// Copyright 2019 Google LLC. // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. // syntax = "proto3"; package google.cloud.datalabeling.v1beta1; import "google/api/resource.proto"; import "google/cloud/datalabeling/v1beta1/dataset.proto"; import "google/cloud/datalabeling/v1beta1/evaluation.proto"; import "google/cloud/datalabeling/v1beta1/human_annotation_config.proto"; import "google/protobuf/timestamp.proto"; import "google/rpc/status.proto"; option csharp_namespace = "Google.Cloud.DataLabeling.V1Beta1"; option go_package = "google.golang.org/genproto/googleapis/cloud/datalabeling/v1beta1;datalabeling"; option java_multiple_files = true; option java_package = "com.google.cloud.datalabeling.v1beta1"; option php_namespace = "Google\\Cloud\\DataLabeling\\V1beta1"; option ruby_package = "Google::Cloud::DataLabeling::V1beta1"; // Defines an evaluation job that runs periodically to generate // [Evaluations][google.cloud.datalabeling.v1beta1.Evaluation]. [Creating an evaluation // job](/ml-engine/docs/continuous-evaluation/create-job) is the starting point // for using continuous evaluation. message EvaluationJob { option (google.api.resource) = { type: "datalabeling.googleapis.com/EvaluationJob" pattern: "projects/{project}/evaluationJobs/{evaluation_job}" }; // State of the job. enum State { STATE_UNSPECIFIED = 0; // The job is scheduled to run at the [configured interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. You // can [pause][google.cloud.datalabeling.v1beta1.DataLabelingService.PauseEvaluationJob] or // [delete][google.cloud.datalabeling.v1beta1.DataLabelingService.DeleteEvaluationJob] the job. // // When the job is in this state, it samples prediction input and output // from your model version into your BigQuery table as predictions occur. SCHEDULED = 1; // The job is currently running. When the job runs, Data Labeling Service // does several things: // // 1. If you have configured your job to use Data Labeling Service for // ground truth labeling, the service creates a // [Dataset][google.cloud.datalabeling.v1beta1.Dataset] and a labeling task for all data sampled // since the last time the job ran. Human labelers provide ground truth // labels for your data. Human labeling may take hours, or even days, // depending on how much data has been sampled. The job remains in the // `RUNNING` state during this time, and it can even be running multiple // times in parallel if it gets triggered again (for example 24 hours // later) before the earlier run has completed. When human labelers have // finished labeling the data, the next step occurs. //

// If you have configured your job to provide your own ground truth // labels, Data Labeling Service still creates a [Dataset][google.cloud.datalabeling.v1beta1.Dataset] for newly // sampled data, but it expects that you have already added ground truth // labels to the BigQuery table by this time. The next step occurs // immediately. // // 2. Data Labeling Service creates an [Evaluation][google.cloud.datalabeling.v1beta1.Evaluation] by comparing your // model version's predictions with the ground truth labels. // // If the job remains in this state for a long time, it continues to sample // prediction data into your BigQuery table and will run again at the next // interval, even if it causes the job to run multiple times in parallel. RUNNING = 2; // The job is not sampling prediction input and output into your BigQuery // table and it will not run according to its schedule. You can // [resume][google.cloud.datalabeling.v1beta1.DataLabelingService.ResumeEvaluationJob] the job. PAUSED = 3; // The job has this state right before it is deleted. STOPPED = 4; } // Output only. After you create a job, Data Labeling Service assigns a name // to the job with the following format: // // "projects/{project_id}/evaluationJobs/{evaluation_job_id}" string name = 1; // Required. Description of the job. The description can be up to 25,000 // characters long. string description = 2; // Output only. Describes the current state of the job. State state = 3; // Required. Describes the interval at which the job runs. This interval must // be at least 1 day, and it is rounded to the nearest day. For example, if // you specify a 50-hour interval, the job runs every 2 days. // // You can provide the schedule in // [crontab format](/scheduler/docs/configuring/cron-job-schedules) or in an // [English-like // format](/appengine/docs/standard/python/config/cronref#schedule_format). // // Regardless of what you specify, the job will run at 10:00 AM UTC. Only the // interval from this schedule is used, not the specific time of day. string schedule = 4; // Required. The [AI Platform Prediction model // version](/ml-engine/docs/prediction-overview) to be evaluated. Prediction // input and output is sampled from this model version. When creating an // evaluation job, specify the model version in the following format: // // "projects/{project_id}/models/{model_name}/versions/{version_name}" // // There can only be one evaluation job per model version. string model_version = 5; // Required. Configuration details for the evaluation job. EvaluationJobConfig evaluation_job_config = 6; // Required. Name of the [AnnotationSpecSet][google.cloud.datalabeling.v1beta1.AnnotationSpecSet] describing all the // labels that your machine learning model outputs. You must create this // resource before you create an evaluation job and provide its name in the // following format: // // "projects/{project_id}/annotationSpecSets/{annotation_spec_set_id}" string annotation_spec_set = 7; // Required. Whether you want Data Labeling Service to provide ground truth // labels for prediction input. If you want the service to assign human // labelers to annotate your data, set this to `true`. If you want to provide // your own ground truth labels in the evaluation job's BigQuery table, set // this to `false`. bool label_missing_ground_truth = 8; // Output only. Every time the evaluation job runs and an error occurs, the // failed attempt is appended to this array. repeated Attempt attempts = 9; // Output only. Timestamp of when this evaluation job was created. google.protobuf.Timestamp create_time = 10; } // Configures specific details of how a continuous evaluation job works. Provide // this configuration when you create an EvaluationJob. message EvaluationJobConfig { // Required. Details for how you want human reviewers to provide ground truth // labels. oneof human_annotation_request_config { // Specify this field if your model version performs image classification or // general classification. // // `annotationSpecSet` in this configuration must match // [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. // `allowMultiLabel` in this configuration must match // `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config]. ImageClassificationConfig image_classification_config = 4; // Specify this field if your model version performs image object detection // (bounding box detection). // // `annotationSpecSet` in this configuration must match // [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. BoundingPolyConfig bounding_poly_config = 5; // Specify this field if your model version performs text classification. // // `annotationSpecSet` in this configuration must match // [EvaluationJob.annotationSpecSet][google.cloud.datalabeling.v1beta1.EvaluationJob.annotation_spec_set]. // `allowMultiLabel` in this configuration must match // `classificationMetadata.isMultiLabel` in [input_config][google.cloud.datalabeling.v1beta1.EvaluationJobConfig.input_config]. TextClassificationConfig text_classification_config = 8; } // Rquired. Details for the sampled prediction input. Within this // configuration, there are requirements for several fields: // // * `dataType` must be one of `IMAGE`, `TEXT`, or `GENERAL_DATA`. // * `annotationType` must be one of `IMAGE_CLASSIFICATION_ANNOTATION`, // `TEXT_CLASSIFICATION_ANNOTATION`, `GENERAL_CLASSIFICATION_ANNOTATION`, // or `IMAGE_BOUNDING_BOX_ANNOTATION` (image object detection). // * If your machine learning model performs classification, you must specify // `classificationMetadata.isMultiLabel`. // * You must specify `bigquerySource` (not `gcsSource`). InputConfig input_config = 1; // Required. Details for calculating evaluation metrics and creating // [Evaulations][google.cloud.datalabeling.v1beta1.Evaluation]. If your model version performs image object // detection, you must specify the `boundingBoxEvaluationOptions` field within // this configuration. Otherwise, provide an empty object for this // configuration. EvaluationConfig evaluation_config = 2; // Optional. Details for human annotation of your data. If you set // [labelMissingGroundTruth][google.cloud.datalabeling.v1beta1.EvaluationJob.label_missing_ground_truth] to // `true` for this evaluation job, then you must specify this field. If you // plan to provide your own ground truth labels, then omit this field. // // Note that you must create an [Instruction][google.cloud.datalabeling.v1beta1.Instruction] resource before you can // specify this field. Provide the name of the instruction resource in the // `instruction` field within this configuration. HumanAnnotationConfig human_annotation_config = 3; // Required. Prediction keys that tell Data Labeling Service where to find the // data for evaluation in your BigQuery table. When the service samples // prediction input and output from your model version and saves it to // BigQuery, the data gets stored as JSON strings in the BigQuery table. These // keys tell Data Labeling Service how to parse the JSON. // // You can provide the following entries in this field: // // * `data_json_key`: the data key for prediction input. You must provide // either this key or `reference_json_key`. // * `reference_json_key`: the data reference key for prediction input. You // must provide either this key or `data_json_key`. // * `label_json_key`: the label key for prediction output. Required. // * `label_score_json_key`: the score key for prediction output. Required. // * `bounding_box_json_key`: the bounding box key for prediction output. // Required if your model version perform image object detection. // // Learn [how to configure prediction // keys](/ml-engine/docs/continuous-evaluation/create-job#prediction-keys). map bigquery_import_keys = 9; // Required. The maximum number of predictions to sample and save to BigQuery // during each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. This limit // overrides `example_sample_percentage`: even if the service has not sampled // enough predictions to fulfill `example_sample_perecentage` during an // interval, it stops sampling predictions when it meets this limit. int32 example_count = 10; // Required. Fraction of predictions to sample and save to BigQuery during // each [evaluation interval][google.cloud.datalabeling.v1beta1.EvaluationJob.schedule]. For example, 0.1 means // 10% of predictions served by your model version get saved to BigQuery. double example_sample_percentage = 11; // Optional. Configuration details for evaluation job alerts. Specify this // field if you want to receive email alerts if the evaluation job finds that // your predictions have low mean average precision during a run. EvaluationJobAlertConfig evaluation_job_alert_config = 13; } // Provides details for how an evaluation job sends email alerts based on the // results of a run. message EvaluationJobAlertConfig { // Required. An email address to send alerts to. string email = 1; // Required. A number between 0 and 1 that describes a minimum mean average // precision threshold. When the evaluation job runs, if it calculates that // your model version's predictions from the recent interval have // [meanAveragePrecision][google.cloud.datalabeling.v1beta1.PrCurve.mean_average_precision] below this // threshold, then it sends an alert to your specified email. double min_acceptable_mean_average_precision = 2; } // Records a failed evaluation job run. message Attempt { google.protobuf.Timestamp attempt_time = 1; // Details of errors that occurred. repeated google.rpc.Status partial_failures = 2; }