// Copyright 2022 Google LLC // // Licensed under the Apache License, Version 2.0 (the "License"); // you may not use this file except in compliance with the License. // You may obtain a copy of the License at // // http://www.apache.org/licenses/LICENSE-2.0 // // Unless required by applicable law or agreed to in writing, software // distributed under the License is distributed on an "AS IS" BASIS, // WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied. // See the License for the specific language governing permissions and // limitations under the License. syntax = "proto3"; package google.cloud.speech.v1; import "google/api/annotations.proto"; import "google/api/client.proto"; import "google/api/field_behavior.proto"; import "google/cloud/speech/v1/resource.proto"; import "google/longrunning/operations.proto"; import "google/protobuf/duration.proto"; import "google/protobuf/timestamp.proto"; import "google/protobuf/wrappers.proto"; import "google/rpc/status.proto"; option cc_enable_arenas = true; option go_package = "google.golang.org/genproto/googleapis/cloud/speech/v1;speech"; option java_multiple_files = true; option java_outer_classname = "SpeechProto"; option java_package = "com.google.cloud.speech.v1"; option objc_class_prefix = "GCS"; // Service that implements Google Cloud Speech API. service Speech { option (google.api.default_host) = "speech.googleapis.com"; option (google.api.oauth_scopes) = "https://www.googleapis.com/auth/cloud-platform"; // Performs synchronous speech recognition: receive results after all audio // has been sent and processed. rpc Recognize(RecognizeRequest) returns (RecognizeResponse) { option (google.api.http) = { post: "/v1/speech:recognize" body: "*" }; option (google.api.method_signature) = "config,audio"; } // Performs asynchronous speech recognition: receive results via the // google.longrunning.Operations interface. Returns either an // `Operation.error` or an `Operation.response` which contains // a `LongRunningRecognizeResponse` message. // For more information on asynchronous speech recognition, see the // [how-to](https://cloud.google.com/speech-to-text/docs/async-recognize). rpc LongRunningRecognize(LongRunningRecognizeRequest) returns (google.longrunning.Operation) { option (google.api.http) = { post: "/v1/speech:longrunningrecognize" body: "*" }; option (google.api.method_signature) = "config,audio"; option (google.longrunning.operation_info) = { response_type: "LongRunningRecognizeResponse" metadata_type: "LongRunningRecognizeMetadata" }; } // Performs bidirectional streaming speech recognition: receive results while // sending audio. This method is only available via the gRPC API (not REST). rpc StreamingRecognize(stream StreamingRecognizeRequest) returns (stream StreamingRecognizeResponse) { } } // The top-level message sent by the client for the `Recognize` method. message RecognizeRequest { // Required. Provides information to the recognizer that specifies how to // process the request. RecognitionConfig config = 1 [(google.api.field_behavior) = REQUIRED]; // Required. The audio data to be recognized. RecognitionAudio audio = 2 [(google.api.field_behavior) = REQUIRED]; } // The top-level message sent by the client for the `LongRunningRecognize` // method. message LongRunningRecognizeRequest { // Required. Provides information to the recognizer that specifies how to // process the request. RecognitionConfig config = 1 [(google.api.field_behavior) = REQUIRED]; // Required. The audio data to be recognized. RecognitionAudio audio = 2 [(google.api.field_behavior) = REQUIRED]; // Optional. Specifies an optional destination for the recognition results. TranscriptOutputConfig output_config = 4 [(google.api.field_behavior) = OPTIONAL]; } // Specifies an optional destination for the recognition results. message TranscriptOutputConfig { oneof output_type { // Specifies a Cloud Storage URI for the recognition results. Must be // specified in the format: `gs://bucket_name/object_name`, and the bucket // must already exist. string gcs_uri = 1; } } // The top-level message sent by the client for the `StreamingRecognize` method. // Multiple `StreamingRecognizeRequest` messages are sent. The first message // must contain a `streaming_config` message and must not contain // `audio_content`. All subsequent messages must contain `audio_content` and // must not contain a `streaming_config` message. message StreamingRecognizeRequest { // The streaming request, which is either a streaming config or audio content. oneof streaming_request { // Provides information to the recognizer that specifies how to process the // request. The first `StreamingRecognizeRequest` message must contain a // `streaming_config` message. StreamingRecognitionConfig streaming_config = 1; // The audio data to be recognized. Sequential chunks of audio data are sent // in sequential `StreamingRecognizeRequest` messages. The first // `StreamingRecognizeRequest` message must not contain `audio_content` data // and all subsequent `StreamingRecognizeRequest` messages must contain // `audio_content` data. The audio bytes must be encoded as specified in // `RecognitionConfig`. Note: as with all bytes fields, proto buffers use a // pure binary representation (not base64). See // [content limits](https://cloud.google.com/speech-to-text/quotas#content). bytes audio_content = 2; } } // Provides information to the recognizer that specifies how to process the // request. message StreamingRecognitionConfig { // Required. Provides information to the recognizer that specifies how to // process the request. RecognitionConfig config = 1 [(google.api.field_behavior) = REQUIRED]; // If `false` or omitted, the recognizer will perform continuous // recognition (continuing to wait for and process audio even if the user // pauses speaking) until the client closes the input stream (gRPC API) or // until the maximum time limit has been reached. May return multiple // `StreamingRecognitionResult`s with the `is_final` flag set to `true`. // // If `true`, the recognizer will detect a single spoken utterance. When it // detects that the user has paused or stopped speaking, it will return an // `END_OF_SINGLE_UTTERANCE` event and cease recognition. It will return no // more than one `StreamingRecognitionResult` with the `is_final` flag set to // `true`. // // The `single_utterance` field can only be used with specified models, // otherwise an error is thrown. The `model` field in [`RecognitionConfig`][] // must be set to: // // * `command_and_search` // * `phone_call` AND additional field `useEnhanced`=`true` // * The `model` field is left undefined. In this case the API auto-selects // a model based on any other parameters that you set in // `RecognitionConfig`. bool single_utterance = 2; // If `true`, interim results (tentative hypotheses) may be // returned as they become available (these interim results are indicated with // the `is_final=false` flag). // If `false` or omitted, only `is_final=true` result(s) are returned. bool interim_results = 3; } // Provides information to the recognizer that specifies how to process the // request. message RecognitionConfig { // The encoding of the audio data sent in the request. // // All encodings support only 1 channel (mono) audio, unless the // `audio_channel_count` and `enable_separate_recognition_per_channel` fields // are set. // // For best results, the audio source should be captured and transmitted using // a lossless encoding (`FLAC` or `LINEAR16`). The accuracy of the speech // recognition can be reduced if lossy codecs are used to capture or transmit // audio, particularly if background noise is present. Lossy codecs include // `MULAW`, `AMR`, `AMR_WB`, `OGG_OPUS`, `SPEEX_WITH_HEADER_BYTE`, `MP3`, // and `WEBM_OPUS`. // // The `FLAC` and `WAV` audio file formats include a header that describes the // included audio content. You can request recognition for `WAV` files that // contain either `LINEAR16` or `MULAW` encoded audio. // If you send `FLAC` or `WAV` audio file format in // your request, you do not need to specify an `AudioEncoding`; the audio // encoding format is determined from the file header. If you specify // an `AudioEncoding` when you send send `FLAC` or `WAV` audio, the // encoding configuration must match the encoding described in the audio // header; otherwise the request returns an // [google.rpc.Code.INVALID_ARGUMENT][google.rpc.Code.INVALID_ARGUMENT] error code. enum AudioEncoding { // Not specified. ENCODING_UNSPECIFIED = 0; // Uncompressed 16-bit signed little-endian samples (Linear PCM). LINEAR16 = 1; // `FLAC` (Free Lossless Audio // Codec) is the recommended encoding because it is // lossless--therefore recognition is not compromised--and // requires only about half the bandwidth of `LINEAR16`. `FLAC` stream // encoding supports 16-bit and 24-bit samples, however, not all fields in // `STREAMINFO` are supported. FLAC = 2; // 8-bit samples that compand 14-bit audio samples using G.711 PCMU/mu-law. MULAW = 3; // Adaptive Multi-Rate Narrowband codec. `sample_rate_hertz` must be 8000. AMR = 4; // Adaptive Multi-Rate Wideband codec. `sample_rate_hertz` must be 16000. AMR_WB = 5; // Opus encoded audio frames in Ogg container // ([OggOpus](https://wiki.xiph.org/OggOpus)). // `sample_rate_hertz` must be one of 8000, 12000, 16000, 24000, or 48000. OGG_OPUS = 6; // Although the use of lossy encodings is not recommended, if a very low // bitrate encoding is required, `OGG_OPUS` is highly preferred over // Speex encoding. The [Speex](https://speex.org/) encoding supported by // Cloud Speech API has a header byte in each block, as in MIME type // `audio/x-speex-with-header-byte`. // It is a variant of the RTP Speex encoding defined in // [RFC 5574](https://tools.ietf.org/html/rfc5574). // The stream is a sequence of blocks, one block per RTP packet. Each block // starts with a byte containing the length of the block, in bytes, followed // by one or more frames of Speex data, padded to an integral number of // bytes (octets) as specified in RFC 5574. In other words, each RTP header // is replaced with a single byte containing the block length. Only Speex // wideband is supported. `sample_rate_hertz` must be 16000. SPEEX_WITH_HEADER_BYTE = 7; // Opus encoded audio frames in WebM container // ([OggOpus](https://wiki.xiph.org/OggOpus)). `sample_rate_hertz` must be // one of 8000, 12000, 16000, 24000, or 48000. WEBM_OPUS = 9; } // Encoding of audio data sent in all `RecognitionAudio` messages. // This field is optional for `FLAC` and `WAV` audio files and required // for all other audio formats. For details, see [AudioEncoding][google.cloud.speech.v1.RecognitionConfig.AudioEncoding]. AudioEncoding encoding = 1; // Sample rate in Hertz of the audio data sent in all // `RecognitionAudio` messages. Valid values are: 8000-48000. // 16000 is optimal. For best results, set the sampling rate of the audio // source to 16000 Hz. If that's not possible, use the native sample rate of // the audio source (instead of re-sampling). // This field is optional for FLAC and WAV audio files, but is // required for all other audio formats. For details, see [AudioEncoding][google.cloud.speech.v1.RecognitionConfig.AudioEncoding]. int32 sample_rate_hertz = 2; // The number of channels in the input audio data. // ONLY set this for MULTI-CHANNEL recognition. // Valid values for LINEAR16 and FLAC are `1`-`8`. // Valid values for OGG_OPUS are '1'-'254'. // Valid value for MULAW, AMR, AMR_WB and SPEEX_WITH_HEADER_BYTE is only `1`. // If `0` or omitted, defaults to one channel (mono). // Note: We only recognize the first channel by default. // To perform independent recognition on each channel set // `enable_separate_recognition_per_channel` to 'true'. int32 audio_channel_count = 7; // This needs to be set to `true` explicitly and `audio_channel_count` > 1 // to get each channel recognized separately. The recognition result will // contain a `channel_tag` field to state which channel that result belongs // to. If this is not true, we will only recognize the first channel. The // request is billed cumulatively for all channels recognized: // `audio_channel_count` multiplied by the length of the audio. bool enable_separate_recognition_per_channel = 12; // Required. The language of the supplied audio as a // [BCP-47](https://www.rfc-editor.org/rfc/bcp/bcp47.txt) language tag. // Example: "en-US". // See [Language // Support](https://cloud.google.com/speech-to-text/docs/languages) for a list // of the currently supported language codes. string language_code = 3 [(google.api.field_behavior) = REQUIRED]; // A list of up to 3 additional // [BCP-47](https://www.rfc-editor.org/rfc/bcp/bcp47.txt) language tags, // listing possible alternative languages of the supplied audio. // See [Language // Support](https://cloud.google.com/speech-to-text/docs/languages) for a list // of the currently supported language codes. If alternative languages are // listed, recognition result will contain recognition in the most likely // language detected including the main language_code. The recognition result // will include the language tag of the language detected in the audio. Note: // This feature is only supported for Voice Command and Voice Search use cases // and performance may vary for other use cases (e.g., phone call // transcription). repeated string alternative_language_codes = 18; // Maximum number of recognition hypotheses to be returned. // Specifically, the maximum number of `SpeechRecognitionAlternative` messages // within each `SpeechRecognitionResult`. // The server may return fewer than `max_alternatives`. // Valid values are `0`-`30`. A value of `0` or `1` will return a maximum of // one. If omitted, will return a maximum of one. int32 max_alternatives = 4; // If set to `true`, the server will attempt to filter out // profanities, replacing all but the initial character in each filtered word // with asterisks, e.g. "f***". If set to `false` or omitted, profanities // won't be filtered out. bool profanity_filter = 5; // Speech adaptation configuration improves the accuracy of speech // recognition. For more information, see the [speech // adaptation](https://cloud.google.com/speech-to-text/docs/adaptation) // documentation. // When speech adaptation is set it supersedes the `speech_contexts` field. SpeechAdaptation adaptation = 20; // Array of [SpeechContext][google.cloud.speech.v1.SpeechContext]. // A means to provide context to assist the speech recognition. For more // information, see // [speech // adaptation](https://cloud.google.com/speech-to-text/docs/adaptation). repeated SpeechContext speech_contexts = 6; // If `true`, the top result includes a list of words and // the start and end time offsets (timestamps) for those words. If // `false`, no word-level time offset information is returned. The default is // `false`. bool enable_word_time_offsets = 8; // If `true`, the top result includes a list of words and the // confidence for those words. If `false`, no word-level confidence // information is returned. The default is `false`. bool enable_word_confidence = 15; // If 'true', adds punctuation to recognition result hypotheses. // This feature is only available in select languages. Setting this for // requests in other languages has no effect at all. // The default 'false' value does not add punctuation to result hypotheses. bool enable_automatic_punctuation = 11; // The spoken punctuation behavior for the call // If not set, uses default behavior based on model of choice // e.g. command_and_search will enable spoken punctuation by default // If 'true', replaces spoken punctuation with the corresponding symbols in // the request. For example, "how are you question mark" becomes "how are // you?". See https://cloud.google.com/speech-to-text/docs/spoken-punctuation // for support. If 'false', spoken punctuation is not replaced. google.protobuf.BoolValue enable_spoken_punctuation = 22; // The spoken emoji behavior for the call // If not set, uses default behavior based on model of choice // If 'true', adds spoken emoji formatting for the request. This will replace // spoken emojis with the corresponding Unicode symbols in the final // transcript. If 'false', spoken emojis are not replaced. google.protobuf.BoolValue enable_spoken_emojis = 23; // Config to enable speaker diarization and set additional // parameters to make diarization better suited for your application. // Note: When this is enabled, we send all the words from the beginning of the // audio for the top alternative in every consecutive STREAMING responses. // This is done in order to improve our speaker tags as our models learn to // identify the speakers in the conversation over time. // For non-streaming requests, the diarization results will be provided only // in the top alternative of the FINAL SpeechRecognitionResult. SpeakerDiarizationConfig diarization_config = 19; // Metadata regarding this request. RecognitionMetadata metadata = 9; // Which model to select for the given request. Select the model // best suited to your domain to get best results. If a model is not // explicitly specified, then we auto-select a model based on the parameters // in the RecognitionConfig. // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // // //
ModelDescription
latest_longBest for long form content like media or conversation.
latest_shortBest for short form content like commands or single shot directed // speech.
command_and_searchBest for short queries such as voice commands or voice search.
phone_callBest for audio that originated from a phone call (typically // recorded at an 8khz sampling rate).
videoBest for audio that originated from video or includes multiple // speakers. Ideally the audio is recorded at a 16khz or greater // sampling rate. This is a premium model that costs more than the // standard rate.
defaultBest for audio that is not one of the specific audio models. // For example, long-form audio. Ideally the audio is high-fidelity, // recorded at a 16khz or greater sampling rate.
medical_conversationBest for audio that originated from a conversation between a // medical provider and patient.
medical_dictationBest for audio that originated from dictation notes by a medical // provider.
string model = 13; // Set to true to use an enhanced model for speech recognition. // If `use_enhanced` is set to true and the `model` field is not set, then // an appropriate enhanced model is chosen if an enhanced model exists for // the audio. // // If `use_enhanced` is true and an enhanced version of the specified model // does not exist, then the speech is recognized using the standard version // of the specified model. bool use_enhanced = 14; } // Config to enable speaker diarization. message SpeakerDiarizationConfig { // If 'true', enables speaker detection for each recognized word in // the top alternative of the recognition result using a speaker_tag provided // in the WordInfo. bool enable_speaker_diarization = 1; // Minimum number of speakers in the conversation. This range gives you more // flexibility by allowing the system to automatically determine the correct // number of speakers. If not set, the default value is 2. int32 min_speaker_count = 2; // Maximum number of speakers in the conversation. This range gives you more // flexibility by allowing the system to automatically determine the correct // number of speakers. If not set, the default value is 6. int32 max_speaker_count = 3; // Output only. Unused. int32 speaker_tag = 5 [ deprecated = true, (google.api.field_behavior) = OUTPUT_ONLY ]; } // Description of audio data to be recognized. message RecognitionMetadata { option deprecated = true; // Use case categories that the audio recognition request can be described // by. enum InteractionType { // Use case is either unknown or is something other than one of the other // values below. INTERACTION_TYPE_UNSPECIFIED = 0; // Multiple people in a conversation or discussion. For example in a // meeting with two or more people actively participating. Typically // all the primary people speaking would be in the same room (if not, // see PHONE_CALL) DISCUSSION = 1; // One or more persons lecturing or presenting to others, mostly // uninterrupted. PRESENTATION = 2; // A phone-call or video-conference in which two or more people, who are // not in the same room, are actively participating. PHONE_CALL = 3; // A recorded message intended for another person to listen to. VOICEMAIL = 4; // Professionally produced audio (eg. TV Show, Podcast). PROFESSIONALLY_PRODUCED = 5; // Transcribe spoken questions and queries into text. VOICE_SEARCH = 6; // Transcribe voice commands, such as for controlling a device. VOICE_COMMAND = 7; // Transcribe speech to text to create a written document, such as a // text-message, email or report. DICTATION = 8; } // Enumerates the types of capture settings describing an audio file. enum MicrophoneDistance { // Audio type is not known. MICROPHONE_DISTANCE_UNSPECIFIED = 0; // The audio was captured from a closely placed microphone. Eg. phone, // dictaphone, or handheld microphone. Generally if there speaker is within // 1 meter of the microphone. NEARFIELD = 1; // The speaker if within 3 meters of the microphone. MIDFIELD = 2; // The speaker is more than 3 meters away from the microphone. FARFIELD = 3; } // The original media the speech was recorded on. enum OriginalMediaType { // Unknown original media type. ORIGINAL_MEDIA_TYPE_UNSPECIFIED = 0; // The speech data is an audio recording. AUDIO = 1; // The speech data originally recorded on a video. VIDEO = 2; } // The type of device the speech was recorded with. enum RecordingDeviceType { // The recording device is unknown. RECORDING_DEVICE_TYPE_UNSPECIFIED = 0; // Speech was recorded on a smartphone. SMARTPHONE = 1; // Speech was recorded using a personal computer or tablet. PC = 2; // Speech was recorded over a phone line. PHONE_LINE = 3; // Speech was recorded in a vehicle. VEHICLE = 4; // Speech was recorded outdoors. OTHER_OUTDOOR_DEVICE = 5; // Speech was recorded indoors. OTHER_INDOOR_DEVICE = 6; } // The use case most closely describing the audio content to be recognized. InteractionType interaction_type = 1; // The industry vertical to which this speech recognition request most // closely applies. This is most indicative of the topics contained // in the audio. Use the 6-digit NAICS code to identify the industry // vertical - see https://www.naics.com/search/. uint32 industry_naics_code_of_audio = 3; // The audio type that most closely describes the audio being recognized. MicrophoneDistance microphone_distance = 4; // The original media the speech was recorded on. OriginalMediaType original_media_type = 5; // The type of device the speech was recorded with. RecordingDeviceType recording_device_type = 6; // The device used to make the recording. Examples 'Nexus 5X' or // 'Polycom SoundStation IP 6000' or 'POTS' or 'VoIP' or // 'Cardioid Microphone'. string recording_device_name = 7; // Mime type of the original audio file. For example `audio/m4a`, // `audio/x-alaw-basic`, `audio/mp3`, `audio/3gpp`. // A list of possible audio mime types is maintained at // http://www.iana.org/assignments/media-types/media-types.xhtml#audio string original_mime_type = 8; // Description of the content. Eg. "Recordings of federal supreme court // hearings from 2012". string audio_topic = 10; } // Provides "hints" to the speech recognizer to favor specific words and phrases // in the results. message SpeechContext { // A list of strings containing words and phrases "hints" so that // the speech recognition is more likely to recognize them. This can be used // to improve the accuracy for specific words and phrases, for example, if // specific commands are typically spoken by the user. This can also be used // to add additional words to the vocabulary of the recognizer. See // [usage limits](https://cloud.google.com/speech-to-text/quotas#content). // // List items can also be set to classes for groups of words that represent // common concepts that occur in natural language. For example, rather than // providing phrase hints for every month of the year, using the $MONTH class // improves the likelihood of correctly transcribing audio that includes // months. repeated string phrases = 1; // Hint Boost. Positive value will increase the probability that a specific // phrase will be recognized over other similar sounding phrases. The higher // the boost, the higher the chance of false positive recognition as well. // Negative boost values would correspond to anti-biasing. Anti-biasing is not // enabled, so negative boost will simply be ignored. Though `boost` can // accept a wide range of positive values, most use cases are best served with // values between 0 and 20. We recommend using a binary search approach to // finding the optimal value for your use case. float boost = 4; } // Contains audio data in the encoding specified in the `RecognitionConfig`. // Either `content` or `uri` must be supplied. Supplying both or neither // returns [google.rpc.Code.INVALID_ARGUMENT][google.rpc.Code.INVALID_ARGUMENT]. See // [content limits](https://cloud.google.com/speech-to-text/quotas#content). message RecognitionAudio { // The audio source, which is either inline content or a Google Cloud // Storage uri. oneof audio_source { // The audio data bytes encoded as specified in // `RecognitionConfig`. Note: as with all bytes fields, proto buffers use a // pure binary representation, whereas JSON representations use base64. bytes content = 1; // URI that points to a file that contains audio data bytes as specified in // `RecognitionConfig`. The file must not be compressed (for example, gzip). // Currently, only Google Cloud Storage URIs are // supported, which must be specified in the following format: // `gs://bucket_name/object_name` (other URI formats return // [google.rpc.Code.INVALID_ARGUMENT][google.rpc.Code.INVALID_ARGUMENT]). For more information, see // [Request URIs](https://cloud.google.com/storage/docs/reference-uris). string uri = 2; } } // The only message returned to the client by the `Recognize` method. It // contains the result as zero or more sequential `SpeechRecognitionResult` // messages. message RecognizeResponse { // Sequential list of transcription results corresponding to // sequential portions of audio. repeated SpeechRecognitionResult results = 2; // When available, billed audio seconds for the corresponding request. google.protobuf.Duration total_billed_time = 3; } // The only message returned to the client by the `LongRunningRecognize` method. // It contains the result as zero or more sequential `SpeechRecognitionResult` // messages. It is included in the `result.response` field of the `Operation` // returned by the `GetOperation` call of the `google::longrunning::Operations` // service. message LongRunningRecognizeResponse { // Sequential list of transcription results corresponding to // sequential portions of audio. repeated SpeechRecognitionResult results = 2; // When available, billed audio seconds for the corresponding request. google.protobuf.Duration total_billed_time = 3; // Original output config if present in the request. TranscriptOutputConfig output_config = 6; // If the transcript output fails this field contains the relevant error. google.rpc.Status output_error = 7; } // Describes the progress of a long-running `LongRunningRecognize` call. It is // included in the `metadata` field of the `Operation` returned by the // `GetOperation` call of the `google::longrunning::Operations` service. message LongRunningRecognizeMetadata { // Approximate percentage of audio processed thus far. Guaranteed to be 100 // when the audio is fully processed and the results are available. int32 progress_percent = 1; // Time when the request was received. google.protobuf.Timestamp start_time = 2; // Time of the most recent processing update. google.protobuf.Timestamp last_update_time = 3; // Output only. The URI of the audio file being transcribed. Empty if the audio was sent // as byte content. string uri = 4 [(google.api.field_behavior) = OUTPUT_ONLY]; } // `StreamingRecognizeResponse` is the only message returned to the client by // `StreamingRecognize`. A series of zero or more `StreamingRecognizeResponse` // messages are streamed back to the client. If there is no recognizable // audio, and `single_utterance` is set to false, then no messages are streamed // back to the client. // // Here's an example of a series of `StreamingRecognizeResponse`s that might be // returned while processing audio: // // 1. results { alternatives { transcript: "tube" } stability: 0.01 } // // 2. results { alternatives { transcript: "to be a" } stability: 0.01 } // // 3. results { alternatives { transcript: "to be" } stability: 0.9 } // results { alternatives { transcript: " or not to be" } stability: 0.01 } // // 4. results { alternatives { transcript: "to be or not to be" // confidence: 0.92 } // alternatives { transcript: "to bee or not to bee" } // is_final: true } // // 5. results { alternatives { transcript: " that's" } stability: 0.01 } // // 6. results { alternatives { transcript: " that is" } stability: 0.9 } // results { alternatives { transcript: " the question" } stability: 0.01 } // // 7. results { alternatives { transcript: " that is the question" // confidence: 0.98 } // alternatives { transcript: " that was the question" } // is_final: true } // // Notes: // // - Only two of the above responses #4 and #7 contain final results; they are // indicated by `is_final: true`. Concatenating these together generates the // full transcript: "to be or not to be that is the question". // // - The others contain interim `results`. #3 and #6 contain two interim // `results`: the first portion has a high stability and is less likely to // change; the second portion has a low stability and is very likely to // change. A UI designer might choose to show only high stability `results`. // // - The specific `stability` and `confidence` values shown above are only for // illustrative purposes. Actual values may vary. // // - In each response, only one of these fields will be set: // `error`, // `speech_event_type`, or // one or more (repeated) `results`. message StreamingRecognizeResponse { // Indicates the type of speech event. enum SpeechEventType { // No speech event specified. SPEECH_EVENT_UNSPECIFIED = 0; // This event indicates that the server has detected the end of the user's // speech utterance and expects no additional speech. Therefore, the server // will not process additional audio (although it may subsequently return // additional results). The client should stop sending additional audio // data, half-close the gRPC connection, and wait for any additional results // until the server closes the gRPC connection. This event is only sent if // `single_utterance` was set to `true`, and is not used otherwise. END_OF_SINGLE_UTTERANCE = 1; } // If set, returns a [google.rpc.Status][google.rpc.Status] message that // specifies the error for the operation. google.rpc.Status error = 1; // This repeated list contains zero or more results that // correspond to consecutive portions of the audio currently being processed. // It contains zero or one `is_final=true` result (the newly settled portion), // followed by zero or more `is_final=false` results (the interim results). repeated StreamingRecognitionResult results = 2; // Indicates the type of speech event. SpeechEventType speech_event_type = 4; // When available, billed audio seconds for the stream. // Set only if this is the last response in the stream. google.protobuf.Duration total_billed_time = 5; } // A streaming speech recognition result corresponding to a portion of the audio // that is currently being processed. message StreamingRecognitionResult { // May contain one or more recognition hypotheses (up to the // maximum specified in `max_alternatives`). // These alternatives are ordered in terms of accuracy, with the top (first) // alternative being the most probable, as ranked by the recognizer. repeated SpeechRecognitionAlternative alternatives = 1; // If `false`, this `StreamingRecognitionResult` represents an // interim result that may change. If `true`, this is the final time the // speech service will return this particular `StreamingRecognitionResult`, // the recognizer will not return any further hypotheses for this portion of // the transcript and corresponding audio. bool is_final = 2; // An estimate of the likelihood that the recognizer will not // change its guess about this interim result. Values range from 0.0 // (completely unstable) to 1.0 (completely stable). // This field is only provided for interim results (`is_final=false`). // The default of 0.0 is a sentinel value indicating `stability` was not set. float stability = 3; // Time offset of the end of this result relative to the // beginning of the audio. google.protobuf.Duration result_end_time = 4; // For multi-channel audio, this is the channel number corresponding to the // recognized result for the audio from that channel. // For audio_channel_count = N, its output values can range from '1' to 'N'. int32 channel_tag = 5; // Output only. The [BCP-47](https://www.rfc-editor.org/rfc/bcp/bcp47.txt) language tag // of the language in this result. This language code was detected to have // the most likelihood of being spoken in the audio. string language_code = 6 [(google.api.field_behavior) = OUTPUT_ONLY]; } // A speech recognition result corresponding to a portion of the audio. message SpeechRecognitionResult { // May contain one or more recognition hypotheses (up to the // maximum specified in `max_alternatives`). // These alternatives are ordered in terms of accuracy, with the top (first) // alternative being the most probable, as ranked by the recognizer. repeated SpeechRecognitionAlternative alternatives = 1; // For multi-channel audio, this is the channel number corresponding to the // recognized result for the audio from that channel. // For audio_channel_count = N, its output values can range from '1' to 'N'. int32 channel_tag = 2; // Time offset of the end of this result relative to the // beginning of the audio. google.protobuf.Duration result_end_time = 4; // Output only. The [BCP-47](https://www.rfc-editor.org/rfc/bcp/bcp47.txt) language tag // of the language in this result. This language code was detected to have // the most likelihood of being spoken in the audio. string language_code = 5 [(google.api.field_behavior) = OUTPUT_ONLY]; } // Alternative hypotheses (a.k.a. n-best list). message SpeechRecognitionAlternative { // Transcript text representing the words that the user spoke. // In languages that use spaces to separate words, the transcript might have a // leading space if it isn't the first result. You can concatenate each result // to obtain the full transcript without using a separator. string transcript = 1; // The confidence estimate between 0.0 and 1.0. A higher number // indicates an estimated greater likelihood that the recognized words are // correct. This field is set only for the top alternative of a non-streaming // result or, of a streaming result where `is_final=true`. // This field is not guaranteed to be accurate and users should not rely on it // to be always provided. // The default of 0.0 is a sentinel value indicating `confidence` was not set. float confidence = 2; // A list of word-specific information for each recognized word. // Note: When `enable_speaker_diarization` is true, you will see all the words // from the beginning of the audio. repeated WordInfo words = 3; } // Word-specific information for recognized words. message WordInfo { // Time offset relative to the beginning of the audio, // and corresponding to the start of the spoken word. // This field is only set if `enable_word_time_offsets=true` and only // in the top hypothesis. // This is an experimental feature and the accuracy of the time offset can // vary. google.protobuf.Duration start_time = 1; // Time offset relative to the beginning of the audio, // and corresponding to the end of the spoken word. // This field is only set if `enable_word_time_offsets=true` and only // in the top hypothesis. // This is an experimental feature and the accuracy of the time offset can // vary. google.protobuf.Duration end_time = 2; // The word corresponding to this set of information. string word = 3; // The confidence estimate between 0.0 and 1.0. A higher number // indicates an estimated greater likelihood that the recognized words are // correct. This field is set only for the top alternative of a non-streaming // result or, of a streaming result where `is_final=true`. // This field is not guaranteed to be accurate and users should not rely on it // to be always provided. // The default of 0.0 is a sentinel value indicating `confidence` was not set. float confidence = 4; // Output only. A distinct integer value is assigned for every speaker within // the audio. This field specifies which one of those speakers was detected to // have spoken this word. Value ranges from '1' to diarization_speaker_count. // speaker_tag is set if enable_speaker_diarization = 'true' and only in the // top alternative. int32 speaker_tag = 5 [(google.api.field_behavior) = OUTPUT_ONLY]; }