// Copyright 2020 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.automl.v1beta1; import "google/cloud/automl/v1beta1/classification.proto"; import "google/cloud/automl/v1beta1/column_spec.proto"; import "google/cloud/automl/v1beta1/data_items.proto"; import "google/cloud/automl/v1beta1/data_stats.proto"; import "google/cloud/automl/v1beta1/ranges.proto"; import "google/cloud/automl/v1beta1/regression.proto"; import "google/cloud/automl/v1beta1/temporal.proto"; import "google/protobuf/struct.proto"; import "google/protobuf/timestamp.proto"; option go_package = "google.golang.org/genproto/googleapis/cloud/automl/v1beta1;automl"; option java_multiple_files = true; option java_package = "com.google.cloud.automl.v1beta1"; option php_namespace = "Google\\Cloud\\AutoMl\\V1beta1"; option ruby_package = "Google::Cloud::AutoML::V1beta1"; // Metadata for a dataset used for AutoML Tables. message TablesDatasetMetadata { // Output only. The table_spec_id of the primary table of this dataset. string primary_table_spec_id = 1; // column_spec_id of the primary table's column that should be used as the // training & prediction target. // This column must be non-nullable and have one of following data types // (otherwise model creation will error): // // * CATEGORY // // * FLOAT64 // // If the type is CATEGORY , only up to // 100 unique values may exist in that column across all rows. // // NOTE: Updates of this field will instantly affect any other users // concurrently working with the dataset. string target_column_spec_id = 2; // column_spec_id of the primary table's column that should be used as the // weight column, i.e. the higher the value the more important the row will be // during model training. // Required type: FLOAT64. // Allowed values: 0 to 10000, inclusive on both ends; 0 means the row is // ignored for training. // If not set all rows are assumed to have equal weight of 1. // NOTE: Updates of this field will instantly affect any other users // concurrently working with the dataset. string weight_column_spec_id = 3; // column_spec_id of the primary table column which specifies a possible ML // use of the row, i.e. the column will be used to split the rows into TRAIN, // VALIDATE and TEST sets. // Required type: STRING. // This column, if set, must either have all of `TRAIN`, `VALIDATE`, `TEST` // among its values, or only have `TEST`, `UNASSIGNED` values. In the latter // case the rows with `UNASSIGNED` value will be assigned by AutoML. Note // that if a given ml use distribution makes it impossible to create a "good" // model, that call will error describing the issue. // If both this column_spec_id and primary table's time_column_spec_id are not // set, then all rows are treated as `UNASSIGNED`. // NOTE: Updates of this field will instantly affect any other users // concurrently working with the dataset. string ml_use_column_spec_id = 4; // Output only. Correlations between // // [TablesDatasetMetadata.target_column_spec_id][google.cloud.automl.v1beta1.TablesDatasetMetadata.target_column_spec_id], // and other columns of the // // [TablesDatasetMetadataprimary_table][google.cloud.automl.v1beta1.TablesDatasetMetadata.primary_table_spec_id]. // Only set if the target column is set. Mapping from other column spec id to // its CorrelationStats with the target column. // This field may be stale, see the stats_update_time field for // for the timestamp at which these stats were last updated. map target_column_correlations = 6; // Output only. The most recent timestamp when target_column_correlations // field and all descendant ColumnSpec.data_stats and // ColumnSpec.top_correlated_columns fields were last (re-)generated. Any // changes that happened to the dataset afterwards are not reflected in these // fields values. The regeneration happens in the background on a best effort // basis. google.protobuf.Timestamp stats_update_time = 7; } // Model metadata specific to AutoML Tables. message TablesModelMetadata { // Additional optimization objective configuration. Required for // `MAXIMIZE_PRECISION_AT_RECALL` and `MAXIMIZE_RECALL_AT_PRECISION`, // otherwise unused. oneof additional_optimization_objective_config { // Required when optimization_objective is "MAXIMIZE_PRECISION_AT_RECALL". // Must be between 0 and 1, inclusive. float optimization_objective_recall_value = 17; // Required when optimization_objective is "MAXIMIZE_RECALL_AT_PRECISION". // Must be between 0 and 1, inclusive. float optimization_objective_precision_value = 18; } // Column spec of the dataset's primary table's column the model is // predicting. Snapshotted when model creation started. // Only 3 fields are used: // name - May be set on CreateModel, if it's not then the ColumnSpec // corresponding to the current target_column_spec_id of the dataset // the model is trained from is used. // If neither is set, CreateModel will error. // display_name - Output only. // data_type - Output only. ColumnSpec target_column_spec = 2; // Column specs of the dataset's primary table's columns, on which // the model is trained and which are used as the input for predictions. // The // // [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // as well as, according to dataset's state upon model creation, // // [weight_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.weight_column_spec_id], // and // // [ml_use_column][google.cloud.automl.v1beta1.TablesDatasetMetadata.ml_use_column_spec_id] // must never be included here. // // Only 3 fields are used: // // * name - May be set on CreateModel, if set only the columns specified are // used, otherwise all primary table's columns (except the ones listed // above) are used for the training and prediction input. // // * display_name - Output only. // // * data_type - Output only. repeated ColumnSpec input_feature_column_specs = 3; // Objective function the model is optimizing towards. The training process // creates a model that maximizes/minimizes the value of the objective // function over the validation set. // // The supported optimization objectives depend on the prediction type. // If the field is not set, a default objective function is used. // // CLASSIFICATION_BINARY: // "MAXIMIZE_AU_ROC" (default) - Maximize the area under the receiver // operating characteristic (ROC) curve. // "MINIMIZE_LOG_LOSS" - Minimize log loss. // "MAXIMIZE_AU_PRC" - Maximize the area under the precision-recall curve. // "MAXIMIZE_PRECISION_AT_RECALL" - Maximize precision for a specified // recall value. // "MAXIMIZE_RECALL_AT_PRECISION" - Maximize recall for a specified // precision value. // // CLASSIFICATION_MULTI_CLASS : // "MINIMIZE_LOG_LOSS" (default) - Minimize log loss. // // // REGRESSION: // "MINIMIZE_RMSE" (default) - Minimize root-mean-squared error (RMSE). // "MINIMIZE_MAE" - Minimize mean-absolute error (MAE). // "MINIMIZE_RMSLE" - Minimize root-mean-squared log error (RMSLE). string optimization_objective = 4; // Output only. Auxiliary information for each of the // input_feature_column_specs with respect to this particular model. repeated TablesModelColumnInfo tables_model_column_info = 5; // Required. The train budget of creating this model, expressed in milli node // hours i.e. 1,000 value in this field means 1 node hour. // // The training cost of the model will not exceed this budget. The final cost // will be attempted to be close to the budget, though may end up being (even) // noticeably smaller - at the backend's discretion. This especially may // happen when further model training ceases to provide any improvements. // // If the budget is set to a value known to be insufficient to train a // model for the given dataset, the training won't be attempted and // will error. // // The train budget must be between 1,000 and 72,000 milli node hours, // inclusive. int64 train_budget_milli_node_hours = 6; // Output only. The actual training cost of the model, expressed in milli // node hours, i.e. 1,000 value in this field means 1 node hour. Guaranteed // to not exceed the train budget. int64 train_cost_milli_node_hours = 7; // Use the entire training budget. This disables the early stopping feature. // By default, the early stopping feature is enabled, which means that AutoML // Tables might stop training before the entire training budget has been used. bool disable_early_stopping = 12; } // Contains annotation details specific to Tables. message TablesAnnotation { // Output only. A confidence estimate between 0.0 and 1.0, inclusive. A higher // value means greater confidence in the returned value. // For // // [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // of FLOAT64 data type the score is not populated. float score = 1; // Output only. Only populated when // // [target_column_spec][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec] // has FLOAT64 data type. An interval in which the exactly correct target // value has 95% chance to be in. DoubleRange prediction_interval = 4; // The predicted value of the row's // // [target_column][google.cloud.automl.v1beta1.TablesModelMetadata.target_column_spec]. // The value depends on the column's DataType: // // * CATEGORY - the predicted (with the above confidence `score`) CATEGORY // value. // // * FLOAT64 - the predicted (with above `prediction_interval`) FLOAT64 value. google.protobuf.Value value = 2; // Output only. Auxiliary information for each of the model's // // [input_feature_column_specs][google.cloud.automl.v1beta1.TablesModelMetadata.input_feature_column_specs] // with respect to this particular prediction. // If no other fields than // // [column_spec_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_spec_name] // and // // [column_display_name][google.cloud.automl.v1beta1.TablesModelColumnInfo.column_display_name] // would be populated, then this whole field is not. repeated TablesModelColumnInfo tables_model_column_info = 3; // Output only. Stores the prediction score for the baseline example, which // is defined as the example with all values set to their baseline values. // This is used as part of the Sampled Shapley explanation of the model's // prediction. This field is populated only when feature importance is // requested. For regression models, this holds the baseline prediction for // the baseline example. For classification models, this holds the baseline // prediction for the baseline example for the argmax class. float baseline_score = 5; } // An information specific to given column and Tables Model, in context // of the Model and the predictions created by it. message TablesModelColumnInfo { // Output only. The name of the ColumnSpec describing the column. Not // populated when this proto is outputted to BigQuery. string column_spec_name = 1; // Output only. The display name of the column (same as the display_name of // its ColumnSpec). string column_display_name = 2; // Output only. When given as part of a Model (always populated): // Measurement of how much model predictions correctness on the TEST data // depend on values in this column. A value between 0 and 1, higher means // higher influence. These values are normalized - for all input feature // columns of a given model they add to 1. // // When given back by Predict (populated iff // [feature_importance // param][google.cloud.automl.v1beta1.PredictRequest.params] is set) or Batch // Predict (populated iff // [feature_importance][google.cloud.automl.v1beta1.PredictRequest.params] // param is set): // Measurement of how impactful for the prediction returned for the given row // the value in this column was. Specifically, the feature importance // specifies the marginal contribution that the feature made to the prediction // score compared to the baseline score. These values are computed using the // Sampled Shapley method. float feature_importance = 3; }