// Copyright 2022 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.notebooks.v1; import "google/api/field_behavior.proto"; import "google/api/resource.proto"; import "google/protobuf/timestamp.proto"; option go_package = "google.golang.org/genproto/googleapis/cloud/notebooks/v1;notebooks"; option java_multiple_files = true; option java_outer_classname = "ExecutionProto"; option java_package = "com.google.cloud.notebooks.v1"; option (google.api.resource_definition) = { type: "aiplatform.googleapis.com/Tensorboard" pattern: "projects/{project}/locations/{location}/tensorboards/{tensorboard}" }; // The description a notebook execution workload. message ExecutionTemplate { // Required. Specifies the machine types, the number of replicas for workers // and parameter servers. enum ScaleTier { // Unspecified Scale Tier. SCALE_TIER_UNSPECIFIED = 0; // A single worker instance. This tier is suitable for learning how to use // Cloud ML, and for experimenting with new models using small datasets. BASIC = 1; // Many workers and a few parameter servers. STANDARD_1 = 2; // A large number of workers with many parameter servers. PREMIUM_1 = 3; // A single worker instance with a K80 GPU. BASIC_GPU = 4; // A single worker instance with a Cloud TPU. BASIC_TPU = 5; // The CUSTOM tier is not a set tier, but rather enables you to use your // own cluster specification. When you use this tier, set values to // configure your processing cluster according to these guidelines: // // * You _must_ set `ExecutionTemplate.masterType` to specify the type // of machine to use for your master node. This is the only required // setting. CUSTOM = 6; } // Hardware accelerator types for AI Platform Training jobs. enum SchedulerAcceleratorType { // Unspecified accelerator type. Default to no GPU. SCHEDULER_ACCELERATOR_TYPE_UNSPECIFIED = 0; // Nvidia Tesla K80 GPU. NVIDIA_TESLA_K80 = 1; // Nvidia Tesla P100 GPU. NVIDIA_TESLA_P100 = 2; // Nvidia Tesla V100 GPU. NVIDIA_TESLA_V100 = 3; // Nvidia Tesla P4 GPU. NVIDIA_TESLA_P4 = 4; // Nvidia Tesla T4 GPU. NVIDIA_TESLA_T4 = 5; // Nvidia Tesla A100 GPU. NVIDIA_TESLA_A100 = 10; // TPU v2. TPU_V2 = 6; // TPU v3. TPU_V3 = 7; } // Definition of a hardware accelerator. Note that not all combinations // of `type` and `core_count` are valid. Check [GPUs on // Compute Engine](https://cloud.google.com/compute/docs/gpus) to find a valid // combination. TPUs are not supported. message SchedulerAcceleratorConfig { // Type of this accelerator. SchedulerAcceleratorType type = 1; // Count of cores of this accelerator. int64 core_count = 2; } // The backend used for this execution. enum JobType { // No type specified. JOB_TYPE_UNSPECIFIED = 0; // Custom Job in `aiplatform.googleapis.com`. // Default value for an execution. VERTEX_AI = 1; // Run execution on a cluster with Dataproc as a job. // https://cloud.google.com/dataproc/docs/reference/rest/v1/projects.regions.jobs DATAPROC = 2; } // Parameters used in Dataproc JobType executions. message DataprocParameters { // URI for cluster used to run Dataproc execution. // Format: `projects/{PROJECT_ID}/regions/{REGION}/clusters/{CLUSTER_NAME}` string cluster = 1; } // Parameters used in Vertex AI JobType executions. message VertexAIParameters { // The full name of the Compute Engine // [network](/compute/docs/networks-and-firewalls#networks) to which the Job // should be peered. For example, `projects/12345/global/networks/myVPC`. // [Format](https://cloud.google.com/compute/docs/reference/rest/v1/networks/insert) // is of the form `projects/{project}/global/networks/{network}`. // Where {project} is a project number, as in `12345`, and {network} is a // network name. // // Private services access must already be configured for the network. If // left unspecified, the job is not peered with any network. string network = 1; // Environment variables. // At most 100 environment variables can be specified and unique. // Example: GCP_BUCKET=gs://my-bucket/samples/ map env = 2; } // Required. Scale tier of the hardware used for notebook execution. // DEPRECATED Will be discontinued. As right now only CUSTOM is supported. ScaleTier scale_tier = 1 [ deprecated = true, (google.api.field_behavior) = REQUIRED ]; // Specifies the type of virtual machine to use for your training // job's master worker. You must specify this field when `scaleTier` is set to // `CUSTOM`. // // You can use certain Compute Engine machine types directly in this field. // The following types are supported: // // - `n1-standard-4` // - `n1-standard-8` // - `n1-standard-16` // - `n1-standard-32` // - `n1-standard-64` // - `n1-standard-96` // - `n1-highmem-2` // - `n1-highmem-4` // - `n1-highmem-8` // - `n1-highmem-16` // - `n1-highmem-32` // - `n1-highmem-64` // - `n1-highmem-96` // - `n1-highcpu-16` // - `n1-highcpu-32` // - `n1-highcpu-64` // - `n1-highcpu-96` // // // Alternatively, you can use the following legacy machine types: // // - `standard` // - `large_model` // - `complex_model_s` // - `complex_model_m` // - `complex_model_l` // - `standard_gpu` // - `complex_model_m_gpu` // - `complex_model_l_gpu` // - `standard_p100` // - `complex_model_m_p100` // - `standard_v100` // - `large_model_v100` // - `complex_model_m_v100` // - `complex_model_l_v100` // // // Finally, if you want to use a TPU for training, specify `cloud_tpu` in this // field. Learn more about the [special configuration options for training // with // TPU](https://cloud.google.com/ai-platform/training/docs/using-tpus#configuring_a_custom_tpu_machine). string master_type = 2; // Configuration (count and accelerator type) for hardware running notebook // execution. SchedulerAcceleratorConfig accelerator_config = 3; // Labels for execution. // If execution is scheduled, a field included will be 'nbs-scheduled'. // Otherwise, it is an immediate execution, and an included field will be // 'nbs-immediate'. Use fields to efficiently index between various types of // executions. map labels = 4; // Path to the notebook file to execute. // Must be in a Google Cloud Storage bucket. // Format: `gs://{bucket_name}/{folder}/{notebook_file_name}` // Ex: `gs://notebook_user/scheduled_notebooks/sentiment_notebook.ipynb` string input_notebook_file = 5; // Container Image URI to a DLVM // Example: 'gcr.io/deeplearning-platform-release/base-cu100' // More examples can be found at: // https://cloud.google.com/ai-platform/deep-learning-containers/docs/choosing-container string container_image_uri = 6; // Path to the notebook folder to write to. // Must be in a Google Cloud Storage bucket path. // Format: `gs://{bucket_name}/{folder}` // Ex: `gs://notebook_user/scheduled_notebooks` string output_notebook_folder = 7; // Parameters to be overridden in the notebook during execution. // Ref https://papermill.readthedocs.io/en/latest/usage-parameterize.html on // how to specifying parameters in the input notebook and pass them here // in an YAML file. // Ex: `gs://notebook_user/scheduled_notebooks/sentiment_notebook_params.yaml` string params_yaml_file = 8; // Parameters used within the 'input_notebook_file' notebook. string parameters = 9; // The email address of a service account to use when running the execution. // You must have the `iam.serviceAccounts.actAs` permission for the specified // service account. string service_account = 10; // The type of Job to be used on this execution. JobType job_type = 11; // Parameters for an execution type. // NOTE: There are currently no extra parameters for VertexAI jobs. oneof job_parameters { // Parameters used in Dataproc JobType executions. DataprocParameters dataproc_parameters = 12; // Parameters used in Vertex AI JobType executions. VertexAIParameters vertex_ai_parameters = 13; } // Name of the kernel spec to use. This must be specified if the // kernel spec name on the execution target does not match the name in the // input notebook file. string kernel_spec = 14; // The name of a Vertex AI [Tensorboard] resource to which this execution // will upload Tensorboard logs. // Format: // `projects/{project}/locations/{location}/tensorboards/{tensorboard}` string tensorboard = 15 [(google.api.resource_reference) = { type: "aiplatform.googleapis.com/Tensorboard" }]; } // The definition of a single executed notebook. message Execution { option (google.api.resource) = { type: "notebooks.googleapis.com/Execution" pattern: "projects/{project}/location/{location}/executions/{execution}" }; // Enum description of the state of the underlying AIP job. enum State { // The job state is unspecified. STATE_UNSPECIFIED = 0; // The job has been just created and processing has not yet begun. QUEUED = 1; // The service is preparing to execution the job. PREPARING = 2; // The job is in progress. RUNNING = 3; // The job completed successfully. SUCCEEDED = 4; // The job failed. // `error_message` should contain the details of the failure. FAILED = 5; // The job is being cancelled. // `error_message` should describe the reason for the cancellation. CANCELLING = 6; // The job has been cancelled. // `error_message` should describe the reason for the cancellation. CANCELLED = 7; // The job has become expired (relevant to Vertex AI jobs) // https://cloud.google.com/vertex-ai/docs/reference/rest/v1/JobState EXPIRED = 9; // The Execution is being created. INITIALIZING = 10; } // execute metadata including name, hardware spec, region, labels, etc. ExecutionTemplate execution_template = 1; // Output only. The resource name of the execute. Format: // `projects/{project_id}/locations/{location}/executions/{execution_id}` string name = 2 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Name used for UI purposes. // Name can only contain alphanumeric characters and underscores '_'. string display_name = 3 [(google.api.field_behavior) = OUTPUT_ONLY]; // A brief description of this execution. string description = 4; // Output only. Time the Execution was instantiated. google.protobuf.Timestamp create_time = 5 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. Time the Execution was last updated. google.protobuf.Timestamp update_time = 6 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output only. State of the underlying AI Platform job. State state = 7 [(google.api.field_behavior) = OUTPUT_ONLY]; // Output notebook file generated by this execution string output_notebook_file = 8; // Output only. The URI of the external job used to execute the notebook. string job_uri = 9 [(google.api.field_behavior) = OUTPUT_ONLY]; }