[net] batch=1 subdivisions=1 height=448 width=448 channels=3 momentum=0.9 decay=0.0005 learning_rate=0.0001 policy=steps steps=20,40,60,80,20000,30000 scales=5,5,2,2,.1,.1 max_batches = 40000 [convolutional] batch_normalize=1 filters=16 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=512 size=3 stride=1 pad=1 activation=leaky [maxpool] size=2 stride=2 [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=1024 size=3 stride=1 pad=1 activation=leaky [batchnorm] [convolutional] xnor = 1 batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=leaky [connected] output= 1470 activation=linear [detection] classes=20 coords=4 rescore=1 side=7 num=2 softmax=0 sqrt=1 jitter=.2 object_scale=1 noobject_scale=.5 class_scale=1 coord_scale=5