// Copyright 2022 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.aiplatform.v1; import "google/api/field_behavior.proto"; import "google/api/resource.proto"; import "google/cloud/aiplatform/v1/deployed_model_ref.proto"; import "google/cloud/aiplatform/v1/encryption_spec.proto"; import "google/cloud/aiplatform/v1/env_var.proto"; import "google/cloud/aiplatform/v1/explanation.proto"; import "google/protobuf/struct.proto"; import "google/protobuf/timestamp.proto"; option csharp_namespace = "Google.Cloud.AIPlatform.V1"; option go_package = "google.golang.org/genproto/googleapis/cloud/aiplatform/v1;aiplatform"; option java_multiple_files = true; option java_outer_classname = "ModelProto"; option java_package = "com.google.cloud.aiplatform.v1"; option php_namespace = "Google\\Cloud\\AIPlatform\\V1"; option ruby_package = "Google::Cloud::AIPlatform::V1"; // A trained machine learning Model. message Model { option (google.api.resource) = { type: "aiplatform.googleapis.com/Model" pattern: "projects/{project}/locations/{location}/models/{model}" }; // Represents export format supported by the Model. // All formats export to Google Cloud Storage. message ExportFormat { // The Model content that can be exported. enum ExportableContent { // Should not be used. EXPORTABLE_CONTENT_UNSPECIFIED = 0; // Model artifact and any of its supported files. Will be exported to the // location specified by the `artifactDestination` field of the // [ExportModelRequest.output_config][google.cloud.aiplatform.v1.ExportModelRequest.output_config] object. ARTIFACT = 1; // The container image that is to be used when deploying this Model. Will // be exported to the location specified by the `imageDestination` field // of the [ExportModelRequest.output_config][google.cloud.aiplatform.v1.ExportModelRequest.output_config] object. IMAGE = 2; } // Output only. The ID of the export format. // The possible format IDs are: // // * `tflite` // Used for Android mobile devices. // // * `edgetpu-tflite` // Used for [Edge TPU](https://cloud.google.com/edge-tpu/) devices. // // * `tf-saved-model` // A tensorflow model in SavedModel format. // // * `tf-js` // A [TensorFlow.js](https://www.tensorflow.org/js) model that can be used // in the browser and in Node.js using JavaScript. // // * `core-ml` // Used for iOS mobile devices. // // * `custom-trained` // A Model that was uploaded or trained by custom code. string id = 1 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The content of this Model that may be exported. repeated ExportableContent exportable_contents = 2 [(google.api.field_behavior) = OUTPUT_ONLY]; } // Identifies a type of Model's prediction resources. enum DeploymentResourcesType { // Should not be used. DEPLOYMENT_RESOURCES_TYPE_UNSPECIFIED = 0; // Resources that are dedicated to the [DeployedModel][google.cloud.aiplatform.v1.DeployedModel], and that need a // higher degree of manual configuration. DEDICATED_RESOURCES = 1; // Resources that to large degree are decided by Vertex AI, and require // only a modest additional configuration. AUTOMATIC_RESOURCES = 2; // Resources that can be shared by multiple [DeployedModels][google.cloud.aiplatform.v1.DeployedModel]. // A pre-configured [DeploymentResourcePool][] is required. SHARED_RESOURCES = 3; } // The resource name of the Model. string name = 1; // Output only. Immutable. The version ID of the model. // A new version is committed when a new model version is uploaded or // trained under an existing model id. It is an auto-incrementing decimal // number in string representation. string version_id = 28 [ (google.api.field_behavior) = IMMUTABLE, (google.api.field_behavior) = OUTPUT_ONLY ]; // User provided version aliases so that a model version can be referenced via // alias (i.e. // projects/{project}/locations/{location}/models/{model_id}@{version_alias} // instead of auto-generated version id (i.e. // projects/{project}/locations/{location}/models/{model_id}@{version_id}). // The format is [a-z][a-zA-Z0-9-]{0,126}[a-z0-9] to distinguish from // version_id. A default version alias will be created for the first version // of the model, and there must be exactly one default version alias for a // model. repeated string version_aliases = 29; // Output only. Timestamp when this version was created. google.protobuf.Timestamp version_create_time = 31 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Timestamp when this version was most recently updated. google.protobuf.Timestamp version_update_time = 32 [(google.api.field_behavior) = OUTPUT_ONLY]; // Required. The display name of the Model. // The name can be up to 128 characters long and can be consist of any UTF-8 // characters. string display_name = 2 [(google.api.field_behavior) = REQUIRED]; // The description of the Model. string description = 3; // The description of this version. string version_description = 30; // The schemata that describe formats of the Model's predictions and // explanations as given and returned via // [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] and [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain]. PredictSchemata predict_schemata = 4; // Immutable. Points to a YAML file stored on Google Cloud Storage describing additional // information about the Model, that is specific to it. Unset if the Model // does not have any additional information. // The schema is defined as an OpenAPI 3.0.2 [Schema // Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). // AutoML Models always have this field populated by Vertex AI, if no // additional metadata is needed, this field is set to an empty string. // Note: The URI given on output will be immutable and probably different, // including the URI scheme, than the one given on input. The output URI will // point to a location where the user only has a read access. string metadata_schema_uri = 5 [(google.api.field_behavior) = IMMUTABLE]; // Immutable. An additional information about the Model; the schema of the metadata can // be found in [metadata_schema][google.cloud.aiplatform.v1.Model.metadata_schema_uri]. // Unset if the Model does not have any additional information. google.protobuf.Value metadata = 6 [(google.api.field_behavior) = IMMUTABLE]; // Output only. The formats in which this Model may be exported. If empty, this Model is // not available for export. repeated ExportFormat supported_export_formats = 20 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The resource name of the TrainingPipeline that uploaded this Model, if // any. string training_pipeline = 7 [ (google.api.field_behavior) = OUTPUT_ONLY, (google.api.resource_reference) = { type: "aiplatform.googleapis.com/TrainingPipeline" } ]; // Input only. The specification of the container that is to be used when deploying // this Model. The specification is ingested upon // [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel], and all binaries it contains are copied // and stored internally by Vertex AI. // Not present for AutoML Models. ModelContainerSpec container_spec = 9 [(google.api.field_behavior) = INPUT_ONLY]; // Immutable. The path to the directory containing the Model artifact and any of its // supporting files. // Not present for AutoML Models. string artifact_uri = 26 [(google.api.field_behavior) = IMMUTABLE]; // Output only. When this Model is deployed, its prediction resources are described by the // `prediction_resources` field of the [Endpoint.deployed_models][google.cloud.aiplatform.v1.Endpoint.deployed_models] object. // Because not all Models support all resource configuration types, the // configuration types this Model supports are listed here. If no // configuration types are listed, the Model cannot be deployed to an // [Endpoint][google.cloud.aiplatform.v1.Endpoint] and does not support // online predictions ([PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or // [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain]). Such a Model can serve predictions by // using a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob], if it has at least one entry each in // [supported_input_storage_formats][google.cloud.aiplatform.v1.Model.supported_input_storage_formats] and // [supported_output_storage_formats][google.cloud.aiplatform.v1.Model.supported_output_storage_formats]. repeated DeploymentResourcesType supported_deployment_resources_types = 10 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The formats this Model supports in // [BatchPredictionJob.input_config][google.cloud.aiplatform.v1.BatchPredictionJob.input_config]. If // [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] exists, the instances // should be given as per that schema. // // The possible formats are: // // * `jsonl` // The JSON Lines format, where each instance is a single line. Uses // [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source]. // // * `csv` // The CSV format, where each instance is a single comma-separated line. // The first line in the file is the header, containing comma-separated field // names. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source]. // // * `tf-record` // The TFRecord format, where each instance is a single record in tfrecord // syntax. Uses [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source]. // // * `tf-record-gzip` // Similar to `tf-record`, but the file is gzipped. Uses // [GcsSource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.gcs_source]. // // * `bigquery` // Each instance is a single row in BigQuery. Uses // [BigQuerySource][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig.bigquery_source]. // // * `file-list` // Each line of the file is the location of an instance to process, uses // `gcs_source` field of the // [InputConfig][google.cloud.aiplatform.v1.BatchPredictionJob.InputConfig] object. // // // If this Model doesn't support any of these formats it means it cannot be // used with a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. However, if it has // [supported_deployment_resources_types][google.cloud.aiplatform.v1.Model.supported_deployment_resources_types], it could serve online // predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or // [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain]. repeated string supported_input_storage_formats = 11 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The formats this Model supports in // [BatchPredictionJob.output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config]. If both // [PredictSchemata.instance_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.instance_schema_uri] and // [PredictSchemata.prediction_schema_uri][google.cloud.aiplatform.v1.PredictSchemata.prediction_schema_uri] exist, the predictions // are returned together with their instances. In other words, the // prediction has the original instance data first, followed // by the actual prediction content (as per the schema). // // The possible formats are: // // * `jsonl` // The JSON Lines format, where each prediction is a single line. Uses // [GcsDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.gcs_destination]. // // * `csv` // The CSV format, where each prediction is a single comma-separated line. // The first line in the file is the header, containing comma-separated field // names. Uses // [GcsDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.gcs_destination]. // // * `bigquery` // Each prediction is a single row in a BigQuery table, uses // [BigQueryDestination][google.cloud.aiplatform.v1.BatchPredictionJob.OutputConfig.bigquery_destination] // . // // // If this Model doesn't support any of these formats it means it cannot be // used with a [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. However, if it has // [supported_deployment_resources_types][google.cloud.aiplatform.v1.Model.supported_deployment_resources_types], it could serve online // predictions by using [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict] or // [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain]. repeated string supported_output_storage_formats = 12 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Timestamp when this Model was uploaded into Vertex AI. google.protobuf.Timestamp create_time = 13 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Timestamp when this Model was most recently updated. google.protobuf.Timestamp update_time = 14 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. The pointers to DeployedModels created from this Model. Note that // Model could have been deployed to Endpoints in different Locations. repeated DeployedModelRef deployed_models = 15 [(google.api.field_behavior) = OUTPUT_ONLY]; // The default explanation specification for this Model. // // The Model can be used for [requesting // explanation][PredictionService.Explain] after being // [deployed][google.cloud.aiplatform.v1.EndpointService.DeployModel] if it is populated. // The Model can be used for [batch // explanation][BatchPredictionJob.generate_explanation] if it is populated. // // All fields of the explanation_spec can be overridden by // [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] of // [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1.DeployModelRequest.deployed_model], or // [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] of // [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. // // If the default explanation specification is not set for this Model, this // Model can still be used for [requesting // explanation][PredictionService.Explain] by setting // [explanation_spec][google.cloud.aiplatform.v1.DeployedModel.explanation_spec] of // [DeployModelRequest.deployed_model][google.cloud.aiplatform.v1.DeployModelRequest.deployed_model] and for [batch // explanation][BatchPredictionJob.generate_explanation] by setting // [explanation_spec][google.cloud.aiplatform.v1.BatchPredictionJob.explanation_spec] of // [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. ExplanationSpec explanation_spec = 23; // Used to perform consistent read-modify-write updates. If not set, a blind // "overwrite" update happens. string etag = 16; // The labels with user-defined metadata to organize your Models. // // Label keys and values can be no longer than 64 characters // (Unicode codepoints), can only contain lowercase letters, numeric // characters, underscores and dashes. International characters are allowed. // // See https://goo.gl/xmQnxf for more information and examples of labels. map labels = 17; // Customer-managed encryption key spec for a Model. If set, this // Model and all sub-resources of this Model will be secured by this key. EncryptionSpec encryption_spec = 24; // Output only. Source of a model. It can either be automl training pipeline, custom // training pipeline, BigQuery ML, or existing Vertex AI Model. ModelSourceInfo model_source_info = 38 [(google.api.field_behavior) = OUTPUT_ONLY]; } // Contains the schemata used in Model's predictions and explanations via // [PredictionService.Predict][google.cloud.aiplatform.v1.PredictionService.Predict], [PredictionService.Explain][google.cloud.aiplatform.v1.PredictionService.Explain] and // [BatchPredictionJob][google.cloud.aiplatform.v1.BatchPredictionJob]. message PredictSchemata { // Immutable. Points to a YAML file stored on Google Cloud Storage describing the format // of a single instance, which are used in [PredictRequest.instances][google.cloud.aiplatform.v1.PredictRequest.instances], // [ExplainRequest.instances][google.cloud.aiplatform.v1.ExplainRequest.instances] and // [BatchPredictionJob.input_config][google.cloud.aiplatform.v1.BatchPredictionJob.input_config]. // The schema is defined as an OpenAPI 3.0.2 [Schema // Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). // AutoML Models always have this field populated by Vertex AI. // Note: The URI given on output will be immutable and probably different, // including the URI scheme, than the one given on input. The output URI will // point to a location where the user only has a read access. string instance_schema_uri = 1 [(google.api.field_behavior) = IMMUTABLE]; // Immutable. Points to a YAML file stored on Google Cloud Storage describing the // parameters of prediction and explanation via // [PredictRequest.parameters][google.cloud.aiplatform.v1.PredictRequest.parameters], [ExplainRequest.parameters][google.cloud.aiplatform.v1.ExplainRequest.parameters] and // [BatchPredictionJob.model_parameters][google.cloud.aiplatform.v1.BatchPredictionJob.model_parameters]. // The schema is defined as an OpenAPI 3.0.2 [Schema // Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). // AutoML Models always have this field populated by Vertex AI, if no // parameters are supported, then it is set to an empty string. // Note: The URI given on output will be immutable and probably different, // including the URI scheme, than the one given on input. The output URI will // point to a location where the user only has a read access. string parameters_schema_uri = 2 [(google.api.field_behavior) = IMMUTABLE]; // Immutable. Points to a YAML file stored on Google Cloud Storage describing the format // of a single prediction produced by this Model, which are returned via // [PredictResponse.predictions][google.cloud.aiplatform.v1.PredictResponse.predictions], [ExplainResponse.explanations][google.cloud.aiplatform.v1.ExplainResponse.explanations], and // [BatchPredictionJob.output_config][google.cloud.aiplatform.v1.BatchPredictionJob.output_config]. // The schema is defined as an OpenAPI 3.0.2 [Schema // Object](https://github.com/OAI/OpenAPI-Specification/blob/main/versions/3.0.2.md#schemaObject). // AutoML Models always have this field populated by Vertex AI. // Note: The URI given on output will be immutable and probably different, // including the URI scheme, than the one given on input. The output URI will // point to a location where the user only has a read access. string prediction_schema_uri = 3 [(google.api.field_behavior) = IMMUTABLE]; } // Specification of a container for serving predictions. Some fields in this // message correspond to fields in the [Kubernetes Container v1 core // specification](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). message ModelContainerSpec { // Required. Immutable. URI of the Docker image to be used as the custom container for serving // predictions. This URI must identify an image in Artifact Registry or // Container Registry. Learn more about the [container publishing // requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#publishing), // including permissions requirements for the Vertex AI Service Agent. // // The container image is ingested upon [ModelService.UploadModel][google.cloud.aiplatform.v1.ModelService.UploadModel], stored // internally, and this original path is afterwards not used. // // To learn about the requirements for the Docker image itself, see // [Custom container // requirements](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#). // // You can use the URI to one of Vertex AI's [pre-built container images for // prediction](https://cloud.google.com/vertex-ai/docs/predictions/pre-built-containers) // in this field. string image_uri = 1 [ (google.api.field_behavior) = REQUIRED, (google.api.field_behavior) = IMMUTABLE ]; // Immutable. Specifies the command that runs when the container starts. This overrides // the container's // [ENTRYPOINT](https://docs.docker.com/engine/reference/builder/#entrypoint). // Specify this field as an array of executable and arguments, similar to a // Docker `ENTRYPOINT`'s "exec" form, not its "shell" form. // // If you do not specify this field, then the container's `ENTRYPOINT` runs, // in conjunction with the [args][google.cloud.aiplatform.v1.ModelContainerSpec.args] field or the // container's [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd), // if either exists. If this field is not specified and the container does not // have an `ENTRYPOINT`, then refer to the Docker documentation about [how // `CMD` and `ENTRYPOINT` // interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). // // If you specify this field, then you can also specify the `args` field to // provide additional arguments for this command. However, if you specify this // field, then the container's `CMD` is ignored. See the // [Kubernetes documentation about how the // `command` and `args` fields interact with a container's `ENTRYPOINT` and // `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). // // In this field, you can reference [environment variables set by Vertex // AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) // and environment variables set in the [env][google.cloud.aiplatform.v1.ModelContainerSpec.env] field. // You cannot reference environment variables set in the Docker image. In // order for environment variables to be expanded, reference them by using the // following syntax: // $(VARIABLE_NAME) // Note that this differs from Bash variable expansion, which does not use // parentheses. If a variable cannot be resolved, the reference in the input // string is used unchanged. To avoid variable expansion, you can escape this // syntax with `$$`; for example: // $$(VARIABLE_NAME) // This field corresponds to the `command` field of the Kubernetes Containers // [v1 core // API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). repeated string command = 2 [(google.api.field_behavior) = IMMUTABLE]; // Immutable. Specifies arguments for the command that runs when the container starts. // This overrides the container's // [`CMD`](https://docs.docker.com/engine/reference/builder/#cmd). Specify // this field as an array of executable and arguments, similar to a Docker // `CMD`'s "default parameters" form. // // If you don't specify this field but do specify the // [command][google.cloud.aiplatform.v1.ModelContainerSpec.command] field, then the command from the // `command` field runs without any additional arguments. See the // [Kubernetes documentation about how the // `command` and `args` fields interact with a container's `ENTRYPOINT` and // `CMD`](https://kubernetes.io/docs/tasks/inject-data-application/define-command-argument-container/#notes). // // If you don't specify this field and don't specify the `command` field, // then the container's // [`ENTRYPOINT`](https://docs.docker.com/engine/reference/builder/#cmd) and // `CMD` determine what runs based on their default behavior. See the Docker // documentation about [how `CMD` and `ENTRYPOINT` // interact](https://docs.docker.com/engine/reference/builder/#understand-how-cmd-and-entrypoint-interact). // // In this field, you can reference [environment variables // set by Vertex // AI](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables) // and environment variables set in the [env][google.cloud.aiplatform.v1.ModelContainerSpec.env] field. // You cannot reference environment variables set in the Docker image. In // order for environment variables to be expanded, reference them by using the // following syntax: // $(VARIABLE_NAME) // Note that this differs from Bash variable expansion, which does not use // parentheses. If a variable cannot be resolved, the reference in the input // string is used unchanged. To avoid variable expansion, you can escape this // syntax with `$$`; for example: // $$(VARIABLE_NAME) // This field corresponds to the `args` field of the Kubernetes Containers // [v1 core // API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). repeated string args = 3 [(google.api.field_behavior) = IMMUTABLE]; // Immutable. List of environment variables to set in the container. After the container // starts running, code running in the container can read these environment // variables. // // Additionally, the [command][google.cloud.aiplatform.v1.ModelContainerSpec.command] and // [args][google.cloud.aiplatform.v1.ModelContainerSpec.args] fields can reference these variables. Later // entries in this list can also reference earlier entries. For example, the // following example sets the variable `VAR_2` to have the value `foo bar`: // // ```json // [ // { // "name": "VAR_1", // "value": "foo" // }, // { // "name": "VAR_2", // "value": "$(VAR_1) bar" // } // ] // ``` // // If you switch the order of the variables in the example, then the expansion // does not occur. // // This field corresponds to the `env` field of the Kubernetes Containers // [v1 core // API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). repeated EnvVar env = 4 [(google.api.field_behavior) = IMMUTABLE]; // Immutable. List of ports to expose from the container. Vertex AI sends any // prediction requests that it receives to the first port on this list. Vertex // AI also sends // [liveness and health // checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#liveness) // to this port. // // If you do not specify this field, it defaults to following value: // // ```json // [ // { // "containerPort": 8080 // } // ] // ``` // // Vertex AI does not use ports other than the first one listed. This field // corresponds to the `ports` field of the Kubernetes Containers // [v1 core // API](https://kubernetes.io/docs/reference/generated/kubernetes-api/v1.23/#container-v1-core). repeated Port ports = 5 [(google.api.field_behavior) = IMMUTABLE]; // Immutable. HTTP path on the container to send prediction requests to. Vertex AI // forwards requests sent using // [projects.locations.endpoints.predict][google.cloud.aiplatform.v1.PredictionService.Predict] to this // path on the container's IP address and port. Vertex AI then returns the // container's response in the API response. // // For example, if you set this field to `/foo`, then when Vertex AI // receives a prediction request, it forwards the request body in a POST // request to the `/foo` path on the port of your container specified by the // first value of this `ModelContainerSpec`'s // [ports][google.cloud.aiplatform.v1.ModelContainerSpec.ports] field. // // If you don't specify this field, it defaults to the following value when // you [deploy this Model to an Endpoint][google.cloud.aiplatform.v1.EndpointService.DeployModel]: // /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict // The placeholders in this value are replaced as follows: // // * ENDPOINT: The last segment (following `endpoints/`)of the // Endpoint.name][] field of the Endpoint where this Model has been // deployed. (Vertex AI makes this value available to your container code // as the [`AIP_ENDPOINT_ID` environment // variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) // // * DEPLOYED_MODEL: [DeployedModel.id][google.cloud.aiplatform.v1.DeployedModel.id] of the `DeployedModel`. // (Vertex AI makes this value available to your container code // as the [`AIP_DEPLOYED_MODEL_ID` environment // variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) string predict_route = 6 [(google.api.field_behavior) = IMMUTABLE]; // Immutable. HTTP path on the container to send health checks to. Vertex AI // intermittently sends GET requests to this path on the container's IP // address and port to check that the container is healthy. Read more about // [health // checks](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#health). // // For example, if you set this field to `/bar`, then Vertex AI // intermittently sends a GET request to the `/bar` path on the port of your // container specified by the first value of this `ModelContainerSpec`'s // [ports][google.cloud.aiplatform.v1.ModelContainerSpec.ports] field. // // If you don't specify this field, it defaults to the following value when // you [deploy this Model to an Endpoint][google.cloud.aiplatform.v1.EndpointService.DeployModel]: // /v1/endpoints/ENDPOINT/deployedModels/DEPLOYED_MODEL:predict // The placeholders in this value are replaced as follows: // // * ENDPOINT: The last segment (following `endpoints/`)of the // Endpoint.name][] field of the Endpoint where this Model has been // deployed. (Vertex AI makes this value available to your container code // as the [`AIP_ENDPOINT_ID` environment // variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) // // * DEPLOYED_MODEL: [DeployedModel.id][google.cloud.aiplatform.v1.DeployedModel.id] of the `DeployedModel`. // (Vertex AI makes this value available to your container code as the // [`AIP_DEPLOYED_MODEL_ID` environment // variable](https://cloud.google.com/vertex-ai/docs/predictions/custom-container-requirements#aip-variables).) string health_route = 7 [(google.api.field_behavior) = IMMUTABLE]; } // Represents a network port in a container. message Port { // The number of the port to expose on the pod's IP address. // Must be a valid port number, between 1 and 65535 inclusive. int32 container_port = 3; } // Detail description of the source information of the model. message ModelSourceInfo { // Source of the model. enum ModelSourceType { // Should not be used. MODEL_SOURCE_TYPE_UNSPECIFIED = 0; // The Model is uploaded by automl training pipeline. AUTOML = 1; // The Model is uploaded by user or custom training pipeline. CUSTOM = 2; // The Model is registered and sync'ed from BigQuery ML. BQML = 3; } // Type of the model source. ModelSourceType source_type = 1; }