[net] # Testing #batch=1 #subdivisions=1 # Training batch=64 subdivisions=8 width=640 height=640 channels=3 momentum=0.949 decay=0.0005 angle=0 saturation = 1.5 exposure = 1.5 hue=.1 learning_rate=0.00261 burn_in=1000 max_batches = 500500 policy=steps steps=400000,450000 scales=.1,.1 mosaic=1 letter_box=1 ema_alpha=0.9998 #optimized_memory=1 # ============ Backbone ============ # # Stem # 0 [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=mish # P1 # Downsample [convolutional] batch_normalize=1 filters=32 size=3 stride=2 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=32 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=mish # 4 (previous+1+3k) [shortcut] from=-3 activation=linear # P2 # Downsample [convolutional] batch_normalize=1 filters=64 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=32 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=32 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=32 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=32 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=32 size=1 stride=1 pad=1 activation=mish # Merge [-1, -(3k+4)] [route] layers = -1,-7 # Transition last # 14 (previous+7+3k) [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish # P3 # Downsample [convolutional] batch_normalize=1 filters=128 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=64 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish # Merge [-1 -(4+3k)] [route] layers = -1,-7 # Transition last # 24 (previous+7+3k) [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish # P4 # Downsample [convolutional] batch_normalize=1 filters=256 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=128 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish # Merge [-1 -(3k+4)] [route] layers = -1,-7 # Transition last # 34 (previous+7+3k) [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish # P5 # Downsample [convolutional] batch_normalize=1 filters=512 size=3 stride=2 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish # Residual Block [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 filters=256 size=3 stride=1 pad=1 activation=mish [shortcut] from=-3 activation=linear # Transition first [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish # Merge [-1 -(3k+4)] [route] layers = -1,-7 # Transition last # 44 (previous+7+3k) [convolutional] batch_normalize=1 filters=512 size=1 stride=1 pad=1 activation=mish # ============ End of Backbone ============ # # ============ Neck ============ # # CSPSPP [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish [route] layers = -2 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish ### SPP ### [maxpool] stride=1 size=5 [route] layers=-2 [maxpool] stride=1 size=9 [route] layers=-4 [maxpool] stride=1 size=13 [route] layers=-1,-3,-5,-6 ### End SPP ### [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=mish [route] layers = -1, -11 # 57 (previous+6+5+2k) [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish # End of CSPSPP # FPN-4 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 34 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=mish # Merge [-1, -(2k+2)] [route] layers = -1, -4 # Transition last # 69 (previous+6+4+2k) [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish # FPN-3 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish [upsample] stride=2 [route] layers = 24 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish [route] layers = -1, -3 [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=64 activation=mish # Merge [-1, -(2k+2)] [route] layers = -1, -4 # Transition last # 81 (previous+6+4+2k) [convolutional] batch_normalize=1 filters=64 size=1 stride=1 pad=1 activation=mish # PAN-4 [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=128 activation=mish [route] layers = -1, 69 [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=mish [route] layers = -1,-4 # Transition last # 90 (previous+3+4+2k) [convolutional] batch_normalize=1 filters=128 size=1 stride=1 pad=1 activation=mish # PAN-5 [convolutional] batch_normalize=1 size=3 stride=2 pad=1 filters=256 activation=mish [route] layers = -1, 57 [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish # Split [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish [route] layers = -2 # Plain Block [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=mish [route] layers = -1,-4 # Transition last # 99 (previous+3+4+2k) [convolutional] batch_normalize=1 filters=256 size=1 stride=1 pad=1 activation=mish # ============ End of Neck ============ # # ============ Head ============ # # YOLO-3 [route] layers = 81 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=128 activation=mish [convolutional] size=1 stride=1 pad=1 filters=255 activation=logistic [yolo] mask = 0,1,2 anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 classes=80 num=9 jitter=.1 scale_x_y = 2.0 objectness_smooth=1 ignore_thresh = .7 truth_thresh = 1 #random=1 resize=1.5 #iou_thresh=0.2 iou_normalizer=0.05 cls_normalizer=0.5 obj_normalizer=0.4 iou_loss=ciou nms_kind=diounms beta_nms=0.6 new_coords=1 max_delta=2 # YOLO-4 [route] layers = 90 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=256 activation=mish [convolutional] size=1 stride=1 pad=1 filters=255 activation=logistic [yolo] mask = 3,4,5 anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 classes=80 num=9 jitter=.1 scale_x_y = 2.0 objectness_smooth=1 ignore_thresh = .7 truth_thresh = 1 #random=1 resize=1.5 #iou_thresh=0.2 iou_normalizer=0.05 cls_normalizer=0.5 obj_normalizer=0.4 iou_loss=ciou nms_kind=diounms beta_nms=0.6 new_coords=1 max_delta=2 # YOLO-5 [route] layers = 99 [convolutional] batch_normalize=1 size=3 stride=1 pad=1 filters=512 activation=mish [convolutional] size=1 stride=1 pad=1 filters=255 activation=logistic [yolo] mask = 6,7,8 anchors = 12, 16, 19, 36, 40, 28, 36, 75, 76, 55, 72, 146, 142, 110, 192, 243, 459, 401 classes=80 num=9 jitter=.1 scale_x_y = 2.0 objectness_smooth=1 ignore_thresh = .7 truth_thresh = 1 #random=1 resize=1.5 #iou_thresh=0.2 iou_normalizer=0.05 cls_normalizer=0.5 obj_normalizer=0.4 iou_loss=ciou nms_kind=diounms beta_nms=0.6 new_coords=1 max_delta=2