#!/usr/bin/env python # Adapt from -> # -------------------------------------------------------- # Fast R-CNN # Copyright (c) 2015 Microsoft # Licensed under The MIT License [see LICENSE for details] # Written by Ross Girshick # -------------------------------------------------------- # <- Written by Yaping Sun """Reval = re-eval. Re-evaluate saved detections.""" import os, sys, argparse import numpy as np import _pickle as cPickle #import cPickle from voc_eval_py3 import voc_eval def parse_args(): """ Parse input arguments """ parser = argparse.ArgumentParser(description='Re-evaluate results') parser.add_argument('output_dir', nargs=1, help='results directory', type=str) parser.add_argument('--voc_dir', dest='voc_dir', default='data/VOCdevkit', type=str) parser.add_argument('--year', dest='year', default='2017', type=str) parser.add_argument('--image_set', dest='image_set', default='test', type=str) parser.add_argument('--classes', dest='class_file', default='data/voc.names', type=str) if len(sys.argv) == 1: parser.print_help() sys.exit(1) args = parser.parse_args() return args def get_voc_results_file_template(image_set, out_dir = 'results'): filename = 'comp4_det_' + image_set + '_{:s}.txt' path = os.path.join(out_dir, filename) return path def do_python_eval(devkit_path, year, image_set, classes, output_dir = 'results'): annopath = os.path.join( devkit_path, 'VOC' + year, 'Annotations', '{}.xml') imagesetfile = os.path.join( devkit_path, 'VOC' + year, 'ImageSets', 'Main', image_set + '.txt') cachedir = os.path.join(devkit_path, 'annotations_cache') aps = [] # The PASCAL VOC metric changed in 2010 use_07_metric = True if int(year) < 2010 else False print('VOC07 metric? ' + ('Yes' if use_07_metric else 'No')) print('devkit_path=',devkit_path,', year = ',year) if not os.path.isdir(output_dir): os.mkdir(output_dir) for i, cls in enumerate(classes): if cls == '__background__': continue filename = get_voc_results_file_template(image_set).format(cls) rec, prec, ap = voc_eval( filename, annopath, imagesetfile, cls, cachedir, ovthresh=0.5, use_07_metric=use_07_metric) aps += [ap] print('AP for {} = {:.4f}'.format(cls, ap)) with open(os.path.join(output_dir, cls + '_pr.pkl'), 'wb') as f: cPickle.dump({'rec': rec, 'prec': prec, 'ap': ap}, f) print('Mean AP = {:.4f}'.format(np.mean(aps))) print('~~~~~~~~') print('Results:') for ap in aps: print('{:.3f}'.format(ap)) print('{:.3f}'.format(np.mean(aps))) print('~~~~~~~~') print('') print('--------------------------------------------------------------') print('Results computed with the **unofficial** Python eval code.') print('Results should be very close to the official MATLAB eval code.') print('-- Thanks, The Management') print('--------------------------------------------------------------') if __name__ == '__main__': args = parse_args() output_dir = os.path.abspath(args.output_dir[0]) with open(args.class_file, 'r') as f: lines = f.readlines() classes = [t.strip('\n') for t in lines] print('Evaluating detections') do_python_eval(args.voc_dir, args.year, args.image_set, classes, output_dir)