=13 [route] layers=-1,-3,-5,-6 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1, -13 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish ### End of CSPSPP ### ### Start of CSPPAN ### [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 180 ###P6 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1, -8 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 152 ###P5 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1, -8 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 124 ###P4 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [route] layers = -1, -8 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 72 ###P3 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=mish [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=mish [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=mish [route] layers = -1, -8 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=320 activation=mish [route] layers = -1, 271 ###S4 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=320 activation=mish [route] layers = -1, -8 [convolutional] batch_normalize=1 filters=320 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=640 activation=mish [route] layers = -1, 255 ###S5 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1, -8 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=640 activation=mish [route] layers = -1, 239 ###S6 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1, -8 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=640 activation=mish [route] layers = -1, 223 ###S7 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=640 activation=mish [route] layers = -1, -8 [convolutional] batch_normalize=1 filters=640 size=1 stride=1 pad=1 activation=mish ### End of CSPPAN ### ### Start of YOLO ### [route] layers = 287 ### [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=320 activation=mish [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=320 activation=logistic [sam] from=-2 [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=320 activation=mish [convolutional] size=1 stride=1 pad=1 #filters=340 filters=170 activation=linear #[route] #layers=-1 [yolo] mask = 0,1 anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 classes=80 num=16 #jitter=.3 ignore_thresh = .7 truth_thresh = 1 resize=1.5 scale_x_y = 1.05 ##iou_thresh=0.213 #cls_normalizer=1.0 #iou_normalizer=0.07 jitter=.1 #objectness_smooth=1 ##iou_thresh=0.2 iou_normalizer=0.05 cls_normalizer=0.5 obj_normalizer=4.0 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 #counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 #max_delta=3 [route] layers = 300 ### [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=640 activation=mish [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=640 activation=logistic [sam] from=-2 [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=640 activation=mish [convolutional] size=1 stride=1 pad=1 #filters=340 filters=255 activation=linear [yolo] mask = 1,2,3 anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 classes=80 num=16 #jitter=.3 ignore_thresh = .7 truth_thresh = 1 resize=1.5 scale_x_y = 1.05 ##iou_thresh=0.213 #cls_normalizer=1.0 #iou_normalizer=0.07 jitter=.1 #objectness_smooth=1 #iou_thresh=0.2 iou_normalizer=0.05 cls_normalizer=0.5 obj_normalizer=1.0 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 #counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 #max_delta=3 [route] layers = 313 ### [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=1280 activation=mish [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=1280 activation=logistic [sam] from=-2 [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=1280 activation=mish [convolutional] size=1 stride=1 pad=1 filters=340 activation=linear [yolo] mask = 4,5,6,7 anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 classes=80 num=16 #jitter=.3 ignore_thresh = .7 truth_thresh = 1 resize=1.5 scale_x_y = 1.05 ##iou_thresh=0.213 #cls_normalizer=1.0 #iou_normalizer=0.07 jitter=.1 objectness_smooth=1 #iou_thresh=0.2 iou_normalizer=0.05 cls_normalizer=0.5 obj_normalizer=0.5 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 max_delta=3 [route] layers = 326 ### [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=1280 activation=mish [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=1280 activation=logistic [sam] from=-2 [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=1280 activation=mish [convolutional] size=1 stride=1 pad=1 filters=340 activation=linear [yolo] mask = 8,9,10,11 anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 classes=80 num=16 #jitter=.3 ignore_thresh = .7 truth_thresh = 1 resize=1.5 scale_x_y = 1.05 ##iou_thresh=0.213 #cls_normalizer=1.0 #iou_normalizer=0.07 jitter=.1 objectness_smooth=1 #iou_thresh=0.2 iou_normalizer=0.05 cls_normalizer=0.5 obj_normalizer=0.4 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 max_delta=3 [route] layers = 339 ### [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=1280 activation=mish [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=1280 activation=logistic [sam] from=-2 [convolutional] batch_normalize=1 size=1 stride=1 pad=1 filters=1280 activation=mish [convolutional] size=1 stride=1 pad=1 filters=340 activation=linear [yolo] mask = 12,13,14,15 anchors = 13,17, 31,25, 24,51, 61,45 61,45, 48,102, 119,96, 97,189, 97,189, 217,184, 171,384, 324,451, 324,451, 545,357, 616,618, 800,800 classes=80 num=16 #jitter=.3 ignore_thresh = .7 truth_thresh = 1 resize=1.5 scale_x_y = 1.05 ##iou_thresh=0.213 #cls_normalizer=1.0 #iou_normalizer=0.07 jitter=.1 objectness_smooth=1 #iou_thresh=0.2 iou_normalizer=0.05 cls_normalizer=0.5 obj_normalizer=0.1 iou_loss=ciou nms_kind=greedynms beta_nms=0.6 #counters_per_class = 26575, 7113, 44338, 8730, 5154, 6100, 4550, 10038, 10832, 13016, 1883, 1974, 1287, 9787, 10883, 4776, 5507, 6562, 9724, 8171, 5491, 1312, 5296, 5193, 8707, 11531, 12415, 6470, 6214, 2688, 6605, 2665, 6393, 9159, 3300, 3756, 5508, 6143, 4854, 24516, 7914, 20710, 5466, 7810, 6168, 14398, 9603, 5941, 4403, 6561, 7308, 7885, 2908, 5892, 7401, 6466, 38878, 5804, 8585, 4160, 15789, 4157, 5836, 4964, 2273, 5746, 2891, 6411, 1641, 3335, 223, 5624, 2658, 25244, 6320, 6539, 1464, 4775, 198, 1937 max_delta=3 ### End of YOLO ###